

SE8R01 specification

Version 1.6

2014/3/5

1	Introd	action	1
	1.1	Features	2
	1.2	Block	3
2	Pin Int	formation	4
	2.1	Pin assignment	4
	2.2	Pin functions	5
3	Absolu	ite maximum ratings	6
4	Operat	ing conditions	6
5	Electri	cal specifications	7
6	Radio	Control	8
	6.1	Operational Modes	8
	6.1.1	State diagram	8
	6.1.2	Power Down Mode	10
	6.1.3	Standby Modes	10
	6.1.4	RX mode	10
	6.1.5	TX mode	.11
	6.1.6	Operational modes configuration	.11
	6.1.7	Timing Information	.11
	6.2	Air data rate	12
	6.3	RF channel frequency	12
	6.4	Received Power Detector measurements	12
	6.5	PA control	13
	6.6	RX/TX control	13
7	Protoc	ol Engine	13
	7.1	Features	13
	7.2	Protocol engine overview	14
	7.3	Protocol engine packet format	14
	7.3.1	Preamble	14
	7.3.2	Address	15
	7.3.3	Guard	15
	7.3.4	Packet Control Field (PCF)	15
	7.3.5	Payload	16
	7.3.6	CRC (Cyclic Redundancy Check)	
	7.3.7	Automatic packet assembly	
	7.3.8	Automatic packet disassembly	19
	7.4	Automatic packet transaction handling	
	7.4.1	Auto Acknowledgement	
	7.4.2	Auto Retransmission (ART)	20
	7.5	Protocol engine flowcharts	21
	7.5.1	PTX operation	22

SE8R01

	7.5.2	PRX operation	23
	7.6	MultiSlave	25
	7.7	Protocol engine timing	27
	7.8	Protocol engine transaction diagram	29
	7.8.1	Single transaction with ACK packet and interrupts	29
	7.8.2	Single transaction with a lost packet	29
	7.8.3	Single transaction with a lost ACK packet	30
	7.8.4	Single transaction with ACK payload packet	30
	7.8.5	Single transaction with ACK payload packet and lost packet	31
	7.8.6	Two transactions with ACK payload packet and the first ACK packet lost	31
	7.8.7	Two transactions where max retransmissions is reached	32
8	Data a	nd control interface	32
	8.1	Features	33
	8.2	Functional description	33
	8.3	SPI operation	33
	8.3.1	SPI commands	33
	8.3.2	SPI timing	34
	8.4	Data FIFO	35
	8.5	Interrupt	36
9	Regist	er map	36
	9.1	Register map table	36
	9.1.1	CONFIG (RW) Address: 00h	37
	9.1.2	EN_AA (RW) Address: 01h	37
	9.1.3	EN_RXADDR (RW) Address: 02h	38
	9.1.4	SETUP_AW (RW) Address: 03h	39
	9.1.5	SETUP_RETR (RW) Address: 04h	40
	9.1.6	RF_CH (RW) Address: 05h	40
	9.1.7	RF_SETUP (RW) Address: 06h	40
	9.1.8	STATUS (RW) Address: 07h	41
	9.1.9	OBSERVE_TX (RW) Address: 08h	42
	9.1.10	RPD (R) Address: 09h	42
	9.1.11	RX_ADDR_P0 (RW) Address: 0Ah	43
	9.1.12	RX_ADDR_P1 (RW) Address: 0Bh	43
	9.1.13	RX_ADDR_P2 (RW) Address: 0Ch	44
	9.1.14	RX_ADDR_P3 (RW) Address: 0Dh	44
	9.1.15	RX_ADDR_P4 (RW) Address: 0Eh	44
		RX_ADDR_P5 (RW) Address: 0Fh	
	9.1.17	TX_ADDR(RW) Address: 10h	45
	9.1.18	RX_PW_P0 (RW) Address: 11h	45
	9.1.19	RX_PW_P1 (RW) Address: 12h	46
	9.1.20	RX_PW_P2 (RW) Address: 13h	46
		RX_PW_P3 (RW) Address: 14h	
	9.1.22	RX_PW_P4 (RW) Address: 15h	47

SE8R01

	9.1.23 RX_PW_P5 (RW) Address: 16h	48
	9.1.24 FIFO_STATUS (RW) Address: 17h	48
	9.1.25 DYNPD (RW) Address: 1Ch	49
	9.1.26 FEATURE (RW) Address: 1Dh	50
	9.1.27 SETUP_VALUE (RW) Address: 1Eh	50
	9.1.28 PRE_GURD (RW) Address: 1Fh	51
10	Glossary of Terms	52

1 Introduction

TheSE8R01 is a single chip 2.4GHz transceiver with an embedded baseband protocol engine, suitable for ultralow power wireless applications. The SE8R01 is designed for operation in the world wide ISM frequency band at 2.400 - 2.4835GHz.

To design a radio system with the SE8R01, you simply need an MCU (microcontroller) and a few external passive components.

You can operate and configure the SE8R01 through a Serial Peripheral Interface (SPI). The register map, which is accessible through the SPI, contains all configuration registers in the SE8R01 and is accessible in all operation modes of the chip.

The embedded baseband protocol engine is based on packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Internal FIFOs ensure a smooth data flow between the radio front end and the system's MCU. Protocol engine reduces system cost by handling all the high speed link layer operations.

The radio front end uses GFSK modulation. It has user configurable parameters like frequency channel, output power and air data rate. SE8R01 supports an air data rate of 500kbps, 1Mbps and 2Mbps. The high air data rates combined with two power saving modes make the SE8R01 very suitable for ultralow power designs.

The addition of internal filtering to SE8R01 has improved the margins for meeting RF regulatory standards.

Internal voltage regulators ensure a high Power Supply Rejection Ratio (PSRR) and a wide power supply range.

1.1 Features

Features of the SE8R01 include:

- Radio:
 - ➢ Worldwide 2.4GHz ISM band operation
 - > 126 RF channels
 - ➢ Common RX and TX interface
 - ➢ GFSK modulation
 - ▶ 500kbps, 1 and 2Mbps air data rate
 - > 1MHz non-overlapping channel spacing at 1Mbps
 - > 2MHz non-overlapping channel spacing at 2Mbps
- Transmitter:
 - ▶ Programmable output power: 0, -6, -12 or -18dBm。(4dBm@3V)
 - > 18.5mA at 0dBm output power
- Receiver:
 - > Fast AGC for improved dynamic range
 - Integrated channel filters
 - > 19.5mA at 2Mbps
 - ➢ -81dBm sensitivity at 2Mbps
 - ➢ -86dBm sensitivity at 1Mbps
 - ➢ -86dBm sensitivity at 500kbps
- RF Synthesizer:
 - ➢ Fully integrated synthesizer
 - > No external loop filer, VCO varactor diode or resonator
 - Accepts low cost ±60ppm 16MHz crystal
- Protocol engine:
 - > 1 to 32 bytes dynamic payload length
 - Automatic packet handling
 - Auto packet transaction handling
 - ➢ 6 data pipe for 1:6 star networks
- Power Management:
 - Integrated voltage regulator
 - ▶ 1.8 to 3.6V supply range
 - > Idle modes with fast start-up times for advanced power management
 - ► 50µA Standby-I mode,10uA power down mode
 - Max 2ms start-up from power down mode
 - Max 210us start-up from standby-I mode
- Host Interface:
 - ➢ 4-pin hardware SPI
 - ➤ Max 10Mbps
 - > 3 separate 32 bytes TX and RX FIFOs
 - ➢ 5V tolerant IO

SE8R01

• Compact 20-pin 4x4mm QFN package:

1.2 Block

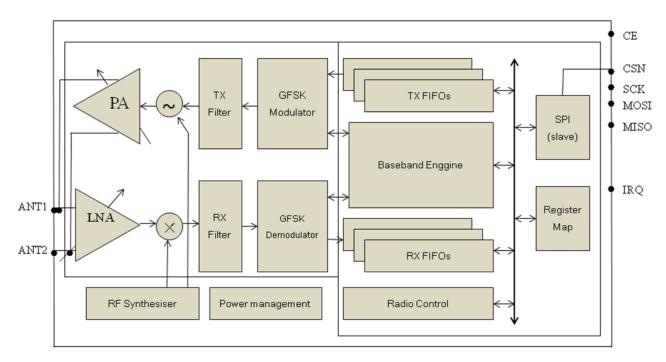


Figure1.1SE8R01 block diagram

2 Pin Information

2.1 Pin assignment

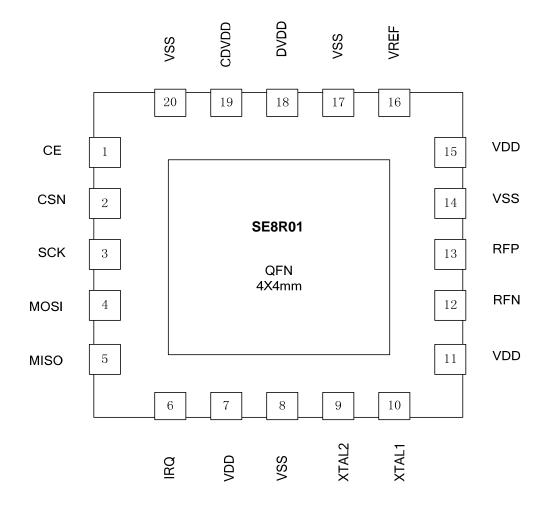
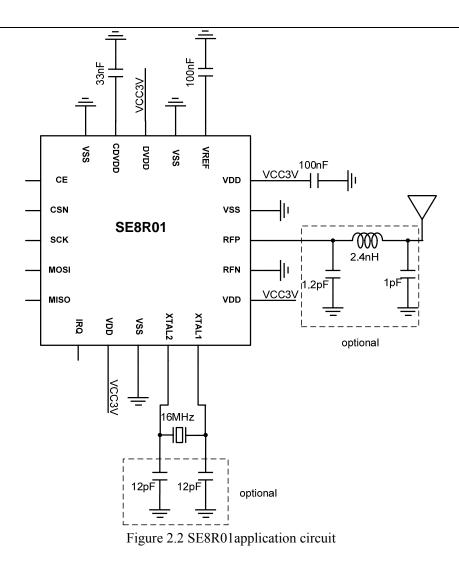



