2 XILINX®

EE1/8 Lecture
Module 4

Eric Crabill
SJSU / Xilinx
Spring 2006

Lecture #9 Agenda

 Considerations for synchronizing signals.
— Clocks.
— Resets.

 Considerations for asynchronous inputs.
* Methods for crossing clock domains.

e

Clocks

* The “academic” clock distribution is one that
would deliver clock events to all synchronous
elements in the system with zero delay, zero
skew, and zero |itter.

— This is what you see in functional simulation.
— Not representative of physical reality.

e Some designs can actually make constructive
use of clock delay and clock skew.

B Fabk

Clocks

* Most FPGA devices have special routing
intended for use with high fan-out, low skew
signals such as clocks.

— Typically a limited (precious) resource.
— Usually driven by a “global buffer” primitive.

— Better delay and skew characteristics than
normal routing resources in the FPGA.

e

Clocks

* |n Xilinx FPGA devices, you indicate your
desire to use these resources by instantiating
a “global buffer” in your design to drive the
clock signal of interest.

— Schematic designs use a primitive called BUFG.

— HDL designs have two options:
* Direct use of instantiated BUFG primitive from library.

* Allow synthesis tool to identify wires which are used
as clocks and automatically infer BUFG primitives.

B Fabk

Clocks

e Since most FPGA devices have a limited
number of these clock distribution resources,
It makes sense to minimize the number of
unique clocks in your design.

— Avoid “gating the clock”.
— Avoid things like ripple counters.
— Use clock enables instead of divided clocks.

A side benefit is that your static timing analysis

will be less complicated!

Resets

e Most designs use another synchronization signal,
a “reset’, to put the system in an initial state.

e |nitial state does not need to be all zero or all one,
it can be whatever you need; you may not need
(or want) to initialize every state element.

e Reset signals can be synchronous (to the system
clock) or asynchronous.

e

Synchronous Resets

A synchronous reset is synchronized to the clock.

You may consider It as “just another synchronous
Input” to state elements in the design.

The synchronous reset will have priority over
other inputs, such as the D input.

When the reset Is asserted and the clock event
takes place, the flip-flop will transition.

e

Synchronous Resets

A synchronous reset input to a flip flop has the

same timing requirements as other synchronous
inputs to the flip-flop.

e [fthe synchronous reset signal is coming from
an external source, it must meet input setup
and hold requirements.

e |f the synchronous reset signal is coming
from an internal source (say, another flip
flop), it must meet the period requirement.

e

Asynchronous Resets

* An asynchronous reset is not synchronized
to the clock; when it is asserted, the state
element will immediately transition.

* Typically, these types of asynchronous
control signals have priority over all other
Inputs to the flip-flop, even the clock.

* No clock events are required to initialize.

e

Asynchronous Resets

* |n contrast to a synchronous reset, this reset
has a potential problem when deasserted.
— It can occur at any time, even near clock edges.

— Skew on the signal distribution can result in
different portions of the design “waking up”
at different times, sending the design into
some state other than what was intended.

— Can build logic in such a way that waking up in
the wrong state Is either harmless or correctable.

B sk

Asynchronous Resets

module hang_yourself (detonate warhead, clk, rst);

output detonate_warhead;
input clk, rst;

reg flopl, flop2;
reg detonate;

always @(posedge clk or posedge rst)
begin

iIf (rst) flopl <= 1"b0;

else flopl <= Iflopl;
end

always @(posedge clk or posedge rst)
begin

iIf (rst) flop2 <= 17b0;

else flop2 <= Iflop2;
end

always @(posedge clk or posedge rst)
begin

iIT (rst) detonate warhead <= 17b0;

else detonate_warhead <= flopl ™ flop2;
end

endmodule

Asynchronous Solution

e |nteresting circuit to drive asynchronous resets:

— Master reset asserts asynchronously, forcing
your circuit into a known state immediately.

— Master reset de-asserts synchronously, allowing
meaningful timing requirements / analysis.

I I
PRE PRE
D Q DQ AD— MASTER
‘ RESET TO

> > CIRCUITS
CLOCKED
D BY CLK
CLK w

RST

Xilinx FPGA Resets

* |nyour design, you may design with either type
of reset, and it will be implemented in the FPGA

as you designed It.
* Use of synchronous resets may reduce logic.

e There are two other Initialization signals in Xilinx
FPGAs which are not well documented.

— GSR, the global set/reset.
— GTS, the global three state control.

e

Xilinx FPGA Resets

At power-on, and when directed, the FPGA
starts loading a configuration bitstream, which
IS a description of your design.

e \While the bitstream Is loading, the FPGA will
have an incomplete description of your logic.
— Your state could get messed up or transition.
— Your output pins could be driven incorrectly.

e

Xilinx FPGA Resets

 Until the bitstream load is complete, the FPGA
holds GSR and GTS asserted.

— All flip flops are held in an initial state by GSR.
» FDC type primitives have initial state of zero.
 FDP type primitives have initial state of one.

— All chip outputs are held in three-state by GTS.

* \When configuration completes, GSR and GTS
are released, and your design begins to operate.

e

Xilinx FPGA Resets

e Once the user design Is active, it is possible
to drive GSR and GTS under user control.
— Asserting GSR would be rather disruptive.

— Asserting GTS Is useful to three-state the
entire chip at once.

— Control of GSR and GTS Is done via the
STARTUP primitive in the library which you
may use in HDL and schematic designs.

B Fabk

Asynchronous Inputs

 Asynchronous inputs, like buttons, switches,
and anything not synchronized to the system
clock will inevitably cause input setup or input
hold violations.
— May not be an issue on data path circuits.
— Can be fatal on control circuits.
— Why Is metastability a problem?

