

EE178 Lecture Module 2

Eric Crabill SJSU / Xilinx Spring 2006

Lecture #4 Agenda

• Survey of implementation technologies.

- Small scale and medium scale integration.
 - Up to about 200 gates per device
 - Most common is 74xx type devices
 - Gates, flip flops, latches.
 - Decoders, registers, counters, and other functional building blocks.

- Large scale integration.
 - Ranging from 200 to 200,000 gates per device.
 - Small memories, programmable logic devices, custom designs.
- Very large scale integration.
 - Above 200,000 gates per device.
 - Often "gate count" is replaced by transistor count because these large designs have integrated memories, etc.

- Survey of small and medium scale components by browsing data books.
 - Different functional classes.
 - Generally used as "glue" logic now, to help interface larger scale components.
 - Back in the day, large designs were done using this technology.

- Advantages of small and medium scale, particularly with regard to 74xx stuff.
 - Easy to understand functions.
 - Exceptional signal visibility.
- Disadvantages.
 - Low logic density means big boards or small designs only.
 - Higher power consumption.
 - Cost per function, failure concerns.

- Survey of large scale components, for logic design, particularly programmable logic devices in this density.
 - Many different flavors of devices; most draw on basic device types.
 - ROM, PLA, PAL = PLDs.
 - CPLDs
 - Can be used as glue logic but have enough available logic to implement significant designs in larger parts.

- Advantages of large scale integration.
 - Higher logic density means smaller boards or larger designs.
 - Many devices can be programmed and reprogrammed, saving expense when changes are made.
- Disadvantages.
 - Need to learn how to use and program.
 - Signal visibility is reduced.

- What is a ROM? How can I use it?
- What is a PLA? How can I use it?
- What is a PAL? How can I use it?
- How are all these things related?
- What, then, is a CPLD?

- A ROM is a SOP logic device with a fixed AND array and a programmable OR array.
- You can implement M functions of N inputs in this ROM.

- You basically specify a truth table of the functions when you program the ROM.
- There is no advantage to simplifying the function when you are using a ROM since you need to specify the entire list of minterms anyway...

- ROM of 2^N by M; N = 2, M=2
- $MO = N1 \cdot NO + N1 \cdot NO'$
- $M1 = N1 \cdot N0 + N1' \cdot N0'$

- A PLA is a SOP logic device with a programmable AND array (fewer pt's than a ROM) and a programmable OR array.
- You can implement functions using the available minterms, which may be shared between functions.

- You have to reduce your design to a sum of products which will hopefully be realizable with the available minterms.
- Computer aided design tools are available to do optimization for product term sharing.

- PLA of N inputs and M out; N = 2, M=2
- $MO = N1 \cdot NO + N1 \cdot NO'$
- $M1 = N1 \cdot N0 + N1' \cdot N0'$

- A PAL is a SOP logic device with a programmable AND array and a fixed OR array.
- You can implement functions using the available minterms for each output function (no pt sharing). PAL

- Again, the design has to be reduced if possible.
- No product term sharing, and note that in real devices, each output function may have access to a different number of product terms.

- PAL of N inputs and M out; N = 2, M=2
- $MO = N1 \cdot NO + N1 \cdot NO'$
- M1 = N1•N0 + N1' •N0' insufficient minterms

- A CPLD is a complex programmable logic device that essentially consists of a number of programmable logic blocks (such as a PLA, PAL, and less commonly, ROM) connected by a programmable interconnect array.
- Why has CPLD density stagnated?

Lecture #5 Agenda

• Survey of implementation technologies.

- Full Custom Logic.
- Standard Cell Design.
- Gate Array Design.
- Field Programmable Logic.

- Full Custom Logic.
 - Each primitive logic function or transistor is manually designed and optimized.
 - Most compact chip design, highest possible speed, lowest power consumption.
 - Non recurring engineering cost (NRE) is the highest for obvious reasons.
 - Rarely used today due to high engineering cost and low productivity; polygon pushing.

- Standard Cell Design.
 - Predefined logic blocks (a la 74xx style) are made available to the designer in a cell library; the design is built with these.
 - Done with schematic capture or HDL.
 - Automated tools place and route the cells.
 - Cells are often standard dimensions to facilitate automated place and route.
 - Substantially shorter design time than custom.

- Gate Array Design.
 - Full custom and standard cell require custom masks to produce wafers (read as "expensive").
 - Instead, create base wafers using common masks; base wafers have an "array" of gates which are not committed and not wired.
 - Designers specify connectivity and the top metal masks are created to connect the gates on the base wafers.
 - Low wafer cost, fast turnaround, area penalty.