Figure2.1SE8R01 pin assignment (top view) for the QFN20 4x4 package

2.2 Pin functions

Pin	Name	Pin function	Description
1	CE	Digital Input	Chip Enable Activates RX or TX mode
2	CSN	Digital Input	SPI Chip Select
3	SCK	Digital Input	SPI Clock
4	MOSI	Digital Input	SPI Slave Data Input
5	MISO	Digital Output	SPI Slave Data Output, with tri-state option
6	IRQ	Digital Output	Maskable interrupt pin. Active low
7	VDD	Power	Power Supply (+1.8- +3.6V)
8	VSS	Power	Ground (0V)
9	XTAL2	Analog Output	Crystal Pin 2
10	XTAL1	Analog Input	Crystal Pin 1
11	VDD	Power	Power Supply (+1.8- +3.6V)
12	RFN	RF	Antenna interface 1

13	RFP	RF	Antenna interface 2
14	VSS	Power	Ground (0V)
15	VDD	Power	Power Supply (+1.8V - +3.6V)
16	VREF	Analog Input	Reference voltage. Connect a 100nFcapacitor to ground.
17	VSS	Power	Ground (0V)
18	DVDD	Power	Power Supply (+1.8V - +3.6V)
19	CDVDD	Power	Internal digital supply output for de-coupling purposes.
20	VSS	Power	Ground (0V)

Table2.1SE8R01 pin function

3 Absolute maximum ratings

Note: Exceeding one or more of the limiting values may cause permanent damage to SE8R01.

Operating conditions	Minimum	Maximum	Units
Supply voltages			
V _{DD}	-0.3	3.6	V
V _{SS}		0	V
Input voltage			
VI	-0.3	5.25	V
Output voltage			
Vo	V_{SS} to V_{DD}	V_{SS} to V_{DD}	
Temperatures			
Operating Temperature	-40	+85	
Storage Temperature	-40	+125	

Table2.1 Absolute maximum ratings

4 Operating conditions

Symbol	Parameter(condition)	Notes	Min.	Тур.	Max.	Units
V _{DD}	Supply voltage		1.8	3.0	3.6	V
V _{DD}	Supply voltage if input signals>3.6V		1.8	3.0	3.6	V
TEMP	Operating Temperature		-40	+27	+85	

Table 4.1 Operating conditions

5 Electrical specifications

Power Consumption

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Current in power down	Ipd	Leakage current			10	uA
2	Current in standby-I	Isb1	Only power up xtal		50		uA
3	Current in standby-II	Isb2	Power up xtal and buffer		900		uA
4	Current in TX 0dBm	Itx	PA under 0dBm		18.5		mA
5	Current in TX -18dBm	Itx	PA under -18dBm		12		mA
6	Current in RX 1Mbps	Irx	RX mode		19.5		mA
7	Current in RX 0.5Mbps	Irx	RX mode		19.5		mA
8	Operation frequency	Freq		2400		2525	MHz
9	PLL frequency step	Delta F			1		MHz
10	Freq deviation@500kbps	Df			160		KHz
11	Freq deviation@1Mbps	Df			160		KHz
12	Freq deviation@2Mbps	Df			320		KHz

Receiver performance

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Max RX signal	Pin,max	<0.1% BER		-10		dBm
2	500Kbps	Sensitivity	<0.1%BER		-86		dBm
3	1Mbps	Sensitivity	<0.1%BER		-86		dBm
4	2Mbps	Sensitivity	<0.1%BER		-81		dBm

Transmitter performance

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Max Output Power	Pmax	500hm antenna	-4	0	+4	dBm
2	Min Output Power	Pmin	500hm antenna		-26		dBm
3	RF power control range	Prange	500hm antenna		26		dB

xtal performance

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Crystal Frequency	Fxtal		16	16	16	MHz
2	Tolerance	Dfxtal		-60		+60	ppm
3	Load capacitance	Cxtal			12		pF

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	HIGH level input	Vhigh		0.7VDD		3.6	V
2	Low level input	Vlow		0		0.3VDD	V

6 Radio Control

This chapter describes the SE8R01 radio transceiver's operating modes and the parameters used to control the radio.

The SE8R01 has a built-in state machine that controls the transitions between the chip's operating modes. The state machine takes input from user defined register values and internal signals.

6.1 Operational Modes

You can configure the SE8R01 in power down, standby, RX or TX mode. This section describes these modes in detail.

6.1.1 State diagram

Figure 6.1. shows the operating modes and how they function. There are three types of distinct states highlighted in the state diagram:

- Recommended operating mode: is a recommended state used during normal operation.
- Possible operating mode: is a possible operating state, but is not used during normal operation.
- Transition state: is a time limited state used during start up of the oscillator and settling of the PLL.

When the VDD reaches 1.8V or higher SE8R01 enters the Power on reset state where it remains in reset until entering the PowerDown mode.

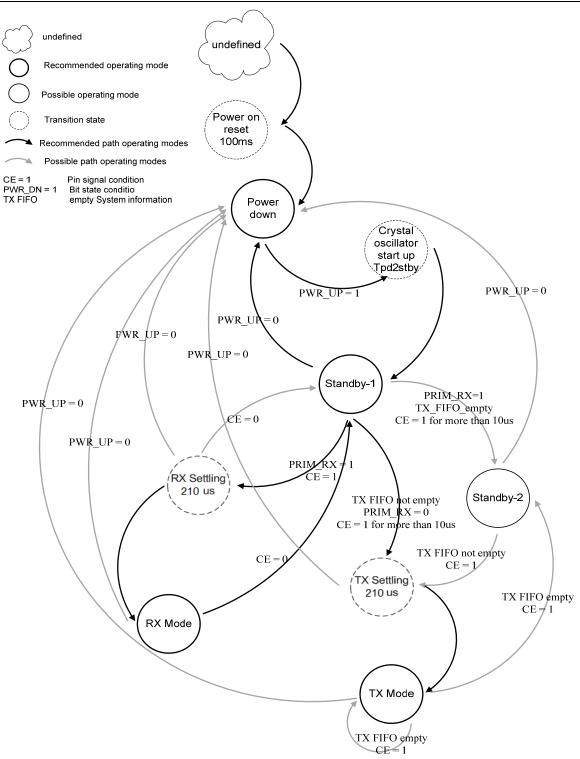


Figure 6.1 Radio control state diagram

6.1.2 Power Down Mode

In power down mode, the SE8R01is disabled using minimize average current consumption. All register values available are maintained and the SPI is kept active, enabling change of configuration and the uploading/down-loading of data registers.For starting up times see Table6.2 .Power down mode is entered by setting the PWR_UP bit in the CONFIG register low.

6.1.3 Standby Modes

6.1.3.1 Standby-I mode

By setting the PWR_UP bit in the CONFIG register to1, the device enters standby-I mode. Standby-I mode is used to minimizeaverage current consumption while maintaining short start up times. In this mode only part of the crystal oscillator is active. Change to active modes only happens if CE is set high and when CE is set low, the SE8R01 returns to standby-I mode from both the TX and RX modes.

6.1.3.2 Standby-II mode

In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. The SE8R01enters standby-II mode if CE is held high on a PTX device with an empty TX FIFO. If a new packet is uploaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the normal PLL settling delay (210µs). Register values are maintained and the SPI can be activated during both standby modes.

Notice: From Standby-I mode to standby-II mode CE more than 10us

6.1.4 RX mode

The RX mode is an active mode where the SE8R01 radio is used as a receiver. To enter this mode, the chip must have the PWR_UP bit, PRIM RX bit and the CE pin set high.

In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded.

The chip remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features in the baseband protocol engine are enabled, the chip can enter other modes in order to execute the protocol.

In RX mode a Received Power Detector (RPD) signal is available. The RPD register is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is $-100 \sim +10$ dBm. The RPD has about +/-5dBm deviation from the real level.

6.1.5 TX mode

The TX mode is an active mode for transmitting packets. To enter this mode, the chip must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the CE for more than 10µs.

The SE8R01 stays in TX mode until it finishes transmitting a packet. If CE = 0, the chip returns to standby-I mode. If CE = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the SE8R01 remains in TX mode and transmits the next packet. If the TX FIFO is empty the chip goes into standby-II mode.

6.1.6 Operational modes configuration

Mode	PWR_UP	PRIM_RX	CE input pin	FIFO state	
	register	register			
RX mode	1	1	1	-	
TX mode	1	0	1	Data TX FIFO. Will empty all level in TX	
				FIFOs ^a	
TX mode	1	0	Minimum 10us high	Data TX FIFO. Will empty one level in TX	
			pulse	FIFOs ^b	
Standby-2	1	0	1	TX FIFO empty	
Standby-1	1	-	0	No ongoing packet transmission	
Power Down	0	-	-	-	

The following (table 6.1) describes how to configure the operational modes:

Table6.1 the SE8R01 main modes

a. If CE is held high all TX FIFOs are emptied and all necessary ACK and possible retransmits are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty when the CE is still high, the chip enters standby-II mode. In this mode the transmission of a packet is started as soon as the CSN is set high after an upload (UL) of a packet to TX FIFO.

b. This operating mode pulses the CE high for at least 10μ s. This allows one packet to be transmitted. This is the normal operating mode. After the packet is transmitted, the chip enters standby-1mode.

