Table of Contents

1 Table of Contents i
2 Product Overview 2-1
2.1 Abstract 2-2
2.2 Product Description 2-2
2.3 Package Outlines 2-4
3 Pin Configuration and Function 3-1
3.1 Pin Configuration 3-2
3.2 Pin Definition and Function 3-3
4 Functional Description 4-1
4.1 Low-Noise Amplifier (LNA) 4-2
4.2 AGC 4-8
4.3 Mixer 4-12
4.4 Overall Performance of the Front End 4-12
4.5 PLL Synthesizer 4-14
4.6 Reference Oscillator 4-16
4.7 IF Section 4-24
4.7.1 IF Amplifier 4-24
4.7.2 IF Filtering 4-24
4.8 ASK/FSK Switch Functional Description 4-27
4.8.1 FSK Mode 4-27
4.8.2 ASK Mode 4-29
4.9 Demodulation 4-30
4.9.1 ASK Demodulation 4-30
4.9.2 FSK Demodulation 4-32
4.10 Data Filtering 4-34
4.11 Data Slicer 4-35
4.12 Principle of the Precharge Circuit 4-44
4.13 Quiet Data Output during no Transmission 4-48
4.14 Decoder 4-51
4.15 Settling Time 4-51
4.16 Spurious Radiation 4-54
4.17 Sensitivity Measurements 4-55
4.17.1 Test Setup 4-55
4.17.2 Sensitivity of RKE Receivers 4-56
4.17.3 Dependance of the ambient Temperature 4-57
4.17.4 Sensitivity depending on the IF Filter Bandwidth 4-58
4.17.5 Dependance of Data Filter Bandwidth 4-59
5 Reference 5-1
5.1 Test Circuit 5-2
5.2 Test Board Layouts 5-3
5.3 Bill of Materials 5-5
6 List of Figures i
7 List of Tables i
Contents of this Chapter
2.1 Abstract 2-2
2.2 Product Description 2-2
2.3 Package Outlines 2-5

TDA 521X

Product Overview

2.1 Abstract

This application note describes the operation of the TDA 5210 and TDA5211 evaluation board. It demonstrates the design of a low-cost receiver for applications in wireless I.S.M. data communication systems. Various application considerations are presented to assist system designers in implementing the device.

The application board of the TDA5210 can be operated in one of the assigned frequency bands for short-range devices (SRD) at either 434 MHz or 868 MHz , the application board of the TDA5211 at 315MHz. The receiver has been optimized for single-channel operation in systems using both amplitude shift key (ASK) modulation and frequency shift key (FSK) modulation. The board complies with the I-ETS 300220 regulations. Further member of this chip familiy is the TDA 5212, which is currently under development and will work in the 915 MHz band.

2.2 Product Description

The TDA 5210/TDA5211 has been implemented in a 25 GHz silicon bipolar process (Infineon "B6HF" process). It supports all low-power device (LPD) wireless applications with ASK and FSK modulated signals with data rates of up to $120 \mathrm{kbit} / \mathrm{s}$. The maximum achievable data rate also depends on the IF filter bandwidth and the local oscillator tolerance values.

As can be seen from the block diagram in Figure 2-1, the basic concept of the TDA5210 is a single conversion receiver with an on-chip fully integrated PLL frequency synthesizer and an IF of nominal 10.7 MHz . The 10.7 MHz IF was selected because of the availability of low-cost ceramic filters in a variety of bandwidths between 60 kHz and 280 kHz . The user is free to select other IFs and/or filters that are compatible with the $3 \mathrm{MHz}-25 \mathrm{MHz}$ bandwidth provided by the 90 dB limiting IF. The IF provides over 80dB of received signal strength indication (RSSI). The RSSI output is used as the demodulator for the ASK signals. In case of FSK a PLL is demodulating the signals. The output of the ASK demodulator is DC-coupled internally to the data slicer. An on-chip 2nd order low-pass filter is provided at the demodulator output for both ASK and FSK modulation. Its upper frequency limit should be set to meet the baseband system requirements. The data slicer is an one-bit analog-to-digital converter that makes the bit decision and provides a rail-to-rail output. In accordance with the code being used for modulation, there is a choice between two different internal analog-to-digital converters. The conventional adaptive data slicer utilizes a large capacitor to provide DC reference for the bit decision. It should be used for the digital conversion of coded signals with no or only a small DC component. The alternate clamping data slicer references its bit decision on the positive peak level of the data signal. It can be used with all unsymmetrical codes of high DC content. Since the clamping data slicer does not have to charge a
large capacitor, it requires a shorter preamble and exhibits a nearly instantaneous response time with some slight loss of sensitivity. The local oscillator (LO) is a single-channel PLL frequency synthesizer. It is fully integrated on the chip.

Table 2-1 Summary of the Key Parameters of the Device
Selectable frequency range
TDA5210: $400-440$ and $810-870 \mathrm{MHz}$
TDA5211: $310-350 \mathrm{MHz}$
Fully integrated VCO and PLL frequency synthesizer
ASK and FSK demodulation at data rates up to 120kbit/s
Supply voltage range $5.0 \mathrm{~V} \pm 10 \%$
Low supply current (6 mA typ. FSK mode, 5.3 mA typ. ASK mode)
Reference frequency
TDA510: 6.7 MHz or 13.4 MHz
TDA511: 5.1 MHz or 10.2 MHz
IF frequency range $3-25 \mathrm{MHz}$
Power down mode
Input sensitivity <-107 dBm in ASK mode
Input sensitivity <-100 dBm in FSK mode
Adaptive and peak data slicer
Low-pass filter with selectable cut-off frequency

Functional_diagram.wm
Figure 2-1 Functional Block Diagram

3
 Pin Configuration and Function

Contents of this Chapter
3.1 Pin Configuration 3-2
3.2 Pin Definition and Function 3-3

3.1 Pin Configuration

Pin_Configuration_5210.wmf
Figure 3-1 IC Pin Configuration

3.2 Pin Definition and Function

Pin No.	Symbol	Equivalent I/O-Schematic	Function
1	CRST1		Connection 1 to the symmetrical reference oscillator circuit. The reference oscillator is of the negative impedance converter type. It represents a negative resistor connected in series to an inductor between the CRSTL1 and CRSTL2 pins.
2	VCC		5V DC bias supply.
3	LNI		RF input to the LNA. This input is DC-coupled to the base of the common emitter input stage of the LNA cascade configuration.

Infineon
This pin is used for the gain
control of the LNA. The gain
of the LNA can be reduced
by approx.18dB. The
threshold voltage for the
gain control function is
1.3V. The control sensitivity
is $-1 \mathrm{~dB} / 8 \mathrm{mV}$
See Section 4.1
\(\left.$$
\begin{array}{lll}\text { FSEL } & \begin{array}{l}\text { TDA5210:This pin is used } \\
\text { to select the desired operat- } \\
\text { ing frequency range of the } \\
\text { receiver. }\end{array}
$$

FSEL 50.2 \mathrm{~V} will give

access to the 868 \mathrm{MHz} fre-

quency range. FSEL \geq 1.4 \mathrm{~V}

or an open will set the

receiver to the 434MHz

mode.

TDA5211: Not applicable,

has to be left open!\end{array}\right]\)| RF mixer output. This pin is |
| :--- |
| the single-ended IF output |
| of the mixer. The output |
| impedance is set internally |
| to 330 It interfaces |
| directly with 10.7MHz stan- |
| dard ceramic IF filters. |

LSEL

Infineon

20 SLN | This pin is used for setting |
| :--- |
| the data slicer reference |
| level. A RC low-pass filter |
| from the filter output SLP, |
| pin19 provides the compar- |
| ator with an average DC |
| level of the data bit stream. |
| When applying the peak |
| detector interface, the peak |
| voltage of the data signal at |
| PDO, pin 26 is tapped to |
| determine the bit decision |
| threshold voltage. |

24	3VOUT		Highly stable 3.0V voltage source. This voltage reference output is derived internally from a band gap voltage reference. It is held constant over variations in supply voltage and operating temperature. A resistive voltage divider will be used to precisely set the trigger level at THRES, Pin 23 for the AGC access point
25	DATA		Data output from the demodulator. The output level is TTL/CMOS-compatible. The fall and the rise time of the output pulse will be approx. 3μ s when loaded with 10 pF .
26	PDO		An external capacitor at this pin will be charged to the peak level of the data filter output voltage. The decision threshold of the data slicer will be set below this voltage by an amount given by the division ratio of the voltage divider coupled to this output. An external time constant at the PDO output determines the decay time of the reference voltage. It should be set in accordance with the lowest signal component within the data string.

27

Functional Description

Contents of this Chapter
4.1 Low-Noise Amplifier (LNA) 4-2
4.2 AGC 4-8
4.3 Mixer 4-12
4.4 Overall Performance of the Front End 4-12
4.5 PLL Synthesizer 4-14
4.6 Reference Oscillator 4-16
4.7 IF Section 4-24
4.8 ASK/FSK Switch Functional Description 4-27
4.9 Demodulation 4-30
4.10 Data Filtering 4-34
4.11 Data Slicer 4-36
4.12 Principle of the Precharge Circuit 4-46
4.13 Quiet Data Output during no Transmission 4-49
4.14 Decoder 4-52
4.15 Settling Time 4-52
4.16 Spurious Radiation 4-55
4.17 Sensitivity Measurements 4-56

4.1 Low-Noise Amplifier (LNA)

The low-noise amplifier is an on-chip high-gain cascade amplifier operating at a current of 0.5 mA . The gain can be reduced by approx. 18 dB by applying a high state to the TAGC input, pin 4. The S-parameters of the LNA and the input to the mixer are shown in the following table.

Parameter	315 MHz		434 MHz		868 MHz	
S11 LNA, high gain	0.895	-25.5deg	0.873	-34.7deg	0.738	-73.5deg
S11 LNA, low gain	0.918	-25.2deg	0.899	-35.4deg	0.772	-80.2deg
S21 LNA, high gain	1.577	150.3deg	1.509	138.2deg	1.419	101.7deg
S21 LNA, low gain	0.193	153.7deg	0.183	140.6deg	0.179	109.1deg
S12 LNA, high gain			0.003	128.2deg	0.023	172.3deg
S12 LNA, low gain			0.001	-153.5deg	0.022	173.4deg
S22 LNA, high gain	0.897	-10.3deg	0.886	-12.9deg	0.866	-24.2deg
S22 LNA, low gain	0.907	-10.5deg	0.897	-13.6deg	0.868	-26.3deg
S11 MIX	0.954	-10.9deg	0.942	-14.4deg	0.918	-28.1deg

Matching the LNA input to the generator and matching the LNA output to the mixer input has been done imparting a LC network. Both the networks have been designed to achieve best selectivity at a designed loss of 2 to 3dB for each filter. The low-loss and hence low Q design is mandatory in order to keep the circuit tuning-free. This low-loss design achieves a high voltage gain of the LNA and hence a good sensitivity of the receiver. Higher losses result in better selectivity at the expense of gain and sensitivity.

