Rectifier diodes

GENERAL DESCRIPTION

Dual nickel silicide schottky barrier rectifier diodes in a plastic envelope featuring low forward voltage drop and absence of stored charge. These devices can withstand reverse voltage transients and have guaranteed reverse surge capability. The devices are intended for use in switched mode power supplies and d.c. to d.c. converters, or as or-ing diodes in fault tolerant power supply systems.

PINNING - TO220AB

PIN	DESCRIPTION
1	anode 1 (a)
2	cathode (k)
3	anode 2 (a)
tab	cathode (k)

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	UNIT
$\begin{aligned} & V_{\text {RRM }} \\ & V_{F} \\ & \mathrm{I}_{(\mathrm{AV})} \end{aligned}$	BYV116- Repetitive peak reverse voltage Forward voltage Average output current (both diodes conducting)	$\begin{gathered} 20 \\ 20 \\ 0.54 \\ 10 \end{gathered}$	$\begin{gathered} 25 \\ 25 \\ 0.54 \\ 10 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { A } \end{aligned}$

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.		UNIT
$\begin{aligned} & \mathrm{V}_{\mathrm{PRM}} \\ & \mathrm{~V}_{\mathrm{RWM}} \end{aligned}$	Repetitive peak reverse voltage Crest working reverse voltage Continuous reverse voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{mb}} \leq 117^{\circ} \mathrm{C} \\ & \text { square wave; } \delta=0.5 ; \\ & \mathrm{T}_{\mathrm{mb}} \leq 119^{\circ} \mathrm{C} \end{aligned}$		-20 20 20 20	-25 25 25 25	V V
$\mathrm{I}_{\text {OAV }}$	Average output current (both diodes conducting)		-			A
$\mathrm{l}_{\text {(RMS) }}$	RMS output current (both diodes conducting)		-			A
$\mathrm{I}_{\text {FRM }}$	Repetitive peak forward current per diode	$\begin{aligned} & \mathrm{t}=25 \mu \mathrm{~s} ; \delta=0.5 ; \\ & \mathrm{T}_{\mathrm{mb}} \leq 119{ }^{\circ} \mathrm{C} \end{aligned}$	-			A
$\mathrm{I}_{\text {FSM }}$	Non-repetitive peak forward current, per diode	$\begin{aligned} & \mathrm{t} \stackrel{\text { mb }}{=}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \\ & \text { sinusoidal } \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \text { prior } \\ & \text { to surge; with reapplied } \\ & \text { v } \end{aligned}$	-			A
$I^{2} \mathrm{t}$	$1^{2} \mathrm{t}$ for fusing	$\begin{aligned} & \begin{array}{l} V_{\text {RRM max }} \\ t==10 \mathrm{~m} \end{array} \end{aligned}$				$\mathrm{A}^{2} \mathrm{~s}$
$\mathrm{I}_{\text {RRM }}$	Repetitive peak reverse current per diode	$\mathrm{t}_{\mathrm{p}}=2 \mu \mathrm{~s} ; \delta=0.001$				A
$\mathrm{I}_{\text {RSM }}$	Non-repetitive peak reverse current per diode	$\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$				A
$\mathrm{T}_{\text {stg }}$	Storage temperature Operating junction temperature		-65			${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{mb}}$	Thermal resistance junction to	per diode		-	4.5	K/W
	mounting base	both diodes	-	-	4.0	K/W
$\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}$	Thermal resistance junction to ambient	in free air	-	60	-	K/W

STATIC CHARACTERISTICS

$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{F}	Forward voltage (per diode)	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{T}_{\mathrm{i}}=125^{\circ} \mathrm{C}$		0.47	0.54	V
		${ }^{\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}}$		0.66 0.58	0.77 0.64	V
$I_{\text {R }}$	Reverse current (per diode)	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	-	0.05	3.0	mA
		$V_{R}=V_{\text {RRM }} ; T_{j}=100^{\circ} \mathrm{C}$ $f=1 \mathrm{MHz} ; \mathrm{V}^{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{T}_{i}=25^{\circ} \mathrm{C}$ to	-	5 160	10	mA
$\mathrm{C}_{\text {d }}$	Junction capacitance (per diode)	$\left\lvert\, \begin{aligned} & \mathrm{f}=1 \mathrm{MH} \\ & 125{ }^{\circ} \mathrm{C} \end{aligned}\right.$	-	160	-	pF

Fig.1. Maximum forward dissipation $P_{F}=f\left(l_{F(A V)}\right)$ per diode; square current waveform where $I_{F(A V)}=I_{F(\text { RMS })} x \sqrt{ }$.

Fig.2. Typical and maximum forward characteristic $I_{F}=f\left(V_{F}\right) ;$ parameter T_{j}

Fig.4. Typical junction capacitance per diode; $C_{d}=f\left(V_{R}\right) ; f=1 \mathrm{MHz} ; T_{j}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Fig.5. Transient thermal impedance; per diode; $Z_{t h-m b}=f\left(t_{p}\right)$.

MECHANICAL DATA

Fig.6. TO220AB; pin 2 connected to mounting base.

Notes

1. Refer to mounting instructions for TO220 envelopes.
2. Epoxy meets UL94 V0 at 1/8".

Rectifier diodes

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification. © Philips Electronics N.V. 1997 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

