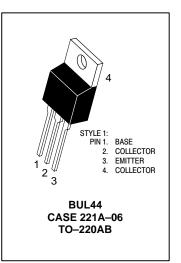
SWITCHMODE[™] NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL44 have an applications specific state–of–the–art die designed for use in 220 V line operated Switchmode Power supplies and electronic light ballasts. These high voltage/high speed transistors offer the following:

- Improved Efficiency Due to Low Base Drive Requirements:
 - High and Flat DC Current Gain hFE
 - Fast Switching
 - No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Full Characterization at 125°C
- Tight Parametric Distributions are Consistent Lot-to-Lot

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector–Emitter Sustaining Voltage	VCEO	400	Vdc
Collector–Emitter Breakdown Voltage	VCES	700	Vdc
Emitter-Base Voltage	VEBO	9.0	Vdc
Collector Current — Continuous — Peak(1)	IC ICM	2.0 5.0	Adc
Base Current — Continuous — Peak(1)	I _B I _{BM}	1.0 2.0	Adc
Total Device Dissipation $(T_C = 25^{\circ}C)$ Derate above $25^{\circ}C$	PD	50 0.4	Watts W/°C
Operating and Storage Temperature	Tj, T _{stg}	- 65 to 150	°C

THERMAL CHARACTERISTICS

Rating	Symbol	Мах	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _θ JC R _θ JA	2.5 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ТL	260	°C

BUL44

POWER TRANSISTOR 2.0 AMPERES 700 VOLTS 40 and 100 WATTS

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	VCEO(sus)	400	_	_	Vdc
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)	ICEO	—		100	μAdc
Collector Cutoff Current (V_{CE} = Rated V_{CES} , V_{EB} = 0)	ICES	—	-	100	μAdc
(T _C = 125°C)		—	—	500	
$(V_{CE} = 500 \text{ V}, V_{EB} = 0) (T_C = 125^{\circ}\text{C})$		—	_	100	
Emitter Cutoff Current (V _{EB} = 9.0 Vdc, I _C = 0)	I _{EBO}	_	_	100	μAdc

ON CHARACTERISTICS

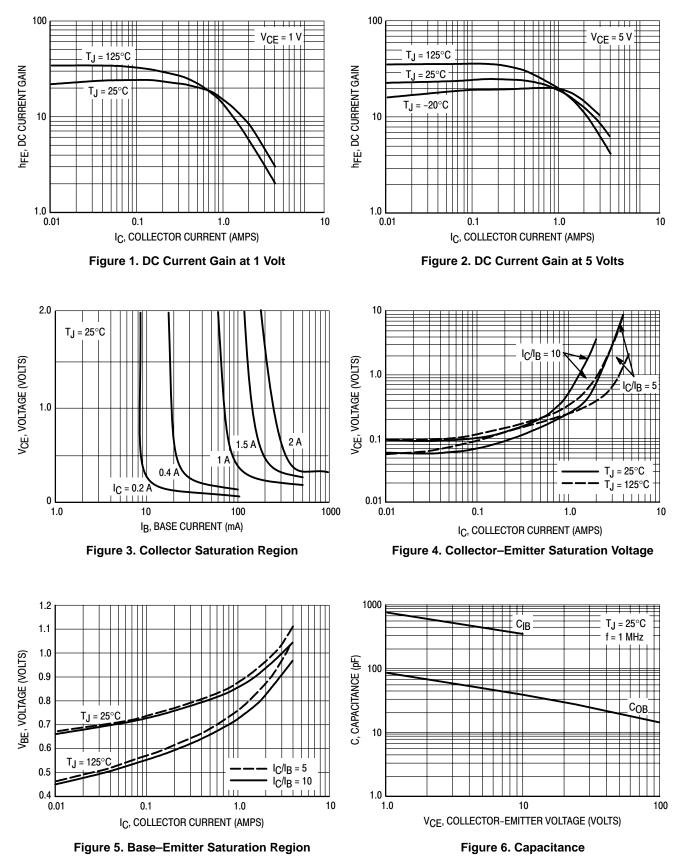
Base–Emitter Saturation Voltage ($I_C = 0.4$ Add ($I_C = 1.0$ Add	V _{BE(sat)}		0.85 0.92	1.1 1.25	Vdc	
Collector–Emitter Saturation Voltage		VCE(sat)				Vdc
$(I_{C} = 0.4 \text{ Adc}, I_{B} = 40 \text{ mAdc})$			—	0.20	0.5	
	(T _C = 125°C)		—	0.20	0.5	
$(I_{C} = 1.0 \text{ Adc}, I_{B} = 0.2 \text{ Adc})$			—	0.25	0.6	
	(T _C = 125°C)		—	0.25	0.6	
DC Current Gain		hFF				_
$(I_{C} = 0.2 \text{ Adc}, V_{CF} = 5.0 \text{ Vdc})$			14		34	
	(T _C = 125°C)		—	32		
(I _C = 0.4 Adc, V _{CE} = 1.0 Vdc)	-		12	20		
	(T _C = 125°C)		12	20		
(I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)	C		8.0	14	—	
	(T _C = 125°C)		7.0	13		
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$			10	22	—	