B ke

Asynchronous Inputs

e Synchronize signals to system clock using
a synchronizer circuit;

INPUT SIGNAL
4% D Q D Q AD— SYNCHRONIZED
TO SYSTEM CLK

ASYNC

CLK

e

Asynchronous Inputs

 Synchronizer circuits add delay (latency).

e Synchronizer circuits are not perfect guarantees.
— Place flops close to each other to minimize net delay.
— How good is good enough? (MTBF calculations)

e \When a signal comes on-chip, synchronize it
once and then fan signal out as required.
— Do not fan out, then synchronize at multiple places.
— Variations in timing can create different results.

B sk

Clock Domains

A clock domain is a group of logic elements and
related signals that are synchronized to one clock.

e The emphasis of this course and the labs Is fully
synchronous design -- that Is, design with only
one clock domain.

e Many designs do not fit into this “paradigm?”.

B Fabk

Clock Domains

* \Why would you have multiple clock domains?

— Independent (sub)systems with different reference
clocks, needing to share/exchange information.

— Impractical to distribute or use a reference clock.
— Many other reasons, I'm sure...

e How may the clocks in two domains be related?
— Synchronous (degenerate case, same clock).

« Same frequency.

o Zero phase difference.

Clock Domains

e How may the clocks in two domains be related?

— Derived, Synchronous.
* Frequencies related to a common reference.
* Phase difference Is a function of time.
» Example: Multiplied or divided clock from DLL or DFS.

— Mesochronous.
« Same frequency.
* Constant phase difference.
« Example: Phase shifted clock from DLL or DFS.

b

Clock Domains

e How may the clocks in two domains be related?

— Plesiochronous.
» Different frequencies, nominally the same.
* Phase difference is slowly varying.
« Example: Two oscillators, both marked 1.000000 MHz.

— Asynchronous.
» Different frequencies or non-periodic clocks.
* Arbitrary phase difference.
» Example: Two clocks of unknown relationship.

e

Crossing Clock Domains

 For asynchronous clock domain relationships:

— For a single signal, use the same two flip-flop
synchronizer used for asynchronous inputs.

— For multi-bit signals, simply synchronizing each
of the bits is not sufficient because each instance
of the synchronizer may resolve at different times.

* No way to know when multi-bit quantity Is
valid, other than waiting a long time...

» Use four phase or two phase handshaking (a
single point of synchronization).

e

Crossing Clock Domains

 For asynchronous clock domain relationships:

— Four phase handshaking (RTZ, level based flags).
* Source domain provides DATA and asserts its VALID flag.

» Destination domain sees synchronized VALID flag assert
and takes DATA, then asserts its ACK flag.

* Source domain sees synchronized ACK flag
assert and deasserts its VALID flag.

» Destination domain sees synchronized VALID flag
deassert and deasserts its ACK flag.

* Process can then repeat...

Four Phase Handshake

VALID
) ACK
// >
/v DATA

.
L d *
. ** ., -
. * L] *
. .] .
. ‘" .
. * L2 *
* . *
i o ." o
VALID / \ / \
. . . ‘ .
* * v * * *
. ﬂ . o° . 0 .
. Q . . . Q .
. Q . . * Q .
* * . +* * * *
. Q . . . Q .

ACK 4/ \ / 4\

[Adapted from VLSI Architectures Spring 2004 www.ee.technion.ac.il/courses/048878 by Ran Ginosar]

Crossing Clock Domains

 For asynchronous clock domain relationships:

— Two phase handshaking (NRZ, transition flags).
* Source domain provides DATA and changes VALID flag.

* Destination domain sees synchronized VALID flag change
and takes DATA, then changes its ACK flag.

* Source domain sees synchronized ACK flag change.
* Process can then repeat...

B ke

Two Phase Handshake

A 4

VALID

ACK

A

DATA

X

. . * *
. 4 5 4 ', 45 4
. - . » * " . D
n . . . D
. . ~ * ~
. " . M . " . .
| - A | D ‘A - 4 .
~ ~
VALID : \ : / : \ :
H x H .
L Ll
. hd . o . hd . 0
. " « . N v . " 0‘ . .
. n * . N R . n * . »
. " g . - . . " g . N
. g a .
* . o* . * . ¥
* . d . . L) . .
. o* . o . 0
* a ., me .
4! 4"

L
., .
" .
. .
N . .
<4 “‘

ACK
[Adapted from VLSI Architectures Spring 2004 www.ee.technion.ac.il/courses/048878 by Ran Ginosar]

Crossing Clock Domains

 For asynchronous clock domain relationships:

— For bulk data transfer, but low bandwidth, use some
form of memory (dual ported Is convenient...) with
handshaking to indicate which domain is in control
at a given time.

o “Fill and spill” buffers -- high latency, low throughput.
* “Ping-pong” (double buffering) -- some improvement.

— With a dual ported RAM, can | be clever about this
and start “spilling” while it's still “filling"?

e

Crossing Clock Domains

 For asynchronous clock domain relationships:

— Yes, it is called an asynchronous FIFO.
* Usually implemented with a dual ported memory.

 On the source (write) domain, data can be written
into the FIFO as long as the FIFO Is not FULL.

 On the destination (read) domain, data can be read
out of the FIFO as long as the FIFO is not EMPTY.

 See “Simulation and Synthesis Techniques for
Asynchronous FIFO Design” by Cliff Cummings.

B Fabk

Crossing Clock Domains

 For other clock domain relationships:

— There are a variety of other methods to deal
with clock domain crossing, if more is known
about the nature of the clock signals.

— Pretending things are asynchronous always works...

b