It is good practice to design such a network utilizing an appropriate linear CAE design tool. Even a very simple version can be used very efficiently. A very practical way to design the network will be shown below.

As an example, the design of the input-matching network for an 868 MHz application will be demonstrated in detail.

Fig_4.wmf
Figure 4-1 LNA input matching network

As shown in the circuit diagram in Figure 4-1, the input filter represents a single tuned parallel resonance circuit loaded by three resistors: RP1, the generator resistor transformed to the circuit, RP2, which collects the filter component losses, and RP3, the mixer input resistor transformed to the circuit.

By dimensioning

$$
\begin{equation*}
\mathrm{RP} 1=\mathrm{RP} 3 \tag{1}
\end{equation*}
$$

the overall performance of the filter will be optimized: the best selectivity will be achieved at lowest losses. The design example will be done for assumed filter losses of 2-3 dB.

The power efficiency of the network in Figure 4-1 is:

$$
\begin{equation*}
\eta=\left(1-Q_{L} / Q_{U}\right)^{2} \tag{2}
\end{equation*}
$$

The unloaded Q_{U} of the circuit is:

$$
\begin{equation*}
Q_{U}=R P 2 / Z \tag{3}
\end{equation*}
$$

The characteristic impedance of the circuit is:

$$
\begin{equation*}
Z=(L / C)^{1 / 2}=\omega_{0} L=1 / \omega_{0} C_{\text {tot }} \tag{4}
\end{equation*}
$$

The effective total capacitance adds up to:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{tot}}=\mathrm{C} 1^{\prime}+\mathrm{C} 2+\mathrm{C} 3^{\prime} . \tag{5}
\end{equation*}
$$

The resonance frequency f_{o} is

$$
\omega_{0}=2 \pi f_{o}
$$

The loaded Q_{L} of the circuit will be:

$$
\begin{equation*}
Q_{L}=(R P 1 / / R P 2 / / R P 3) / Z \tag{6}
\end{equation*}
$$

The 3dB bandwidth B for the single tuned LC network can be calculated from:

$$
\begin{equation*}
Q_{L}=f_{0} / B \tag{7}
\end{equation*}
$$

A tuning-free design is required on grounds of cost. In order to minimize the complexity of the circuit, the application example uses a single tuned LC parallel circuit for both the antenna input matching network and the matching network between the LNA output and the mixer input.

The requirement for a tuning-free implementation provides the basis for dimensioning the networks.

Due to component and manufacturing tolerances, the frequency of the resonance circuit may vary by Δf from the designed frequency. This will result in loss of gain of the LNA, and therefore in reduced sensitivity of the receiver. In order to limit this sensitivity loss, the two circuits in the application example are dimensioned in such a way that each of them exhibits a maximum additional loss of 3 dB under worst-case tolerance conditions.

Typical relevant tolerance values are:

Table 4-2 Tolerance Values of the LNA Input Matching Circuit

		$\Delta \mathbf{f} / \mathbf{f}$
Tolerance of C	$\pm 2 \%$	$\pm 1 \%$
Tolerance of L	$\pm 2 \%$	$\pm 1 \%$
Manuf. tolerance	Board	$\pm 2 \%$
	Placing the components on the pads	$\pm 2 \%$
Total frequency tolerance		$\pm 6 \%$

Detuning losses will be low for a higher 3dB bandwidth and hence for a low loaded Q_{L} of the circuit. With an assumed drop in gain by max. 3 dB per circuit, the required Q_{L} is:

$$
\begin{array}{ll}
Q_{L} \leq f_{r} / 2 \Delta f=8.3 & \text { (8) } \quad \\
& Q_{L}: \text { loaded } Q \text { of resonance circuit } \\
& f_{r}: \text { operating frequency } \\
& \Delta f: \text { frequency offset of resonance circuit }
\end{array}
$$

Using chip inductors of size 0805, an unloaded Q_{U} of

$$
\begin{array}{rr}
Q u \approx 30 & (434 M H z) \tag{9}\\
40 & (869 M H z)
\end{array}
$$

can be achieved for the resonance circuits. The Q of the capacitors are greater by at least a factor of 5 , so their losses are not taken into account.

The filter losses for each circuit at the LNA input and output will be:

$$
\begin{align*}
\mathrm{a}=\left(1-\mathrm{Q}_{\mathrm{L}} / \mathrm{Q}_{\mathrm{u}}\right)^{2}= & .523 \cong-2.8 \mathrm{~dB} \quad(434 \mathrm{MHz}) \tag{10}\\
& .628 \cong-2.0 \mathrm{~dB} \quad(868 \mathrm{MHz})
\end{align*}
$$

This value applies to optimum dimensioning, where the generator resistance and the load resistance are both transformed into an equal conductance of RP1 = RP3 in parallel to the resonance circuit.

The selectivity of these circuits is not impressive due to their low loaded QL. In the example, the image frequency rejection for $\Delta f=2^{\star} f_{\mathrm{IF}}=21.4 \mathrm{MHz}$ is therefore only

$$
\begin{array}{rll}
\mathrm{a}_{\mathrm{if}}=2 * 2.2 \mathrm{~dB}=4.4 \mathrm{~dB} & (434 \mathrm{MHz}) \tag{11}\\
2 * 0.6 \mathrm{~dB}=1.2 \mathrm{~dB} & (868 \mathrm{MHz}) .
\end{array}
$$

This result can be improved (still with a tuning-free design) by using high Q, pretuned resonators, e.g. based on SAW structures or ceramic filters.
It is rather unusual to design an $L C$ filter for a specified loaded Q_{L}. The following description outlines a very practical method for the design of such a filter. This procedure is not as attractive as a CAE design but it is very effective. The example applies for the input matching circuit of the LNA with a frequency of 868 MHz .

As a first step, a convenient combination of C1 and C3 has to be found to transform the generator resistance and the LNA input resistance to the same conductance RP1=RP3 across the parallel resonance circuit. This can be very elegantly done on the PCB by use of a VNA. This method offers the advantage that all parasitic elements of the board are captured.

In the next step, the equations (3), (4), (7), (8) and (9) are used to calculate the inductance value of L1.

Experimental values of C1 and C3 have been found on the evaluation board with a frequency of 868 MHz as:

$$
\begin{aligned}
& \mathrm{C} 1=1 \mathrm{pF} \\
& \mathrm{C} 3=5.6 \mathrm{pF}
\end{aligned}
$$

The resultant value of the conductance has been measured as:

$$
\mathrm{RP} 1=\mathrm{RP} 3=300 \Omega
$$

Applying (3), (7), (8) and (9) results in

$$
Q_{U} / Q_{L}=40 / 8.3=4.8=R P 2 /(R P 1 / / R P 2 / / R P 3)
$$

and

$$
\mathrm{RP} 2=570 \Omega
$$

The inductance L1 is calculated using (3) and (4) to give

$$
Z \geq \omega_{0} L=R P 2 / Q_{U}=570 \Omega / 40=14.25 \Omega
$$

and
$\mathrm{L} 1 \geq \mathrm{Z} / \omega_{0}=2.6 \mathrm{nH}$
The (standard) value selected is

$$
\mathrm{L} 1=3.3 \mathrm{nH}
$$

The size of the capacitor C2 required to set the circuit to resonance is once again most easily found empirically. The resonant frequency in general will not be hit accurately enough with standard component values. There is still some room for adjustment by changing the positions of L1 and C3 on the board and by changing the orientation of L1 (!). If these variation options are not satisfactory, then C1 or C3 can be changed slightly, violating rule (1). The resultant slight loss of receiver sensitivity can be tolerated.

The values of the components imparted in the circuit should fall within a range where they can be handled electrically. The circuit itself gives some freedom in the determination of the characteristic impedance Z and hence in the component values. The component values may be selected to conform to certain criteria.

One selection criterion for the filter components is that their value remains within technically manageable limits. For example, it may be specified that the C values should not exceed 10pF. Up to this value they are available with absolute tolerances of $\pm 0.1 \mathrm{pF}$. Frequency-determining C's should not fall below 2.2 pF because of the $\pm 0.1 \mathrm{pF}$ tolerance specification. Inductances below 3.3 nH also pose problems due to the increasing influence of lead inductances. Once the inductance value exceeds approximately 33 nH with a frequency of 868 MHz , their effective impedance is capacitive due to their self-resonance.

The overall frequency response of the LNA is shown in the following figures. The midband voltage gain from the receiver input to the mixer input is $+21 \mathrm{~dB} /$ +18 dB with a frequency of $434 / 868 \mathrm{MHz}$, for instance.

LNAvoltage_vsfreq.wmf
Figure 4-2 LNA voltage gain vs. frequency of 434 MHz receiver

Inputref_vsfreq1.wmf
Figure 4-3 Input reflection and relative gain of the LNA vs. frequency at 869 MHz

4.2 AGC

The receiver incorporates an "automatic gain control" (AGC) function to change its gain in accordance with the RF input level. Applying this function will improve the power handling capability of the receiver by almost 20dB. Increasing the voltage at the TAGC control input (Pin 4) beyond a level of approx. 1.3 V will reduce the gain of the LNA by $19 \mathrm{~dB} / 18 \mathrm{~dB}$ with $434 / 868 \mathrm{MHz}$ by shifting the bias point to a low-level current. The low gain mode of the LNA will result in a power handling capability of the receiver for input levels up to 0 dBm without degradation. A low signal or an open at TAGC sets the LNA to the high gain mode.

[^0]Figure 4-4 AGC circuit

The AGC function is controlled by a comparator connected to the RSSI voltage. The decision threshold for the start of the AGC function is set by the comparator reference voltage. This voltage is tapped down from the precision 3.0V voltage source at the 3VOUT port (Pin 24) via the R4-R5 voltage divider. If the RSSI voltage reaches the comparator threshold voltage, then the TAGC voltage is pulled up by the transconductance comparator output current. The LNA passes over to the low gain mode.

The threshold of the AGC should be set to the lowest possible receiver input level, in order to optimize the large-signal response of the receiver for the widest possible input level range. However, it must be set higher than the receiver sensitivity limit by at least the value of the gain reduction, so that the mixer does not operate at its sensitivity threshold. With the specified LNA gain reduction of approx. 18 dB , it is recommended that the threshold be dimensioned to a
receiver input level of at least 25 ... 30 dB higher than the sensitivity limit value. Figure 4-5 shows the AGC function for a transition level set to -85 dBm by a combination of $\mathrm{R} 4=330 \mathrm{k} \Omega$ and $\mathrm{R} 5=330 \mathrm{k} \Omega$.

