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Lecture #10 Agenda

• Implementation tradeoffs.
– Design variables: throughput, latency, area.

• Pipelining for throughput.
• Retiming for throughput and latency.
• Interleaving for throughput and latency.
• Resource sharing for area.



Implementation Tradeoffs

• By now, you should realize there is more
than one way to achieve a desired result.

• Your job is to implement a “near-optimal”
hardware solution for your assigned task.

• It is important to understand the constraints.
– Constraints determine what is optimal.
– Throughput, Latency, Area?
– Others, like Cost, Features, Time to Market?



Implementation Tradeoffs

• It is important to understand the assigned task.
– The algorithm alone is only half the solution.
– How you implement the algorithm is the other.

• Identify the “measure of optimal” and trade
other dimensions in the design space for it.
– Easier to do this on paper, at the design stage!
– Harder, but possible, to optimize existing designs.
– The “law of diminishing returns” applies.



Implementation Tradeoffs

• Some definitions:
– Throughput: The rate at which inputs are processed

to create outputs; e.g. operations/second.
– Latency: The delay from when an input is applied

until the output associated with that input becomes
available; e.g. seconds, or clock cycles.

– Area: The resource usage required to implement
a design; e.g. mm2, or LUTs and FFs.



Pipelining

• Consider a circuit that does N operations per
clock cycle at a frequency F.  You could say
the design has a throughput of N*F ops/sec.

• Pipelining is a technique to trade latency and
area to improve throughput by increasing F.

• What sets the maximum frequency?
– Think back to static timing analysis…
– The maximum delay between flip flops!



Pipelining

• What is causing the delay between flip flops?
– Combinational logic to implement the algorithm.
– Wires for distributing signals.
– Inherent delays of the flip flops themselves.
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Pipelining

• What if…
– We partition the algorithm into two pieces, with

each piece contributing 1/2 of the total delay?
– We insert flip flops on all signals crossing the

boundary between the two pieces?
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Pipelining

• Results…
– Frequency increases; the critical paths are halved.
– Latency in cycles increases; not obvious yet but the

latency in real (elapsed time) also increases.
– Area increases; more flip flops required.

• What if you partitioned into M equal stages?
• Ideally, your new throughput is N*F*M ops/sec…



Pipelining Issues

• As M →∞, so does your circuit area and latency.
• Even if that were not true, you will reach a point

where you can no longer sub-divide the design.
– Can you partition a 2-input function in CMOS?
– Can you partition a LUT in a Xilinx FPGA?

• Even if that were not true, the flip flop clock-to-out
and input setup requirements do not change and
set a limit on F, as M →∞ (diminishing returns).



Pipelining Issues

• Your algorithm may not easily partition into M
equal stages -- in which case, the increase in
F is set by the partition with the longest delay.

• Strategy:  Focus your attention on placing the
pipelining flip flops to isolate the slowest
piece of the design and then maintain balance.



Simple Example

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Individual functions are marked
with their delay and cannot be
further divided.

Draw lines to indicate where you
would insert pipelining flip flops.

Optimize for throughput.
Compare the old latency and the
old throughput with your results.

Assume the pipelining flip flops
are ideal (Tsu = Tout = Th = 0).



Simple Solution

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Notice that signals (information)
only pass one direction through
the partitions -- forward!

Notice some signal paths need
two flip flops to keep information
flow synchronized.

Old Latency = 19 ns
Old Throughput = 1 op / 19 ns

New Latency = 27 ns (3 cycles)
New Throughput = 1 op / 9 ns



Pipelining Issues

• More problems can arise:
– Pipelining data hazards occur when a computation

depends on the result of a previous computation
still in the pipeline.

– Pipelining control hazards occur when a computation
in the pipeline changes the selection of inputs to
the design.

• If this excites you, read a computer architecture
book for insight on how these can be handled.