- Field Programmable Logic.
 - We have already discussed several types of programmable logic.
 - ROM, PLA, PAL.
 - CPLD.
 - The other main type of programmable logic is the field programmable gate array, or "FPGA".

- FPGA devices are an improvement in gate array technology which offer improved time to market and reduced prototyping cost.
- Types of FPGA devices:
 - Non volatile, one time programmable (anti-fuse).
 - Non volatile, re-programmable (flash).
 - Volatile (sram).
- An FPGA is much more than an array of gates...

- What is in the array? All sorts of stuff...
 - I/O Cells.
 - Logic Cells.
 - Memories.
 - Microprocessors.
 - Clock Management.
 - High Speed I/O Transceivers.
 - Programmable routing.

- The programmable routing is of particular significance because this is the main improvement over a standard gate array.
- An FPGA is really some programmable logic with a whole bunch of programmable wires!!!
- Various array sizes are available from the vendor.

- We will discuss the architectural details of the Xilinx Spartan-3 family of FPGAs in this class.
- You should be aware that Xilinx has other architectures, and that other companies have competing architectures.

Lecture #6 Agenda

- Spartan-3 FPGA family overview.
- Spartan-3 FPGA architecture detail part one.
- Technical information and diagrams reproduced with permission from Xilinx.

Xilinx Spartan-3 Family

- The Spartan product is a cost reduced, high volume FPGA. Most Spartan devices are a close relative to another Xilinx product.
- There are several Spartan FPGA families:
 - Spartan-II, Spartan-IIE (similar to Virtex).
 - Spartan-3, Spartan-3E (similar to Virtex-4).

Xilinx Spartan-3 Family

- EE178 currently uses the Spartan-3 FPGA family on a prototyping platform from Xilinx / Digilent.
 - High volume, 1.2 volt FPGA devices.
 - Pinout compatibility between devices.
 - On-chip memories and clock management.
 - Up to 5,000,000 system gates.

Spartan-3 Product Matrix

Device	XC3S50	XC3S200	XC3S400	XC3S1000	XC3S1500	XC3S2000	XC3S4000	XC3S5000
System Gates	50K	200K	400K	1000K	1500K	2000K	4000K	5000K
Logic Cells	1,728	4,320	8,064	17,280	29,952	46,080	62,208	74,880
Dedicated Multipliers	4	12	16	24	32	40	96	104
Block RAM Blocks	4	12	16	24	32	40	96	104
Block RAM Bits	72K	216K	288K	432K	576K	720K	1,728K	1,872K
Distributed RAM Bits	12K	30K	56K	120K	208K	320K	432K	520K
DCMs	2	4	4	4	4	4	4	4
I/O Standards	24	24	24	24	24	24	24	24
Max Single Ended I/O	124	173	264	391	487	565	712	784

50,000 to 5,000,000 System Gates

Choice of Packages

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

IOB Element

- Input path.
 - Two DDR registers.
- Output path.
 - Two DDR registers.
 - Two 3-state DDR registers.
- Separate clocks.
- Shared set and reset.
 - Separated sync/async.
 - Separated set/rst attribute per register.

I/O Block Advantages

- Independent registers.
 - Fast bus operations.
 - Interface to high-speed memory like ZBT and QDR.
 - Increase system performance with fast Tsu and Tco.
- Lower ground bounce with slew rate control.
- Zero hold-time for registered input signals using programmable input delay.
- Lower power consumption with keeper circuit.

Comprehensive Connectivity

- Single ended and differential.
 - 784 single-ended, 344 differential pairs.
 - 622 Mb/sec LVDS.
 - 24 I/O standards, 8 flexible I/O banks.
 - PCI 32/33 and 64/33 support.
 - Eliminate costly bus transceivers.
- 3.3V, 2.5V, 1.8V, 1.5V, 1.2V

Chip-to-Chip Interfacing: Backplane Interfacing: High-speed Memory Interfacing:

SelectIO

	Standard	Output V _{CCO}	Input V _{REF}
e ended	LVTTL	3.3V	
	LVCMOS33	3.3V	
	LVCMOS25	2.5V	
	LVCMOS18	1.8V	
	LVCMOS15	1.5V	
	LVCMOS12	1.2V	
	PCI 32/64 bit 33MHz	3.3V	
	SSTL2 Class I	2.5V	1.25V
	SSTL2 Class II	2.5V	1.25V
ing	SSTL18 Class I	1.8V	0.9V
S	HSTL Class I	1.5V	0.75V
	HSTL Class III	1.5V	0.9V
	HSTL18 Class I	1.8V	0.9V
	HSTL18 Class II	1.8V	0.9V
	HSTL18 Class III	1.8V	1.1V
	GTL		0.8V
	GTL+		1.0V
Differential	LVDS2.5	2.5V	
	Bus LVDS2.5	2.5V	
	Ultra LVDS2.5	2.5V	
	LVDS_ext2.5	2.5V	
	RSDS	2.5V	
	LDT2.5	2.5V	

- More standards for system integration.
- Differential standards.
 - Higher I/O performance.
 - Lower power, lower cost.