Fig_8.wmf
Figure 4-5 RSSI voltage as a function of input level for AGC implementation

The AGC function is filtered via C5. C5 is charged by the current source at the comparator output by a $4.2 \mu \mathrm{~A}$ source and a $1.5 \mu \mathrm{~A}$ sink current for a fast attack and slow decay time. The AGC operation should not be triggered by the data signal. Since the AGC operates in a linear mode without any hysteresis, there always is some range of the receiver input level, where the AGC will be affected by the data signal.

The AGC gain at TAGC is $10 \mathrm{~dB} / 80 \mathrm{mV}$. Due to the very high total gain within the AGC, the loop will only be stable in case of ASK for
$\mathrm{C} 5 \geq 10 \mathrm{nF}$

Because of the RF-level is independent from the logik level in case of FSK, the value of C 5 is not so critical.

For ASK the following has to be considered:
A recommended value for C 5 is 47 nF

For a receiver input level above the static AGC threshold level, the RSSI data signal at SLP, Pin19 will show a characteristic overshoot at the positive pulse edge. It is caused by the AGC loop trying to level down the RSSI signal to the preset threshold value. The amplitude and duration of the overshoot is directly related to C5. In order to keep the overshoot below 30% of the signal amplitude, C 5 should be designed for a value as shown in the subsequent table.

Table 4-3 Dependence of T_{L} Value on C 5	C 5
$\mathrm{~T}_{\mathrm{L}}$	10 nF
0.25 ms	47 nF
1 ms	150 nF
2 ms	

where T_{L} is the longest period of no signal change within the data sequence.

The design of the data slicer has to consider the distorted pulse shape. This will be quite unproblematic when applying the adaptive data slicer. For most coding schemes, C5 can even be set to $1 / 5$ of the above value then without a significant degradation of performance.
Using a too small capacitor and receiving a ASK signal, which field strength is within the control range of the AGC causes a distortion of the signal on the data filter output.

After the positive edge of the signal the AGC reduces the LNA gain and therefore also the data filter output voltage. The transition from high to low (no RFsignal) induces the AGC to enhance the LNA gain and subsequently the data filter output voltage again. Depending on the time constant of the slicing level a data (slicer output) signal as shown in the Figure 4-6 can be the result.

Example for a too small AGC capacitor relating to the largest low time:

$-70 \mathrm{dBm} _$low=9ms_duty-cycle=50\%.wm
Figure 4-6 AGC time constant; RF-Level=-70dBm

When applying the peak data slicer, however, the threshold has to be reduced to cover the overshoot voltage. A combination of $\mathrm{R} 2=100 \mathrm{k} \Omega$ and $\mathrm{R} 3=390 \mathrm{k} \Omega$ should be imparted then. Setting the threshold to this lower level will reduce the receiver sensitivity by approx. 6dB, however.

4.3 Mixer

The Double Balanced Mixer is based on a Gilbert Cell configuration with a symmetrical input and a single-ended output. The output presents a 330Ω termination which directly interfaces to 10.7 MHz ceramic filters. A LC matching network is used to connect the LNO to the MI or the MIX input. The conversion voltage gain of the mixer with the internal load of 330Ω is 21 dB . The receiver uses lowside LO injection. This avoids interference caused by signals at the image frequency range when operated with high-side injection.

Increasing the external load of 330Ω would generally lead to an improved 1 dB compression point and also an improvement of the IIP3.

4.4 Overall Performance of the Front End

Table 4-4 shows the overall performance of the LNA and of the mixer at a frequency of 434 MHz . Table 4-5 summarizes the same results for the evaluation board operated at 868 MHz .

Table 4-4 Measured Mixer Performance at 434 MHz

Parameter	LNA		LNA\&Mixer	
	low gain	high gain	low gain	high gain
Gain	1 dB	21 dB	22 dB	42 dB
Receiver sensitivity			-95 dBm	-112 dBm
IIP3	-10 dBm	-10 dBm	-28 dBm	-48 dBm
1 dB compression	-18 dBm	-15 dBm	-31 dBm	-53 dBm

Table 4-5 Measured Mixer Performance at 868 MHz

Parameter	LNA		LNA\&Mixer	
	low gain	high gain	low gain	high gain
Gain	0 dB	19 dB	19 dB	40 dB
Receiver sensitivity			-95 dBm	-112 dBm
IIP3	-5 dBm	-14 dBm	-26 dBm	-35 dBm
1dB compression	-6 dBm	-15 dBm	-34 dBm	-55 dBm

Parameter	LNA		LNA\&Mixer	
	low gain	high gain	low gain	high gain
Gain	2 dB	21 dB	23 dB	42 dB
Receiver sensitivity			- 95 dBm	- 113 dBm
IIP3	$-13 \mathrm{dBm}$	- 10 dBm	-25 dBm	$-43 \mathrm{dBm}$
1 dB compression	- 7 dBm	- 14 dBm	- 35 dBm	- 54 dBm

The IIP3 of the mixer and subsequently of the whole system can be shifted to a higher level by adding a resistor between the mixer output and GND. But of course this additional resistor results in a higher current consumption.

Resistor value	Additional Supply Current (FSK) low gain high gain		IIP3 LNA\&Mixer low gain high gain	
no resistor		0	-20 dBm	-40 dBm
4k7		$320 \mu \mathrm{~A}$	-15.5 dBm	- 35.5 dBm
1k2		$850 \mu \mathrm{~A}$	$-11 \mathrm{dBm}$	$-31 \mathrm{dBm}$

TDA 521X

Functional Description

4.5 PLL Synthesizer

The basic circuit of the PLL frequency synthesizer consists of a VCO operating at a nominal frequency of 840 MHz in case of TDA5210 and 330 MHz in case of TDA5211 respectively, a frequency divider with a division ratio of either 64 or 128, a frequency/phase discriminator and a reference oscillator. The reference oscillator of the TDA5210 operates at either 13.4 MHz or 6.7 MHz , the oscillator of the TDA5211 at either 10.2 MHz or 5.1 MHz . In case of operation at 868.4 MHz the VCO operates at 857.7 MHz , for example, This frequency is divided by 64 for operation at a reference frequency of 13.4015625 MHz or by 128 at a reference frequency of 6.70078125 MHz . For 315 MHz , for which the TDA5211 has do be used, the VCO frequency of 651.4 MHz can also be divided either by 64 requires a reference frequency of 10.178125 MHz or by 128 requires a referenc frequency of 5.0890625 MHz .

The VCO signal is directly applied to the mixer stage when operating the receiver at 868 MHz . For operation at 434 MHz and 315 MHz respectively, the VCO signal is divided by two to build the injection signal to the mixer. The VCO of the TDA5210 covers a typical frequency range of 765 MHz to 910 MHz at the limits of the tuning voltage of 4.7 V and 2.4 V , the one of the TDA5211 covers a frequency range of typically little less than 590 MHz to 720 MHz inbetween its tuning voltage range. An example of a typical tuning curve is presented in Figure 4-7, the phase noise spectrum of the VCO signal measured with a resolution bandwidth of 10 kHz in Figure 4-8. The phase noise spectrum shows the characteristic noise suppression within the loop bandwidth of 150 kHz . Sideband noise outside the loop bandwidth at a frequency offset of $\pm 200 \mathrm{kHz}$ can be specified at $-87 \mathrm{dBc} / \mathrm{Hz}$. This noise sets the limit of the adjacent channel suppression of the receiver.The selectivity of the IF filter is bypassed this way.

Figure 4-7 Typical VCO tuning curve of TDA5210

Figure 4-8 Phase noise spectrum of local oscillator

4.6 Reference Oscillator

The receiving frequency and its stability are determined by the reference crystal and the associated oscillator circuit.

The oscillator is a symmetrical configuration of the negative impedance converter type. A resistor and a capacitor are "sign-inverted" to give a negative resistance in series with an inductance between the oscillator ports CRST1 and CRST2, pin1 and pin28. The equivalent impedance parameters of the oscillator presented in Section 5.1.3 of the Specification have been taken between pin1 and pin28 of the TDA521X on the evaluation board.

The value of the capacitor necessary to achieve that the oscillator is operating at the intended frequency is determined by the reactive (inductive) part of the negative resistance of the oscillator circuit and by the crystal specifications given by the crystal manufacturer.

Figure 4-9 Determination of Series Capacitance Value for the Quartz Oscillator

A crystal is specified with a load capacitance C_{L}. The series capacitor C_{S} needed to achieve the wanted oscillation frequency in presence of the above mentioned series reactance imposed by the oscillator circuit can be calculated according to the following formula.

$$
C_{S}=\frac{1}{\frac{1}{C_{L}}+2 \pi f X_{L}}
$$

with C_{L} the load capacitance (refer to the quartz crystal specification).

Examples:

6.7 MHz:	$\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$	$\mathrm{X}_{\mathrm{L}}=695 \Omega$	$\mathrm{C}_{\mathrm{S}}=9.56 \mathrm{pF}$
$13.401 \mathrm{MHz}:$	$\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$	$X_{\mathrm{L}}=1010 \Omega$	$\mathrm{C}_{\mathrm{S}}=5.94 \mathrm{pF}$

These values may be obtained in high accuracy by putting two capacitors in series to the quartz, such as 27 pF and 15 pF in the 6.7 MHz case and 22 pF and 8.2 pF in the 13.401 MHz case. The calculation of C_{S} or the two serial resistors respectively for TDA5211 and a oscillator frequency of either 5.1 MHz or 10.2 MHz can be done in the same way, of course.

The frequency stabilities of both the receiver and the transmitter and the modulation bandwidth set the limit for the bandwidth of the IF filter. To achieve a high receiver sensitivity and efficient suppression of adjacent interference signals, the narrowest possible IF bandwidth should be realized.

The frequency stability of the center frequency of the receiver is affected by a number of factors:

- Tuning tolerance of the crystal
- Temperature stability of the crystal
- Aging of the crystal
- Tolerance of the load capacitor C_{L}
- Tuning tolerance of the oscillator circuit

■ Temperature stability of the oscillator circuit

The first three items are parameters of the crystal specified by the manufacturer.

