
EE178 Lecture
Intro to Verilog for
use with FPGAs
Eric Crabill
SJSU / Xilinx
Spring 2006

Lecture Agenda

• Suggested reference material.
• This course and my personal experience.
• The Verilog Hardware Description Language.

– Background on hardware description languages.
– Overview of Verilog language constructs.
– Synthesis considerations.
– FPGA considerations.
– Where to find examples.

This Course

• This course is not an introduction to Verilog;
you should have some prior experience.

• We will use Verilog as a tool to describe and
model digital circuits which we will implement
in FPGA devices.

• If you can’t use the tool effectively, you will
have problems completing the assignments.

Reference Material

• Verilog Quick Reference provided in class.
• HDL Chip Design, by Douglas J. Smith.

– Covers VHDL and Verilog-HDL side by side.
– Excellent reference for both languages.
– Shows many schematic implementations.

• You may also find many useful references
and tutorials by searching the internet.

Background on HDLs

• Hardware description languages (HDLs) are
languages used to describe and model the
operation of digital circuits.
– You can use an HDL to describe a circuit.
– You can also use an HDL to describe how to

stimulate the circuit and check its response.
• Simulation of the above requires a logic simulator.

Background on HDLs

• An HDL circuit description may be used as an
input to a synthesis tool. Such a tool transforms
the HDL description into a representation that
may be physically implemented (transistors, or
logic gates…)

• When a human does this, it is called logic design.
• When a machine does this, it is called synthesis.
• Synthesis is algorithmic “design”.

My Bad Analogy

• Programming languages are languages
used to describe and model behaviors and
algorithms to be executed by a processor.
– You can describe a behavior or algorithm.
– You could also describe how to exercise your

behavior / algorithm and check its response.
• It is possible to methodically simulate your

behavior or algorithm and check its response.

My Bad Analogy

• A program description may be used as an
input to a compiler. Such a tool transforms
the description into a representation that
may be executed by a processor (executable
instructions…)

• When a human does this, it is called assembly.
• When a machine does this, it is compilation.
• Compilation is algorithmic “assembly”.

Background on HDLs

• There are a fair number of HDLs, but two
are by far most prevalent in use:
– Verilog-HDL, the Verilog Hardware Description

Language, not to be confused with Verilog-XL,
a logic simulator program sold by Cadence.

– VHDL, or VHSIC Hardware Description Language
and VHSIC is Very High Speed Integrated Circuit.

• In this class, we will be using only Verilog-HDL.

Background on HDLs

• Verilog history.
– 1983 Gateway Design Automation released

the Verilog HDL and a simulator for it.
– 1989 Cadence acquired Gateway.
– 1990 Cadence separated the Verilog HDL from

their simulator product, Verilog-XL, releasing the
HDL into the public domain, guarded by OVI.

– 1995 IEEE adopted Verilog as standard 1364.
– 2001 IEEE ratified 1364-2001 (Verilog-2001).

Background on HDLs

• VHDL history.
– 1983 VHDL was developed under the VHSIC

program of the Department of Defense.
– 1987 The IEEE adopted the VHDL language as

standard 1076. The DOD mandates that all
digital electronic circuits be described in VHDL.

– 1993 The VHDL language was slightly revised
into what is often referred to as VHDL93 (versus
the previous VHDL87).

Let’s Fight!

• Which is “better” Verilog or VHDL?
– Both are adequate for our purposes…
– What you use in industry may be dictated by

company preference or government requirement.
– VHDL may be more powerful but very rigid.

• Very Hard and Difficult to Learn?
• For beginners, do you want to spend your

time in logic design, or fighting the language?
– Verilog may be easier, but you can hang

yourself if you are not careful...

Usage

• Verilog may be used to model circuits and
behaviors at various levels of abstraction:
– Transistor. LOW
– Gate.
– Logic.
– Behavioral.
– Algorithmic. HIGH

• For design with FPGA devices, transistor
and gate level modeling is not appropriate.

Usage
testbench.v

ST
IM

U
LU

S
AN

D
R
ES

PO
N

SE
 C

H
EC

KI
N

G
D

ES
CR

IP
TI

O
N

TW
O

 I
N

PU
T

XO
R
 C

IR
CU

IT
D

ES
CR

IP
TI

O
N

Usage

• The act of using a module within another module
(as a sub-module) is called instantiation.