Elaborate Example
// My manager told me I need to write a module that
// implements a sort.  The sort takes five, 16-bit
// numbers as input and outputs the same five numbers,
// but sorted.  He told me that the inputs are to be
// registered, and the outputs are to be registered.
// I remember from CS101 that there's something called
// a bubble sort, so I am going to implement this.
// Oh yeah, my manager also said something about the
// design needing to perform 50 megasorts per second,
// and that I'll have a 50 megahertz clock, and new
// data is provided at the inputs every clock cycle.

`timescale 1 ns / 1 ps

module bubble (clk, in1, in2, in3, in4, in5,
out1, out2, out3, out4, out5);

input clk;
input [15:0] in1, in2, in3, in4, in5;
output [15:0] out1, out2, out3, out4, out5;

// First, I will register all the input data.
// Only after it's registered can I use it.

reg [15:0] dat1, dat2, dat3, dat4, dat5;

always @(posedge clk)
begin
dat1 <= in1;
dat2 <= in2;
dat3 <= in3;
dat4 <= in4;
dat5 <= in5;

end

Bubble.zip



Elaborate Example
// Here is the actual bubble sort.  I looked this
// up in my CS101 textbook.  I sure hope it works.

integer i, j;
reg [15:0] temp;
reg [15:0] array [1:5];

always @(dat1 or dat2 or dat3 or dat4 or dat5)
begin
// put all the stuff into an array for
// easy access using loop variables
array[1] = dat1;
array[2] = dat2;
array[3] = dat3;
array[4] = dat4;
array[5] = dat5;
// now perform the actual bubble sort
for (i = 5; i > 0; i = i - 1)
begin
for (j = 1 ; j < i; j = j + 1)
begin
if (array[j] < array[j + 1])
begin
temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

end
end

end
end



Elaborate Example

// Now I will register all the output data.

reg [15:0] out1, out2, out3, out4, out5;

always @(posedge clk)
begin
out1 <= array[1];
out2 <= array[2];
out3 <= array[3];
out4 <= array[4];
out5 <= array[5];

end

endmodule



Elaborate Example

--------------------------------------------------------------------------------
Constraint                                | Requested  | Actual     | Logic 

|            |      | Levels
--------------------------------------------------------------------------------
* NET "clk_BUFGP/IBUFG" PERIOD =  20 nS | 20.000ns   | 49.378ns   | 52   
HIGH 50.000000 %                          |            |      |      

--------------------------------------------------------------------------------

1 constraint not met.

Timing summary:
---------------

Timing errors: 216  Score: 3254922

Constraints cover 596759609344 paths, 0 nets, and 1987 connections (96.1% coverage)

Design statistics:
Minimum period:  49.378ns (Maximum frequency:  20.252MHz)



Elaborate Example

• The results do not meet the requirements.
• Would you like to try and pipeline it?  Not really!

– I already shot myself in the foot by writing a
Verilog hardware description as if it were a
sequential C program.

• Maybe not an issue had it worked…
• Only rely on luck if you have no talent.

– Unroll the loops to understand the algorithm.
– Partition and then pipeline it at each loop iteration.



Elaborate Example

• What operation is taking place in the inner loop?
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Elaborate Example

• The pipelined result has a very high latency.
– Sequential nature of the algorithm.
– Not an explicit design constraint.

• Hardware is inherently parallel; is there a better
algorithm to solve this problem?
– Yes, it is called the odd-even transposition sort.

• I researched it on the internet using Google.
• There is a large field called parallel computing

and I can steal algorithms from it for hardware.



Elaborate Example
// My manager told me I need to write a module that
// implements a sort.  The sort takes five, 16-bit
// numbers as input and outputs the same five numbers,
// but sorted.  He told me that the inputs are to be
// registered, and the outputs are to be registered.
// I remember from CS101 that there's something called
// a bubble sort.  I was going to implement this, but
// then remembered from EE178 that Verilog isn't C.
// Since I'm being paid to be a logic designer, I
// did some research on sorting algorithms and found
// one called the odd-even transposition sort, which
// is basically a parallel version of the bubble sort.
// I unrolled the loop and pipelined it to make it
// reasonably fast, because my manager said that the
// design needs to perform 50 megasorts per second,
// and that I'll have a 50 megahertz clock, and new
// data is provided at the inputs every clock cycle.