6.1.7 Timing Information

The timing information in this section relates to the transitions between modes and the timing for the CE pin. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (max.210 μ s), asdescribed in Table6.2

Na	ame	The chip	Notes	Max.	Min.	Comments
T _{pc}	d2stby	Power down→Standby mode		150us		With external clock
			а	2ms		External crystal, Ls< 30mH
				3ms		External crystal, Ls< 60mH
				4.5ms		External crystal, Ls< 90mH
Ts	stby2a	Standby mode→TX/RX mode		210us		

T _{hce}	Minimum CE high		10us	
T _{pece2csn}	Delay from CE positive edge to CSN		4us	
	low			

a. See crystal specifications.

Table6.2 operational timing of the SE8R01 chip

For SE8R01 to go from power down mode to TX or RX mode it must first pass through stand-by mode. There must be a delay of $T_{pd2stby}$ (see Table 6.2) after the SE8R01 leaves power down mode before the CE is set high.

Note: If VDD is turned off the register value is lost and you must configure chip before entering the TX or RX modes.

6.2 Air data rate

The air data rate is the modulated signaling rate the chip uses when transmitting and receiving data. It can be 500kbps, 1Mbps or2Mbps. Using lower air data rate gives better receiver sensitivity than higher air data rate. But, high air data rate gives lower average current consumption and reduced probability of on-air collisions. The air data rate is set by the RF_DR bit in the RF_SETUP register. A transmitter and a receiver must be programmed with the same air data rate to communicate with each other.

6.3 RF channel frequency

The RF channel frequency determines the center of the channel used by the chip. The channel occupies a bandwidth of less than 1MHz at 500kbps and 1Mbps and a bandwidth of less than 2MHz at 2Mbps. The chip can operate on frequencies from 2.400GHz to 2.525GHz. The programming resolution of the RF channel frequency setting is 1MHz.

At 2Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency setting. To ensure non-overlapping channels in 2Mbps mode, the channel spacing must be 2MHz or more. At 1Mbps, the channel bandwidth is the same or lower than the resolution of the RF frequency.

The RF channel frequency is set by the RF_CH register according to the following formula:

$$F_0 = 2400 + RF_CH [MHz]$$

You must program a transmitter and a receiver with the same RF channel frequency to communicate with each other.

6.4 Received Power Detector measurements

Received Power Detector (RPD), located in register 09, is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is $-100 \sim +10$ dBm.

The RPD can be read out at any time while the chip is in received mode. This offers a snapshot of the current received power level in the channel. The status of RPD is correct when RX mode is enabled and after a wait time of $T_{stby2a} + T_{delay_AGC} = 210us + 20us$. The RX gain varies over temperature which means that the RPD value also varies over temperature.

6.5 PA control

The PA (Power Amplifier) control is used to set the output power from the chip power amplifier. In TX mode PA control has four programmable steps, see Table 6.3.

SPI RF-SETUP	RF output power	DC current
(PA_PWR[3:0])		consumption
1000	0dBm	18.5mA
0100	-6dBm	16mA
0010	-12dBm	14mA
0001	-18dBm	12mA

The PA control is set by the PA_PWR bits in theRF_SETUP register.

Conditions: VDD = 3.0V, VSS = 0V, TA = 27°C

Note: set PA_PWR[3:0] to 1111 can obtain maximum +4dBm output power

Table 6.3 RF output power setting for the SE8R01

6.6 RX/TX control

The RX/TX control is set by PRIM_RX bit in the CONFIG register and sets the SE8R01 chip in transmit/receive mode.

7 Protocol Engine

Protocol engine is a packet based data link layer that features automatic packet assembly and timing, automatic acknowledgement and retransmissions of packets. Protocol engine enables the implementation of ultralow power and high performance communication. The Protocol engine features enable significant improvements of power efficiency for bi-directional and uni-directional systems, without adding complexity on the host controller side.

7.1 Features

The main features of Protocol engine are:

- 1 to 32 bytes dynamic payload length
- Automatic packet handling
- Automatic packet transaction handling
 - Auto Acknowledgement with payload
 - Auto retransmit
- ➢ 6 data pipe for 1:6 star networks

7.2 **Protocol engine overview**

Protocol engine uses self defined protocol for automatic packet handling and timing. During transmit, Protocol engine assembles the packet and clocks the bits in the data packet for transmission. During receive, Protocol engine constantly searches for a valid address in the demodulated signal. When Protocol engine finds a validaddress, it processes the rest of the packet and validates it by CRC. If the packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and timing is controlled by protocol engine.

Protocol engine features automatic packet transaction handling for the easy implementation of a reliable bi-directional data link. A protocol engine packet transaction is a packet exchange between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other transceiver acting as the Primary Transmitter (PTX). A protocol engine packet transaction is always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has received an acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the ACK packet enabling a bi-directional data link.

The automatic packet transaction handling works as follows:

1. You begin the transaction by transmitting a data packet from the PTX to the PRX. Protocol engine automatically sets the PTX in receive mode to wait for the ACK packet.

2. If the packet is received by the PRX, Protocol engine automatically assembles and transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode.

3. If the PTX does not receive the ACK packet immediately, Protocol engine automatically retransmits the original data packet after a programmable delay and sets the PTX in receive mode to wait for the ACK packet.

In Protocol engine it is possible to configure parameters such as the maximum number of retransmits and the delay from one transmission to the next retransmission. All automatic handling is done without the involvement of the MCU.

7.3 Protocol engine packet format

The format of the Protocol engine packet is described in this section. The Protocol engine packet contains a preamble field, address field, packet control field, payload field and a CRC field. Figure 7.1 shows the packet format with MSB to the left.

Preamble 1 byte	Address 4-5 byte	2byte guard	Packet control field 9 bit	Payload 0-32 bytes	CRC 1-2 bytes	
Figure 7.1 A Protocol engine packet with payload (0-32 bytes)						

7.3.1 Preamble

The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.

7.3.2 Address

This is the address for the receiver. An address ensures that the packet is detected and received by the correct receiver, preventing accidental cross talk between multiple SE8R01 systems. You can configure the address field width in the AW register to be 5 bytes or 4 bytes address.

7.3.3 Guard

Figure 7.1 shows the format of the 2bytesguard packet has better synchronous characteristics.

7.3.4 Packet Control Field (PCF)

Figure 7.2 shows the format of the 9 bit packet control field, MSB to the left.

Payload length 6bit	PID 2bit	NO_ACK 1bit	
Figure 7.2 Dealest control	field (DCE)		

Figure 7.2 Packet control field (PCF)

The packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and a 1 bit NO_ACK flag.

7.3.4.1 Payload length

This 6 bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes.

Coding: 00000 = 0 byte (only used in empty ACK packets. The 0 length packet also need to be read out use R_RX_PAYLOAD with no data following) 100000 = 32 byte, 100001 = Don't care.

This field is only used if the Dynamic Payload Length function is enabled.

7.3.4.2 PID (Packet identification)

The 2 bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX operation from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fieldare used by the PRX operation to determine if a packet is retransmitted or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, the RF transceiver compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

7.3.4.3 No Acknowledgment flag (NO_ACK)

The Selective Auto Acknowledgement feature controls the NO_ACK flag.

This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to

On the PTX you can set the NO_ACK flag bit in the Packet Control Field with this command: W_TX_PAYLOAD_NOACK

However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit. When you use this option, the PTX goes directly to standby-I mode after transmitting the packet. The PRX does not transmit an ACK packet when it receives the packet.

7.3.5 Payload

The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted on-air when it is uploaded to the device.

Protocol engine provides two alternatives for handling payload lengths; static and dynamic.

The default is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side.

Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means that for a system with different payload lengths it is not necessary to scale the packet length to the longest payload.

With the DPL feature the SE8R01 can decode the payload length of the received packet automatically instead of using theRX PW Pxregisters. The MCU can read the length of the received payload by using the R RX PL WID command.

Note: Always check if the packet width reported is 32 bytes or shorter when using the R_RX_PL_WID command. If its width is longer than 32 bytes then the packet contains errors and must be discarded. Discard the packet by using the Flush_RXcommand.

In order to enable DPL the EN_DPL bit in the FEATURE register must be enabled. In RX mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set.

7.3.6 CRC (Cyclic Redundancy Check)

The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field and Payload.

The polynomial for 1 byte CRC is $X^8 + X^2 + X + 1$. Initial value 0xFF.

The polynomial for 2 byte CRC is $X^{16} + X^{12} + X^5 + 1$. Initial value 0xFFFF.

The number of bytes in the CRC is set by the CRCO bit in the CONFIG register. No packet is accepted by protocol engine if the CRC fails.

7.3.7 Automatic packet assembly

The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC to make a complete packet before it is transmitted.

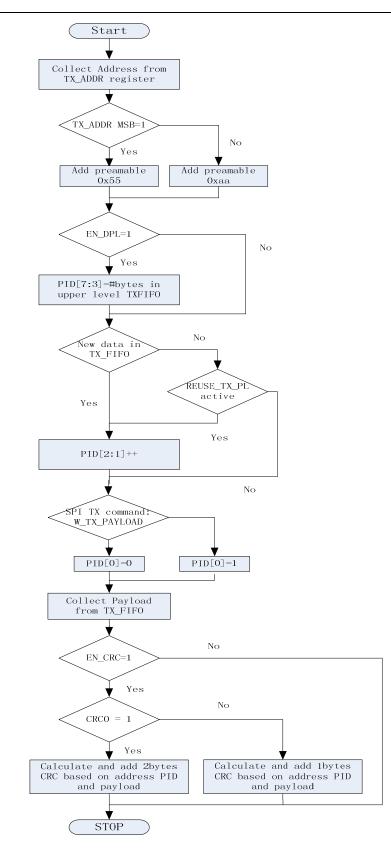


Figure 7.3Automatic packet assembly

7.3.8 Automatic packet disassembly

After the packet is validated, Protocol engine disassembles the packet and loads the payload into the RX FIFO, and asserts the RX_DR IRQ.