• This permits hierarchical
design and the re-use
of modules.

Bob! I instantiated the
two_input_xor module

in my testbench!

Usage

TWO INPUT
XOR CIRCUIT
DESCRIPTION

two_input_xor.v

testbench.v

ST
IM

U
LU

S
AN

D
R
ES

PO
N

SE
 C

H
EC

KI
N

G
D

ES
CR

IP
TI

O
N

Usage

• The stimulus and response checking descriptions
may also be in separate modules, if desired.

• For synthesis purposes, you will want to keep
the description of the circuit in a separate module
from the stimulus and response checking.
– The circuit can consist of any number of sub-modules.
– When you synthesize the circuit, you will only

provide the synthesis tool with the modules that
correspond to the actual design.

Usage
pci_ethernet_card.v

testbench.v

PC
I

I/
F

D
ES

CR
.

ET
H

 M
AC

D
ES

CR
.

eth.vpci.v

BEHAVIORAL
DESCRIPTION

another_pci.v

PACKET
CONSUMER
PRODUCER
BEHAVIOR

eth_device.v

W
IN

D
O

W
S

D
EV

IC
E

D
R
IV

ER
R
U

N
N

IN
G

 O
N

 P
EN

TI
U

M
AN

D
 P

CI
 C

H
IP

SE
T

H
O

ST
BE

H
AV

IO
R
AL

 D
ES

CR
IP

TI
O

N

motherboard.v

PC
I

BU
S

Data Values

• For our logic design purposes, we’ll consider
Verilog to have four different bit values:
– 0, logic zero.
– 1, logic one.
– z, high impedance.
– x, unknown.

Data Values

• When specifying constants, whether they be
single bit or multi-bit, you should use an explicit
syntax to avoid confusion:
– 4’d14 // 4-bit value, specified in decimal
– 4’he // 4-bit value, specified in hex
– 4’b1110 // 4-bit value, specified in binary
– 4’b10xz // 4-bit value, with x and z, in binary

• The general syntax is:
– {bit width}’{base}{value}

Data Types

• There are two main data types in Verilog.
– Wires.
– Regs.

• These data types may be single bit or multi-bit.

Data Types

• Wires are “continuously assigned” values and do
not “remember”, or store, information.

• Wires may have multiple drivers assigning values.
• When multiple drivers exist, the simulator will

resolve them into a single value for the wire.
• Every time a driver changes its output value,

the resulting wire value is re-evaluated.
• This behaves much like an electrical wire...

Data Types

• Regs are “procedurally assigned” values and
“remember”, or store, information until the next
value assignment is made.
– This can be used to model combinational logic.
– This can be used to model sequential logic.

• The name “reg” does not mean it is a register!
• A reg may be assigned by multiple processes.
• Other reg varieties include integer, real, and time.

Modules and Ports

• Consider a top level module declaration:
module testbench;

// Top level modules do not have ports.
endmodule

• Consider a module declaration with ports:
module two_input_xor (in1, in2, out);

input in1, in2;
output out;

// We’ll add more later…
endmodule

Modules and Ports

• Ports may be of type {input, output, inout}
and can also be multiple bits wide.
module some_random_design (fred, bob, joe, sam, tom, ky);
input fred; // 1-bit input port

input [7:0] bob; // 8-bit input port
output joe; // 1-bit output port

output [1:0] sam; // 2-bit output port
inout tom; // 1-bit bidirectional port

inout [3:0] ky; // 4-bit bidirectional port

// Some design description would be here…

endmodule

Port and Data Types

• An input port can be driven from outside the
module by a wire or a reg, but inside the module
it can only drive a wire (implicit wire).

• An output port can be driven from inside the
module by a wire or a reg, but outside the module
it can only drive a wire (implicit wire).

• An inout port, on both sides of a module, may
be driven by a wire, and drive a wire.

Ports and Data Types

• Data type declaration syntax and examples:
module some_random_design (fred, steve, tom);

input fred; // 1-bit input port
output steve; // 1-bit output port

inout tom; // 1-bit bidirectional port

wire dork; // 1-bit wire declaration
wire [7:0] hoser; // 8-bit wire declaration
reg state; // 1-bit reg declaration

reg [7:0] lame; // 8-bit reg declaration
// Treat fred and tom as if they were wires here.

