
PBYL2020, PBYL2020B PBYL2025, PBYL2025B

FEATURES

• Low forward voltage drop

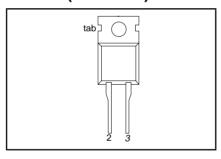
- Repetitive ruggedness rated
- Very high efficiency
- Extremely fast switching
- · Guaranteed reliability
- 150°C forward operation

SYMBOL

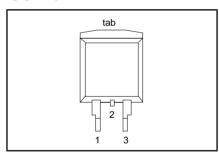
QUICK REFERENCE DATA

$$V_{RRM} = 20, 25 \text{ V}$$
 $V_{F} \le 0.43 \text{ V}$
 $I_{F(AV)} = 20 \text{ A}$

GENERAL DESCRIPTION


Nickel silicide schottky barrier rectifier diodes in a plastic envelope. The devices are intended for use in switched mode power supplies, high frequency DC - DC converters or as or-ing diodes in fault tolerant power supply systems.

The PBYL2025 series is supplied in the SOD59 (TO220AC) conventional leaded package. The PBYL2025B series is supplied in the SOT404 surface mounting package.


PINNING

PIN	DESCRIPTION		
1	no connection		
2	cathode (k)		
3	anode (a)		
tab	cathode (k)		

SOD59 (TO220AC)

SOT404

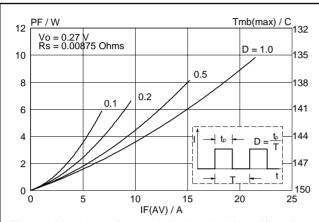
LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

PARAMETER	CONDITIONS	SYMBOL	MIN.	MA	UNIT	
Repetitive peak reverse voltage		V_{RRM}	-	-20 20	-25 25	V
Continuous reverse voltage	T _{mb} ≤ 132 °C	V_R	-	20	25	V
Average forward current	square wave; $\delta = 0.5$; $T_{mb} \le 130 ^{\circ}\text{C}$	I _{F(AV)}	-	2	0	А
RMS forward current		I _{F(RMS)}	-	2	8	Α
Repetitive peak forward current	$t = 25 \mu s; δ = 0.5; T_{mb} \le 130 °C$	I _{FRM}	-	4	0	Α
Non-repetitive peak forward current	t = 10 ms t = 8.3 ms sinusoidal $T_j = 125 ^{\circ}\text{C}$ prior to surge; with reapplied $V_{\text{RRM(max)}}$	I _{FSM}	-	135 150		A A
Repetitive peak reverse current	$t_p = 2 \mu s; \delta = 0.001$	I _{RRM}	-	,	1	Α
Storage temperature		T _{stg}	-65	17	75	°C
Operating junction temperature		T _i	-	15	50	°C

PBYL2020, PBYL2020B PBYL2025, PBYL2025B

THERMAL RESISTANCES


PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Thermal resistance junction to mounting base		R_{thj-mb}	-	-	1.5	K/W
Thermal resistance junction to ambient	in free air	R_{thj-a}	-	60	-	K/W

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 20 \text{ A}; T_j = 150^{\circ}\text{C}$ $I_F = 40 \text{ A}; T_j = 150^{\circ}\text{C}$ $I_F = 40 \text{ A}$	V _F	- - -	0.38 0.57 0.55	0.43 0.64 0.64	V V
Reverse current	$\begin{vmatrix} V_R = V_{RRM} \\ V_R = V_{RRM} \end{aligned}; T_j = 100 \text{ °C}$	I _R	- -	1.0 30	10.0 60	mA mA
Junction capacitance	$f = 1MHz$; $V_R = 5V$; $T_j = 25$ °C to 125 °C	C _d	-	1230	-	pF
Internal cathode inductance	Measured from tab to centre of die	L _k	-	3.5	-	nΗ
Internal cathode inductance	Measured from cathode lead solder point to centre of die	L _k	-	4.5	-	nΗ
Internal anode inductance	Measured from anode lead solder point to centre of die	L _a	-	7.5	-	nΗ

PBYL2020, PBYL2020B PBYL2025, PBYL2025B

Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; square current waveform where $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}$.

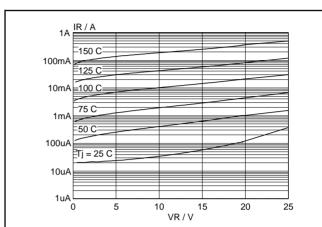


Fig.4. Typical reverse leakage current per diode; $I_R = f(V_R)$; parameter T_i

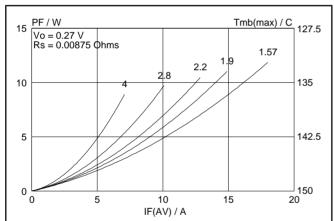


Fig.2. Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; square current waveform where $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}$.

