

EE178 Lecture Module 6

Eric Crabill SJSU / Xilinx Spring 2006

Lecture #11 Agenda

- Suggested reading.
 - Spartan-3 Complete Datasheet.
- Overview of FPGA use at the PCB level.
 - General purpose pins.
 - Special and dedicated pins.
- Loading bitstreams -- FPGA configuration.
 - Configuration pins.
 - Configuration modes and examples.

Bigger Picture

- Your lab experience has been very convenient.
 - You are provided with a pre-designed board.
 - You are provided with mechanisms to program the FPGA device with your completed bitstream.
- In the future, you may need to design...
 - A mechanism to load bitstreams.
 - The board itself.

- For other FPGAs, consult the device datasheet.
- As you would expect, the majority of the pins on the packaged device are general purpose I/O.
 - These pins are individually configured as input, output, or bidirectional by the configuration bitstream.
 - As a board designer, you may feel free to use these pins to interface to other devices on your board.
 - Use the pins "according to directions" in the datasheet.
 - Pay attention to FPGA device maximum ratings.

- Additional things to keep in mind for general purpose I/O pins...
 - Some signaling standards may need special VREF.
 - Output voltages are banked and set by VCCO.
 - Differential signaling requires use of pin-pairs.
 - Observe simultaneous switching output guidelines.
 - Signal integrity and board-level simulations.

- Quite a number of power and ground pins:
 - VCCINT pins are for a 1.2 volt power supply which powers the programmable logic.
 - VCCO pins are for the output driver power supplies and can be a range of voltages up to 3.3 volt; there are eight sets of VCCO, one per I/O bank.

- Quite a number of power and ground pins:
 - VCCAUX pins are for a 2.5 volt power supply which powers the FPGA configuration interface as well as certain other internal functions.
 - VREF pins are input threshold references for certain
 I/O standards. Usable as general I/O if not needed.
 - GND pins, well... do these need explanation?

- There are also a few special clocking-related pins that have special properties:
 - GCLK0 through GCLK7 are special inputs for clocks.
 - These pins have special connections to global clock buffers and clock management circuits in the FPGA.
 - May be used as general purpose I/O pins if you don't need all of them for clock signals.

Configuration Pins

- There are a number of special pins for loading your bitstream into the Spartan-3 device.
- Start by looking at pins that are common to most Xilinx FPGAs and how configuration begins:
 - PROG#
 - INIT#
 - DONE
 - M2, M1, M0

How Configuration Begins

- Configuration begins at power-on, or when PROG# is asserted.
- DONE is de-asserted.
- Configuration memory is cleared.
- Configuration can be delayed by holding PROG# or INIT#.

Loading the Bitstream

- Mode pins M2, M1, M0 tell the FPGA how the bitstream will be loaded.
- Bitstream is loaded...
- Bitstream size related to FPGA density; table is only for Spartan-3.

			Xilinx Platform Flash PROM		
	Device	File Sizes	Serial Configuration	Parallel Configuration	
	XC3S50	439,264	XCF01S	XCF08P	
	XC3S200	1,047,616	XCF01S	XCF08P	
	XC3S400	1,699,136	XCF02S	XCF08P	
	XC3S1000	3,223,488	XCF04S	XCF08P	
2	XC3S1500	5,214,784	XCF08P	XCF08P	
	XC3S2000	7,673,024	XCF08P	XCF08P	
	XC3S4000	11,316,864	XCF16P	XCF16P	
2	XC3S5000	13,271,936	XCF16P	XCF16P	

How Configuration Ends

- FPGA calculates CRC on bitstream while loading.
- After bitstream is loaded, if CRC is incorrect, the FPGA aborts... Why?
- If correct, the final start up sequence takes place.
- DONE is asserted, user operation begins.

Configuration Modes

- For Spartan-3, there are five different modes.
- M2, M1, and M0 select the configuration mode.
- For other FPGAs, consult the device datasheet.
- Let's look at Master Serial and JTAG modes...

Configuration Mode	MO	M1	M2	Synchronizing Clock	Data Width
Master Serial	0	0	0	CCLK Output	1
Slave Serial	1	1	1	CCLK Input	1
Master Parallel	1	1	0	CCLK Output	8
Slave Parallel	0	1	1	CCLK Input	8
JTAG	1	0	1	TCK Input	1

Master Serial Mode

- Three pins are used in this serial mode.
 - FPGA outputs a configuration clock.
 - Every CCLK cycle, an external component provides the next bit of the bitstream via FPGA input DIN.
 - The FPGA mirrors the data on output DOUT.

