

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 4 (2012) 58-69

58

Development of FPGA Based CAN

Bus Error Generator System

Krisztian ENISZ1, Denes FODOR1, Balazs NEMETH2,
Ferenc SPEISER1

1 Department of Automotive Mechatronics,
Faculty of Engineering,

University of Pannonia, Veszprem, Hungary,
e-mail: eniszk@almos.uni-pannon.hu

2 Continental Automotive Hungary Ltd., Veszprem, Hungary

Manuscript received March 15, 2013; revised May 15, 2013

Abstract: This paper introduces the development and architecture of an FPGA
based communication error generator system for CAN (Controller Area Network)
networks. The created test-system is able to receive and interpret the frames on the
network and capable to modify the user specified part of these messages on bit level in
real-time. Beside of these modifications the environment has to be feasible to generate
physical level error.

Keywords: automotive, CAN, FPGA, error generation

1. Introduction

In a modern vehicle there are more than 40 Electronic Control Units (ECUs)
and there are countless sensors and actuators. The communication between
these devices is implemented on different types of networks and protocols [1]
[2]. In an ordinary car 2-3 different kinds of communication protocols are
applied [3]. Most of the electronic control units including the safety critical
systems are connected by Controller Area Network (CAN). These safety
systems like the anti-lock braking system (ABS) and the electronic stability
program (ESP) help to preserve the stability of the vehicle [4]; therefore it is
indispensable to test these systems in every respect; including the validation and
verification tests of communication.

On an average CAN bus more than 2000 signals and more than 200 frames
are transmitted with even 1 Mbit/s baudrate. Hence it can be observed that even
a short disturbance or error in the communication can cause large amount of

 Development of FPGA Based CAN Bus Error Generator System 59

data loss or corruption. The corrupted or missed data can determine the
malfunction of safety critical system that can cause an accident if the ECU is
not fault-tolerant.

A standard communication test generally includes the physical and logical
test of the transceiver modules of the CAN nodes. The main point of these tests
is to examine that the CAN nodes are able to properly create and process the
CAN frames and signals and that they can handle the disturbances and errors. If
there is no hardware error at CAN nodes, it is not so complicated to test the
communication because it is enough to measure the transmission and reception
time of the frames and compare the structure and contents of the frames with the
expected data. However, the fault insertion is not so simple. The simulation and
test environment has to create errors and disturbances in real-time (e.g.: wire
break, short circuit, bit level errors) in a reproducible way.

2. Existing systems

There are a few special devices (e.g.: GEMAC (CAN-Bus Tester), IXXAT
(CANcheck)) on the market, which make it possible to implement similar tests.
These are mostly network testers and analyzers for physical diagnostic of CAN
line and communication (e. g. bus state, bus load, monitoring); a few of them
are capable to generate network and physical level errors. One of the most
popular devices that solves these problems is produced by the Vector company.

The Vector CANstressDR modulates the state of the bus by software tunable
electronic components. It is able to emulate bus line errors, disturb the CAN
transceiver, create short circuit and wire break etc. This device is a good choice
to facilitate the development of ECUs. With these tools it is easy to create a
communication test system, but there are some disadvantages e.g. the price of
these devices is relatively high and it is hard to adapt these “closed” systems to
special tests.

That was the reason why the development of a new communication test
system has been started. The creation of a new hardware and software
environment is not time and cost efficient [5].

3. Concept

In the modern ECU development methods the cost efficient and thorough
testing is very important in order to decrease the possibility of errors. One of the
testing procedures is the Hardware In the Loop (HIL) test, which is widely used
in different levels of the development to validate the functionalities. For the HIL
tests the tested device are generally connected to a high performance real-time
system. The main function of the HIL environment is to provide the signals

60 K. Enisz, D. Fodor, B. Nemeth, F. Speiser

which are necessary for the ECU to be able to operate and receive the data and
signals from the tested device.

The modern multi-functional test environment has different kinds of analog
and digital input and output ports and communication interfaces. It can be
beneficial to use the existing interfaces to create a communication test system
from general purpose test environment, in order to minimize the hardware
investment. The other advantage of this concept is that it makes possible to
customize the software for special tasks and that it and can be integrated into the
different types of tests.

The elaborated test system is based on the PXI platform of National
Instruments which is originally built for HIL testing of ECU’s. The system is
equipped with an x86 (x64) processor that is able to execute simulation steps
with 1ms cycle time thanks to the Phar Lap real-time operating system.

The special high speed real-time controlling, data acquisition, signal
processing tasks are executed by the FPGA based analogue and digital I/O
modules. These modules are freely reconfigurable using the NI LabVIEW
graphical programming environment and the FPGA is able to act as an
individual processing unit. The system is also equipped with CAN, LIN,
FlexRay and other automotive communication interfaces.