// If you want, you can treat steve as a wire, or
// you can add an explicit “reg steve;” declaration
// and then treat it as a reg data type instead.

endmodule

Instantiation

• Here is how you do it:
module testbench;

wire sig3; // wire driven by submodule
reg sig1, sig2; // regs assigned by testbench

two_input_xor my_xor (.in1(sig1), .in2(sig2), .out(sig3));
// The format is <module> <instance_name> <port mapping>;

// Inside the port mapping, there is a comma separated list
// of .submodule_port(wire_or_reg_in_this_module) and you
// should include all ports of the submodule in this list.
endmodule

module two_input_xor (in1, in2, out);
input in1, in2;
output out;

// We’ll add more later…
endmodule

Operators

• Operators in Verilog are similar to operators
you might find in other programming languages.

• Operators may be used in both procedural and
continuous assignments.

• The following pages present them in order of
evaluation precedence.

Operators

• { } is used for concatenation.
Say you have two 1-bit data objects, sam and bob.
{sam, bob} is a 2-bit value from concatenation.

• {{ }} is used for replication.
Say you have a 1-bit data object, ted.
{4{ted}} is a 4-bit value, ted replicated four times.

Operators

• Unary operators:
! Performs logical negation (test for non-zero).
~ Performs bit-wise negation (complements).
& Performs unary reduction of logical AND.
| Performs unary reduction of logical OR.
^ Performs unary reduction of logical XOR.

Operators

• Dyadic arithmetic operators:
* Multiplication.
/ Division.
% Modulus.
+ Addition.
- Subtraction.

• All arithmetic is signed. The carry out may be
obtained if the result is one bit larger than the
operands involved.

Operators

• Dyadic logical shift operators:
<< Shift left.
>> Shift right.

• Dyadic relational operators:
> Greater than.
< Less than.
>= Greater than or equal.
<= Less than or equal.

Operators

• Dyadic comparison operators:
== Equality operator (compares to z, x are invalid).
=== Identity operator (compares to z, x are valid).
!= Not equal.
!=== Not identical.

Operators

• Dyadic binary bit-wise operators:
& Bit-wise logical AND.
| Bit-wise logical OR.
^ Bit-wise logical XOR.
~^ Bit-wise logical XNOR.

• Dyadic binary logical operators:
&& Binary logical AND.
|| Binary logical OR.

Operators

• Ternary operator for conditional selection:
? :

• May be used for description of multiplexers
and three state logic.
sel ? value_if_sel_is_one : value_if_sel_is_zero
oe ? driven_value : 1’bz

Continuous Assignment

• Continuous assignments are made with the
assign statement:

• assign LHS = RHS;
– The left hand side, LHS, must be a wire.
– The right hand side, RHS, may be a wire, a

reg, a constant, or expressions with operators
using one or more wires, regs, and constants.

• You can model combinational logic with assign.

Continuous Assignment

• Two examples:
module two_input_xor (in1, in2, out);

input in1, in2; // use these as a wire
output out; // use this as a wire

assign out = in1 ^ in2;
endmodule

module two_input_xor (in1, in2, out);
input in1, in2;

output out;
wire product1, product2;

assign product1 = in1 & !in2; // could have done all in
assign product2 = !in1 & in2; // assignment of out with
assign out = product1 | product2; // bigger expression

endmodule

Continuous Assignment

• Two more examples:
module two_input_xor (in1, in2, out);

input in1, in2;
output out;

assign out = (in1 != in2);
endmodule

module two_input_xor (in1, in2, out);
input in1, in2;

output out;
assign out = in1 ? (!in2) : (in2);

endmodule

• There are many ways to do the same thing!

Continuous Assignment

• The value of the RHS is continuously driven
onto the wire of the LHS.

• Whenever elements in the RHS change, the
simulator re-evaluates the result and updates
the value driven on the LHS wire.

• Values x and z are allowed and processed.
• All assign statements operate concurrently.

Procedural Assignment

• Procedural assignments operate concurrently
and are preceded by event control.

• Procedural assignments are done in block
statements which start with “begin” and end
with “end”.

• Single assignments can omit begin and end.