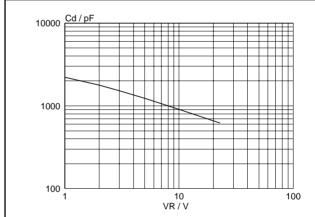
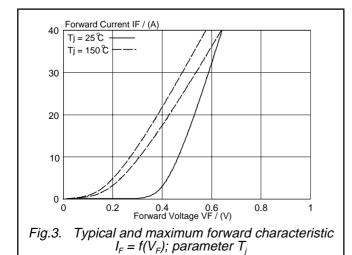
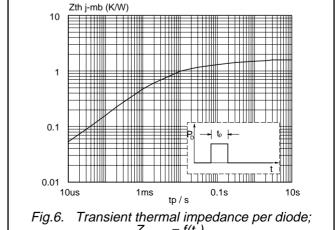
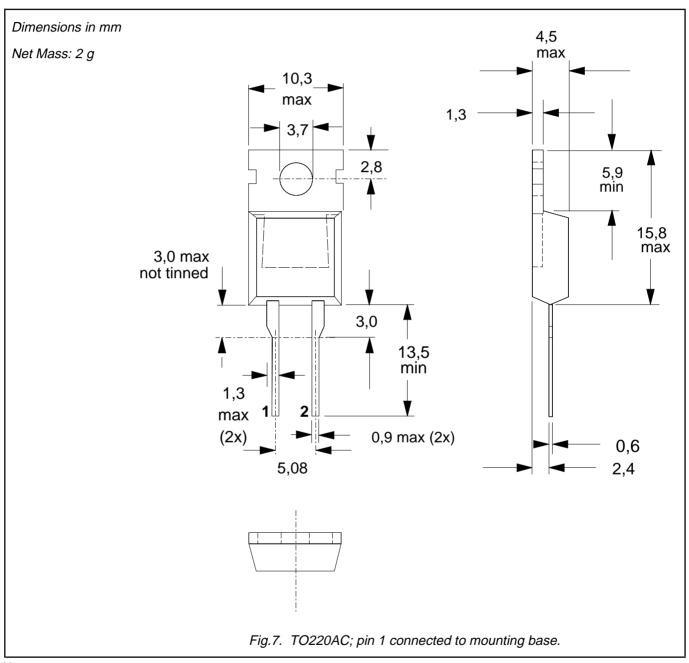
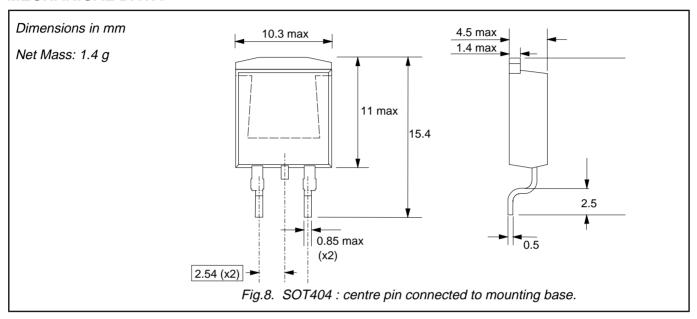




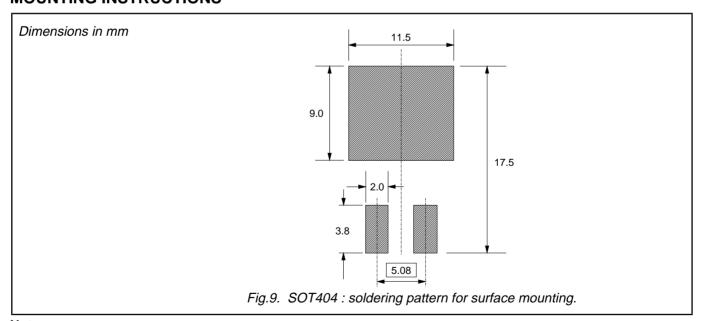
Fig.5. Typical junction capacitance per diode; $C_d = f(V_R)$; f = 1 MHz; $T_j = 25$ °C to 125°C.



 $Z_{th j-mb} = f(t_p).$

PBYL2020, PBYL2020B PBYL2025, PBYL2025B


MECHANICAL DATA


- Refer to mounting instructions for TO220 envelopes.
 Epoxy meets UL94 V0 at 1/8".

PBYL2020, PBYL2020B PBYL2025, PBYL2025B

MECHANICAL DATA

MOUNTING INSTRUCTIONS

Notes

- Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
 Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Rectifier diodes Schottky barrier PBYL2020, PBYL2020B PBYL2025, PBYL2025B

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.