JTAG Mode

- Xilinx FPGAs and PROMs all have JTAG ports.
- IEEE 1149/1532 Test Access Port (JTAG).
 - TDI, test data in.
 - TDO, test data out.
 - TCK, test clock.
 - TMS, test mode select.
- This port is used for many things in addition to programming a device.

Configuration Example

- This example illustrates a circuit like that used on the Spartan-3 Starter Kit board.
 - Boundary scan to program FPGA by cable.
 - Boundary scan to program PROM by cable.
 - Master serial mode for PROM to program FPGA directly.

Configuration Example

Lecture #12 Agenda

• Survey of gigabit serial transceivers.

Topology Trends

- Full duplex point to point
- Clock recovered from data
- Larger clock skew tolerance
- Typically differential signals
- Low pin counts, high frequency

•Wide parallel busses

- •System clock or clock forwarding
- •Single or double data rate
- •Typically single-ended
- •High pin counts, low frequency

Traditional Parallel Links

Gigabit Serial Link

- Serial transmission with embedded clock.
 - No clock trace.
 - No clock to data skew.
 - Reduced cross talk.

Speed Definitions

- Baud rate, bits per second.
 - Signaling rate at which bits are sent over a link.
 - One direction only!
- Data rate, useful bits per second.
 - Actual rate that data is being sent over a link after removing overhead.
 - One direction only!

Gigabit Serial Transmission

- Encode Clock with Data.
- Serialize Data and Transmit.
- Receive and Recover Clock.
- De-serialize and Decode Data.
- Rate Match.

- 8B/10B is a very popular encoding method.
- Represents 8-bit data words in 10-bit codes.
- Also has "special" characters for control.
- Encoding overhead 20% (8 bits become 10).

- Guarantees transition density for clock recovery at the receiving device PLL.
 - Maximum run length is five.
- Provides some error detection capability.
 - Can catch any single bit error.
 - Can catch some two bit errors.
- Running disparity to maintain DC balance.

- Any code with a positive or negative disparity must be followed by one with neutral or the opposite disparity before one with the same disparity is used again.
- Two 10-bit codes exist for each 8-bit byte.
 - Original data byte 0x77 is code "D23.3"
 - D23.3 => 000101 1100 (send if RD is +)
 - D23.3 + => 111010 0011 (send if RD is -)

- Control characters are very important and many have special functions/names.
 - Delimit frames, part of protocol.
 - SOF (start of frame)
 - EOF (end of frame)
 - Serial link maintenance.
 - COM (comma for synchronization)
 - SKP (for data rate matching)

- Serial data transmitted at 10f_{ref}
 - Data is 8b/10b encoded.
 - Maximum run-length of five.
- Examples of data and frequency content:
 - 0101010101... → $10f_{ref}/2 = 5f_{ref}$
 - $-0011001100... \rightarrow 10f_{ref}/4 = 2.5f_{ref}$
 - $0000011111... \rightarrow 10f_{ref}/10 = 1f_{ref}$
 - Frequency range of $1f_{ref}$ $5f_{ref}$

- All interconnect acts like a low pass filter.
 - LPF characteristics change based interconnect.
 - Reduces the performance of the system.
 - Inter-symbol interference, ISI.
 - Signal attenuation.
- It is possible to pre-compensate the output waveforms at the transmitter to reduce the effect of the interconnect.

- Any data at rates > f_{media} will be attenuated.
- Different frequencies are attenuated differently.
 - 0101010101... \rightarrow attenuated the most.
 - 0000011111... \rightarrow attenuated the least.
 - Leads to ISI.

- Low frequency has more time to charge the media.
- High frequency data can not overcome the charge stored on the media.
- Waveform at receiver is less than ideal.

- Pre-emphasis is media compensation.
- Pre-emphasis boosts certain frequency bands to compensate for media loss.
- Helps signal attenuation and ISI problems caused by attenuation differences.
- Pre-emphasis is an open loop system.

