
EE178 Lecture
Module 4

Eric Crabill
SJSU / Xilinx
Spring 2006



Lecture #9 Agenda

• Considerations for synchronizing signals.
– Clocks.
– Resets.

• Considerations for asynchronous inputs.
• Methods for crossing clock domains.



Clocks

• The “academic” clock distribution is one that
would deliver clock events to all synchronous
elements in the system with zero delay, zero
skew, and zero jitter.
– This is what you see in functional simulation.
– Not representative of physical reality.

• Some designs can actually make constructive
use of clock delay and clock skew.



Clocks

• Most FPGA devices have special routing
intended for use with high fan-out, low skew
signals such as clocks.
– Typically a limited (precious) resource.
– Usually driven by a “global buffer” primitive.
– Better delay and skew characteristics than

normal routing resources in the FPGA.



Clocks

• In Xilinx FPGA devices, you indicate your
desire to use these resources by instantiating
a “global buffer” in your design to drive the
clock signal of interest.
– Schematic designs use a primitive called BUFG.
– HDL designs have two options:

• Direct use of instantiated BUFG primitive from library.
• Allow synthesis tool to identify wires which are used

as clocks and automatically infer BUFG primitives. 



Clocks

• Since most FPGA devices have a limited
number of these clock distribution resources,
it makes sense to minimize the number of
unique clocks in your design.
– Avoid “gating the clock”.
– Avoid things like ripple counters.
– Use clock enables instead of divided clocks.

• A side benefit is that your static timing analysis
will be less complicated!



Resets

• Most designs use another synchronization signal,
a “reset”, to put the system in an initial state.

• Initial state does not need to be all zero or all one, 
it can be whatever you need; you may not need
(or want) to initialize every state element.

• Reset signals can be synchronous (to the system
clock) or asynchronous.



Synchronous Resets

• A synchronous reset is synchronized to the clock.
• You may consider it as “just another synchronous

input” to state elements in the design.
• The synchronous reset will have priority over

other inputs, such as the D input.
• When the reset is asserted and the clock event

takes place, the flip-flop will transition.



Synchronous Resets

• A synchronous reset input to a flip flop has the
same timing requirements as other synchronous
inputs to the flip-flop.

• If the synchronous reset signal is coming from
an external source, it must meet input setup
and hold requirements.

• If the synchronous reset signal is coming
from an internal source (say, another flip
flop), it must meet the period requirement.



Asynchronous Resets

• An asynchronous reset is not synchronized
to the clock; when it is asserted, the state
element will immediately transition.

• Typically, these types of asynchronous
control signals have priority over all other
inputs to the flip-flop, even the clock.

• No clock events are required to initialize.



Asynchronous Resets

• In contrast to a synchronous reset, this reset
has a potential problem when deasserted.
– It can occur at any time, even near clock edges.
– Skew on the signal distribution can result in

different portions of the design “waking up”
at different times, sending the design into
some state other than what was intended.

– Can build logic in such a way that waking up in
the wrong state is either harmless or correctable.



Asynchronous Resets
module hang_yourself (detonate_warhead, clk, rst);

output detonate_warhead;
input clk, rst;

reg flop1, flop2;
reg detonate;

always @(posedge clk or posedge rst)
begin

if (rst) flop1 <= 1'b0;
else flop1 <= !flop1;

end

always @(posedge clk or posedge rst)
begin

if (rst) flop2 <= 1'b0;
else flop2 <= !flop2;

end

always @(posedge clk or posedge rst)
begin

if (rst) detonate_warhead <= 1'b0;
else detonate_warhead <= flop1 ^ flop2;

end

endmodule



Asynchronous Solution

• Interesting circuit to drive asynchronous resets:
– Master reset asserts asynchronously, forcing

your circuit into a known state immediately.
– Master reset de-asserts synchronously, allowing

meaningful timing requirements / analysis.

CLK

MASTER
RESET TO
CIRCUITS
CLOCKED
BY CLK

PRE
D  Q

PRE
D  Q

RST



Xilinx FPGA Resets

• In your design, you may design with either type
of reset, and it will be implemented in the FPGA
as you designed it.

• Use of synchronous resets may reduce logic.
• There are two other initialization signals in Xilinx

FPGAs which are not well documented.
– GSR, the global set/reset.
– GTS, the global three state control.



Xilinx FPGA Resets

• At power-on, and when directed, the FPGA
starts loading a configuration bitstream, which
is a description of your design.

• While the bitstream is loading, the FPGA will
have an incomplete description of your logic.
– Your state could get messed up or transition.
– Your output pins could be driven incorrectly.



Xilinx FPGA Resets

• Until the bitstream load is complete, the FPGA
holds GSR and GTS asserted.
– All flip flops are held in an initial state by GSR.

• FDC type primitives have initial state of zero.
• FDP type primitives have initial state of one.

– All chip outputs are held in three-state by GTS.
• When configuration completes, GSR and GTS

are released, and your design begins to operate.