Procedural Assignment

• Syntax examples:
initial

begin
// These procedural assignments are executed

// one time at the beginning of the simulation.
end

always @(sensitivity list)
begin

// These procedural assignments are executed
// whenever the events in the sensitivity list

// occur.
end

Procedural Assignment

• A sensitivity list is used to qualify when the block
should be executed by providing a list of events
which cause the execution to begin:
– always @(a or b) // any changes in a or b
– always @(posedge a) // a transitions from 0 to 1
– always @(negedge a) // a transitions from 1 to 0
– always @(a or b or negedge c or posedge d)

• You can model combinational and sequential
logic using procedural assignments.

Procedural Assignment

• Inside a block, two types of assignments exist:
– LHS = RHS; // blocking assignment
– LHS <=RHS; // non-blocking assignment
– Do not mix them in a given block.

• Assignment rules:
– The left hand side, LHS, must be a reg.
– The right hand side, RHS, may be a wire, a

reg, a constant, or expressions with operators
using one or more wires, regs, and constants.

Procedural Assignment

• From HDL Chip Design:
A blocking procedural assignment must be executed before the
procedural flow can pass to the subsequent statement. This
means that any timing delay associated with such statements is
related to the time at which the previous statements in the
particular procedural block are executed.

A non-blocking procedural assignment is scheduled to occur
without blocking the procedural flow to subsequent statements.
This means the timing in an assignment is relative to the absolute
time at which the procedural block was triggered.

Procedural Assignment

• Do I use blocking or non-blocking assignments?
– Blocking assignments are especially useful

when describing combinational logic.
• You can “build up” complex logic expressions.
• Blocking assignments make your description

evaluate in the order you described it.
– Non-blocking assignments are useful when

describing sequential logic.
• At a clock or reset event, all flops change state at the

same time, best modeled by non-blocking assignments.

Procedural Assignment

• In procedural assignments, you may also use
if-else and various types of case statements
for conditional assignments.

• You also can make use of additional timing
control like wait, #delay, repeat, while, etc…

• While powerful and flexible, this grows confusing
so let’s look at some simple examples of using
procedural assignments.

Procedural Assignment

• Combinational logic using operators:
module two_input_xor (in1, in2, out);

input in1, in2; // use these as wires
output out; // use this as a wire

reg out;

always @(in1 or in2) // Note that all input terms
begin // are in sensitivity list!

out = in1 ^ in2; // Or equivalent expression...

end

// I could have simply used:
// always @(in1 or in2) out = in1 ^ in2;

endmodule

Procedural Assignment

• Combinational logic using if-else:
module two_input_xor (in1, in2, out);

input in1, in2; // use these as wires
output out; // use this as a wire

reg out;

always @(in1 or in2) // Note that all input terms
begin // are in sensitivity list!

if (in1 == in2) out = 1’b0;

else out = 1’b1;
end

endmodule

Procedural Assignment

• Combinational logic using case:
module two_input_xor (in1, in2, out);

input in1, in2; // use these as wires
output out; // use this as a wire

reg out;

always @(in1 or in2) // Note that all input terms
begin // are in sensitivity list!

case ({in2, in1}) // Concatenated 2-bit selector

2’b01: out = 1’b1;
2’b10: out = 1’b1;

default: out = 1’b0;
endcase

end

endmodule

Procedural Assignment

• Sequential logic, an 8-bit counter with enable:
module counter (clk, rst, ce, out);

input clk, rst, ce; // use these as wires
output [7:0] out; // use this as a wire

reg [7:0] out;

always @(posedge clk or posedge rst) // These can cause
begin // state changes!

if (rst) out <= 8’h00; // If rst asserted, clear

else // Else rising edge clk
begin

if (ce) out <= out + 8’h01;
end

end

endmodule

Delay Control

• You can add delay to continuous assignments.
• assign #delay LHS = RHS;

– The #delay indicates a time delay in simulation
time units; for example, #5 is a delay of five.

– This can be used to model physical delays of
combinational logic.

• The simulation time unit can be changed by the
Verilog “`timescale” directive.

Delay Control

• You can add control the timing of assignments
in procedural blocks in several ways:
– Simple delays.