`timescale 1 ns / 1 ps

module oetsort (clk, in1, in2, in3, in4, in5,
out1, out2, out3, out4, out5);

input clk;
input [15:0] in1, in2, in3, in4, in5;
output [15:0] out1, out2, out3, out4, out5;
reg [15:0] dat1s0, dat2s0, dat3s0, dat4s0, dat5s0;
reg [15:0] dat1s1, dat2s1, dat3s1, dat4s1, dat5s1;
reg [15:0] dat1s2, dat2s2, dat3s2, dat4s2, dat5s2;
reg [15:0] dat1s3, dat2s3, dat3s3, dat4s3, dat5s3;
reg [15:0] dat1s4, dat2s4, dat3s4, dat4s4, dat5s4;
reg [15:0] dat1s5, dat2s5, dat3s5, dat4s5, dat5s5;

Oetsort.zip



Elaborate Example
always @(posedge clk)
begin
// This implements the input registers.
dat1s0 <= in1;
dat2s0 <= in2;
dat3s0 <= in3;
dat4s0 <= in4;
dat5s0 <= in5;
// This implements the first pipeline stage.
dat1s1 <= (dat1s0 < dat2s0) ? dat2s0 : dat1s0;
dat2s1 <= (dat1s0 < dat2s0) ? dat1s0 : dat2s0;
dat3s1 <= (dat3s0 < dat4s0) ? dat4s0 : dat3s0;
dat4s1 <= (dat3s0 < dat4s0) ? dat3s0 : dat4s0;
dat5s1 <= dat5s0;
// This implements the second pipeline stage.
dat1s2 <= dat1s1;
dat2s2 <= (dat2s1 < dat3s1) ? dat3s1 : dat2s1;
dat3s2 <= (dat2s1 < dat3s1) ? dat2s1 : dat3s1;
dat4s2 <= (dat4s1 < dat5s1) ? dat5s1 : dat4s1;
dat5s2 <= (dat4s1 < dat5s1) ? dat4s1 : dat5s1;
// This implements the third pipeline stage.
dat1s3 <= (dat1s2 < dat2s2) ? dat2s2 : dat1s2;
dat2s3 <= (dat1s2 < dat2s2) ? dat1s2 : dat2s2;
dat3s3 <= (dat3s2 < dat4s2) ? dat4s2 : dat3s2;
dat4s3 <= (dat3s2 < dat4s2) ? dat3s2 : dat4s2;
dat5s3 <= dat5s2;
// This implements the fourth pipeline stage.
dat1s4 <= dat1s3;
dat2s4 <= (dat2s3 < dat3s3) ? dat3s3 : dat2s3;
dat3s4 <= (dat2s3 < dat3s3) ? dat2s3 : dat3s3;
dat4s4 <= (dat4s3 < dat5s3) ? dat5s3 : dat4s3;
dat5s4 <= (dat4s3 < dat5s3) ? dat4s3 : dat5s3;
// This implements the fifth pipeline stage.
dat1s5 <= (dat1s4 < dat2s4) ? dat2s4 : dat1s4;
dat2s5 <= (dat1s4 < dat2s4) ? dat1s4 : dat2s4;
dat3s5 <= (dat3s4 < dat4s4) ? dat4s4 : dat3s4;
dat4s5 <= (dat3s4 < dat4s4) ? dat3s4 : dat4s4;
dat5s5 <= dat5s4;

end



Elaborate Example

// The output data is already registered, so all
// I have to do is drive it out of the module.

assign out1 = dat1s5;
assign out2 = dat2s5;
assign out3 = dat3s5;
assign out4 = dat4s5;
assign out5 = dat5s5;

endmodule



Elaborate Example

--------------------------------------------------------------------------------
Constraint                                | Requested  | Actual     | Logic 

|            |      | Levels
--------------------------------------------------------------------------------
NET "clk_BUFGP/IBUFG" PERIOD =  20 nS | 20.000ns   | 9.531ns    | 9    
HIGH 50.000000 %                          |            |      |      

--------------------------------------------------------------------------------

All constraints were met.