The so called pulling sensitivity describes the magnitude of the frequency change relating to the variation of the load capacitor.

$$
\frac{\varnothing}{\varnothing_{L}}=-\frac{C_{1}}{2 \cdot\left(C_{0}+C_{L}\right)^{2}}=\frac{\oint_{s}^{\prime} / f_{s}}{\varnothing_{L}}
$$

It seems do be the best to chose C_{L} as large as possible to get a small pulling sensitivity and subsequently keep the influence of the serial capacitor and of its tolerances as small as possible. But C_{L} mustn't mixed up with the serial capacitance Cs. C_{L} is the effective value of the capacitance applied to the crystal and is calculated by dividing the impedance in this particular case the capacitive reactance by the angular frequency " ω ".

$$
C_{L}=\frac{1}{1 / C_{S}-\omega^{2} L_{o s c}}
$$

Where $L_{\text {osc }}$ is the inductivity of the oscillator occuring on the output between pin 1 and pin 28.

With the aid of this formular it becomes obviously that the higher the serial capacitance Cs , the higher the influence of $\mathrm{L}_{\text {osc }}$. Subsequently the tolerances of the oscillator isn't only described by the serial capacitor but also by the tolerances of des oscillator inductivity and even in particular by the absolute value of this inductivity.

Relative frequency change per changing of Cs:

$$
\begin{aligned}
\frac{\delta_{S}^{\prime} / f_{S}}{\delta C_{S}} & =-\frac{C_{1}}{2 \cdot\left(C_{0}+C_{L}\right)} \cdot\left(1+\omega^{2} L_{o s c} C_{L}\right) \\
& =\frac{\delta D}{\delta C_{L}} \cdot\left(1+\omega^{2} L_{o s c} C_{L}\right)
\end{aligned}
$$

Relative frequency change per changing of $L_{\text {osc }}$

$$
\begin{aligned}
\frac{\delta f_{S}^{\prime} / f_{S}}{\delta L_{o s c}} & =-\left(2 \pi f_{S}^{\prime}\right)^{2} \cdot \frac{C_{1}}{2 \cdot\left(C_{0}+C_{L}\right)^{2}} \cdot C_{L}^{2} \\
& =\frac{\delta D}{\delta C_{L}} \cdot\left(2 \pi f_{S}^{\prime}\right)^{2} \cdot C_{L}^{2}
\end{aligned}
$$

In the suitable range for the serial capacitor, either capacitors with a tolerance of $0,1 \mathrm{pF}$ or with a tolerance of 1% are available.

The tolerance of the internal oscillator inductivity is much higher, so the inductivity is the dominating value for the tolerance over a large $\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{0}$ range.
Assuming the crystal parameters,
$\mathrm{fs}^{\prime}=13,40155 \mathrm{MHz}, \mathrm{C} 1=4,75 \mathrm{fF}, \mathrm{C} 0=1,29 \mathrm{pF}$
and an inductivity of the oscillator of $12 \mu \mathrm{H}$,
Figure 4-10 shows the frequency error of the oscillator caused by a 20% deviation of the inductivity as a function of CL/C0. Below the frequency error caused by a deviation of the serial capacitor Cs by 0.1 pF from the correct value shown in Figure 4-11 and by 1% from the correct value shown in Figure 4-12, both as a function of $\mathrm{CL} / \mathrm{CO}$. The entire error caused by the inductivity and Cs is represented in Figure 4-13, one the one hand with the constant deviation $\Delta \mathrm{Cs}$ of 0.1 pF , one the other hand with the constant relative failure $\Delta \mathrm{Cs} / \mathrm{Cs}$ of 1%.

Figure 4-10 Tolerances caused by $\Delta \mathrm{L}$ of 20%

Figure 4-11 Tolerance of the oscillator caused by $\Delta \mathrm{Cs}$ of 0.1 pF

Δ frel(dCs/Cs=const) vs CL/CO

Tol_caused_by_dCs=1\%_1.wmf
Figure 4-12 Tolerance of the oscillator caused by $\Delta \mathrm{Cs}$ of 1%

Tol_caused_by_L_and_Cs_1.wmf
Figure 4-13 Tolerance of the oscillator caused by $\Delta \mathrm{L}$ and $\Delta \mathrm{Cs}$

Especially in the case of constant relative failure $\Delta \mathrm{Cs} / \mathrm{Cs}(1 \%)$ the frequency error increases with an increasing CL relating to $C 0$, although the pulling sensitivity decreases.
But decreasing CL is limited by the fact, that the smaller CL the higher the resistance Rs appearing on the pins of the crystal, which is presented in Figure 4-14.
$R 1$ is the dynamic resistance of the equivalent circuit of the crystal.

Rs_to_R1_vs_CL_to_C0.wmf
Figure 4-14 Rs/R1 vs CL/C0
In the following table an assessment of the worst case overall frequency spread to be expected in case of operation at 868 MHz with a 13.4 MHz Jauch reference crystal as denoted in the Bill of Materials in Table 5-1 is shown. The calculation is taking into account the tolerance of the crystal and of the components in the oscillator circuit which are determining the tuning tolerance and temperature stability of the circuit. Note that the result is a sum of the squares of the indivual terms.

A spreadsheet ${ }^{1}$ may be obtained from Infineon which can be used to predict the total frequency error (3 3) by simply entering the crystal specification.
The Table 4-8 refering to the crystal specification described above.

1.available for download on the Infineon RKE Webpage www.infineon.com/rke, also included on evalkit CD-ROM

Tolerance of the crystal	tuning $\pm 10 \mathrm{ppm}$	$\pm 10 \mathrm{ppm}$
	temperature stability $\pm 20 \mathrm{ppm}$	$\pm 20 \mathrm{ppm}$
Tolerance of the circuit	tolerance of the series load capacitor $\pm 2 \%$	$\pm 3 \mathrm{ppm}$
	tolerance of the oscillator circuit (3σ spread of internal component values assumed), calculated with spread sheet	$\pm 33 \mathrm{ppm}$
Total frequency error (3 σ spread)	without temperature drift, according to spread sheet	$\pm 34 \mathrm{ppm}$
	with temperature drift	$\pm 54 \mathrm{ppm}$

There is also the possibility to force the oscillator with an external signal, shown in Figure 4-15 and Figure 4-16.

Force X -tal without.wmf
Figure 4-15 Forcing the crystal oscillator without transformer

Force_X-tal_with.wmf
Figure 4-16 Forcing the crystal oscillator with transformer

4.7 IF Section

4.7.1 IF Amplifier

The IF section is an AC-coupled high-gain differential input, single-ended output amplifier. It utilizes three identical gain stages each with a Received Signal Strength Indicator detector. The RSSI signal of the IF amplifier is obtained by summing the individual detector signals. The differential input resistance has been set internally to 330Ω. Single-ended operation of the amplifier presents the nominal load to the ceramic IF filter.

Figure 4-17 shows the frequency response of the IF amplifier. It can be used at all IF frequencies within the range of 3 MHz and 25 MHz without significant degradation of the overall performance of the receiver.

Fig_14.wmf
Figure 4-17 Frequency response of the IF amplifier.

4.7.2 IF Filtering

The TDA 521X has been designed to be used with a low-cost ceramic IF filter. Those filters are supplied with a wide variety of bandwidth between 60 kHz and 300 kHz . The nominal input and output impedance is specified at 330Ω. The frequency response of such a filter with a nominal bandwidth of 230 kHz imparted to the evaluation board is shown in Figure 4-18. The filter characteristic may be
degraded by oscillator and signal feed-through to the input of the IF amplifier. Both signals may convert to the IF frequency at the IF amplifier, bypassing the IF filter. This effect can be clearly demonstrated at high input levels. A simple low-pass filter in front of the IF amplifier may keep the RF signals from entering. In most cases a careful layout of the board gives adequate decoupling.

Please note that the far off suppression may be as low as 30 dB . Filters like the Murata SFE 10.7 MA5-A even show a peak at 4.5 MHz in the frequency response. Thus beside the excepted IF of 10.7 MHz also unwanted signals 6.2 MHz away from the IF may influence the following demodulation chain.

Frequencyresponse.wmf
Figure 4-18 IF frequency response

The bandwidth of the IF filter should be set to a value where the modulation signal is reliably transferred under the influence of the frequency tolerance of the transmitter and the receiver.

Table 4-9 Design Example: IF Bandwidth Calculation (3б value)

Transmit frequency	434.4 MHz	
Modulation ASK4kbit/s	4kbit/s	
Frequency tolerance of the transmitter		$\pm 63 \mathrm{ppm}$
Frequency tolerance of the receiver		$\pm 54 \mathrm{ppm}$
Tolerance of the center frequency of the IF filter	$\pm 30 \mathrm{kHz}$	$\pm 69 \mathrm{ppm}$

Total tolerance		$\pm 108 \mathrm{ppm}$
Spectrum of modulation	$\pm 1.5^{*} 4 \mathrm{kbit} / \mathrm{s}= \pm 6 \mathrm{kHz}$	$\pm 14 \mathrm{ppm}$

The IF bandwidth therefore should be:

$$
\mathrm{B}_{\mathrm{IF}} \geq \pm(108 \mathrm{ppm}+14 \mathrm{ppm}) * 434 \mathrm{MHz}= \pm 53 \mathrm{kHz}=106 \mathrm{kHz}
$$

4.8 ASK/FSK Switch Functional Description

The TDA5210 is containing an ASK/FSK switch which can be controlled via Pin 15 (MSEL). This switch is actually consisting of 2 operational amplifiers that are having a gain of 1 in case of the ASK amplifier and a gain of 11 in case of the FSK amplifier in order to achieve an appropriate demodulation gain characteristic. In order to compensate for the DC-offset generated especially in case of the FSK PLL demodulator there is a feedback connection between the threshold voltage of the bit slicer comparator (Pin 20) to the negative input of the FSK switch amplifier. This is shown in the following figure.

ask_fsk_datapath.WMF
Figure 4-19 ASK/FSK mode datapath

4.8.1 FSK Mode

The FSK datapath has a bandpass characterisitc due to the feedback shown above (highpass) and the data filter (lowpass). The lower cutoff frequency f2 is determined by the external RC-combination. The upper cutoff frequency f3 is determined by the data filter bandwidth.
The demodulation gain of the FSK PLL demodulator is $180 \mu \mathrm{~V} / \mathrm{kHz}$. This gain is increased by the gain v of the FSK switch, which is 11 . Therefore the resulting dynamic gain of this circuit is $2 \mathrm{mV} / \mathrm{kHz}$ within the bandpass. The gain for the DC content of FSK signal remains at $180 \mu \mathrm{~V} / \mathrm{kHz}$. The cutoff frequencies of the bandpass have to be chosen such that the spectrum of the data signal is influenced in an acceptable amount.

In case that the user data is containing long sequences of logical zeroes the effect of the drift-off of the bit slicer threshold voltage can be lowered if the offset voltage inherent at the negative input of the slicer comparator (Pin 20) is used. The comparator has no hysteresis built in.