• #10;
• #10 a = b;

– Edge triggered timing control.
• @(a or b);
• @(a or b) c = d;
• @(posedge clk);
• @(negedge clk) a = b;

Delay Control

• You can add control the timing of assignments
in procedural blocks in several ways:
– Level triggered timing control.

• wait (!reset);
• wait (!reset) a = b;

Delay Control

• Generation of clock and resets in testbench:
reg rst, clk;

initial // this happens once at time zero
begin

rst = 1’b1; // starts off as asserted at time zero
#100; // wait for 100 time units

rst = 1’b0; // deassert the rst signal
end
always // this repeats forever

begin
clk = 1’b1; // starts off as high at time zero

#25; // wait for half period
clk = 1’b0; // clock goes low
#25; // wait for half period

end

System Tasks

• The $ sign denotes Verilog system tasks, there
are a large number of these, most useful being:
– $display(“The value of a is %b”, a);

• Used in procedural blocks for text output.
• The %b is the value format (binary, in this case…)

– $finish;
• Used to finish the simulation.
• Use when your stimulus and response testing is done.

– $stop;
• Similar to $finish, but doesn’t exit simulation.

Suggested Coding Style

• Write one module per file, and name the file
the same as the module. Break larger designs
into modules on meaningful boundaries.

• Always use formal port mapping of sub-modules.
• Use parameters for commonly used constants.
• For this course, do not write modules for stuff

that is easy to express (multiplexers, flip flops).
• Be careful to create correct sensitivity lists.

Suggested Coding Style

• Don’t ever just sit down and “code”. Think about
what hardware you want to build, how to describe
it, and how you should test it.

• You are not writing a computer program, you are
describing hardware… Verilog is not C!

• Only you know what is in your head. If you need
help from others, you need to be able to explain
your design -- either verbally, or by detailed
comments in your code.

Synthesis Considerations

• As you may now appreciate, Verilog provides
a wide variety of means to express yourself.

• Some modules you create, like test benches,
are never intended to be synthesized into actual
hardware.

• In these types of modules, feel free to use the
complete and terrible power of Verilog.

Synthesis Considerations

• For modules you intend on synthesizing, you
should apply a coding style to realize:
– Efficiency.
– Predictability.
– Synthesizability.

Synthesis Considerations

• Efficiency is important, for both performance
and cost concerns.
– Use multiplication, division, and modulus

operators sparingly.
– Use vectors / arrays to create “memories” only

if you are sure the synthesis tool does it properly.
– Case may be better than large if-else trees.
– Keep your mind focused on what hardware

you are implying by your description.

Synthesis Considerations

• Predictability is important.
– Predictability of what hardware may be created

by what you describe.
– Predictability of hardware behavior.

• Hardware behavior will match your description.
• No dependency on event ordering in code.

– Understanding of your description and how it
may map into hardware is important when you
are debugging the physical implementation.

Synthesis Considerations

• Not everything you can write in Verilog can be
turned into hardware by a synthesis tool.
– Initial blocks have no hardware equivalent.
– Most types of timing control have no equivalent.
– There is no hardware for comparisons to z and x.

Or assignments to x...
– Real world electrical considerations -- Verilog

will let you describe and simulate multiple
non-tristateable drivers on a wire. Fire!

Synthesis Considerations

• Realize that synthesis is machine design.
– Based on various algorithms.
– Do you think they included every one known to man?
– Don’t ever assume, the machine is not a mind reader.
– Garbage in, garbage (or errors) out.

• Read the manual for your particular synthesis
tool to understand what it can and cannot do.

• Carefully read synthesis warnings and errors to
identify problems you may be unaware of.

FPGA Considerations

• There are four major considerations to keep
in mind while creating synthesizable code
for FPGA devices.
– Understand how to use vendor specific primitives.
– Code for the resources in the FPGA architecture.
– Design for static timing analysis.
– I/O insertion.

FPGA Considerations

• FPGA vendors usually provide a library of
primitive modules that can be instantiated
in your design.

• These primitives usually represent device
features that cannot be efficiently described
in an HDL, or cannot be inferred by synthesis.

• For Xilinx designs, this library is called the
“unisim” library.

FPGA Considerations

• Examples of unisim library components:
– Large memories, called BlockRAM.
– Smaller memories, called DistributedRAM.
– I/O buffers, global clock buffers, three-state buffers.
– Clock management circuits, many simple gates.