- No feedback is used to control pre-emphasis.
- How do you determine the right amount?
 - Use a media model and simulate; a quick and easy solution for a first guess.
 - Build a prototype of system; more accurate but more expensive and time-consuming.

Sample transmitter output and receiver eye diagrams.

XILINX

Receive and Recover Clock

- The transmitter and receiver have different clocks.
 - Slightly different frequencies, e.g. ± 200ppm.
 - This forms a plesiochronous system.
- The transmitter uses its local reference clock to shift out the transmitted data.
- If the receiver were to use its own reference clock to receive the data, data errors would occur due to frequency mismatch.

Receive and Recover Clock

- Need a method of matching the frequencies of the transmitter and receiver.
- Clock recovery is the regeneration of a clock at the receiver from the incoming serial data stream.
- Clock recovery units use a phase locked loop.
 - Phase 1: Coarse frequency detection.
 - Phase 2: Exact phase/frequency lock.

De-Serialize Data

Decode Data

- In practice, there is a receiver and transmitter on each side of a link.
 - This is called a "transceiver".
 - Allows full duplex operation.
- Each side of the link has its own reference clock.
 - Used to clock logic for all TX and most RX paths.
 - Used to generate transmit clock of transceiver.
- Recovered data rate is not exactly the same!

- Reference clocks are specified to have a certain tolerance to form a plesiochronous system.
 - Example: clocks with maximum 200 ppm difference.
 - After every 5,000 clock events, one side may have had one more clock event than the other side.
- Eliminates need to distribute reference clock.
- This requires using an elastic buffer with "clock compensation" to synchronize the two systems.

- How does an elastic buffer work?
 - An elastic buffer is basically a FIFO.
 - Received data is written into the FIFO at the recovered clock rate.
 - Received data is read out of the FIFO at the local reference clock rate.
- Over time, the FIFO will eventually under/over run based on the frequency relationship of the two clocks.

- By agreement, it is the responsibility of the transmitter to periodically insert "clock compensation sequences" into the transmitted data stream.
 - Must be an agreed upon special symbol or sequence of special symbols.
 - Rate of insertion is related to clock tolerances.
 - Link overhead, not meaningful user data.

- At the receiver, the elastic buffer can identify clock compensation sequences.
 - If the buffer is getting dangerously full, the elastic buffer logic will delete a CCS to prevent overflow.
 - If the buffer is getting dangerously empty, the elastic buffer logic will duplicate a CCS to prevent underflow.
- User logic ignores CCS because it is not part of the data stream.

Gigabit Serial Transceivers

Gigabit Serial Transceivers

- Gigabit serial transceivers are available as off-the-shelf devices from many vendors.
- Xilinx offers some FPGA devices with integrated gigabit serial transceivers.
 - Virtex-II Pro, up to 3.125 Gbps
 - Virtex-II ProX, up to 10 Gbps
 - Virtex-4 FX, up to 11 Gbps
- FPGA integration is convenient!

Gigabit Serial Applications

- Fibre Channel
- 10 Gigabit Ethernet
- PCI Express
- Serial ATA

Fibre Channel

- Developed for Storage/System Area Networks.
- Specifications Controlled by ANSI.
- Three topologies:
 - Point-to-point.
 - Arbitrated loop.
 - Switched fabric.

Fibre Channel

- Baud rate 1.06 Gbps with data rate 848 Mbps.
- Baud rate 2.12 Gbps with data rate 1.7 Gbps.
- Higher baud rates of 4.25 and 10 Gbps are currently in development.

10 Gigabit Ethernet

- Implemented as four "lanes" at 2.5 Gbps each.
- Only optical connections; no copper cable.
- Uses either 8B/10B or 64B/66B data coding and optional data scramblers.

PCI Express

- Replacement for PCI, PCI-X, AGP, etc.
- Currently 2.5 Gbps per lane, with lane widths of 1x, 2x, 4x, 8x, 12x, 16x, and 32x possible.
- Uses 8B/10B data coding and data scramblers.
- PCI software model minimizes S/W impact.
- Supports hot-plugging and aggressive power management features.

Serial ATA

- Serial replacement of standard ATA in PCs.
 - Also related, Serially Attached SCSI...
- Thin cable replaces wide ribbon cable.
- 1.5 Gbps at data rate of 1.2 Gbps.
- Uses 8B/10B data coding.