This offset voltage is generated by the bias current of the negative input of the comparator (i.e. $20 n A$) running over the external resistor R. This voltage raises the voltage appearing at pin 20 (e.g. 1 mV with $R=100 \mathrm{k} \Omega$). In order to obtain benefit of this asymmetrical offset for the demodulation of long zeros the lower of the two FSK frequencies should be chosen in the transmitter as the zerosymbol frequency.

In the following figure the shape of the above mentioned bandpass is shown.

Figure 4-20 Frequency characterstic in case of FSK mode

The cutoff frequencies are calculated with the following formulas:

$$
f_{1}=\frac{1}{2 \pi \frac{R \cdot 330 k \Omega}{R+330 k \Omega} \cdot C}
$$

$$
f_{2}=v \cdot f_{1}=11 \cdot f_{1}
$$

$$
f_{3}=f_{3 d B}
$$

f_{3} is the $3 d B$ cutoff frequency of the data filter - see Section 4.10.

Example:

$R=100 \mathrm{k} \Omega, \mathrm{C}=47 \mathrm{nF}$
This leads to $f_{1}=44 \mathrm{~Hz}$ and $f_{2}=485 \mathrm{~Hz}$

4.8.2 ASK Mode

In case the receiver is operated in ASK mode the datapath frequency charactersitic is dominated by the data filter alone, thus it is lowpass shaped. The cutoff frequency is determined by the external capacitors C12 and C14 and the internal 100k resistors as described in Section 4.10.

Figure 4-21 Frequency charcteristic in case of ASK mode

4.9 Demodulation

4.9.1 ASK Demodulation

After passing the IF filter, the IF signal is fed to the limiter. The limiter serves two functions: amplification and demodulation of the filtered IF signal. The limiter rectifies the IF in order to demodulate the received signal. The demodulated signal is referred to as the RSSI signal. Figure 4-22 shows the relation between the RSSI voltage level and the limiter input IF level at LIM, pin17. As can be seen, the RSSI function is linear to the log. of the limiter input level over a range of 80 dB . The receiver can detect a modulated carrier over an input signal dynamic range of more than 80 dB . Applying the integrated AGC function, this range will be extended by another 18 dB to a total dynamic range of 95 dB . The maximum input level that can be detected by the receiver is approx. 0dBm. This value greatly depends on the depth of modulation of the transmitter signal

Figure 4-22 Limiter demodulator characteristics

Figure 4-23 RSSI Voltage vs. Receiver Input Level

Figure 4-18, Figure 4-22 and Figure 4-23 give some interesting information about the interaction of the different gain blocks of the receiver.

The voltage gain between the antenna input and the limiter input is 40 dB .
The LNA block adds approx. 7 dB of noise at the mixer input to the receiver.
Following the formula for the noise figure NF_{c} of cascaded blocks with individual noise figures NF1 and NF2 and the gain G1

$$
N F_{c}=N F 1+(N F 2-1) G 1
$$

it is quite evident that the given factor of $7 \mathrm{~dB} \cong 5$ is the factor between the two terms of the above formula. Applying this formula, it can be concluded that the LNA gain, $G_{L N A}$ can be reduced by 3 dB without degrading the overall noise characteristics of the receiver significantly. The factor between the two terms in the formula will then be $4 \mathrm{~dB} \cong 2.5$, then resulting in a total noise figure of

$$
N F_{\mathrm{C}}=N F_{\mathrm{LNA}}+\left(\mathrm{NF}_{\mathrm{MX}}-1\right) / \mathrm{G}_{\mathrm{LNA}}=\mathrm{NF}_{\mathrm{LNA}}(1+1 / 2.5)=1.4 \mathrm{NF}_{\mathrm{LNA}}
$$

The noise of the LNA (having a noise figure of $\mathrm{NF}_{\mathrm{LNA}}$) will then contribute just

$1.4 \cong 1.4 \mathrm{~dB}$ to the total noise of the receiver.

The converter block (LNA in cascade with the mixer stage) adds approx. 10dB of noise to the receiver at the input of the limiter. Applying the above formula for the cascaded noise figure again, it can be concluded that the converter gain could be reduced by 6 dB without reducing the overall sensitivity of the receiver significantly. The receiver sensitivity will drop by 1.4 dB .

The circuit thus gives some margin to apply filters with higher losses at the IF and at the LNA output.

4.9.2 FSK Demodulation

The FSK-Demodulator realized in the TDA521X is a PLL-Demodulator.
The frequency phase of the IF-signal and VCO output signal are compared against one another in the "phase detector circuit" (PD). The voltage on the phase detector output is proportional to the phase difference of the two input signals. This voltage is feed via the loop filter to the VCO-control input, to track and match the VCO-frequency to the IF-frequency. Applying a FM/FSK-signal the loop filter output signal is an image of the original NF-signal modulated onto the carrier coupled with a DC-voltage as a function of the center frequency. To reduce the influence of the center frequency on the DC-voltage on the output of FSK-switch and data filter subsequently, a negativ DC-feedback is realized as explained in Chapter 4.8.1 (see also Figure 4-19).

Because of the wide bandwith of the PLL of $\pm 500 \mathrm{kHz}$, not only fast catching, but also demodulation of a RF-frequency causing an IF-frequency in that band is enabled. Therefore deviation of the IF-frequency from the nominal value - inside the band of $\pm 500 \mathrm{kHz}-$, caused by the tolerances of the reference oscillator for instance, doesn't effect the FSK-demodulation.

Figure 4-24 Block diagram of the FSK-PLL-Demodulator

The amplitude on the PLL-Demodulator output isn't depending on the IF-signal amplitude, but only on the deviation of the FSK-signal. Using a data signal with a frequency between f2 and f3 according Figure 4-20 in Chapter 4.8.1, not too close by one of this, the amplitude on the output of the FSK-switch is still only a function of the deviation. Outside of this bandwith the amplitude is also a function of the frequency of the data signal, as shown in Figure 4-20. The upper cut-off-frequency $f 3$ is round about 52 kHz as indicated in Table 4-10.

Table 4-10 Data-Frequency responce of the FSK-switch Frequency of the data signal	Amplitude on the FSK-switch out	Deviation	
$[\mathrm{kHz}]$	$[\mathrm{mV}]$	$[\mathrm{dBr}]^{\mathrm{a}}$	$[\mathrm{kHz}]$
5	714	0	± 150
20	659	-0.7	± 150
30	636	-1	± 150
43	567	-2	± 150
52	506	-3	± 150
62.5	420	-4.6	± 150
a.dBr: dB relating to the reference. Reference value is amplitude at 5 kHz.			

4.10 Data Filtering

Utilising the on-board voltage follower and the two $100 \mathrm{k} \Omega$ on-chip resistors a 2nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as depicted in the following figure and described in the following formulas ${ }^{1}$. As can be seen from Figure 4-25, the cutoff frequency can be set by the external components C12 and C14. The data filter bandwidth should be set according to the highest frequency component of the baseband signal received. A wider data filter bandwidth does reduce the sensitivity by passing a wider spectrum of noise to the data slicer.

Filter_Design.wmf
Figure 4-25 Data Filter Design
(1)(2)

$$
\mathrm{C} 1=\frac{2 \mathrm{Q} \sqrt{\mathrm{~b}}}{\mathrm{R} 2 \pi \mathrm{f}_{3 \mathrm{~dB}}} \quad \mathrm{C} 2=\frac{\sqrt{\mathrm{b}}}{4 \mathrm{QR} \pi \mathrm{f}_{3 \mathrm{~dB}}}
$$

with

$$
Q=\frac{\sqrt{b}}{a} \quad \text { (3)the quality factor of the poles }
$$

where
in case of a Bessel filter $a=1.3617, b=0.618$
and thus $Q=0.577$
and in case of a Butterworth filter $a=1.414, b=1$
and thus $\mathrm{Q}=0.71$

1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999

Example: Butterworth filter with $f_{3 d B}=5 \mathrm{kHz}$ and $\mathrm{R}=100 \mathrm{k} \Omega$:

$$
\mathrm{C}_{1}=450 \mathrm{pF}, \mathrm{C}_{2}=225 \mathrm{pF}
$$

4.11 Data Slicer

The filtered data signal is fed to the data slicer. This is a one-bit analog-to-digital converter that makes the bit decision and provides a rail-to-rail output. There are two different internal analog-to-digital converters. They differ in how to generate the slice reference.

As can be seen from Figure 4-26, the first circuit is the conventional adaptive data slicer deriving the threshold by means of a separate low-pass filter. This data slicer should be used for digital conversion of coded signals with no or only small DC components. The low-pass filter is designed for a long time constant in order to derive the average RSSI value (DC component of data) as an adaptive reference for the data slicer. As a design rule, the time constant T_{A} should be at least 3 times the longest period T_{L} of no signal change within the data sequence

$$
T_{A}=R 1^{*} C 13 \geq 3^{*} T_{L}
$$

This will result in a momentary shift of the reference level by -3.5 dB of the data signal amplitude.

The time constant selected directly affects the data slicer run-in time and as a result the receiver settling time.

Figure 4-26 Data slicer with adaptive slice reference

The applications shown in Figure 4-28, Figure 4-29 and Figure 4-31 are only usable in ASK mode.

As can be seen in Figure 4-19 the ASK/FSK switch is connected via a 300k and 30k resistor with pin 20. Thats the reason why the resistance R2lIR3 "seen" by pin 20 in Figure 4-27 and Figure 4-31 must not be too high, otherwise a inadmissible ripple caused by the data signal is applied to the negative input of the data slicer.

Figure 4-27 shows the alternate clamping data slicer which references its bit decision to the positive peak level of the data signal. This data slicer can be used with coding schemes employing high DC content. The decay time constant T_{P} of the peak detector should be designed to hold the detector voltage level well above the decision threshold of the comparator for a time long enough
to bridge the longest time T_{L} with no level change within the data stream. This is most important for low data levels at the sensitivity threshold of the receiver. On the other hand T_{P} should be short enough to follow the variations of the received signal level. As a design rule, the time constant should be

$$
T_{P}=(R 2+R 3) * C 15 \geq 20 * T_{L}
$$

The comparator threshold will be set by the division ratio of the voltage divider R2 /R3. The voltage drop across R2 acts like an additional offset voltage across the comparator input. It should be set to a value just big enough for a glitch-free decoding of a noisy signal at the receiver sensitivity threshold. Setting the threshold beyond the noise level of the receiver will give an operation similar to a squelch function. The data output will be held in a high state without a signal at the receiver input then. There will be some degradation in receiver sensitivity when applying the clamping data slicer.