SelectIO Standards

- V_{REF} defines input threshold reference voltage
- Available as user I/O when using internal reference

SelectIO Output Banks

- Each bank has an output driver voltage (V_{CCO}).
 - Shared among all I/Os in that bank.
 - All I/O in a bank must use the same voltage source.
 - All V_{CCO} pins in a bank must be the same voltage.
- Only one V_{CCO} voltage for TQ144 per side.
- Outputs not requiring V_{CCO} fit in the bank.

SelectIO Input Banks

- Each bank has an input reference voltage (V_{REF}).
 - I/O in a bank must use the same reference voltage.
 - V_{REF} pins in a bank must be tied to the same voltage.
- Inputs not requiring a V_{REF} fit in the bank.
- V_{REF} pins in a bank available as additional I/O if I/O type does not require V_{REF}.

Single Ended I/O

- Traditional means of data transfer.
- Data is carried on a single line.
- Large voltage swing between logic levels.

Differential I/O

- One data bit is carried through two signal lines.
- Voltage difference determines logic level.
- Small voltage swing between logic levels.

LVDS input levels

Differential I/O Benefits

- Small voltage swing between pairs.
 - Reduced emissions.
 - High performance per pin pair.
 - Reduced power consumption.
 - Improved noise rejection.
- Significant cost savings.
 - Fewer pins, board layers, board traces.
 - Smaller connectors.

Digitally Controlled Impedance Drivers

- On-chip I/O termination.
- Reduce total board cost.
 - Eliminate termination resistors.
 - Easier layout and fewer layers.
- Increases system reliability.
 - Greatly reduces component count.
 - Lower chance of failures.
- Elimination of stub reflection noise.
 - No traces between termination resistor and package pins.

Signal Integrity Adjustment

System Interface Summary

- SelectIO supports 24 IEEE/JEDEC standards.
- Flexible I/O block.
 - Programmable slew rate.
 - Independent input, output and programmable 3-state registers.
 - Input delay for 0 hold time.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Digital Clock Manager (DCM)

- Delay Locked Loop (DLL)
 - Clock phase de-skew.
 - 50% duty cycle correction.
 - 25 MHz to 280 MHz.
 - Simple phase shifts.
- Digital Phase Shift (DPS)
 - (Period / 256) increments.
- Digital Frequency Synthesis (DFS)
 - M/N clock multiply and divide.
 - M= 2 to 32, N= 1 to 32

DCM Functional Blocks

Delay Locked Loop (DLL)

- A DLL inserts delay on the clock net until the clock input rising edge is in phase with the clock feedback rising edge.
- With a well-designed clock distribution network, the clock edges arrive simultaneously everywhere in the part concurrent with their arrival on the clock input pin.

DLL Functional Blocks

DLL: Adjust I/O Timing

- Eliminate clock distribution delay.
 - External clock pin and internal clock are aligned.
- Optional duty cycle correction.
 - 50/50 duty cycle correction applied when specified.

DLL: Phase Shift

- DLL phase shifts:
 0°, 90°, 180°, and 270°.
- Increase performance by utilizing additional clock phases.
- 50/50 duty cycle correction available.
- Excellent for external memory interfaces.

DLL: Clock Mirrors

*Actual Device Measurements

- Input clock duplication.
 - Provides on and off-chip clocks.
 - Clock distribution across system.
 - Extremely low output skew.
- Cleans up backplane or noisy clocks.

DLL: Frequency Adjustment

- Frequency multiplication by 2.
- Selectable division values from 1.5 to 16.
- Cascade to combine functions.
- 50/50 duty cycle correction available.

Digital Phase Shifter (DPS)

- Place clock edge anywhere within +/- clock period.
 - Amount of phase shift = (PS/256) x period
 - Where -255 < PS < +255
- Fixed or variable modes.
- Phase shift constant across temperature and voltage.
- Phase shift affects all DCM outputs.