Xilinx FPGA Resets

• Once the user design is active, it is possible
to drive GSR and GTS under user control.
– Asserting GSR would be rather disruptive.
– Asserting GTS is useful to three-state the

entire chip at once.
– Control of GSR and GTS is done via the

STARTUP primitive in the library which you
may use in HDL and schematic designs.



Asynchronous Inputs

• Asynchronous inputs, like buttons, switches,
and anything not synchronized to the system
clock will inevitably cause input setup or input
hold violations.
– May not be an issue on data path circuits.
– Can be fatal on control circuits.
– Why is metastability a problem?



Asynchronous Inputs

• Synchronize signals to system clock using
a synchronizer circuit:

CLK

D  QD  Q
ASYNC

INPUT SIGNAL
SYNCHRONIZED
TO SYSTEM CLK



Asynchronous Inputs

• Synchronizer circuits add delay (latency).
• Synchronizer circuits are not perfect guarantees.

– Place flops close to each other to minimize net delay.
– How good is good enough? (MTBF calculations)

• When a signal comes on-chip, synchronize it
once and then fan signal out as required.
– Do not fan out, then synchronize at multiple places.
– Variations in timing can create different results.



Clock Domains

• A clock domain is a group of logic elements and
related signals that are synchronized to one clock.

• The emphasis of this course and the labs is fully
synchronous design -- that is, design with only
one clock domain.

• Many designs do not fit into this “paradigm”.



Clock Domains

• Why would you have multiple clock domains?
– Independent (sub)systems with different reference

clocks, needing to share/exchange information.
– Impractical to distribute or use a reference clock.
– Many other reasons, I’m sure…

• How may the clocks in two domains be related?
– Synchronous (degenerate case, same clock).

• Same frequency.
• Zero phase difference.



Clock Domains

• How may the clocks in two domains be related?
– Derived, Synchronous.

• Frequencies related to a common reference.
• Phase difference is a function of time.
• Example: Multiplied or divided clock from DLL or DFS.

– Mesochronous.
• Same frequency.
• Constant phase difference.
• Example: Phase shifted clock from DLL or DFS.



Clock Domains

• How may the clocks in two domains be related?
– Plesiochronous.

• Different frequencies, nominally the same.
• Phase difference is slowly varying.
• Example: Two oscillators, both marked 1.000000 MHz.

– Asynchronous.
• Different frequencies or non-periodic clocks.
• Arbitrary phase difference.
• Example: Two clocks of unknown relationship.



Crossing Clock Domains

• For asynchronous clock domain relationships:
– For a single signal, use the same two flip-flop

synchronizer used for asynchronous inputs.
– For multi-bit signals, simply synchronizing each

of the bits is not sufficient because each instance
of the synchronizer may resolve at different times.

• No way to know when multi-bit quantity is
valid, other than waiting a long time…

• Use four phase or two phase handshaking (a
single point of synchronization).



Crossing Clock Domains

• For asynchronous clock domain relationships:
– Four phase handshaking (RTZ, level based flags).

• Source domain provides DATA and asserts its VALID flag.
• Destination domain sees synchronized VALID flag assert

and takes DATA, then asserts its ACK flag.
• Source domain sees synchronized ACK flag

assert and deasserts its VALID flag.
• Destination domain sees synchronized VALID flag

deassert and deasserts its ACK flag.
• Process can then repeat…



Four Phase Handshake

VALID

ACK

DATAn

DATA

VALID

ACK

www.ee.technion.ac.il/courses/048878[Adapted from VLSI Architectures Spring 2004 by Ran Ginosar]



Crossing Clock Domains

• For asynchronous clock domain relationships:
– Two phase handshaking (NRZ, transition flags).

• Source domain provides DATA and changes VALID flag.
• Destination domain sees synchronized VALID flag change

and takes DATA, then changes its ACK flag.
• Source domain sees synchronized ACK flag change.
• Process can then repeat…



Two Phase Handshake

VALID

ACK

DATAn

DATA

VALID

ACK

www.ee.technion.ac.il/courses/048878[Adapted from VLSI Architectures Spring 2004 by Ran Ginosar]



Crossing Clock Domains

• For asynchronous clock domain relationships:
– For bulk data transfer, but low bandwidth, use some

form of memory (dual ported is convenient…) with
handshaking to indicate which domain is in control
at a given time.

• “Fill and spill” buffers -- high latency, low throughput.
• “Ping-pong” (double buffering) -- some improvement.

– With a dual ported RAM, can I be clever about this
and start “spilling” while it’s still “filling”?



Crossing Clock Domains

• For asynchronous clock domain relationships:
– Yes, it is called an asynchronous FIFO.

• Usually implemented with a dual ported memory.
• On the source (write) domain, data can be written

into the FIFO as long as the FIFO is not FULL.
• On the destination (read) domain, data can be read

out of the FIFO as long as the FIFO is not EMPTY.
• See “Simulation and Synthesis Techniques for

Asynchronous FIFO Design” by Cliff Cummings.



Crossing Clock Domains

• For other clock domain relationships:
– There are a variety of other methods to deal

with clock domain crossing, if more is known
about the nature of the clock signals.

– Pretending things are asynchronous always works…