• It is possible to create designs using only the
unisim library -- using Verilog as a tool to enter
a text-based schematic design!

• Consult the Xilinx Library Guide for more info.

FPGA Considerations

• FPGA devices typically have look up tables
for implementing combinational logic, and
D flip flops and D latches for sequential logic,
in addition to a few other resource types...

• You won’t find other types of sequential
elements, or weird RAMs -- avoid describing
things that will be implemented inefficiently or
require sequential elements to be built from
combinational logic.

FPGA Considerations
Subject: XST Error: It's interesting and surprising!

An interesting problem occurred when I used "more than three" signals in always block sensitivity list. Same code is
successfully compiled and simulated in Modelsim. What kind of problem is this? I put the code below.

ERROR:XST:1468 - dummy.v line 25: Unexpected event in always block sensitivity list.

always @(posedge a or posedge b or posedge c or posedge d)
begin

if (a) z=~z;
else if (b) z=~z;
else if (c) z=~z;
else if (d) z=~z;

end

Subject: Re: XST Error: It's interesting and surprising!

What the hell is this? A quad-clock toggle flip-flop?

Subject: Re: XST Error: It's interesting and surprising!

Your results are not surprising. Although your code is legal Verilog and is able to simulate, it's not synthesizable by
XST. What type of flip-flop would you expect XST to infer from the "always @(posedge a or posedge b or posedge c or
posedge d)" construct? You need to re-think your code!

FPGA Considerations

• There are a limited number of global clock
buffers in most FPGA devices.
– We will cover why these are important.
– Don’t use multiple clocks. For this course, the

synthesizable designs are allowed only one clock.
– The synthesis tool should recognize clock signals

and automatically insert global clock buffers.
– You can manually insert global clock buffers by

instantiation from the unisim library.

FPGA Considerations

• Most designs have frequency and I/O timing
requirements. FPGA vendors provide analysis
tools called static timing analyzers.
– Don’t use multiple clocks. For this course, the

synthesizable designs are allowed only one clock.
– Don’t use latches. Latches greatly complicate

static timing analysis. For this course, you should
not have ANY latches in your design at all.

– Don’t use combinational feedback loops.

FPGA Considerations

• Where do these evil latches come from?
– You directly instantiated them or inferred them in

your code on purpose.
– You inferred them in your code by accident.

• For procedural blocks modeling combinational logic, all
the regs and wires on RHS must appear in sensitivity list.

• For procedural block modeling combinational logic, you
have incompletely specified if-else or case statements.

• For modeling sequential logic, you have more than a
single clock and asynchronous control in the sensitivity list.

FPGA Considerations

• Templates for sensitivity lists:
– always @(posedge clk)

• Synchronous logic without asynchronous reset.
• Use of “negedge clk” is legal, but not in this class.

– always @(posedge clk or posedge rst)
• Synchronous logic with asynchronous reset.
• Use of “negedge clk” is legal, but not in this class.
• Can use “negedge rst_n” for active low reset.

FPGA Considerations

• Templates for sensitivity lists:
– always @(sig_1 or sig_2 or … or sig_n)

• Combinational logic description; whenever an
input changes, the output must be evaluated.

• Every signal used as an “input” in description
must appear in the sensitivity list.

– always @*
• A very welcome Verilog-2001 enhancement!
• Combinational logic description, process is sensitive

to any signal used as an “input” in the description.

FPGA Considerations

• I/O insertion is the process where the synthesis
tool looks at the ports of the top-level module that
is synthesized and decides what FPGA primitives
to insert to interface with the outside world…

• FPGA devices typically have:
– Input buffers (IBUFs, in unisim library).
– Output buffers (OBUFs, in unisim library).
– Three-state output buffers (OBUFTs in unisim library).

FPGA Considerations

• Compare this to the Verilog port types:
– input ports map into IBUFs.
– output ports map into OBUFs.
– inout ports map into… what?

• How do you create bidirectional functionality
at a chip boundary?

Examples

• HDL Chip Design, by Douglas J. Smith has a
large number of great examples.

• The Xilinx examples (look in Xilinx installation
directory, under ISEexamples).

• The Modelsim examples (look in Modelsim
installation directory, under examples).

• You can find many more on the internet...