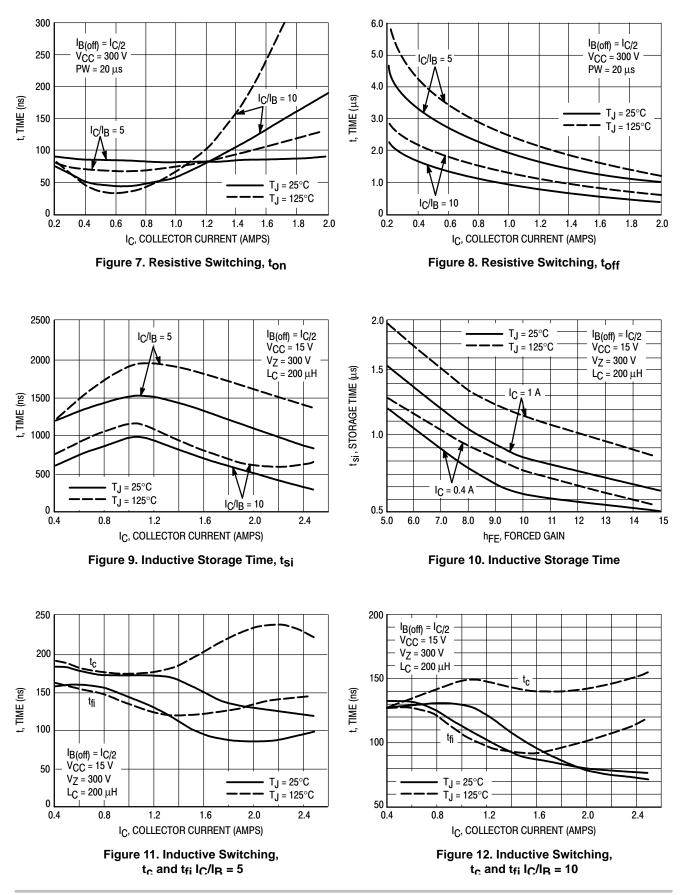
DYNAMIC CHARACTERISTICS

Current Gain Bandwidth (IC =	fт	—	13	_	MHz			
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)			COB	—	38	60	pF	
Input Capacitance (V _{EB} = 8.0 V)			C _{IB}	—	380	600	pF	
	$(I_C = 0.4 \text{ Adc})$	1.0 μs	(T _C = 125°C)		_	2.5 2.7	_	
Dynamic Saturation Volt- age: Determined 1.0 µs and 3.0 µs respectively after rising IB1 reaches 90% of	I _{B1} = 40 mAdc V _{CC} = 300 V) 3.0 μs		(T _C = 125°C)		_	1.3 1.15	_	No.
	$(I_C = 1.0 \text{ Adc})$	1.0 μs	(T _C = 125°C)	VCE(dsat)	_	3.2 7.5	_	Vdc
final I _{B1} I _{B1} = 0.2 A V _{CC} = 300		3.0 μs	(T _C = 125°C)		_	1.25 1.6	_	

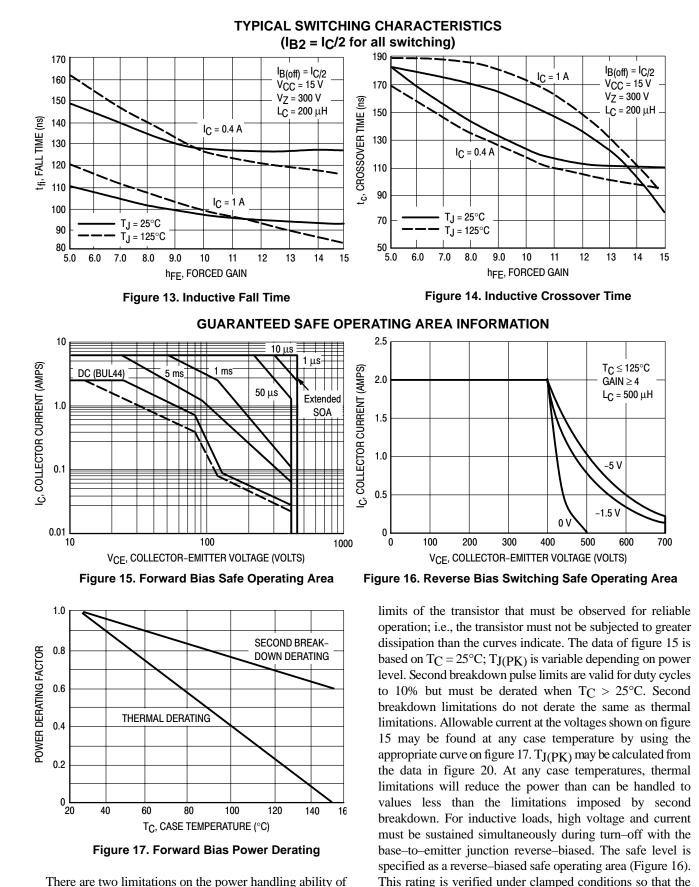
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