Dataslicerclamp.wmf
Figure 4-27 Data slicer with clamping slice reference

The data output DATA, pin25 is a common collector stage utilizing an internal pull-down resistor of $40 \mathrm{k} \Omega$. The bandwidth of this output is limited to approx. 60 kHz when loaded by $1 \mathrm{M} \Omega / / 10 \mathrm{pF}$. This limits the data rate to a maximum of $120 \mathrm{kbit} / \mathrm{s}$. Higher capacitive loading at the data output will further reduce the bandwidth. The bandwidth of the RSSI decoder, the low-pass filter and the data slicer are internally limited to $>100 \mathrm{kHz}$.

The evaluation board has been designed for

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{R} 1^{*} \mathrm{C} 13=100 \mathrm{k} \Omega * 47 \mathrm{nF}=4.7 \mathrm{~ms}
$$

The longest uncompensated DC component of the decoded data stream therefore should not exceed 1.5 ms . The lower frequency of the data stream is limited to 330 Hz this way.

When using the peak data slicer, T_{P} has been designed for

$$
T_{P}=(R 2+R 3) * C 15=(100 k \Omega+820 \mathrm{k} \Omega) * 47 \mathrm{nH}=43 \mathrm{~ms}
$$

The longest uncompensated DC component of the data stream is limited to 2.1 ms now. The lower frequency limit of the data slicer has been extended down to 250 Hz .

After a sudden increased RF level or a short time period in power down mode the following application is very useful to achieve a very short settling time of the slicing level. This can be done without the usage of the precharge circuit, but it has to be mentioned that only ASK mode will work with this kind of application.

Figure 4-28 Precharging with peak detector

For the best functionality the value of Cp should be the same as the value of C13. To avoid influence on the steady state of the slicing level Rp should be chosen to a value of at least 10 times R13. A to small $R p$ value causes also an additional ripple voltage of the slicing level. An example for various values of $R p$ is given in Figure 4-29 below).

Average of slicing level
Figure 4-29 Average of slicing level Figure 4-30 Ripple of slicing level

The disadvantage of the application shown in Figure 4-31 is the dependance of the duty cycle on the DC level of the data filter output signal and therefore also on the RF level.

The necessary slicing level for getting a duty cycle of approximately 50% for a stronger signal is to low for a weak signal. Because of this the sensitivity is virtually reduced.

Coding schemes with long break times between the preamble and the real data, for instance the shark protocol, cause also problems with such an application.

Even for a large decay time $\mathrm{Tp}=(\mathrm{R} 2+\mathrm{R} 3)^{*} \mathrm{C} 15$, causing problems after interferer appears, the slicing level will drop below the data filter output voltage because of discharging C16 against GND, especially for small signals.

To avoid on the one hand the necessity of to large decay time and therefore large recovery time after appearance of interferer or on the other hand a invalid data signal the following application is useful.

DataSlicerDataValid.wm
Figure 4-31 Slicing level derived from peak detector

The peak detector capacitor will be discharged mainly against the data filter output and not against GND. The value of Rdisch should be chosen high enough considering the low current $(40 \mu \mathrm{~A})$ of the current source for biasing the emitter follower on the data filter output. R2+R3 should be at least 3 times Rdisch.

```
\(\approx\left(R_{2}+R_{3}\right) / / R_{\text {disch }} \cdot C_{15}\)
\(\approx R_{\text {disch }} \cdot C_{15}\) for \(R_{2}+R_{3} \gg R_{\text {disch }}\)
```

The steady state voltage of the peak detector output during no transmission of data is shown in the following formula:
$U_{\text {PDO, steady state }}=U_{\text {data filter, Noisefloor }}{ }^{*}\left(R_{2}+R_{3}\right) /\left(R_{2}+R_{3}+R_{\text {disch }}\right)$

The steady state voltage of the slicing level during no data transmission:
$U_{S L N}$, steady state $=R_{3} /\left(R_{2}+R_{3}+R_{\text {disch }}\right)$

Disch. To GND -65dBm1.wmf
Figure 4-32 Discharging to GND; RF-Level $=-65 \mathrm{dBm}$

Disch. To data f. out -100dBm.wm

Figure 4-33 Discharging to data filter out; RF-Level $=-100 \mathrm{dBm}$

The best solution for all demands mentioned above, combining the advantages off the other applications is shown below in Figure 4-34.

inv_slicing_level.wmf
Figure 4-34 Adapting impedance slicing level generation

inv_slicing_level_trans1.wmf
Figure 4-35 Adapting impedance slicing level generation and buffer

The two diodes D1 and D2 are working as a voltage controlled resistor. For a slight deviation of the slicing level from the instantaneous value off the data filter output signal the impedance of the diode, driven in forward direction, is higher than for a larger deviation. The higher the deviation the lower the impedance of the forward driven diode. The function of the circuit presented in Figure 4-35 is the same except the using of the transistors instead of the diodes working simultaneously as buffer for the possibility to use a smaller value of R2.

The dimensioning of the circuit is not realy critical. The product of R2* C , the theoretical lower limit value of the time constant, should be round about ten times smaller than the inverse value of the "data frequency" ${ }^{1}$ to reach a very fast settling time. ${ }^{1}$

Depending on the longest possible period of no changing of the logik level during one transmission - time between preamble and data for instance - the R2*C product can be chosen more or less smaller. As can be seen in the measurements below, a R2*C product of round about 100μ s is one the one hand by far large enough to tide over a brake of 10 ms , on the other hand small enough to reach a proper slicing level within the half period of a 1 kHz signal. But also an R2*C product of less than $10 \mu \mathrm{~s}$ is sufficient to tide over a brake of 10 ms , shown in Figure 4-38, enabling a very short settling time for the slicing level as can be seen in Figure 4-39. The measurement presented in Figure 4-39 is done with the circuit shown in Figure 4-35, - slicing level generation and buffer without the optional resistors $R 3 n, R 4 n, R 3 p, R 4 p$ - because of the small value of $R 2$.

This application works for FSK as well as for ASK and make the use of precharge circuit described in the next chapter unnecessary.

T(Data-low)=10ms_Var_b.wm
Figure 4-36 Measuring circuit with $\mathrm{R} 2^{*} \mathrm{C}=127 \mu \mathrm{~s}$ with 10 ms of low level respectively 1. Fundamental frequency of the data signal not to mix up with the data rate.

RF-off to -80dBm_Var_b.wmf
Figure 4-37 Response time of circuit with $R 2^{*} \mathrm{C}=127 \mu \mathrm{~s}$; Data frequency $=1 \mathrm{kHz}$

T(Data-low)=10ms_Var_Tr2.wmf
Figure 4-38 Measuring circuit with $\mathrm{R}^{*} \mathrm{C}=9.4 \mu \mathrm{~s}$ with 10 ms of low level respectively

Figure 4-39 Response time of circuit with R2*C=9.4 μ; Data frequency $=1 \mathrm{kHz}$

4.12 Principle of the Precharge Circuit

In case the data slicer threshold shall be generated with an external RC network as described in Section 4.11 it is necessary to use large values for the capacitor C attached to the SLN pin (pin 20) in order to achieve long time constants. This results also from the fact that the choice of the value for R connected between the SLP and SLN pins (pins 19 and 20) is limited by the $330 \mathrm{k} \Omega$ resistor appearing in parallel to R as can be seen in Figure 4-19. Apart from this a resistor value of $100 \mathrm{k} \Omega$ leads to a voltage offset of 1 mv at the comparator input as described in Section 4.8.1. The resulting startup time constant τ_{1} can be calculated with:
$\tau_{1}=(\mathrm{R} / / 330 \mathrm{k} \Omega) \cdot \mathrm{C}$

In case R is chosen to be $100 \mathrm{k} \Omega$ and C is chosen as 47 nF this leads to
$\tau_{1}=(100 \mathrm{k} \Omega / / 330 \mathrm{k} \Omega) \cdot 47 \mathrm{nF}=77 \mathrm{k} \Omega \cdot 47 \mathrm{nF}=3.6 \mathrm{~ms}$

When the device is turned on this time constant dominates the time necessary for the device to be able to demodulate data properly. In the powerdown mode the capacitor is only discharged by leakage currents.
In order to reduce the turn-on time in the presence of large values of C a precharge circuit was included in the TDA5210 as shown in the following figure.

Figure 4-40 Principle of the precharge circuit

This circuit charges the capacitor C with an inrush current $I_{\text {load }}$ of $240 \mu \mathrm{~A}$ for a duration of T_{2} until the voltage U_{c} appearing on the capacitor is equal to the voltage U_{s} at the input of the data filter. This voltage is limited to 2.5 V . As soon as these voltages are equal or the duration T_{2} is exceeded the precharge circuit is disabled.
τ_{2} is the time constant of the charging process of C which can be calculated as
$\tau_{2} \approx 20 \mathrm{k} \Omega \cdot \mathrm{C} 2$
as the sum of R1 and R2 is sufficiently large and thus can be neglected. T2 can then be calculated according to the following formula:

$$
T_{2}=\tau_{2} \ln \left(\frac{1}{1-\frac{2.4 V}{3 V}} \approx \tau_{2} \cdot 1.6\right.
$$

The voltage transient during the charging of C 2 is shown in the following figure:

e-Fkt1.wmf
Figure 4-41 Voltage appearing on C2 during precharging process

The voltage appearing on the capacitor C connected to pin 20 is shown in the following figure. It can be seen that due to the fact that it is charged by a constant current source it exhibits a linear increase in voltage which is limited to $\mathrm{U}_{\mathrm{Smax}}=2.5 \mathrm{~V}$ which is also the approximate operating point of the data filter input. The time constant appearing in this case can be denoted as T3, which can be calculated with

$$
\mathrm{T} 3=\frac{\mathrm{U}_{\mathrm{Smax}} \cdot \mathrm{C}}{240 \mu \mathrm{~A}}=\frac{2,5 \mathrm{~V}}{240 \mu \mathrm{~A}} \cdot \mathrm{C}
$$

Figure 4-42 Voltage transient on capacitor C attached to pin 20

As an example the choice of $\mathrm{C} 2=20 \mathrm{nF}$ and $\mathrm{C}=47 \mathrm{nF}$ yields
$\tau_{2}=0.4 \mathrm{~ms}$
$\mathrm{T}_{2}=0.64 \mathrm{~ms}$
$\mathrm{T}_{3}=0.49 \mathrm{~ms}$

This means that in this case the inrush current could flow for a duration of 0.64 ms but stops already after 0.49 ms when the $U_{S m a x}$ limit has been reached. T3 should always be chosen to be shorter than T2.

It has to be noted finally that during the turn-on duration T2 the overall device power consumption is increased by the $240 \mu \mathrm{~A}$ needed to charge C .