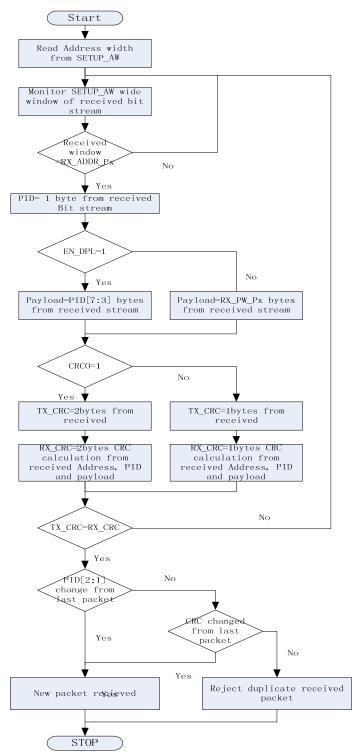


Figure 7.4Automatic packet disassembly

7.4 Automatic packet transaction handling

Protocol engine features two functions for automatic packet transaction handling; auto acknowledgement and auto re-transmit.

7.4.1 Auto Acknowledgement

Auto Acknowledgment is a function that automatically transmits an ACK packet to the PTX after it has received and validated a packet. The Auto Acknowledgement function reduces the load of the system MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting the EN AA register.

Note: If the received packet has the NO_ACK flag set, auto acknowledgement is not executed.

An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the payload by clocking it into the TX FIFO by using the W_ACK_PAYLOAD command. The payload is pending in the TX FIFO (PRX) until a new packet is received from the PTX. The RF transceiver can have three ACK packet payloads pending in the TX FIFO (PRX) at the same time.

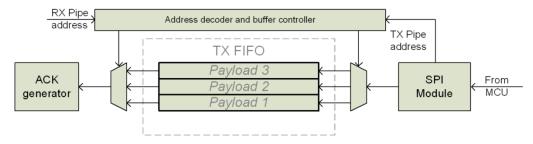


Figure 7.5TX FIFO (PRX) with pending payloads

Figure 7.5shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From the MCU the payload is clocked in with the W_ACK_PAYLOAD command. The address decoder and buffer controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is received, the address decoder and buffer controller are notified with the PTX address. This ensures that the right payload is presented to the ACK generator.

If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in-first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH_TX command.

In order to enable Auto Acknowledgement with payload the EN_ACK_PAY bit in the FEATURE register must be set.

7.4.2 Auto Retransmission (ART)

The auto retransmission is a function that retransmits a packet if an ACK packet is not received. It is used in an Auto Acknowledgement system on the PTX. When a packet is not acknowledged, you can set the number of times it is allowed to retransmit by setting the ARC bits in the SETUP_RETR register. PTX enters RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time the PTX is in RX mode is based on the following conditions:

- Auto Retransmit Delay (ARD) has elapsed.
- No address match within 256µs.

• After received packet (CRC correct or not) if address match within 256 µs.

The RF transceiver asserts the TX_DS IRQ when the ACK packet is received.

The RF transceiver enters standby-I mode if there is no more un-transmitteddata in the TX FIFO and the CEpin is low. If the ACK packet is not received, the RF transceiver goes back to TX mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is received, or the maximum number of retransmits is reached.

Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction. You reset ARC_CNT by initiating a new transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. You reset PLOS_CNT by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality.

The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX. ARD is set in SETUP_RETR register in steps of 256µs. A retransmit is made if no ACK packet is received by the PTX.

There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must never be shorter than the sum of the startup time and the time on-air for the ACK packet.

- For 2 Mbps data rate and 5-byte address; 15 byte is maximum ACK packet payload length for ARD=256µs (reset value).
- For 1 Mbps data rate and 5-byte address; 5 byte is maximum ACK packet payload length for ARD=256µs (reset value).

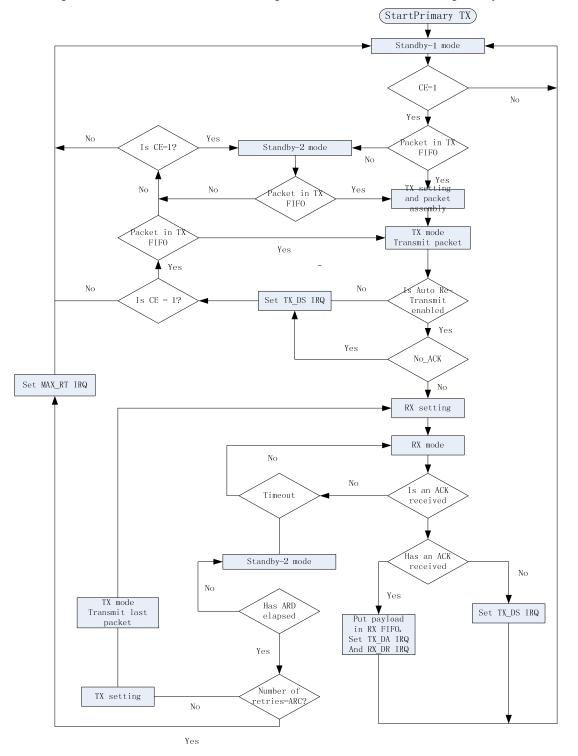
ARD=512µs is long enough for any ACK payload length in 1 or 2 Mbps mode.

ARD	ACK packet size (in byte)
1536us	All ACK payload sizes
1280us	<=24
1024us	<=16
768us	<=8
512us	Empty ACK with no payload

• For 500kbps data rate and 5-byte address the following values apply:

Table 7.1 Maximum ACK payload length for different retransmit delays

As an alternative to Auto Retransmit it is possible to manually set the RF transceiver to retransmit a packet a number of times. This is done by the REUSE_TX_PL command. The MCU must initiate each transmission of the packet with a pulse on the CE pin when this command is used.


7.5 Protocol engine flowcharts

This section contains flowcharts outlining PTX and PRX operation in Protocol engine.

7.5.1 PTXoperation

The flowchart in Figure 7.6 outlines how a RF transceiver configured as a PTX behaves after entering standby-I mode.

Note: Protocol engine operation is outlined with a dashed square.

Figure 7.6 PTX operations in Protocol engine

Activate PTX mode by setting the CE high. If there is a packet present in the TX FIFO the RF transceiver enters TX mode and transmits the packet. If Auto Retransmit is enabled, the state machine checks if the NO_ACK flag is set. If it is not set, the RF

SE8R01

transceiver enters RX mode to receive an ACK packet. If the received ACK packet is empty, only the TX_DS IRQ is asserted. If the ACK packet contains a payload, both TX_DS IRQ and RX_DR IRQ are asserted simultaneously before the RF transceiver returns to standby-I mode.

If the ACK packet is not received before timeout occurs, the RF transceiver returns to standby-II mode. It stays in standby-II mode until the ARD has elapsed. If the number of retransmits has not reached the ARC, the RF transceiver enters TX mode and transmits the last packet once more.


While executing the Auto Retransmit feature, the number of retransmits can reach the maximum number defined in ARC. If this happens, the RF transceiver asserts the MAX RT IRQ and returns to standby-I mode.

If the CE bit in the RFCON register is high and the TX FIFO is empty, the RF transceiver enters Standby-II mode.

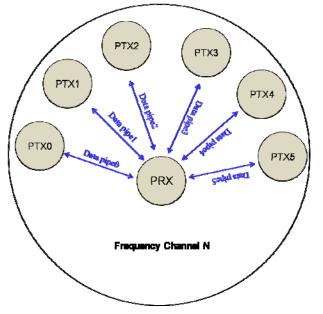
7.5.2 PRX operation

The flowchart in Figure 7.7 outlines how a RF transceiver configured as a PRX behaves after entering standby-I mode.

Note: Protocol engine operation is outlined with a dashed square.

Figure 7.7 PRX operations in Protocol engine

Activate PRX mode by setting the CE bit in the RFCON register high. The RF transceiver enters RX mode and starts searching for packets. If a packet is received and Auto Acknowledgement is enabled, the RF transceiver decides if the packet is new or a copy of a


SE8R01

previously received packet. If the packet is newpayload is made available in the RX FIFO and the RX_DR IRQ is asserted. If the last received packet from the transmitter is acknowledged with an ACK packet with payload, the TX_DS IRQ indicates that the PTX received the ACK packet with payload. If the No_ACK flag is not set in the received packet, the PRX enters TX mode. If there is a pending payload in the TX FIFO it is attached to the ACK packet. After the ACK packet is transmitted, the RF transceiver returns to RX mode.

A copy of a previously received packet might be received if the ACK packet is lost. In this case, the PRX discards the received packet and transmits an ACK packet before it returns to RX mode.

7.6 MultiSlave

MultiSlave is a feature used in RX mode that contains a set of six parallel data pipes with unique addresses. A data pipe is a logical channel in the physical RF channel. Each data pipe has its own physical address (data pipe address) decoding in the RF transceiver.

Figure 7.8 PRX using MultiSlave

The RF transceiver configured as PRX (primary receiver) can receive data addressed to six different data pipes in one frequency channel as shown in Figure 7.8. Each data pipe has its own unique address and can be configured for individual behavior.

Up to six RF transceivers configured as PTX can communicate with one RF transceiver configured as PRX. All data pipe addresses are searched for simultaneously. Only one data pipe can receive a packet at a time. All data pipes can perform Protocol engine functionality.

The following settings are common to all data pipes:

- CRC enabled/disabled (CRC always enabled when Protocol engine is enabled)
- CRC encoding scheme
- RX address width
- Frequency channel
- Air data rate
- LNA gain

The data pipes are enabled with the bits in the EN_RXADDR register. By default only data pipe 0 and 1 are enabled. Each data pipe address is configured in the RX_ADDR_PX registers.