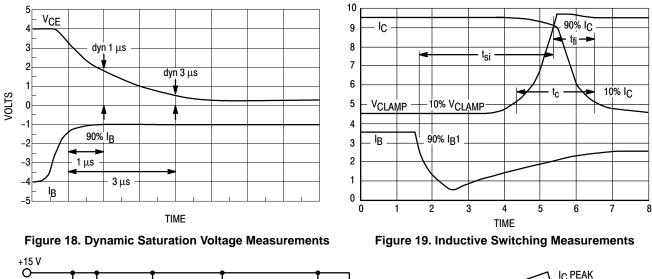
(continued)


SWITCHING CHARACTERISTICS: Resistive Load (D.C. \leq 10%, Pulse Width = 20 $\mu s)$


			. ,				
Turn–On Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	ton	—	40 40	100	ns
Turn–Off Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	toff	_	1.5 2.0	2.5 —	μs
Turn–On Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B1} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	ton	—	85 85	150 —	ns
Turn–Off Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B2} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	^t off		1.75 2.10	2.5 —	μs

SWITCHING CHARACTERISTICS: Inductive Load (V_{clamp} = 300 V, V_{CC} = 15 V, L = 200 μ H)


Fall Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc}$	(T _C = 125°C)	^t fi		125 120	200	ns
Storage Time		(T _C = 125°C)	t _{si}		0.7 0.8	1.25 —	μs
Crossover Time		(T _C = 125°C)	t _C		110 110	200	ns
Fall Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B2} = 0.5 \text{ Adc})$	(T _C = 125°C)	t _{fi}		110 120	175 —	ns
Storage Time		(T _C = 125°C)	t _{si}		1.7 2.25	2.75	μs
Crossover Time		(T _C = 125°C)	t _C		180 210	300 —	ns
Fall Time	$(I_{C} = 0.8 \text{ Adc}, I_{B1} = 160 \text{ mAdc})$ $I_{B2} = 160 \text{ mAdc})$	(T _C = 125°C)	t _{fi}	70 —	 180	170 —	ns
Storage Time		(T _C = 125°C)	t _{si}	2.6	4.2	3.8 —	μs
Crossover Time		(T _C = 125°C)	t _C		190 350	300 —	ns



TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE}

device is never subjected to an avalanche mode.

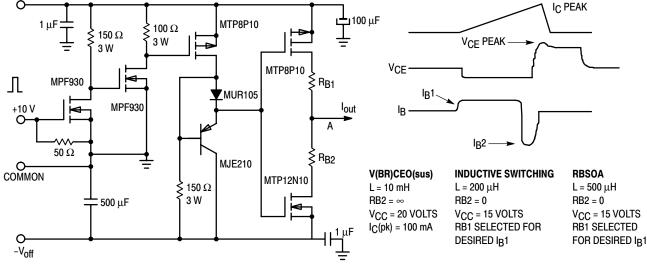
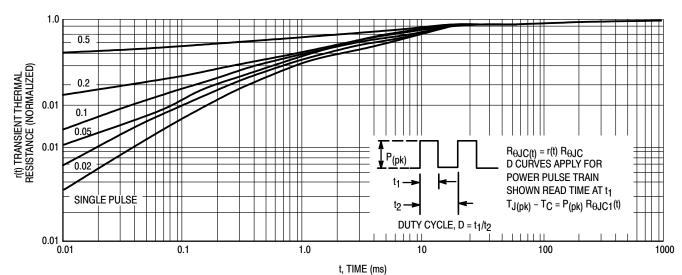
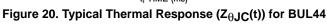
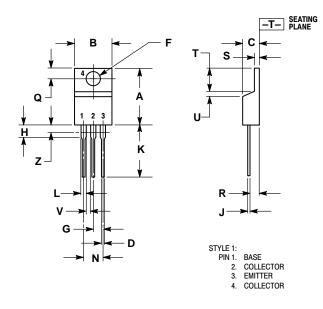




Table 1. Inductive Load Switching Drive Circuit



TYPICAL THERMAL RESPONSE

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. 2 3.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and Ware registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.