
 
 Acta Universitatis Sapientiae 
 Electrical and Mechanical Engineering, 4 (2012) 58-69 
 

  

58 

Development of FPGA Based CAN  

Bus Error Generator System 
 

Krisztian ENISZ1, Denes FODOR1, Balazs NEMETH2, 
Ferenc SPEISER1 

 

1 Department of Automotive Mechatronics,  
Faculty of Engineering,  

University of Pannonia, Veszprem, Hungary,  
e-mail: eniszk@almos.uni-pannon.hu 

2 Continental Automotive Hungary Ltd., Veszprem, Hungary 
 

Manuscript received March 15, 2013; revised May 15, 2013 

Abstract: This paper introduces the development and architecture of an FPGA 
based communication error generator system for CAN (Controller Area Network) 
networks. The created test-system is able to receive and interpret the frames on the 
network and capable to modify the user specified part of these messages on bit level in 
real-time. Beside of these modifications the environment has to be feasible to generate 
physical level error. 
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1. Introduction 

In a modern vehicle there are more than 40 Electronic Control Units (ECUs) 
and there are countless sensors and actuators. The communication between 
these devices is implemented on different types of networks and protocols [1] 
[2]. In an ordinary car 2-3 different kinds of communication protocols are 
applied [3]. Most of the electronic control units including the safety critical 
systems are connected by Controller Area Network (CAN). These safety 
systems like the anti-lock braking system (ABS) and the electronic stability 
program (ESP) help to preserve the stability of the vehicle [4]; therefore it is 
indispensable to test these systems in every respect; including the validation and 
verification tests of communication.  

On an average CAN bus more than 2000 signals and more than 200 frames 
are transmitted with even 1 Mbit/s baudrate. Hence it can be observed that even 
a short disturbance or error in the communication can cause large amount of 
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data loss or corruption. The corrupted or missed data can determine the 
malfunction of safety critical system that can cause an accident if the ECU is 
not fault-tolerant. 

A standard communication test generally includes the physical and logical 
test of the transceiver modules of the CAN nodes. The main point of these tests 
is to examine that the CAN nodes are able to properly create and process the 
CAN frames and signals and that they can handle the disturbances and errors. If 
there is no hardware error at CAN nodes, it is not so complicated to test the 
communication because it is enough to measure the transmission and reception 
time of the frames and compare the structure and contents of the frames with the 
expected data. However, the fault insertion is not so simple. The simulation and 
test environment has to create errors and disturbances in real-time (e.g.: wire 
break, short circuit, bit level errors) in a reproducible way. 

2. Existing systems 

There are a few special devices (e.g.: GEMAC (CAN-Bus Tester), IXXAT 
(CANcheck)) on the market, which make it possible to implement similar tests. 
These are mostly network testers and analyzers for physical diagnostic of CAN 
line and communication (e. g. bus state, bus load, monitoring); a few of them 
are capable to generate network and physical level errors. One of the most 
popular devices that solves these problems is produced by the Vector company. 

The Vector CANstressDR modulates the state of the bus by software tunable 
electronic components. It is able to emulate bus line errors, disturb the CAN 
transceiver, create short circuit and wire break etc. This device is a good choice 
to facilitate the development of ECUs. With these tools it is easy to create a 
communication test system, but there are some disadvantages e.g. the price of 
these devices is relatively high and it is hard to adapt these “closed” systems to 
special tests. 

That was the reason why the development of a new communication test 
system has been started. The creation of a new hardware and software 
environment is not time and cost efficient [5]. 

3. Concept 

In the modern ECU development methods the cost efficient and thorough 
testing is very important in order to decrease the possibility of errors. One of the 
testing procedures is the Hardware In the Loop (HIL) test, which is widely used 
in different levels of the development to validate the functionalities. For the HIL 
tests the tested device are generally connected to a high performance real-time 
system. The main function of the HIL environment is to provide the signals 
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which are necessary for the ECU to be able to operate and receive the data and 
signals from the tested device. 

The modern multi-functional test environment has different kinds of analog 
and digital input and output ports and communication interfaces. It can be 
beneficial to use the existing interfaces to create a communication test system 
from general purpose test environment, in order to minimize the hardware 
investment. The other advantage of this concept is that it makes possible to 
customize the software for special tasks and that it and can be integrated into the 
different types of tests. 

The elaborated test system is based on the PXI platform of National 
Instruments which is originally built for HIL testing of ECU’s. The system is 
equipped with an x86 (x64) processor that is able to execute simulation steps 
with 1ms cycle time thanks to the Phar Lap real-time operating system. 