Timing summary:
---------------

Timing errors: 0  Score: 0

Constraints cover 10320 paths, 0 nets, and 1747 connections (95.6% coverage)

Design statistics:
Minimum period:   9.531ns (Maximum frequency: 104.921MHz)



Elaborate Example

• The results exceed the requirements by far.
• If desired, I could save area and latency by

removing every other set of pipeline registers…
and still meet the requirements!

• If you know you are going to have to optimize
your hardware implementation, you can save
some pain by doing research up front.



Pipelining Conclusion

• Pipelining is not a panacea.
• Pipelining is a tool you can use to

trade area and latency for throughput.
• In complex designs, you need to be careful!
• The decision to use this tool to optimize

your design should be based on your
design constraints.



Retiming

• Consider a circuit that does N operations per
clock cycle at a frequency F.  You could say
the design has a throughput of N*F ops/sec.

• Retiming is a technique to improve throughput
and latency by increasing F, with the possibility
of an area change.



Retiming

• What sets the maximum frequency?
– Combinational logic to implement the algorithm.
– Wires for distributing signals.
– Inherent delays of the flip flops themselves.
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Retiming

• We push pieces of the logic forward and/or
backward through existing registers in an
attempt to balance delay between registers.

• Alternately, pick up existing registers and move
them backward and/or forward through logic...
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Retiming

• Frequency increases; unless it is already
perfectly balanced, critical paths are reduced.

• Latency in cycles is constant, but latency in
real (elapsed time) decreases because the
cycle time decreases.

• Area may increase or decrease depending
on the paths that are retimed.



Retiming Issues

• Logic granularity limits what you can move.
– Can you move half of a 2-input function in CMOS?
– Can you move half of a LUT in a Xilinx FPGA?

• The resulting “state elements” of your design
change, complicating debugging.



Retiming Issues

• Without changing the cycle latency, the extent
of the changes you can make are limited.
– Applied to a blobular/random design, frequency

improvement may not be impressive.
– Applied to a pipelined design with unbalanced

stages may yield significant improvement.
• Difficult to do manually, best left to the synthesis

tool as an after-the-fact optimization.



Simple Example 1

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Individual functions are marked
with their delay and cannot be
further divided.

Solid bars represent flip flops.
Assume the design flip flops
are ideal (Tsu = Tout = Th = 0).

This is an unbalanced, pipelined
design.

Retime the circuit without moving
the input or output flip flops.

Compare the old latency and the
old throughput with your results.



Simple Solution 1

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Old Latency = 32 ns (2 cycles)
Old Throughput = 1 op / 16 ns

New Latency = 22 ns (2 cycles)
New Throughput = 1 op / 11 ns

How about area cost?



Simple Example 2

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Individual functions are marked
with their delay and cannot be
further divided.

Solid bars represent flip flops.
Assume the design flip flops
are ideal (Tsu = Tout = Th = 0).

This is a blobular/random design.

Retime the circuit without moving
the input or output flip flops.

Compare the old latency and the
old throughput with your results.



Simple Solution 2

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Either is 
okay...

Old Latency = 32 ns (2 cycles)
Old Throughput = 1 op / 16 ns

New Latency = 30 ns (2 cycles)
New Throughput = 1 op / 15 ns

How about area cost?
Which gray flops are better?



Retiming Conclusion

• Retiming is not a magic wand.
• Retiming is a tool you can use to

trade area for latency and throughput.
• May gain you very little, or nothing!
• The decision to use this tool to optimize

your design should be based on your
design constraints.



Interleaving

• Consider a circuit that does N operations per
clock cycle at a frequency F.  You could say
the design has a throughput of N*F ops/sec.

