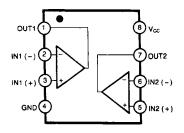
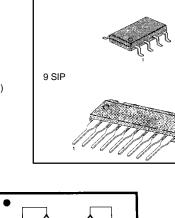
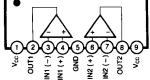
DUAL OPERATIONAL AMPLIFIERS


The LM258 series consists of four independent, high gain, internally Frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage.

Operation from split power supplies is also possible and the low power Supply current drain is independent of the magnitude of the power Supply voltage. Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single 8 SOP power supply system.


FEATURES

- · Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide power supply range: LM258/A, LM358/A: 3V~32V (or ±1.5V~16V) LM2904: 3V~26V (or ±1.5V~13V)
- Input common-mode voltage range Includes ground
- Large output voltage swing: 0V DC to Vcc 1.5V DC
- Power drain suitable for battery operation.


BLOCK DIAGRAM

SCHEMATIC DIAGRAM (One section only)

8 DIP

ORDERING INFORMATION

Q5 Q6 Q12 Q17 020 0: Ô۶ IN(C1 Ò łŀ 0-O OUT IN(+)Q21 h 01 Q1 Q10 01 09 0

Device	Package	Operating Temperature
LM358N	8 DIP	
LM358AN	0 DIF	
LM358S	9 SIP	0 ~ + 70°C
LM358AS	9 OIF	0~+700
LM358M	8 SOP	
LM358AM	0 30F	
LM258N	8 DIP	
LM258AN	0 DIF	
LM258S	9 SIP	-25 ~ + 85 °C
LM258AS	9 OF	-23 ~ + 03 0
LM258M	8 SOP	
LM258AM	0 30F	
LM2904N	8 DIP	
LM2904S	9 SIP	-40 ~ + 85 °C
LM2904M	8 SOP	

© 1999 Fairchild Semiconductor Corporation

Rev. B

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	LM258/LM258A	LM358/LM358A	LM2904	Unit
Supply Voltage	V _{cc}	±16 or 32	±16 or 32	±13 or 26	V
Differential Input Voltage	V _{I(DIFF)}	32	32	26	V
Input Voltage	VI	-0.3 to +32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND			0 1	0 1	
V _{CC} ≤V, T _A = 25 °C(One Amp)		Continuous	Continuous	Continuous	
Operating Temperature Range	T _{OPR}	-25 ~ + 85	0 ~ + 70	-40 ~ + 85	°C
Storage Temperature Range	T _{STG}	-65 ~ + 150	-65 ~ + 150	-65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, V_{EE} = GND, T = 25 $^{\circ}C$, unless otherwise specified)

				LM258		I	_M358	8	I	Unit			
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	onn
Input Offset Voltage	V _{IO}	$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O(P)} = 1.4V$, $R_S = 0\Omega$	$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O(P)} = 1.4V, R_S = 0\Omega$		2.9	5.0		2.9	7.0		2.9	7.0	mV
Input Offset Current	l _{io}				3	30		5	50		5	50	nA
Input Bias Current	IBIAS				45	150		45	250		45	250	nA
Input Common-Mode Voltage Range	V _{I(R)}	V _{CC} = 30V (KA2904, V _{CC} = 26V)		0		V _{cc} -1.5	0		V _{CC} -1.5	0		V _{CC} -1.5	V
Supply Current	I _{cc}	$R_L = \infty$, $V_{CC} = 30V$ (KA2902, $V_{CC} = 26V$)			0.8	2.0		0.8	2.0		0.8	2.0	mA
		$R_L = \infty$, over full tempe	erature range		0.5	1.2		0.5	1.2		0.5	1.2	mA
Large Signal Voltage Gain	Gv	$V_{CC} = 15V, R_L \ge 2K\Omega$ $V_{O(P)} = 1V \text{ to } 11V$		50	100		25	100		25	100		V/mV
	V _{O(H)}	$V_{CC} = 30V$	$R_L = 2K\Omega$	26			26			22			V
Output Voltage Swing	V _{O(L)}	V _{CC} = 26V for 2904	$R_L = 10 K\Omega$	27	28		27	28		23	24		V
	• O(L)	$V_{CC} = 5V, R_L \ge 10K\Omega$			5	20		5	20		5	100	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	80		50	80		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		50	100		dB
Channel Separation	CS	f = 1KHz to 20KHz			120			120			120		dB
Short Circuit to GND	I _{SC}				40	60		40	60		40	60	mA
	I _{SOURCE}			10	30		10	30		10	30		mA
Output Current	I _{SINK}	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 2V$		10	15		10	15		10	15		mA
		$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 200$)mA	12	100		12	100					μΑ
Differential Input Voltage	$V_{\text{I}(\text{DIFF})}$					V_{cc}			V_{cc}			V_{cc}	V