The special high speed real-time controlling, data acquisition, signal 
processing tasks are executed by the FPGA based analogue and digital I/O 
modules. These modules are freely reconfigurable using the NI LabVIEW 
graphical programming environment and the FPGA is able to act as an 
individual processing unit. The system is also equipped with CAN, LIN, 
FlexRay and other automotive communication interfaces. 

Since it was not the point to develop a generic device like the above 
mentioned Vector CANstressDR, it was possible to introduce several 
restrictions in the design phase of the communication test-system. The only 
requirement was to be able to freely modify the communication both on 
hardware and software level. 

The error-generator environment should meet the following requirements: 
� it should be sufficient to modify the messages going towards the 

tested device; 
� the interaction should be invisible for the tested device; 
� the message modification, the state change of the communication 

line should happen in near real-time; 
� the collision of the messages before and after the modification is not 

allowed, the two messages should appear as two separate lines; 
� it should be possible to modify any of the bits of the messages; 
� it should be able to produce line-cut on any of the CAN lines. 

 
For the error generation on the CAN bus it is necessary to connect the error 

generator unit to the bus. If the error generator unit is connected in parallel to 
the bus as a node of the network, then it is not possible to fully manipulate the 
state of the bus without a special hardware. It is not possible to overwrite the 
dominant state to recessive in this configuration, because of the structure of the 
physical layer [1]. Bearing in mind the requirements, a new architecture has 
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been designed, which is different from the Vector system. While in this case the 
goal was the communication between the two devices, the solution was to insert 
the error generator between the devices as a special gateway (Fig. 1 and Fig. 2). 

 

Figure 1: The main concept of the error generator system. 

This architecture ensures that the original and the modified messages are 
available during the test and sending of the original message is not influenced 
by the error generator system. It is one of the main requirements in respect of 
the system to realize the message processing and error generation in near real-
time. This can be managed by the special FPGA module of the system. 

The maximum transmission speed of the CAN bus is 1 Mbit/s. This means 
that is 1 µsec to receive the actual bit, modify it according to the user demands, 
store the necessary data and the modifications of it, and transmit it to the tested 
device. 

The computing performance of a general system with x86 (x64) architecture 
is not enough for the task; only a special, high performance microcontroller, 
DSP or FPGA is able to manage this complex problem. 

4. Implementation 

Fig. 2 shows the architecture of the error generator system. The controller of 
the system is an NI PXIe-8133 embedded controller with extension modules in 
an NI PXIe-1062Q 8-slot chassis. The NI PXI 8513/2 NI-XNET CAN interface 
module is responsible for the CAN communication, but the low level frame 
processing and the error generation is running on a Virtex-5 LX30 high-
performance FPGA unit; integrated into a 7851R R series multifunctional 
reconfigurable I/O module. 

Because of the application of the FPGA-based card for the fast processing 
and pre-processing (e.g.: filtering, signal-level interpretation) it is worth to use 
the own digital I/O interfaces of the card instead of using the analogue I/O 
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interfaces with sampling-based signal-level detection. In this way these tasks 
are managed by the card. The digital I/O interfaces use standard TTL signal 
levels (0-5V), while the CAN applies differential voltage based physical layer. 
A CAN transceiver module (ADM3053EBZ) produced by Analog Devices was 
used to resolve this problem. This device is supposed to do the voltage-level 
transformation and the galvanic isolation. 

 

Figure 2: The structure of the error generator system. 

At the early stage of development the error generator algorithm was 
embedded into a LabView FPGA project. The program structure is a kind of 
state machine that is composed of three main parts. After execution it waits, 
until the CAN bus comes into idle state, namely there is no communication 
between the devices on the network. The algorithm starts from this standby state 
and waits for a valid Start bit of a CAN frame. After the reception of the Start 
bit, the algorithm steps into the processing and modification state.  

For every part of the CAN frame (Fig. 3) there are different sub-states (there 
are 10 different states for the standard frames and 3 additional states for the 
extended frames). In these sub-states the program receives and processes the 
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incoming bits, modifies them if it is necessary and forwards the bit. When the 
reading of all of the bits of the actual frame-state is finished, the program 
switches to the next state. After the last state the program reinitializes the 
variables and returns to the waiting state at the beginning. There is a special 
sub-state, the acknowledgement that is necessary for the smooth 
communication. During the acknowledgement the sender device releases the 
bus (sets it to recessive state), and the receiver devices set the bus to dominant 
state for on bit time long if the frame was read successfully (in case of errorless 
communication). 