The precharge circuit may be disabled if C 2 is not equipped. This yields a T2 close to zero. Note that the sum of R4 and R5 has to be $600 \mathrm{k} \Omega$ in order to produce 3 V at the THRES pin as this voltage is internally used also as the reference for the FSK demodulator.

4.13 Quiet Data Output during no Transmission

Using one of the above mentioned circuits to generate the slicing level the data slicer will provide a stochastic signal. For some application like the duty cycle mode, where a $\mu \mathrm{C}$ is set to idle mode and should only "waken" if valid data are available, a quite data output or the additional information "No Data" during no transmission is required. For such an application one of the the following circuit is a possible solution. The circuit shown in Figure 4-43 is a very cheap one. The temperature sensitivity of this circuit is mainly caused by the temperature gradient of the base-emitter voltage of T2.

FSK-Noise-Det1.wmf
Figure 4-43 FSK-Noise-Detector (low price version)

To compensate the temperature dependence of T2 only one additional transistor has to be used to get a differential pair as presented in Figure 4-44. Another advantage of this circuit is the possibility to modify the threshold level ${ }^{1}$ without changing the gain of the previous stage and subsequently influencing the tolerances by changing the voltage divider R13-R14. To avoid toggling of the "DataDetector Output" for an input signal at the threshold level a hysteresis can be realized by selecting a proper value of R12.
1.Level of the RF-signal where the "Noise-Detector" switches to high (data valid) is "threshold-high", level where it switches to low (noise detected) is "thresholdlow".

FSK-Noise-Det2.wmf
Figure 4-44 FSK-Noise-Detector (Temperature-stabilized version)

A comparison between the circuit shown in Figure 4-43 and the temperature stabilized circuit of Figure 4-44 is presented in Table 4-11 below, measured in a 868 MHz board.

Table 4-11 Temperature sensitivity

Temperature	Alteration of "threshold-high"	
	Low price cicuit in Figure $4-43$	Temperature stabilized circuit in Figure 4-44
[${ }^{\text {C }}$]	[dBm]	[dBm]
50	-100.4	-99.7
60	-99.4	-99.7
70	-98.4	-99.7
80	-97.2	-99.7
90	-95.5	-99.7
100	-92.6	-99.7
110	-87.1	-99.7
120	--	-99.7
130	--	-99.7
140	--	-99.4
150	--	-99.4

In point of fact the temperature drift caused by T1 isn't regarded in Table 4-11, but it amounts only round about 0.4 dB over the measured temperature range.

The hystesis of the realized temperature stabilized circuit is round about 0.7 dB resulting to a "threshold-low" of -100.4 dBm in temperature range up to $130^{\circ} \mathrm{C}$.

But of course both the hysteresis and the threshold can be modified as described above.

The data detector output signal can be used as an interrupt signal to waken the $\mu \mathrm{C}$ for instead. To get a quiet data slicer output during no transmission, the data (slicer) output ha sto be combined with the data detector output via a AND or NAND gate. Using a NAND it has to be observed that data are inverted and, unlike using a AND, the quiescent state is high.

4.14 Decoder

For demonstration purposes, a standalone decoder device has been added to the receiver board. The HCS 512 (Microchip) is a decoder capable of responding to the code-hopping sequences sent by the encoder device HCS 360 (Microchip) at the transmitter side. Both devices, the encoder and the decoder, must be programmed with an identical customer code. Each decoder can undergo a learning process with up to 5 individual transmitters. Synchronization will be established following a defined learning sequence. Closing the "learn" contact will light up the LED for approx. 2s. Opening the contact after the LED has turned off sets the decoder to the learn mode. Activating the transmitter then will transfer the synchronization data. This completes the learning process. The LED will then light up for 500 ms each time a synchronized transmitter signal is received.

4.15 Settling Time

Some receiver applications target an average supply current of 1 mA and less. If an intermittent receiver operation is allowed, the supply current may easily be reduced from the typical value of 4.6 mA to less than 1 mA . The pulsed operation of the receiver can be controlled by a signal applied to the PDWN, pin27 input. A high state will enable the receiver. For pulsed receiver operation, a number of parameters need to be considered, such as receiver settling time, system response time and on-off duration.

The receiver settling time depends on a number of application parameters:

- Power up signal slew rate
- Data slicer design
- RF settling time

The RF settling time depends on the start-up time of the reference oscillator, the settling time of the PLL loop and the settling time of the bias of the receiver blocks. Due to the high excessive gain of the reference oscillator and the wide bandwidth of the PLL loop filter of 150 kHz , the VCO will lock within a time of less than 1 ms . The settling time of the receiver bias depends primarily on the size of the blocking capacitor C11. The impedance of capacitor C11 has, however, to be low compared to the input impedance of the IF amplifier at the IF frequency of 10.7 MHz . A capacitor of 100 pF gives a 1 dB loss of IF gain at the input impedance of 330Ω. Applying $\mathrm{C} 11=10 \mathrm{nF}$ will give a bias settling time of the IF amplifier of only $200 \mu \mathrm{~s}$.

The settling time of the data slicer is given by the low-pass characteristic of the imparted filter functions.

The settling time of the data slicer using the precharge circuit is mainly decided by C13 and the operating point of the data filter Us as described in chapter 4.12. The maximum value of Us is round about 2.5 V resulting in a maximum settling time for a valid data signal:
$\mathrm{T} 3=\frac{\mathrm{U}_{\mathrm{Smax}} \cdot \mathrm{C} 13}{240 \mu \mathrm{~A}}$

For a capacitor $\mathrm{C} 13=47 \mathrm{nF}$ (Infineon evaluation board):
$\mathrm{T} 3 \approx 0,49 \mathrm{~ms}$

Using the peak detector to precharge C13 as shown in figure \qquad ? the settling of the slicer should be finished within one period after the transient of the data filter.

The crystal oscillator settling time is proportional to the ratio of the motional inductivity (L1) of the crystal to the effective negative resistor R of the whole circuit.

For a given frequency of the crystal the inductivity and also Q is indirect proportional to the motional capacitance (C1) of the crystal.

Assuming a fixed value of the motional capacitance L1 decreases with the square of the frequency.
Therefore the start up time of the crystal oscillator is decreased proportinal to an increasing of the motional capacitance and with the square of the frequency.

Tsosc $\sim \frac{\mathrm{L} 1}{\mathrm{R}}$

To achive a short start up time of the oscillator a step edge of the power supply is helpful, so the use of unnecessary large "blocking capacitors" should be avoided.

All the individual settling times have to be considered in finding the total settling time of the receiver. On the evaluation board they are

- Bias settling time
0.2 ms
- Start-up time of the reference oscillator
$<0.6 \mathrm{~ms}$
- Power supply slew rate
$<1 \mathrm{~ms}$
- $T_{S A}$
0.49 ms
- $T_{S P}$
0.3 ms

The settling time of the evaluation receiver will be less than 3ms utilizing the sliding data slicer together with the precharge circuit.

4.16 Spurious Radiation

The receiver has to meet the European Telecommunications Standards Institute ETS 300220 requirements. Other requirements may apply for other countries.
The product family of short range devices (SRD) is divided into three classes of equipment, each having its own set of minimum performance criteria. This classification is based upon the impact on persons and/or goods in case the equipment does not operate above the specified minimum performance level under electromagnetic compatibility (EMC) stress.
Class 1 SRD equipment is a highly reliable communication media; e.g. serving human life inherent systems, which result in a physical risk to a person. Applications of this class are fire detection, personal identification, telemetry in vehicles, etc.
Class 2 is relevant for medium reliable SRD communication. This is the case when causing inconvenience to persons, which cannot simply be overcome by other means. Such as, cargo handling systems, domestic telemetry, car alarms, vehicle detection and many others.

Class 3 is responsible for standard reliable SRD communication systems, causing inconvenience to persons, which can simply be overcome by other means. This is relevant for garage door openers, car lock/unlock devices, radio remote control television and audio, door bell and so on.

According to ETS 300 220, the limits for spurious radiation on the receiver side are applicable to all receiver classes:
-57 dBm below 1 GHz
-47 dBm above 1 GHz

Two different types of emission have to be considered, conducted (antenna port) and board radiation. Conducted emission is defined as the spurious power level at the antenna port. Radiated emission is defined as the "effective radiated power" (ERP) emitted by the board.
The most important spurious signal is the LO signal. The low power design of the VCO and a careful PCB layout keep the spurious radiation well below the limits. The spurious levels at the relevant frequencies measured at the evaluation board can be summarized as:

Source of emission		Receiver Frequency		Limit
		434 MHz	868 MHz	ETS 300220
Antenna port VCO	858 MHz	-90dBm	-73dBm	-57dBm
VCO/2	423 MHz	-102dBm	<-120dBm	-57dBm
Radiated ERP VCO	858 MHz	-73dBm	-67dBm	-57dBm
VCO/2	423 MHz	<-120dBm	<-100dBm	-57dBm

The TDA 5210 conforms to the ETS 300220 requirements.

4.17 Sensitivity Measurements

4.17.1 Test Setup

The test setup used for the measurements is shown in the following figure. In case of ASK modulation the Rohde \& Schwarz SMIQ generator, which is a vector signal generator, is connected to the I/Q modulation source AMIQ. This "baseband signal generator" is in turn controlled by the PC based software WinQSIM via a GPIB interface. The AMIQ generator has a pseudo random binary sequence (PRBS) generator and a bit error test set built in. The resulting I/Q signals are applied to the SMIQ to generate a ASK (OOK) spectrum at the desired RF frequency. In case of FSK modulation the SMIQ is replaced by a Rohde \& Schwarz SME generator.

Data is demodulated by the TDA5210 and then sent back to the AMIQ to be compared with the originally sent data. The bit error rate is calculated by the bit error rate equipment inside the AMIQ.

Baseband coding in the form of Manchester is applied to the I signal as can be seen in the subsequent figure.

TestSetup.wmf
Figure 4-45 BER Test Setup

In the following figures the RF power level shown is the average power level.
These investigations have been made on an Infineon evaluation board using a data rate of $4 \mathrm{kBit} / \mathrm{s}$ with manchester encoding, a IF filter bandwidth of 280 kHz and a data filter bandwidth of 5 kHz . This is the standard configuration of our evaluation boards. All these measurements have been undertaken with several evaluation boards, so that production scattering and component tolerances are already included in these results.

4.17.2 Sensitivity of RKE Receivers

The following frequency derivates of the TDA 521x family have been tested:
TDA 5210 working at 434 and 868 MHz
TDA 5211 working at 315 MHz
TDA 5212 working at 915 MHz
The target bit error rate (BER) is specified to a value of $2 \cdot 10^{-3}$. This value is the criteria to determine the sensitivity.