SEMICONDUCTOR TM

ELECTRICAL CHARACTERISTICS

(V_{CC}=5.0V, V_{EE}=GND, unless otherwise specified) The following specification apply over the range of - 25 °C \leq T_A \leq + 85 °C for the KA258; and the 0 °C \leq T_A \leq + 70 °C for the LM358; and the -40 °C \leq T_A \leq +85 °C for the LM2904

Characteristic	Ourseland.			LM258			LM358			LM2904			Unit
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO	$V_{CM} = 0V \text{ to } V_{CC} = 1.$ $V_{O(P)} = 1.4V, R_S = 00$				7.0			9.0			10.0	mV
Input Offset Voltage Drift	V _{IO}	$R_{S} = 0\Omega$			7.0			7.0			7.0		μV/°C
Input Offset Current	I _{IO}					100			150		45	200	nA
Input Offset Current Drift	$\Delta I_{\rm IO}/\Delta T$				10			10			10		pA/°C
Input Bias Current	I _{BIAS}				40	300		40	500		40	500	nA
Input Common-Mode Voltage Range	V _{I(R)}	V _{CC} = 30V (KA2904,V _{CC} = 26V)		0		V _{CC} =2.0	0		V _{CC} =2.0	0		V _{CC} =2.0	V
Large Signal Voltage Gain	Gv	V _{CC} = 15V, R _L ≥2.0KΩ V _{O(P)} = 1V to 11V	2	25			15			15			V/mV
	N/	$V_{CC} = 30V$	$R_L = 2K\Omega$	26			26			26			V
Output Voltage Swing	V _{O(H)}	V _{CC} = 26V for 2904	$R_L = 10K\Omega$	27	28		27	28		27	28		V
	V _{O(L)}	V _{CC} = 5V, R _L ≥10KΩ			5	20		5	20		5	20	mV
Output Current	ISOURCE	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O(P)} = 2V$	/	10	30		10	30		10	30		mA
Output Current	I _{SINK}		/	5	8		5	9		5	9		mA
Differential Input Voltage	$V_{\text{I}(\text{DIFF})}$					V _{CC}			V _{cc}			V_{CC}	V

ELECTRICAL CHARACTERISTICS

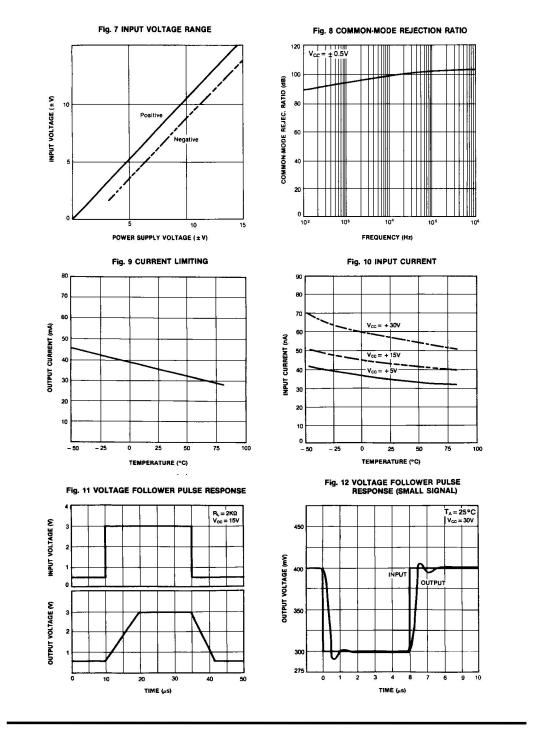
(V_{CC} = 5.0V. V_{EE}=GND. T_A=25\,^{\circ}C, unless otherwise specified)