Since it was not the point to develop a generic device like the above
mentioned Vector CANstressDR, it was possible to introduce several
restrictions in the design phase of the communication test-system. The only
requirement was to be able to freely modify the communication both on
hardware and software level.

The error-generator environment should meet the following requirements:
� it should be sufficient to modify the messages going towards the

tested device;
� the interaction should be invisible for the tested device;
� the message modification, the state change of the communication

line should happen in near real-time;
� the collision of the messages before and after the modification is not

allowed, the two messages should appear as two separate lines;
� it should be possible to modify any of the bits of the messages;
� it should be able to produce line-cut on any of the CAN lines.

For the error generation on the CAN bus it is necessary to connect the error

generator unit to the bus. If the error generator unit is connected in parallel to
the bus as a node of the network, then it is not possible to fully manipulate the
state of the bus without a special hardware. It is not possible to overwrite the
dominant state to recessive in this configuration, because of the structure of the
physical layer [1]. Bearing in mind the requirements, a new architecture has

 Development of FPGA Based CAN Bus Error Generator System 61

been designed, which is different from the Vector system. While in this case the
goal was the communication between the two devices, the solution was to insert
the error generator between the devices as a special gateway (Fig. 1 and Fig. 2).

Figure 1: The main concept of the error generator system.

This architecture ensures that the original and the modified messages are
available during the test and sending of the original message is not influenced
by the error generator system. It is one of the main requirements in respect of
the system to realize the message processing and error generation in near real-
time. This can be managed by the special FPGA module of the system.

The maximum transmission speed of the CAN bus is 1 Mbit/s. This means
that is 1 µsec to receive the actual bit, modify it according to the user demands,
store the necessary data and the modifications of it, and transmit it to the tested
device.

The computing performance of a general system with x86 (x64) architecture
is not enough for the task; only a special, high performance microcontroller,
DSP or FPGA is able to manage this complex problem.

4. Implementation

Fig. 2 shows the architecture of the error generator system. The controller of
the system is an NI PXIe-8133 embedded controller with extension modules in
an NI PXIe-1062Q 8-slot chassis. The NI PXI 8513/2 NI-XNET CAN interface
module is responsible for the CAN communication, but the low level frame
processing and the error generation is running on a Virtex-5 LX30 high-
performance FPGA unit; integrated into a 7851R R series multifunctional
reconfigurable I/O module.

Because of the application of the FPGA-based card for the fast processing
and pre-processing (e.g.: filtering, signal-level interpretation) it is worth to use
the own digital I/O interfaces of the card instead of using the analogue I/O

62 K. Enisz, D. Fodor, B. Nemeth, F. Speiser

interfaces with sampling-based signal-level detection. In this way these tasks
are managed by the card. The digital I/O interfaces use standard TTL signal
levels (0-5V), while the CAN applies differential voltage based physical layer.
A CAN transceiver module (ADM3053EBZ) produced by Analog Devices was
used to resolve this problem. This device is supposed to do the voltage-level
transformation and the galvanic isolation.

Figure 2: The structure of the error generator system.

At the early stage of development the error generator algorithm was
embedded into a LabView FPGA project. The program structure is a kind of
state machine that is composed of three main parts. After execution it waits,
until the CAN bus comes into idle state, namely there is no communication
between the devices on the network. The algorithm starts from this standby state
and waits for a valid Start bit of a CAN frame. After the reception of the Start
bit, the algorithm steps into the processing and modification state.

For every part of the CAN frame (Fig. 3) there are different sub-states (there
are 10 different states for the standard frames and 3 additional states for the
extended frames). In these sub-states the program receives and processes the

 Development of FPGA Based CAN Bus Error Generator System 63

incoming bits, modifies them if it is necessary and forwards the bit. When the
reading of all of the bits of the actual frame-state is finished, the program
switches to the next state. After the last state the program reinitializes the
variables and returns to the waiting state at the beginning. There is a special
sub-state, the acknowledgement that is necessary for the smooth
communication. During the acknowledgement the sender device releases the
bus (sets it to recessive state), and the receiver devices set the bus to dominant
state for on bit time long if the frame was read successfully (in case of errorless
communication).

Figure 3: The structure of the standard and of the extended CAN frame.

The exact timing of the sampling point and of the start and end of program
states is indispensable for the appropriate operation of the program. This can be
managed by the FPGA with a resolution given by its clock period. The control
program is complicated because of the applied synchronization process of the

64 K. Enisz, D. Fodor, B. Nemeth, F. Speiser

CAN (bit-stuffing). If five bits arrive with identical value, then a bit must be
inserted with an opposite value during the transmission. The program is able to
identify these inserted bits and throws them away.

Furthermore, in order to meet the preliminary specifications, the program is
able to generate physical error (line cut) by cutting both of the lines of the CAN
bus separately with the help of a NI 9485 8 channel solid state relay module
(placed into the system with the help of an NI 9151 extension chassis).