Note: Always ensure that none of the data pipes have the same address.

Each pipe can have up to a 5 byte configurable address. Data pipes 0-5 share the four most significant address bytes. The LSByte must be unique for all six pipes. Figure 7.9 is an example of how data pipes 0-5 are addressed. Only pipe0 can have up to a 5 byte configurable address, other's pipes have 1bytes configurable address.

	Byte4	Byte3	Byte2	Byte1	Byte0
Data pipe 0 (RX_ADDR_PO)	OxE7	0xD3	0xF0	0x35	0xC0
Data pipe 1 (RX_ADDR_P1)	OxE7	0xD3	0xF0	0x35	0xC1
	Ţ	Ţ		Ţ	
Data pipe 2 (RX_ADDR_P2)	OxE7	0xD3	0xF0	0x35	0xC2
	Ţ	Ţ		Ţ	
Data pipe 3 (RX_ADDR_P3)	OxE7	0xD3	0xF0	0x35	OxC3
	Ţ	ļ		ļ	
Data pipe 4 (RX_ADDR_P4)	OxE7	0xD3	0xF0	0x35	0xC4
	Ţ	ļ			
Data pipe 5 (RX_ADDR_P5)	OxE7	0xD3	0xF0	0x35	0xC5

Figure 7.9 Addressing data pipes 0-5

The PRX, using MultiSlave and Protocol engine, receives packets from more than one PTX. To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet. Figure 7.10 is an example of an address configuration for the PRX and PTX. On the PRX the RX_ADDR_Px, defined as the pipe address, must be unique. On the PTX the TX_ADDR must be the same as the RX_ADDR_P0 and as the pipe address for the designated pipe.

SE8R01

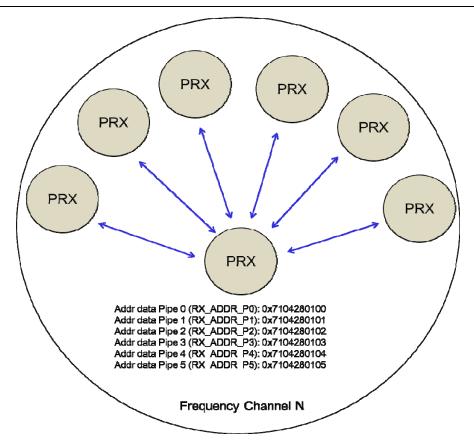
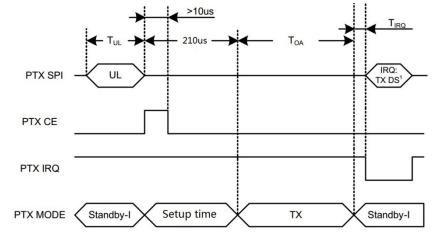



Figure 7.10Example of data pipe addressing in MultiSlave

Only when a data pipe receives a complete packet can other data pipes begin to receive data. When multiple PTXs are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once.

7.7 Protocol engine timing

This section describes the timing sequence of Protocol engine and how all modes are initiated and operated. The Protocol engine timing is controlled through the Data and Control interface. The RF transceiver can be set to static modes or autonomous modes where the internal state machinecontrols the events. Each autonomous mode/sequence ends with a RFIRQ interrupt. All the interrupts are indicated as IRQ events in the timing diagrams.

¹ IRQ if No Ack is on.

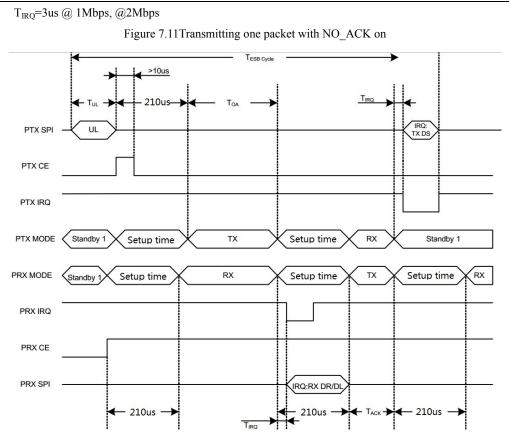


Figure 7.12 Timing of Protocol engine for one packet upload(2Mbps)

In Figure 7.12, the transmission and acknowledgement of a packet is shown. The PRX operation activates RX mode (CE=1), and the PTX operation is activated in TX mode (CE=1 for minimum 10 μ s). After 210 μ s the transmission starts and finishes after the elapse of T_{OA}.

When the transmission ends the PTX operation automatically switches to RX mode to wait for the ACK packet from the PRX operation. When the PRX operation receives the packet it sets the interrupt for the host MCU and switches to TX mode to send an ACK. After the PTX operation receives the ACK packet it sets the interrupt to the MCU and clears the packet from the TX FIFO. In Figure 7.13, the PTX timing of a packet transmission is shown when the first ACK packet is lost.

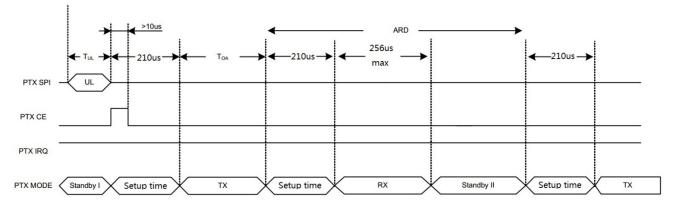
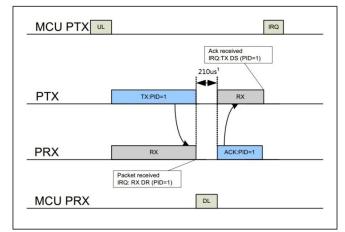


Figure 7.13Timing of Protocol engine when the first ACK packet is lost (2 Mbps)

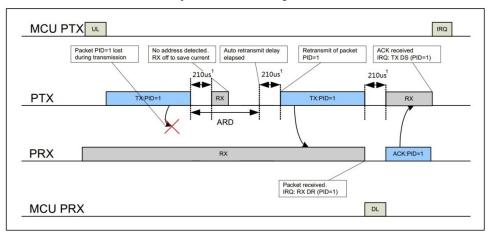

7.8 Protocol engine transaction diagram

This section describes several scenarios for the Protocol engine automatic transaction handling. The call outs in this section's figures indicate the IRQs and other events. For MCU activity the event may be placed at a different timeframe.

Note: The figures in this section indicate the earliest possible download (DL) of the packet to the MCU and the latest possible upload (UL) of payload to the transmitter.

7.8.1 Single transaction with ACK packet and interrupts

In Figure 7.14, the basic auto acknowledgement is shown. After the packet is transmitted by the PTX and received by the PRX the ACK packet is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas theTX_DS IRQ is asserted when the packet is acknowledged and the ACK packet is received by the PTX.



1 Radio Turn Around delay

Figure 7.14 TX/RX cycles with ACK and the according interrupts

7.8.2 Single transaction with a lost packet

Figure 7.15 is a scenario where a retransmission is needed due to loss of the first packet transmits. After the packet is transmitted, the PTX enters RX mode to receive the ACK packet. After the first transmission, the PTX waits a specified time for the ACK packet, if it is not in the specific time slot the PTX retransmits the packet as shown inFigure 7.15.

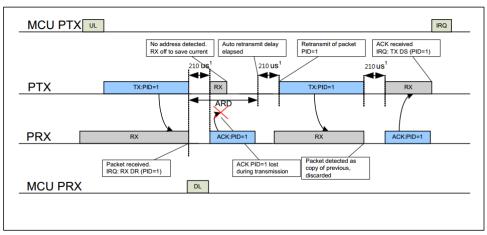
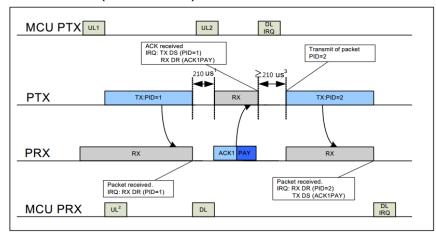

1 Radio Turn Around delay

Figure 7.15TX/RX cycles with ACK and the according interrupts when the first packet transmit fails

When an address is detected the PTX stays in RX mode until the packet is received. When the retransmitted packet is received by the PRX (see Figure 7.15). The RX_DR IRQ is asserted and an ACK is transmitted back to the PTX. When the ACK is received by the PTX, the TX_DS IRQ is asserted.

7.8.3 Single transaction with a lost ACK packet

Figure 7.16 is a scenario where a retransmission is needed after a loss of the ACK packet. The corresponding interrupts are also indicated.

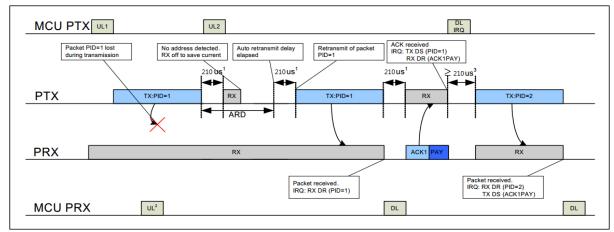


¹ Radio Turn Around delay

Figure 7.16TX/RX cycles with ACK and the according interrupts when the ACK packet fails

7.8.4 Single transaction with ACK payload packet

Figure 7.17 is a scenario of the basic auto acknowledgement with payload. After the packet is transmitted by the PTX and received by the PRX the ACK packet with payload is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas on the PTX side the TX_DS IRQ is asserted when the ACK packet is received by the PTX. On the PRX side, the TX_DS IRQ for the ACK packet payload is asserted after a new packet from PTX is received. The position of the IRQ in Figure 7.17 shows where the MCU can respond to the interrupt.