	Cumb al		L	M258	A	L	Unit		
Characteristic	Symbol	Test Conditions	Min	Тур	Max	MIn	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$\label{eq:VCM} \begin{split} V_{CM} &= 0V \text{ to } V_{CC} = 1.5V \\ V_{O(P)} &= 1.4V, \ R_S = 0\Omega \end{split}$		1.0	3.0		2.0	3.0	mV
Input Offset Current	I _{IO}			2	15		5	30	nA
Input Bias Current	I _{BIAS}			40	80		45	100	nA
Input Common-Mode Voltage Range	V _{I(R)}	$V_{CC} = 30V$	0		V _{CC} =1.5	0		V _{CC} =1.5	V
Quarte Quart		$R_L = \infty, V_{CC} = 30V$		0.8	2.0		0.8	2.0	mA
Supply Current	Icc	$RL = \infty$, over full temperature range		0.5	1.2		0.5	1.2	mA
Large Signal Voltage Gain	Gv	$V_{CC} = 15V, R_L \ge 2K\Omega$ $V_O = 1V$ to 11V	50	100		25	100		V/mV
	V	$V_{CC} = 30V$ $R_1 = 2K\Omega$	26			26			V
Output Voltage Swing	V _{OH}	$V_{CC} = 26V$ for 2904 $R_{L} = 10K\Omega$	27	28		27	28		V
	V _{O(L)}	$V_{CC} = 5V, R_L \ge 10K\Omega$		5	20		5	20	mV
Common-Mode Rejection Ratio	CMRR		70	85		65	85		dB
Power Supply Rejection Ratio	PSRR		65	100		65	100		dB
Channel Separation	CS	f = 1KHz to 20KHz		120			120		dB
Short Circuit to GND	I _{SC}			40	60		40	60	mA
	I _{SOURCE}	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O(P)} = 2V$	20	30		20	30		mA
Output Current	I _{SINK}	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O(P)} = 2V$	10	15		10	15		mA
	ISINK	$V_{in +} = 0V, V_{in -} = 1V$ $V_{O(P)} = 200mV$	12	100		12	100		μΑ
Differential Input Voltage	VI(DIFF)				Vcc			Vcc	V


ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $V_{EE} = GND$. unless otherwise specified)

The following specification apply over the range of -25 °C \leq T $_{A}$ \leq +85 °C for the LM258A; and the 0 °C \leq T $_{A}$ \leq +70 °C for the LM358A

Ohannatariatia		Toot Co	Test Conditions		LM258/	١		LM358/	1		
Characteristic	Symbol	Test Conditions		Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}	$V_{CM} = 0V$ to $V_{CC} = 1.5V$ $V_{O(P)} = 1.4V$, $R_S = 0\Omega$				4.0			5.0	mV	
Input Offset Voltage Drift	$\Delta V_{IO} / \Delta T$				7.0	15		7.0	20	μV/°C	
Input Offset Current	l _{io}					30			75	nA	
Input Offset Current Drift	$\Delta I_{IO}/\Delta T$				10	200		10	300	pA/ °C	
Input Bias Current	IBIAS				40	100		40	200	nA	
Input Common-Mode Voltage Range	V _{I(R)}	$V_{CC} = 30V$		0		Vcc =2.0	0		Vcc =2.0	V	
	V _{O(H)}	$V_{CC} = 30V$	$R_L = 2K\Omega$	26			26			V	
Output Voltage Swing	• O(H)	$V_{CC} = 30V$	$R_L = 10K\Omega$	27	28		27	28		V	
	V _{O(L)}	$V_{CC} = 5V, R_{L^2}$	≥10KΩ		5	20		5	20	mV	
Large Signal Voltage Gain	G_{V}	$V_{CC} = 15V, R_L \ge 2.0 K\Omega$ $V_{O(P)} = 1V \text{ to } 11V$		25			15			V/mV	
Output Current	I _{SOURCE}			10	30		10	30		mA	
	I _{SINK}	$V_{I(+)} = 1V, V_{I(-)}$ $V_{CC} = 15V, V_{CC}$,	5	9		5	9		mA	
Differential Input Voltage	V _{I(DIFF)}					V _{cc}			V _{CC}	V	



TYPICAL PERFORMANCE CHARACTERISTICS

SEMICONDUCTOR TM

SEMICONDUCTOR TM

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.