Figure 4-46 Sensitivity of RKE Receivers

As can be seen in Figure 4-46 the TDA 5211 shows the best performance, this is because of minimum noise matching at the front end. Thus it has to be mentioned that the other derivates also show the same behavior, if the matching network at the front end would be matched for minimum noise.
The ASK sensitivity can be up to -113 dBm . In case of FSK -110 dBm are achievable, using a deviation of 150 kHz peak to peak. All these values are measured at an ambient temperature of about $20^{\circ} \mathrm{C}$.

4.17.3 Dependance of the ambient Temperature

Demonstrating a wide band of application possibilities the temperature behavior must not be forgotten. In automotive systems the demanded temperature range is from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Showing the receivers very good performance a BER measurement at the temperature of $+105^{\circ} \mathrm{C}$ is also documented in the following graph.

Figure 4-47 Temperature Behaviour

Notice that the sensitivity variation in this temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ is only about 2.5 to 3 dB .

4.17.4 Sensitivity depending on the IF Filter Bandwidth

A significant place to influence the receivers sensitivity is the bandwidth of the applied IF filter.

Figure 4-48 Variable IF Fllter Bandwidth

In the case of ASK using a data rate of $4 \mathrm{kBit} / \mathrm{s}$ the IF filter bandwidth can be reduced very dramatically to about 150 kHz resulting in a 1 dB improved sensitivity. A similar situation takes place in the FSK mode, where deviation has to be taken into account. A very practicable configuration is to set the IF bandwidth to a value of about 1.5 times the peak to peak deviation. Concerning these aspects the bandwidth should be chosen small enough. With respect to the quartz circuitry tolerances, which influence the receiving frequency, a to small IF filter bandwidth will reduce the sensitivity again. So a compromise has to be made. For further details on IF bandwidth calculation see also Section 4.7.2.
\qquad
Functional Description

4.17.5 Dependance of Data Filter Bandwidth

Explaining this effect it has to be mentioned that a data rate of $4 \mathrm{kBit} / \mathrm{s}$ using manchester encoding results in a data frequency of 2 kHz to 4 kHz depending on the occurring data pattern. The test pattern given by the AMIQ is a pseudo random binary sequency (PRBS9) with a 9 bit shift register. This pattern varies the resulting data frequency up to 4 kHz .

BER Performance of RKE Receivers at different data filter bandwidth (unshielded, $20^{\circ} \mathrm{C}$)

Figure 4-49 Variation of Data Filter Bandwidth in case of ASK

BER Performance at RKE Receivers at different data filter bandwidth (unshielded, $20^{\circ} \mathrm{C}$)

Data Filter Bandwidth FSK.wmf
Figure 4-50 Variation of Data Filter Bandwidth in case of FSK

As can be seen in the last two figures, a data filter bandwidth of about 5 kHz shows optimal performance. Both lowering and increasing this bandwidth results in less sensitivity. Thus the best results can be achieved using a data filter bandwidth of 1.25 times the maximum of the appearing data frequency.

5 Reference

Contents of this Chapter
5.1 Test Circuit 5-2
5.2 Test Board Layouts 5-3
5.3 Bill of Materials 5-5

5.1 Test Circuit

The device performance parameters were measured on an Infineon evaluation board. This evaluation board can be obtained together with evaluation boards of the accompanying transmitter device TDA5100/TDA5101 in an evaluation kit that may be ordered on the INFINEON RKE Webpage www.infineon.com/rke. In case a matching codeword is received, decoded and accepted by the decoder the on-board LED will turn on. This signal is also accessible on a 2-pole pin connector and can be used for simple remote-control applications. More information on the kit is available on request.

TDA5210_testboard_20_schematicV2.wmf
Figure 5-1 Schematic of the Evaluation Board
\qquad

5.2 Test Board Layouts

TDA5210_testboard_20_topV3.wm
Figure 5-2 Top Side of the Evaluation Board

TDA5210_testboard_20_bot.wmf
Figure 5-3 Bottom Side of the Evaluation Board

TDA5210_testboard_20_plcV2.wm
Figure 5-4 Component Placement on the Evaluation Board

TDA 521X

Reference

5.3 Bill of Materials

The following components are necessary for evaluation either of the TDA5210 used at 434 MHz or 868 MHz or of the TDA 5211 at 315 MHz without use of a Microchip HCS512 decoder.

Table 5-1 Bill of Materials		
Ref	Value	Specification
R1	$100 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R2	$100 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R3	$820 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R4	$240 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R5	$360 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R6	10k Ω	0805, $\pm 5 \%$
L1	$315 \mathrm{MHz}: 15 \mathrm{nH}$ $434 \mathrm{MHz}: 15 \mathrm{nH}$ $868 \mathrm{MHz}: 3.3 \mathrm{nH}$	Toko, PTL2012-F15N0G Toko, PTL2012-F15NOG Toko, PTL2012-F3N3C
L2	$\begin{aligned} & 315 \mathrm{MHz}: 12 \mathrm{pF} \\ & 434 \mathrm{MHz}: 8.2 \mathrm{pF} \\ & 868 \mathrm{MHz}: 3.9 \mathrm{nH} \end{aligned}$	$\begin{gathered} 0805, \text { COG, } \pm 1 \% \\ \text { 0805, COG, } \pm 0.1 \mathrm{pF} \\ \text { Toko, PTL2012-F3N9C } \end{gathered}$
C1	$315 \mathrm{MHz}: 12 \mathrm{pF}$ 434MHz: 1 pF 868MHz: 1pF	$\begin{gathered} \text { 0805, COG, } \pm 1 \% \\ \text { 0805, COG, } \pm 0.1 \mathrm{pF} \\ \text { 0805, COG, } \pm 0.1 \mathrm{pF} \end{gathered}$
C2	315MHz: 10pF $434 \mathrm{MHz}: 4.7 \mathrm{pF}$ $868 \mathrm{MHz}: 3.9 \mathrm{pF}$	$\begin{gathered} \text { 0805, COG, } \pm 1 \% \\ \text { 0805, COG, } \pm 0.1 \mathrm{pF} \\ \text { 0805, COG, } \pm 0.1 \mathrm{pF} \end{gathered}$
C3	315MHz: 6.8pF 434 MHz : 6.8 pF $868 \mathrm{MHz}: 5.6 \mathrm{pF}$	$\begin{aligned} & \text { 0805, COG, } \pm 0.1 \mathrm{pF} \\ & \text { 0805, COG, } \pm 0.1 \mathrm{pF} \\ & \text { 0805, COG, } \pm 0.1 \mathrm{pF} \end{aligned}$
C4	100pF	0805, COG, $\pm 5 \%$
C5	47nF	1206, X7R, $\pm 10 \%$
C6	$315 \mathrm{MHz}: 15 \mathrm{nH}$ $434 \mathrm{MHz}: 10 \mathrm{nH}$ $868 \mathrm{MHz}: 3.9 \mathrm{pF}$	Toko, PTL2012-F10N0G Toko, PTL2012-F10N0G 0805, COG, $\pm 0.1 \mathrm{pF}$
C7	100pF	0805, COG, $\pm 5 \%$
C8	$\begin{aligned} & 315 \mathrm{MHz}: 33 \mathrm{pF} \\ & 434 \mathrm{MHz}: 33 \mathrm{pF} \\ & 868 \mathrm{MHz}: 22 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { 0805, COG, } \pm 5 \% \\ & \text { 0805, COG, } \pm 5 \% \\ & \text { 0805, COG } \pm 5 \% \end{aligned}$
C9	100pF	0805, COG, $\pm 5 \%$
C10	10nF	0805, X7R, $\pm 10 \%$
C11	10 nF	0805, X7R, $\pm 10 \%$
C12	220pF	0805, COG, $\pm 5 \%$
C13	47 nF	0805, X7R, $\pm 10 \%$
C14	470pF	0805, COG, $\pm 5 \%$

Table 5-1 Bill of materials (continued)

Ref	Value	Specification
C15	47 nF	0805, X7R, $\pm 5 \%$
C16	8.2pF	0805, COG, $\pm 0.1 \mathrm{pF}$
C17	22pF	0805, COG, $\pm 1 \%$
C18	22 nF	0805, X7R, $\pm 5 \%$
Q1	$\begin{aligned} & 315 \mathrm{MHz}:\left(\mathrm{f}_{\mathrm{RF}^{-1}}-10.7 \mathrm{MHz}\right) / 32 \\ & 434 \mathrm{MHz}:\left(\mathrm{f}_{\mathrm{RF}^{-10}}{ }^{-10.7 H z) / 32}\right. \\ & 868 \mathrm{MHz}:\left(\mathrm{f}_{\mathrm{RF}}-10.7 \mathrm{MHz}\right) / 64 \end{aligned}$	HC49/U, fundamental mode, $C L=12 p F$, e.g. 315MHz: Jauch Q 10,178130-S11-12-10/20 e.g. 434.2MHz: Jauch Q 13,234370-S11-12-10/20 e.g. 868.4MHz: Jauch Q 13,401550-S11-12-10/20
Q2	SFE10.7MA5-A or SKM107M1-A20-10	Murata Toko
X2, X3	142-0701-801	Johnson
$\begin{gathered} \text { X1, X4, } \\ \text { S1-S3, S6 } \end{gathered}$		2-pole pin connector
S4		3 -pole pin connector, or not equipped
IC1	315 MHz : TDA5211 $434 \mathrm{MHz}:$ TDA5210 868 MHz : TDA5210	Infineon

Please note that in case of operation at 315 MHz and 434 MHz a capacitor has to be soldered in place of L2 and an inductor in place of C6.

The following components are necessary in addition to the above mentioned ones for evaluation of the TDA5210 in conjunction with a Microchip HCS512 decoder.

Table 5-2 Ref Rill of Materials Addendum Ralue		Specification
R7	$100 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R8	$10 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R9	$100 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R10	$22 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R11	100Ω	$0805, \pm 5 \%$
R12	100Ω	$0805, \pm 5 \%$
R13	100Ω	$0805, \pm 5 \%$
R14	100Ω	$0805, \pm 5 \%$
R21	$22 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R22	$10 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R23	$22 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R24	$820 \mathrm{k} \Omega$	$0805, \pm 5 \%$
R25	560Ω	$0805, \pm 5 \%$

Table 5-2 Bill of Materials Addendum (continued)		
C19	10 pF	$0805, \mathrm{COG}, \pm 5 \%$
C21	100 nF	1206, X7R, $\pm 10 \%$
C22	100 nF	1206, X7R, $\pm 10 \%$
IC2	HCS512	Microchip
S5, X4-X9		2-pole pin connector
T1, T2	BC 847B	Infineon
D1	LS T670-JL	Infineon

[^0]: Fig_7.WMF