 

 

Figure 3: The structure of the standard and of the extended CAN frame. 

The exact timing of the sampling point and of the start and end of program 
states is indispensable for the appropriate operation of the program. This can be 
managed by the FPGA with a resolution given by its clock period. The control 
program is complicated because of the applied synchronization process of the 
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CAN (bit-stuffing). If five bits arrive with identical value, then a bit must be 
inserted with an opposite value during the transmission. The program is able to 
identify these inserted bits and throws them away. 

Furthermore, in order to meet the preliminary specifications, the program is 
able to generate physical error (line cut) by cutting both of the lines of the CAN 
bus separately with the help of a NI 9485 8 channel solid state relay module 
(placed into the system with the help of an NI 9151 extension chassis). 

Fig. 4 below shows the simplified flow-diagram of the program. 

 

Figure 4: The flow-chart of the error generator program. 

In the final development stage, after successful development and 
implementation of the basic algorithm, the FPGA program was integrated into a 
higher application layer using National Instruments’ VeriStand. The VeriStand 
is a software interface for real-time testing and simulation applications. 
VeriStand gives the possibility to make the frame modifications not just 
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In order to determine the value of a bit, every CAN device on a network 
takes samples between the 50% and 80% of the bit-time [6]. It is therefore 
important to partly overlap the sampling ranges of the bidirectional devices for 
the shift in-between the signals. In this case the length of the time-shift should 
be smaller than the half of the bit-time; and the transfer of the bits should be 
near real time. 

During the described measurement, the measurement system consisted of:  

� the elaborated error generator system; 
� IXXAT Automation GmbH USB-to-CAN Compact (USB-CAN 

interface); 
� Tektronix MSO4054B oscilloscope. 

The IXXAT USB-CAN external interface helped with the transmission of 
the messages intended to be modified. The original and the modified messages 
were compared by using an oscilloscope to validate the results of the 
modification and to measure the parameters of the signals. 

Fig. 6 shows the modification of the original normal frame message with 
71D(hex) identifier to 5D(hex) identifier at the transfer speed of 500 Kbit/s. In 
the picture the state of the receiver side of the CAN bus (original message) is 
displayed as yellow, the state of the tested device side CAN bus as cyan 
(modified message). The VeriStand based user interface is shown as well.  

 

 

Figure 6: Modification of the message with 71D (hex) identifier. 

Table 1 presents the average delays of five measurements resulted at different 
transfer speeds (the coefficient variation is always smaller than 3%).  
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Table 1: Signal delay as a function of transfer speed 

Transfer speed 

[Kbit/s] 

Signal delay 

[ns] 

Bit-time 

[ns] 

(Signal delay/ 

Bit-time)·100 [%] 

1000 360 1000 36 
800 380 1250 30.4 
500 440 2000 22 
250 526 4000 13.15 
125 534 8000 6.675 
50 516 20000 2.58 
20 526 50000 1.052 
10 532 100000 0.532 

 
Based on the data of the table above, it appears that the system meets the 

requirements for the signal delay [7], while the signal delay is only 36% of the 
full bit time at 1 Mbit/s transfer speed. Furthermore Fig. 7 and Fig. 8 show the 
oscilloscope screenshots of the signal delays during the measurements at 125 
and 500 Kbit/s transfer speeds. The CAN high and CAN low line of the 
transmitter device (IXXAT) are shown as yellow and blue. The high and low 
lines of the bus on the output side of the error generator system are shown as 
purple and blue. 

 

Figure 7: Signal delay at 125 Kbit/s transfer speed (yellow and cyan are the original, 
magenta and the green are the modified CAN-H and CAN-L lines). 
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Figure 8: Signal delay at 125 Kbit/s transfer speed (yellow and the cyan are the original, 
magenta and green are the modified CAN-H and CAN-L lines). 

3. Conclusion 

During the implementation of the project it had been proven, that a general 
purpose simulator – thanks to its special features – only by making minimal 
hardware changes on it can, be suitable to replace a possibly expensive test 
device.  

Furthermore the project came up with a system that is able to receive CAN 
messages with normal and extended frames in real-time. Any of the bits of the 
received frames can be inverted or set to a predefined value, while the system 
bus-speed can be set to the eight most commonly used transmission speeds from 
10 Kbit/s up to 1 Mbit/s. According to the test results obtained using a GM ABS 
ECU, it can be stated that the elaborated system meets the specified 
requirements. 
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