
DISCRETE SEMICONDUCTORS

DATA SHEET

PBYR2150CT Schottky barrier double diode

Preliminary specification
File under Discrete Semiconductors, SC01

1996 Oct 14

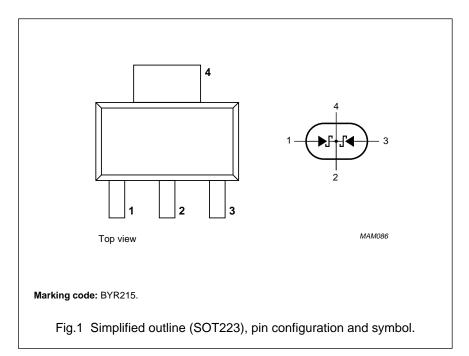
Schottky barrier double diode

PBYR2150CT

FEATURES

- · Low switching losses
- Low forward voltage
- High breakdown voltage
- · Fast recovery time
- · Guard ring protected
- Plastic SMD package.

APPLICATIONS


- Low power, switched-mode power supplies
- Rectification
- · Polarity protection.

PINNING

PIN	DESCRIPTION	
1	anode (a ₁)	
2	common cathode	
3	anode (a ₂)	
4	common cathode	

DESCRIPTION

The PBYR2150CT is a Schottky barrier double diode, fabricated in planar technology, and encapsulated in a SOT223 plastic SMD package.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Per diode	Per diode				
V _R	continuous reverse voltage		_	150	V
V _{RRM}	repetitive peak reverse voltage		_	150	V
V _{RWM}	crest working reverse voltage		_	150	V
I _{F(AV)}	average forward current	$T_{amb} = 85 ^{\circ}\text{C}; R_{th j-a} = 70 \text{K/W};$ note 1; $V_{R(equiv)} = 0.2 \text{V};$ note 2	_	1	А
I _{FSM}	non-repetitive peak forward current	t = 8.3 ms half sinewave; JEDEC method	_	10	A

1996 Oct 14 2

Philips Semiconductors Preliminary specification

Schottky barrier double diode

PBYR2150CT

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Per diode					
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-65	+150	°C
T _{amb}	operating ambient temperature		_	80	°C

Notes

- 1. Refer to SOT223 standard mounting conditions.
- 2. For Schottky barrier diodes thermal run-away has to be considered, as in some applications, the reverse power losses P_R are a significant part of the total power losses. Nomograms for determination of the reverse power losses P_R and $I_{F(AV)}$ rating will be available on request.

ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
Per diode				
V _F	forward voltage	see Fig.2		
		I _F = 0.1 A; note 1	400	mV
		I _F = 0.5 A; note 1	650	mV
		I _F = 1 A; note 1	850	mV
		$I_F = 1 \text{ A}; T_j = 100 ^{\circ}\text{C}; \text{ note 1}$	690	mV
I _R I	reverse current	V _R = V _{RRMmax} ; note 1; see Fig.3	1	mA
		$V_R = V_{RRMmax}$; $T_j = 100$ °C; note 1; see Fig.3	10	mA
C _d	diode capacitance	V _R = 4 V; f = 1 MHz; see Fig.4	100	pF

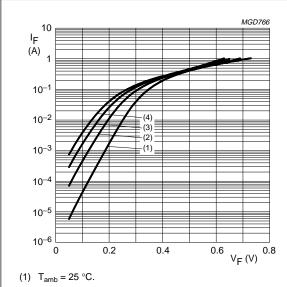
Note

1. Pulsed test: $t_p = 300 \ \mu s$; $\delta = 0.02$.

THERMAL CHARACTERISTICS

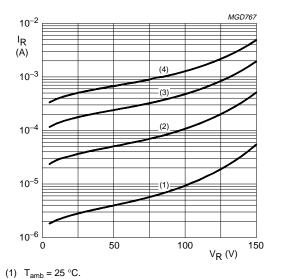
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	70	K/W

Note

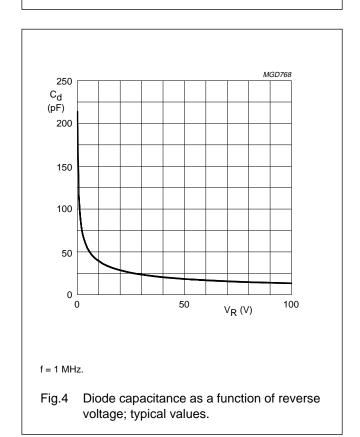

1. Refer to SOT223 standard mounting conditions.

1996 Oct 14 3

Schottky barrier double diode


PBYR2150CT

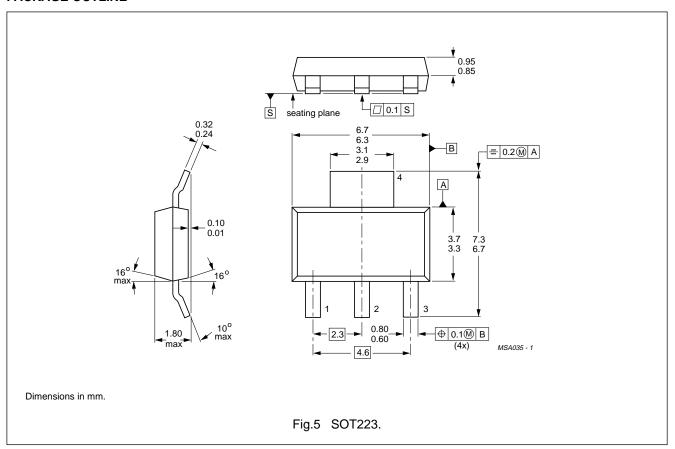
GRAPHICAL DATA


- (2) $T_{amb} = 60 \, ^{\circ}C$.
- (3) $T_{amb} = 80 \, ^{\circ}C$.
- (4) $T_{amb} = 100 \, ^{\circ}C$.

Forward current as a function of forward voltage; typical values.

- (2) $T_{amb} = 60 \, ^{\circ}C$.
- (3) $T_{amb} = 80 \, ^{\circ}C$.
- (4) $T_{amb} = 100 \, ^{\circ}C$.

Reverse current as a function of reverse voltage; typical values.



1996 Oct 14 4 Philips Semiconductors Preliminary specification

Schottky barrier double diode

PBYR2150CT

PACKAGE OUTLINE

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1996 Oct 14 5