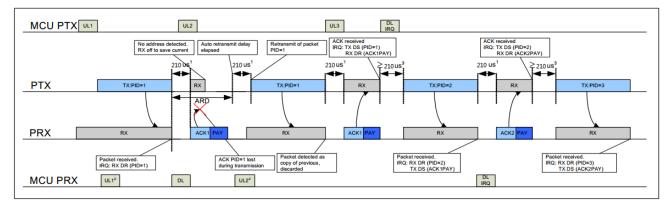


Radio Turn Around delay
Uploading payload for Ack Packet
Delay defined by MCU on PTX side, >=210us
Figure 7.17 TX/RX cycles with ACK Payload and the according interrupts

7.8.5 Single transaction with ACK payload packet and lost packet

Figure 7.18 is a scenario where the first packet is lost and a retransmission is needed before the RX_DR IRQ on the PRX side is asserted. For the PTX both the TX_DS and RX_DR IRQ are asserted after the ACK packet is received. After the second packet (PID=2) is received on the PRX side both the RX_DR (PID=2) and TX_DS (ACK packet payload) IRQ are asserted.

1 Radio Turn Around delay

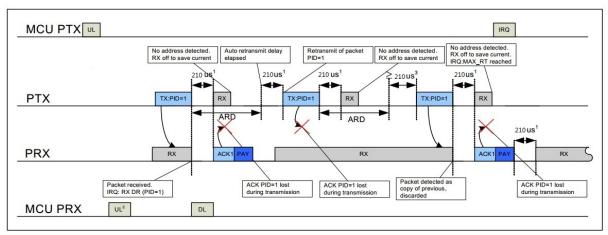

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 7.18 TX/RX cycles and the according interruptswhen the packet transmission fails

7.8.6 Two transactions with ACK payload packet and the first ACK packet lost

Figure 7.19 the ACK packet is lost and a retransmission is needed before theTX_DS IRQ is asserted, but the RX_DR IRQ is asserted immediately. The retransmission of the packet (PID=1) results in a discarded packet. For the PTX both the TX_DS and RX_DR IRQ are asserted after the second transmission of ACK, which is received. After the second packet (PID=2) is received on the PRX both the RX_DR (PID=2) and TX_DS (ACK1PAY) IRQ is asserted. The callouts explains the different events and interrupts.


1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 7.19TX/RX cycles with ACK Payload and the according interrupts when the ACK packet fails

7.8.7 Two transactions where max retransmissions is reached

1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Figure 7.20 TX/RX cycles with ACK Payload and the according interrupts when the transmission fails. ARCis set to 2.

MAX_RT IRQ is asserted if theauto-retransmit counter (ARC_CNT) exceeds the programmed maximum limit (ARC). In Figure 7.20, the packet transmission ends with a MAX_RT IRQ. The payload in TX FIFO is NOT removed and the MCU decides the next step in the protocol. A toggle of the CE bit in the RFCON register starts a new transmitting sequence of the same packet. The payload can be removed from the TX FIFO using the FLUSH_TX command.

8 Data and control interface

The data and control interface gives you access to all the features in the RF transceiver. The data and control interface consists of the following six 5Volt tolerant digital signals:

- IRQ (this signal is active low and controlled by three mask-able interrupt sources)
- CE (this signal is active high and used to activate the chip in RX or TX mode)
- CSN (SPI signal)
- SCK (SPI signal)
- MOSI (SPI signal)
- MISO (SPI signal)

Using 1 byte SPI commands, you can activate the SE8R01 data FIFOs or the register map during all modes of operation.

8.1 Features

- Special SPI commands for quick access to the most frequently used features
- 0-10Mbps 4-wire SPI
- 8 bit command set
- Easily configurable register map
- Full three level FIFO for both TX and RX direction

8.2 Functional description

The SPI is a standard SPI with a maximum data rate of 10Mbps.

8.3 SPI operation

This section describes the SPI commands and timing.

8.3.1 SPI commands

The SPI commands are shown in Table 8.1. Every new command must be started by a high to low transition on CSN.

The STATUS register is serially shifted out on the MISO pin simultaneously to the SPI command word shifting to the MOSI pin.

The serial shifting SPI commands is in the following format:

<Command word:MSBit to LSBit (one byte)>

<Data bytes:LSByte to MSByte, MSBit in each byte first>

See Figure 8.1 and Figure 8.2 for timing information.

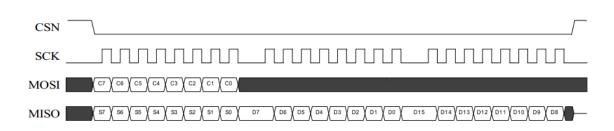
Command	Command	#Data bytes	Operation
	word (binary)		
R_RESISTER	000A AAAA	1 to 5	Read command and status registers. AAAAA=5 bit register map address
		LSByte first	
W_RESISTER	001A AAAA	1 to 5	Write command and status registers. AAAAA=5 bit register map address
		LSByte first	Executable in power down or standby modes only.
R_TX_PAYLOAD	0110 0001	1 to 32	Read RX-payload: 1-32 bytes. A read operation always starts at byte 0.
		LSByte first	Payload is deleted from FIFO after it is read. Used in RX mode.
W_TX_PAYLOAD	1010 0000	1 to 32	Write TX-payload: $1 - 32$ bytes. A write operation always starts at byte 0
		LSByte first	used in TX payload.
FLUSH_TX	1110 0001	0	Flush TX FIFO, used in TX mode
FLUSH_RX	1110 0010	0	Flush RX FIFO, used in RX mode
			Should not be executed during transmission of acknowledge, that is,
			acknowledge package will not be completed
REUSE_TX_PL	1110 0011	0	Used for a PTX operation

			Reuse last transmitted payload.TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX payload reuse must not be activated or deactivated duringpackage transmission.
R_RX_PL_WID	0110 0000	1	Read RX payload width for the top R_RX_PAYLOAD in the RX FIFO.Note: Flush RX FIFO if the read value is larger than 32 bytes.
W_ACK_PAYLOAD	1010 1PPP	1 to 32	Used in RX mode.
		LSByte first	Write Payload to be transmitted together with ACK packet on PIPE PPP.
			(PPP valid in the range from 000 to 101). Maximum three ACK packet
			payloads can be pending. Payloads with same PPP are handled using first in
			- first out principle. Write payload: 1- 32 bytes. A write operation always
			starts at byte 0.
W_TX_PAYLOAD_	1011 0000	1 to 32	Used in TX mode. Disables AUTOACK on this specific packet specific
NO_ACK		LSByte first	packet.
NOP	1111 1111	0	No Operation. Might be used to read the STATUS
			register

Table 8.1Command set for the RF transceiver SPI

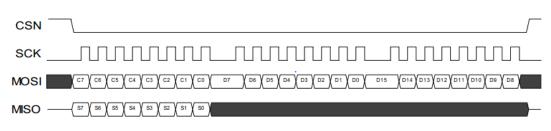
The W_REGISTER and R_REGISTER commands operate on single or multi-byte registers. When accessing multi-byte registers read orwriteto the MSBit of LSByte first. You can terminate the writing before all bytes in a multi-byte register are written, leaving the unwritten MSByte(s) unchanged. For example, the LSByteof RX_ADDR_P0 can be modified by writing only one byte to the RX ADDR P0 register. The content of the status register is always read to MISO after a high to low transition on CSN.

Note: The 3 bit pipe information in the STATUS register is updated during the IRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an IRQ high to low transition.


8.3.2 SPI timing

SPI operation and timing is shown in Figure 8.1 to Figure 8.3 and in Table 8.3 to Table 8.8. SE8R01must be in a standby or power down mode before writing to the configuration registers.

In Figure 8.1 to Figure 8.3 the following abbreviations are used:


Description
SPI command bit
STATUS register bit
Data Bit (Note:LSByte to MSByte, MSBit in each byte first)
-

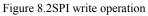

Table 8.2 Abbreviations used in Figure 8.1. to Figure 8.2.

Figure 8.1 SPI read operation

8.4 Data FIFO

The data FIFOs store transmitted payloads (TX FIFO) or received payloads that are ready to be clocked out (RX FIFO). The FIFOs are accessible in both PTX mode and PRX mode. The following FIFOs are present in the RF transceiver:

- TX three level, 32 byte FIFO
- RX three level, 32 byte FIFO

Both FIFOs have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payloads for ACK packets to three different PTX devices. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in - first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO using the FLUSH_TXcommand.

The RX FIFO in PRX can contain payloads from up to three different PTX devices and a TX FIFO in PTX can have up to three payloads stored.

You can write to the TX FIFO using these three commands; W_TX_PAYLOAD and W_TX_PAYLOAD_NO_ACK in PTX mode and W_ACK_PAYLOAD in PRX mode. All three commands provide access to the TX_PLD register.

The RX FIFO can be read by the command R_RX_PAYLOAD in PTX and PRX mode. This command provides access to the RX_PLD register.

The payload in TX FIFO in a PTX is not removed if the MAX_RT IRQ is asserted.

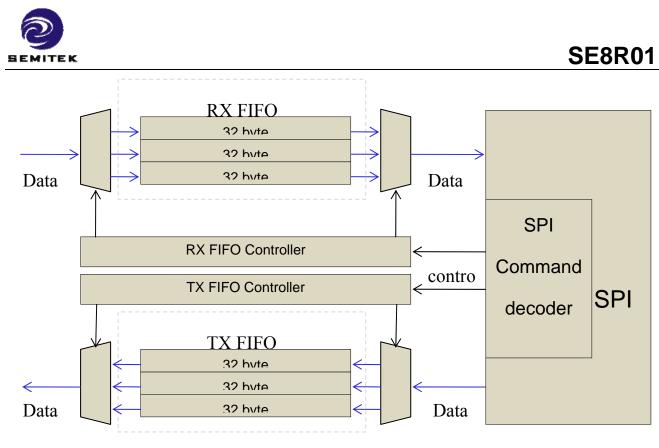


Figure 8.5 FIFO (RX and TX) block diagram

You can read if the TX and RX FIFO are full or empty in the FIFO_STATUS register.