• Interleaving is a technique to trade latency
and area to improve throughput by increasing F.

• Interleaving is especially useful to break
pipeline bottlenecks in a pipelined design.



Interleaving

• What sets the maximum frequency?
– Combinational logic to implement the algorithm.
– Wires for distributing signals.
– Inherent delays of the flip flops themselves.

• What if you could replicate the logic N times,
and provide N times as many clock cycles
for each instance to perform its function?

• Arriving data is interleaved between blocks...



Interleaving

• Example of two-way
interleaving circuit.
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Interleaving
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Interleaving

• The two-way interleaving circuit shown on the
previous page may be represented by:

• This is functionally equivalent to the following:
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Interleaving

• Frequency increases; critical paths are reduced.
• Latency in cycles and in real time increases.
• Area increases; more flip flops and duplicate

functional units are required.



Interleaving Issues

• Multi-cycle signal paths through replicated
logic complicate static timing analysis.
– A simple “period” constraint is no longer sufficient.
– You need to pay careful attention to constraints.

• M-way interleaving has similar limits to those
for an M-stage pipeline as M →∞.



Simple Example

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Individual functions are marked
with their delay.  You may apply
two-way interleaving on a single
component.  Other components
may not be further divided.

Draw lines to indicate where you
would insert pipelining flip flops.

Optimize for throughput.
Compare the old latency and the
old throughput with your results.

Assume the pipelining flip flops
are ideal (Tsu = Tout = Th = 0).



Simple Solution

2 ns 9 ns 1 ns

6 ns 5 ns 3 ns

Notice some signal paths need
two flip flops to keep information
flow synchronized.

What kind of results would you
achieve if you could perform an
additional two-way interleave?

Old Latency = 19 ns
Old Throughput = 1 op / 19 ns

New Latency = 30 ns (5 cycles)
New Throughput = 1 op / 6 ns

Compare this  to the original
pipelined results...



Interleaving Conclusion

• Interleaving is not a silver bullet.
• Interleaving is a tool you can use to

trade area for latency and throughput.
• Requires attention to timing constraints.
• The decision to use this tool to optimize

your design should be based on your
design constraints.



Resource Sharing

• Resource sharing is a technique to trade
frequency and latency for area.

• Resource sharing is when a single hardware
resource (typically area-expensive) is used to
implement several operations in the design.

• What kind of operations can share hardware?
– Addition, Subtraction, Comparisons.
– Multiplication, Division.



Resource Sharing Example

• Assume a 16x16 multiplier uses 100 area units.
• Assume a 4:1 multiplexer uses 1 area unit.
• Consider the following block of code:

wire [15:0] a, b, c, d, e, f, g, h, i, j;
wire [31:0] output1, output2;
wire  [1:0] op;

always @(op or a or b or c or d or e or f or g or h or i or j)
begin
output1 = a * b;
case (op)
2’b00: output2 = c * d;
2’b01: output2 = e * f;
2’b10: output2 = g * h;
2’b11: output2 = i * j;

endcase
end



Resource Sharing Example

• A naïve implementation uses:
– A multiplier to generate output1.
– Four multipliers, followed by a 32-bit

wide 4:1 multiplexer to generate output2.
– Area cost is 532 area units.

• Draw a schematic of the circuit.



Resource Sharing Example

• A better implementation uses:
– A multiplier to generate output 1.
– Two 16-bit wide 4:1 multiplexers followed

by a multiplier to generate output2.
– Area cost is 232 area units.

• Draw a schematic of the circuit.



Resource Sharing

• Frequency and latency may increase if
additional delay is added to the critical path.

• Area decrease as a result of sharing the
area-expensive hardware resources.

• In order for resources to be shared, they
must not need to operate simultaneously
in the original design.



Resource Sharing Conclusion

• Resource sharing is not a silver bullet.
• Resource sharing is a tool you can use to

trade latency and throughput for area.
• The decision to use this tool to optimize

your design should be based on your
design constraints.