Fig. 4 below shows the simplified flow-diagram of the program.

Figure 4: The flow-chart of the error generator program.

In the final development stage, after successful development and
implementation of the basic algorithm, the FPGA program was integrated into a
higher application layer using National Instruments’ VeriStand. The VeriStand
is a software interface for real-time testing and simulation applications.
VeriStand gives the possibility to make the frame modifications not just

66 K. Enisz, D. Fodor, B. Nemeth, F. Speiser

In order to determine the value of a bit, every CAN device on a network
takes samples between the 50% and 80% of the bit-time [6]. It is therefore
important to partly overlap the sampling ranges of the bidirectional devices for
the shift in-between the signals. In this case the length of the time-shift should
be smaller than the half of the bit-time; and the transfer of the bits should be
near real time.

During the described measurement, the measurement system consisted of:

� the elaborated error generator system;
� IXXAT Automation GmbH USB-to-CAN Compact (USB-CAN

interface);
� Tektronix MSO4054B oscilloscope.

The IXXAT USB-CAN external interface helped with the transmission of
the messages intended to be modified. The original and the modified messages
were compared by using an oscilloscope to validate the results of the
modification and to measure the parameters of the signals.

Fig. 6 shows the modification of the original normal frame message with
71D(hex) identifier to 5D(hex) identifier at the transfer speed of 500 Kbit/s. In
the picture the state of the receiver side of the CAN bus (original message) is
displayed as yellow, the state of the tested device side CAN bus as cyan
(modified message). The VeriStand based user interface is shown as well.

Figure 6: Modification of the message with 71D (hex) identifier.

Table 1 presents the average delays of five measurements resulted at different
transfer speeds (the coefficient variation is always smaller than 3%).

 Development of FPGA Based CAN Bus Error Generator System 67

Table 1: Signal delay as a function of transfer speed

Transfer speed

[Kbit/s]

Signal delay

[ns]

Bit-time

[ns]

(Signal delay/

Bit-time)·100 [%]

1000 360 1000 36
800 380 1250 30.4
500 440 2000 22
250 526 4000 13.15
125 534 8000 6.675
50 516 20000 2.58
20 526 50000 1.052
10 532 100000 0.532

Based on the data of the table above, it appears that the system meets the

requirements for the signal delay [7], while the signal delay is only 36% of the
full bit time at 1 Mbit/s transfer speed. Furthermore Fig. 7 and Fig. 8 show the
oscilloscope screenshots of the signal delays during the measurements at 125
and 500 Kbit/s transfer speeds. The CAN high and CAN low line of the
transmitter device (IXXAT) are shown as yellow and blue. The high and low
lines of the bus on the output side of the error generator system are shown as
purple and blue.

Figure 7: Signal delay at 125 Kbit/s transfer speed (yellow and cyan are the original,
magenta and the green are the modified CAN-H and CAN-L lines).

68 K. Enisz, D. Fodor, B. Nemeth, F. Speiser

Figure 8: Signal delay at 125 Kbit/s transfer speed (yellow and the cyan are the original,
magenta and green are the modified CAN-H and CAN-L lines).

3. Conclusion

During the implementation of the project it had been proven, that a general
purpose simulator – thanks to its special features – only by making minimal
hardware changes on it can, be suitable to replace a possibly expensive test
device.

Furthermore the project came up with a system that is able to receive CAN
messages with normal and extended frames in real-time. Any of the bits of the
received frames can be inverted or set to a predefined value, while the system
bus-speed can be set to the eight most commonly used transmission speeds from
10 Kbit/s up to 1 Mbit/s. According to the test results obtained using a GM ABS
ECU, it can be stated that the elaborated system meets the specified
requirements.

 Development of FPGA Based CAN Bus Error Generator System 69

References

[1] CAN specification version 2.0. Robert Bosch GmbH, Stuttgart, Germany, 1991.
[2] Etschberger, K., “Controller Area Network”, in IXXAT Press, Weingarten, Germany, 2001.
[3] Nolte, T., Hansson, H., Bello, L. L., G., “Automotive communications-past, current and

future”, in IEEE Conference on Emerging Technologies and Factory Automation, 2005.
[4] Johansson, K. H., Torngren, M., Nielsen, L., “Vehicle Applications of Controller Area

Network”, in Springer Control Engineering, 2005, pp. 741-765.
[5] Novak, J., Fried, A., Vacek, M., “CAN Generator and Error Injector”, in Proceedings of

IEEE International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia,
September 2002, pp. 967-970.

[6] Philips Electronics N. V., “Determination of Bit Timing Parameters for the CAN Controller
SJA 1000”, in Application Note AN97046, 1997.

[7] Novak, J., “New measurement method of sample point position in controller area network
nodes”, in Elsevier Measurement, Vol. 41, Issue 3, April 2008, pp. 300-306