8.5 Interrupt

The SE8R01 has an active low interrupt (IRQ) pin. The IRQ pin is activated when TX_DS IRQ, RX_DR IRQ or MAX_RT IRQ are set high by the state machine in the STATUS register. The IRQ pin resets when MCU writes '1' to the IRQ source bit in theSTATUS register. The IRQ mask in the CONFIG register is used to select the IRQ sources that are allowed to assert the IRQ pin. By setting one of the MASK bits high, the corresponding IRQ source is disabled. By default all IRQ sources are enabled.

Note: The 3 bit pipe information in the STATUS register is updated during the IRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an IRQ high to low transition.

9 Register map

You can configure and control the radio by accessing the register map through the SPI.

9.1 Register map table

All undefined bits in the table below are redundant. They are read out as '0'.

Note: Addresses 18 to 1B are reserved for test purpose, alteringthem makes the chip malfunction.

9.1.1 CONFIG (RW)Address: 00h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	MASK_RX_ DR	MASK_TX_ DS	MASK_MA X_RT	EN_CRC	CRCO	PWR_UP	PRIM_RX
0	0	0	0	1	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description
7	0		Only 0 allowed	
		Reserved	0	Keep the current value
			1	Reset to default values
6	0	MASK_RX_DR	Mask interrupt car	used by RX_DR
			0	Reflect RX_DR as active low interrupt on the IRQ pin
			1	Interruptnot reflected on the IRQ pin
5	0	MASK_TX_DS	Mask interrupt car	used by TX_DS
			0	Reflect TX_DS as active low interrupt on the IRQ pin
			1	Interrupt not reflected on the IRQpin
4	0	MASK_MAX_	Mask interrupt cau	used by MAX_RT
		RT	0	Reflect MAX_RT as active low interrupt on the IRQ pin
			1	Interrupt not reflected on the IRQ pin
3	1	EN_CRC	Enable CRC. Force	ted high if one of the bits in the EN_AA is high
			0	Disable CRC
			1	Enable CRC
2	0	CRCO	CRC encoding sch	heme
			0	1 byte
			1	2 byte
1	0	PWR_UP	Power up control	
			0	POWER DOWN
			1	POWER UP
0	0	PRIM_RX	RX/TX control	
			0	PTX
			1	PRX

9.1.2 EN_AA (RW) Address: 01h

Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2	Bit 1	Bit 0
--------------------------------	-------	-------

Reversed	ENAA_P5	ENAA_P4	ENAA_P3	ENAA_P2	ENAA_P1	ENAA_P0
0	1	1	1	1	1	1
RW	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description
7	0	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
6	0	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
5	1	ENAA_P5	Enable auto acknow	owledgement data pipe 5
			0	Disable
			1	Enable
4	1	ENAA_P4	Enable auto acknow	owledgement data pipe 4
			0	Disable
			1	Enable
3	1	ENAA_P3	Enable auto acknow	owledgement data pipe 3
			0 Disable	
			1	Enable
2	1	ENAA_P2	Enable auto acknow	owledgement data pipe 2
			0	Disable
			1	Enable
1	1	ENAA_P1	Enable auto acknow	owledgement data pipe 1
			0	Disable
			1	Enable
0	1	ENAA_P0	Enable auto acknow	owledgement data pipe 0
			0	Disable
			1	Enable

9.1.3 EN_RXADDR (RW) Address: 02h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reve	ersed	ERX_P5	ERX_P4	ERX_P3	ERX_P2	ERX_P1	ERX_P0
0		0	0	0	0	1	1
RW		RW	RW	RW	RW	RW	RW

Bit	Value	Symbol		Description
7:6	0	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
5	0	ERX_P5	Enable data pipe 5	
			0	Disable
			1	Enable
4	0	ERX_P4	Enable data pipe 4	
			0	Disable
			1	Enable
3	0	ERX_P3	Enable data pipe 3	
			0	Disable
			1	Enable
2	0	ERX_P2	Enable data pipe 2	
			0	Disable
			1	Enable
1	1	ERX_P1	Enable data pipe 1	
			0	Disable
			1	Enable
0	1	ERX_P0	Enable data pipe 0	
			0	Disable
			1	Enable

9.1.4 SETUP_AW (RW) Address: 03h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
		SETUP_AW						
	0							
		R	W					

Bit	Value	Symbol	Description		
7:2	0	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
1:0	2'b11	SETUP_AW	Setup of Address Widths		
			(common for all data pipes)		
			2'b11	5 bytes	
			2'b10 4 bytes		
			2'b01	Illegal	

	2'b00	Illegal
--	-------	---------

9.1.5 SETUP_RETR (RW) Address: 04h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	AF	RD			AF	RC		
	4'	b0		4'b11				
	R	W			RV	W		

Description of Word

Bit	Value	Symbol		Description	
7:2	4'b0	ARD	Auto Retransmit Delay		
			4'hf	Wait 4096µS	
			4'h1	Wait 512µS	
			4'h0	Wait 256µS	
3:0	4'b11	ARC	Auto Retransmit	Count	
			4'hf	Up to 15 Re-Transmit on fail of AA	
			4'h1	Up to 1 Re-Transmit on fail of AA	
			4'h0	Re-Transmit disabled	

9.1.6 RF_CH (RW) Address: 05h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reg_Rf_ch											
8'b2											
RW											

Description of Word

Bit	Value	Symbol	Description
8:0	2	Reg_Rf_ch	Sets the frequency channelSE8R01 operates on

9.1.7 RF_SETUP (RW) Address: 06h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONT_WAV E	PA_PWR[3]	RF_DR_LO W	Reserved	RF_DR_HIG H		PA_PWR	

0	1	0	0	1	3'b010
RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description
7	0	CONT_WAVE	Enables continuous	carrier transmit when high
			0	Disable
			1	Enable
6	1	PA_PWR[3]	PA power select bit 3	3
5	0	RF_DR_LOW	See RF_DR_HIGH	for encoding.
4	0	reserved	Reserved	
3	1	RF_DR_HIGH	Select between the	high speed data rates. This bit is donot care if RF_DR_LOW is
			set.Encoding:	
			[RF_DR_LOW, RF_	_DR_HIGH]:
			11	500Kbps
			10	reserved
			01	2Mbps
			00	1Mbps
2:0	3'b010	PA_PWR	PA_PWR[3:0]	
			1111	Output +5 dbm
			1000	Output 0 dbm
			0100	Output -6 dbm
			0010	Output -12 dbm
			0001	Output -18 dbm

9.1.8 STATUS (RW) Address: 07h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BANK	RX_DR	TX_DS	MAX_RT	RX_P_NO			TX_FULL
0	0	0	0	3'b111			0
R	RW	RW	RW	R			R

Bit	Value	Symbol	Description			
7	0	BANK	Register BANK status			
			1	Register R/W is to register BANK1		
			0 Register R/W is to register BANK0			
6	0	RX_DR	Data Ready RX FIFO interrupt. Asserted when new data arrives RX FIFO			
			Write 1 to clear bit.			

5	0	TX_DS		D interrupt. Asserted when packet transmitted on TX. If AUTO_ACK
			isactivated, this bit i	is set high only when ACK is received.
			Write 1 to clear bit.	
4	0	MAX_RT	Maximum number of	of TX retransmits interrupt, Write 1 to clear bit. If MAX_RT is asserted
			it must be cleared to	enable further communication.
3:1	3'b111	RX_P_NO	Data pipe number fo	or the payload available for reading from RX_FIFO
			111	RX FIFO Empty
			110	Not Used
			000-101	Data Pipe Number
0	0	TX_FULL	TX FIFO full flag	
			0	Available locations in TX FIFO
			1	TX FIFO full

9.1.9 OBSERVE_TX (RW) Address: 08h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	PLOS	_CNT		ARC_CNT				
	4'	h0		4'h0				
	I	ł			F	ł		

Description of Word

Bit	Value	Symbol	Description
7:4	4'h0	PLOS_CNT	Count lost packets. The counter is overflow protected to 15, and discontinues at max until
			reset. The counter is reset by writing to RF_CH.
3:0	4'h0	ARC_CNT	Count retransmitted packets. The counter is reset when transmission of a new packet starts.

9.1.10 RPD (R) Address: 09h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	sig_dbm_est									
			8'	h0						
	R									

Bit	Value	Symbol	Description				
7:0	0	sig_dbm_est	estimated in-band signal level in dBm, should support $-100 \sim +10$ dBm,				
			11000000	-64 dBm			

9.1.11 RX_ADDR_P0 (RW) Address: 0Ah

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32					
	RX_ADDR_P0											
	8'h70											
	RW											
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24					
	RX_ADDR_P0											
	8'h41											
	RW											
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16					
			RX_AD	DDR_P0								
			8'h	188								
			R	W								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8					
			RX_AD	DDR_P0								
			8'h	n20								
			R	W								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
	RX_ADDR_P0											
			8'h	146								
			R	W								

Description of Word

Bit	Value	Symbol	Description
39:0	40'7041	RX_ADDR_P0	Receive address data pipe 0. 5 Bytes maximum length. (LSByte is written first. Write the
	882046		number of bytes defined by SETUP_AW)

9.1.12 RX_ADDR_P1 (RW) Address: 0Bh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	RX_ADDR_P1									
			8'h	iC2						
			R	W						

Bit	Value	Symbol	Description
7:0	8'hc2	RX_ADDR_P1	Receive address data pipe 2. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

9.1.13 RX_ADDR_P2 (RW) Address: 0Ch

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	RX_ADDR_P2									
			8'h	iC3						
	RW									

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc3	RX_ADDR_P2	Receive address data pipe 2. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

9.1.14 RX_ADDR_P3 (RW) Address: 0Dh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	RX_ADDR_P3									
			8'h	IC4						
	RW									

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc4	RX_ADDR_P3	Receive address data pipe 3. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

9.1.15 RX_ADDR_P4 (RW) Address: 0Eh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	RX_ADDR_P4								
			8'h	nC5					
	RW								

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc5	RX_ADDR_P4	Receive address data pipe 4. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

9.1.16 RX_ADDR_P5 (RW) Address: 0Fh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	RX_ADDR_P5								

8'hC6

RW

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc6	RX_ADDR_P5	Receive address data pipe 5. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

9.1.17 TX_ADDR(RW) Address: 10h

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32		
	TX_ADDR								
			8'ł	n70					
			R	W					
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
			TX_A	ADDR					
			8'ł	n41					
	RW								
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
	TX_ADDR								
			8'ł	188					
			R	W					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
			TX_A	ADDR					
			8'ł	n20					
			R	W					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			TX_A	ADDR					
			8'1	146					
			R	W					

Description of Word

Bit	Value	Symbol	Description
39:0	40'h704	TX_ADDR	Transmit address. Used for a PTX device only. (LSByte is written first)Set RX_ADDR_P0
	1882046		equal to this address to handle automatic acknowledge if this is a PTX device with Protocol
			engine enabled.

9.1.18 RX_PW_P0 (RW) Address: 11h

Bit 7 Bit 6	6 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-------------	---------	-------	-------	-------	-------	-------

Reserved	RX_PW_P0
0	0
RW	RW

Description of Word

Bit	Value	Symbol	Description			
7:6	2'b00	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5:0	0	RX_PW_P0	Number of bytes in RX payload in data pipe 0 (1 to 32 bytes)			
			32	32 bytes		
			1	1 byte		
			0	Pipe not used		

9.1.19 RX_PW_P1 (RW) Address: 12h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserved		RX_PW_P1							
	0	0							
R	W	RW							

Description of Word

Bit	Value	Symbol	Description		
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
5:0	0	RX_PW_P1	Number of bytes in RX payload in data pipe 1 (1 to 32 bytes)		
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

9.1.20 RX_PW_P2 (RW) Address: 13h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Rese	erved	RX_PW_P2							
	0	0							
R	W	RW							

Bit	Value	Symbol	Description		
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
5:0	0	RX_PW_P2	Number of bytes in RX payload in data pipe 2 (1 to 32 bytes)		
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

9.1.21 RX_PW_P3 (RW) Address: 14h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Reserved		RX_PW_P3								
()	0								
RW				R	W					

Description of Word

Bit	Value	Symbol	Description		
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
5:0	0	RX_PW_P3	Number of bytes in	Number of bytes in RX payload in data pipe 3 (1 to 32 bytes)	
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

9.1.22 RX_PW_P4 (RW) Address: 15h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Rese	erved	RX_PW_P4							
	0			()				
RW				R	W				

Bit	Value	Symbol	Description

7:6	2'b00	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
5:0	0	RX_PW_P4	Number of bytes in I	RX payload in data pipe 4 (1 to 32 bytes)
			32	32 bytes
			1	1 byte
			0	Pipe not used

9.1.23 RX_PW_P5 (RW) Address: 16h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Rese	erved	RX_PW_P4								
()	0								
RW				R	W					

Description of Word

Bit	Value	Symbol	Description			
7:6	2'b00	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5:0	0	RX_PW_P5	Number of bytes in RX payload in data pipe 5 (1 to 32 bytes)			
			32	32 bytes		
			1	1 byte		
			0	Pipe not used		

9.1.24 FIFO_STATUS (RW) Address: 17h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	TX_REUSE_ PL	TX_FULL	TX_EMPTY	Rese	rved	RX_FULL	RX_EMPTY
0	0	0	1	()	0	1
R	R	R	R	F	ł	R	R

Bit	Value	Symbol	Description			
7	0	Reserved	Only '0' allowed			
			0	Keep the current value		

			1	Reset to default values
6	0	TX_REUSE_PL	TX REUSE flag.	
			1	Tx data reused
			0	Tx data not reused
5	0	TX_FULL	TX FIFO full flag.	
			1	TX FIFO full
			0	Available locations in TX FIFO
4	1	TX_EMPTY	TX FIFO empty flag	
			1	TX FIFO empty
			0	Data in TX FIFO
3:2	2'b00	Reserved	Only '00' allowed	
			0	Keep the current value
			1	Reset to default values
1	0	RX_FULL	RX FIFO full flag.	
			1	RX FIFO full
			0	Available locations in RX FIFO
0	1	RX_EMPTY	RX FIFO empty flag	
			1	RX FIFO empty
			0	Data in RX FIFO

9.1.25 DYNPD (RW) Address: 1Ch

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Rese	Reserved		DPL_P4	DPL_P3	DPL_P2	DPL_P1	DPL_P0
(0		0	0	0	0	0
RW		RW	RW	RW	RW	RW	RW

Bit	Value	Symbol		Description		
7:6	2'b00	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5	0	DPL_P5	Enable dynamic pay	Enable dynamic payload length data pipe 5. (Requires EN_DPL)		
4	0	DPL_P4	Enable dynamic pay	load length data pipe 4. (Requires EN_DPL)		
3	0	DPL_P3	Enable dynamic pay	load length data pipe 3. (Requires EN_DPL)		
2	0	DPL_P2	Enable dynamic pay	Enable dynamic payload length data pipe 2. (Requires EN_DPL)		
1	0	DPL_P1	Enable dynamic pay	Enable dynamic payload length data pipe 1. (Requires EN_DPL)		
0	0	DPL_P0	Enable dynamic pay	load length data pipe 0. (Requires EN_DPL)		

9.1.26 FEATURE (RW) Address: 1Dh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Descrit				EN_DPL	EN_ACK_PA	EN_DYN_A
	Reserved					Y	СК
0					0	0	0
RW					RW	RW	RW

Description of Word

Bit	Value	Symbol	Description		
7:3	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
2	0	EN_DPL	Enables Dynamic Payload Length		
1	0	EN_ACK_PAY	Enables Payload with ACK		
0	0	EN_DYN_ACK	Enables the W_TX_PAYLOAD_NOACK command		

9.1.27 SETUP_VALUE (RW) Address: 1Eh

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit32
REG_LNA_WAIT							
	8'h00						
	RW						
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24
			REG_MI	BG_WAIT			
			8']	h10			
			R	W			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
			RX_TI	M_CNT			
			8'	h80			
	_		R	W	-		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
			TX_SETU	JP_VALUE			
	8'h32						
	RW						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			RX_SETU	JP_VALUE			
			8'	h28			
			R	W			

Description of Word

Bit	Value	Symbol		Description	
39:32	8'h00	REG_LNA_WA	Lna wait counter		
		IT	8'hff	255 cycle	
			1	1 cycle	
			0	0 cycle	
31:24	8'h10	REG_MBG_W	Main bandgap wait o	counter	
		AIT	8'hff	255us	
			1	1 us	
			0	0 us	
23:16	8'h80	RX_TM_CNT	Rx timeout counter.		
			8'hff	255us	
			1	1 us	
			0	0 us	
15:8	8'h32	TX_SETUP_VA	TX_SETUP time, th	e time between Standby to TX mode	
		LUE			
			8'hff	255us	
			1	1 us	
			0	0 us	
7:0	8'h28	RX_SETUP_VA	RX_SETUP time, the time between Standby to RX mode		
		LUE	8'hff	255us	
			1	1 us	
			0	0 us	

9.1.28 PRE_GURD (RW) Address: 1Fh

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	SPARE_REG[15:8]							
			()				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	TAIL_CTL		GRD_EN	GRD_CNT				
	1		1	4'h2				

2
SEMITEK

Γ

EK RW RW RW

Description of Word

Bit	Value	Symbol	Description			
15:8	0	SPARE_REG	Output to analogue	Output to analogue		
7:5	1	TAIL_CTL	Number of repeat bi	t after the CRC		
			7	7 repeat tail		
			1	1 repeat tail		
			0	0 No repeat tail		
4	1	GRD_EN	Pre-Guard enable			
3:0	4'h2	GRD_CNT	Number of Pre-Guar	rd bit before preamble		
			4'hf	16 bit pre_guard		
			1 2 bit pre_guard			
			0	1 bit pre_guard		

10 Glossary of Terms

Term	Description
ACK	Acknowledgement
ACS	Adjacent Channel Selectivity
AGC	Automatic Gain Control
ART	Auto Re-Transmit
CD	Carrier Detect
CE	Chip Enable
CLK	Clock
CRC	Cyclic Redundancy Check
CSN	Chip Select NOT
PE	Protocol engine
GFSK	Gaussian Frequency Shift Keying
IM	Intermodulation
IRQ	Interrupt Request
ISM	Industrial-Scientific-Medical
LNA	Low Noise Amplifier
LSB	Least Significant Bit
LSByte	Least Significant Byte
Mbps	Megabit per second
MCU	Microcontroller Unit
MISO	Master In Slave Out
MOSI	Master Out Slave In
MSB	Most Significant Bit
MSByte	Most Significant Byte
РСВ	Printed Circuit Board
PID	Packet Identity Bits
PLD	Payload
PRX	Primary RX
РТХ	Primary TX
PWR_DWN	Power Down
PWR_UP	Power Up
RoHS	Restriction of use of Certain Hazardous Substances
RPD	Received Power Detector
RX	Receive
RX_DR	Receive Data Ready
SPI	Serial Peripheral Interface
TX	Transmit
TX_DS	Transmit Data Sent