- Synthesize any frequency within DFS operating range.
 - $CLKOUT = (M \div D) \times CLKIN$
 - M = 2 to 32 and D = 1 to 32
- Output frequency constant across temperature and voltage.
- Outputs have 50/50 duty cycle.

DCM Clock Options

Figure 37: Clock Synthesis Options

Clock Management Summary

- All digital DLL implementation.
 - Clock deskew.
 - Input noise rejection.
 - 50/50 duty cycle correction.
 - Clock mirroring.
- Multiply or divide clock.
- Programmable phase shift.

Lecture #7 Agenda

- Spartan-3 FPGA architecture detail part two.
- Technical information and diagrams reproduced with permission from Xilinx.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Configurable Logic Block (CLB)

- Switch matrix connects to routing.
- Four slices per CLB.
 - 2 SLICEL are Logic only.
 - 2 SLICEM are Logic / Memory.
- Fast arithmetic functions with cascadable look-ahead carry chains.

Spartan-3 Slice Capabilities

- Basic SLICEL structure of a slice is two 4-input look-up tables followed by two D flip-flops (plus extra stuff).
- Basic SLICEM structure is like SLICEL but the LUT4s may instead be used as RAM or a shift register.

SLICEM	Function	SLICEL
\checkmark	Logic/ROM	\checkmark
\checkmark	Arithmetic/Carry	\checkmark
\checkmark	Wide Mux	\checkmark
\checkmark	Distributed RAM	
\checkmark	Shift Register	

Spartan-3 Slice Capabilities

- Four-input LUT
 - Any 4-input logic function
 - 16-bit x 1 RAM (SLICEM)
 - 16-bit shift register (SLICEM)
- Carry & Control
 - Fast arithmetic logic
 - Multiplier logic
 - Multiplexer logic
- Storage element
 - Latch or flip-flop
 - Set and reset
 - True or inverted inputs
 - Sync. or async. control

Four-Input LUT

- Implements combinational logic.
 - Any function of 4 or fewer inputs.
 - Cascaded for wide-input functions.

Truth Table			
Inputs(ABCD)	Output(Z)		
0000	0		
0001	0		
0010	1		
0011	0		
	•••		
1110	1		
1111	1		

Dedicated Multiplexers

- More efficient than multiplexers implemented with look-up tables.
 - F5MUX used with LUT outputs.
 - F6MUX used with SLICE outputs.
 - F7MUX used with CLB outputs.
 - F8MUX used with F7MUX outputs.
- Efficient way to build wide muxes and functions up to eight inputs.

Distributed RAM

- A LUT in a SLICEM may be configured for use as a RAM.
 - Implement single and dual port.
 - Cascade LUTs to increase size.
- Synchronous write only.
- Reads may be synchronous or asynchronous.

Shift Register

- A LUT in a SLICEM may be configured for use as a RAM.
 - Implement single and dual port.
 - Cascade LUTs to increase size.
 - Dynamically addressable delay up to 16 cycles.

Arithmetic / Carry Logic

- Dedicated look-ahead carry logic.
 - High performance for counters and arithmetic functions.
 - Can be used to cascade LUTs for wide-input logic functions.
- Resources for efficient LUT implementation of shift and add multipliers.

Embedded Multipliers

- Not actually located in CLB, but this seems a good place to bring it up...
 - 18 x 18 bit signed operation.
 - 17 x 17 bit unsigned operation.
 - 2's complement operation.
 - Combinational and pipelined options.

Spartan-3 CLB Summary

- Flexible Configurable Logic Block (CLB).
 - Logic, Flip Flops.
 - Distributed RAM, Shift Registers.
- CLB configurable for simple to complex logic.
 - Any 6 input function into one logic level.
- Excellent for fast arithmetic operations.
 - Specialized carry logic for arithmetic operations.
 - Fast DSP functions, FIR filters.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

BlockRAM

- Dedicated blocks of 18-kilobit synchronous RAM.
- Ideal for many memory requirements.
- Builds both single and true dual-port memories, true dual port ideal for asynchronous FIFOs.
- May be initialized and used as synchronous ROM.

BlockRAM

High Performance Sync Dual-Port[™] RAM

- Independent configuration for port A and for port B.
- Enables data width conversion.

Configuration	Depth	Data bits	Parity bits
16K x 1	16Kb	1	0
8K x 2	8Kb	2	0
4K x 4	4Kb	4	0
2K x 9	2Kb	8	1
1K x 18	1Kb	16	2
512 x 36	512	32	4

True Dual-Port

- True simultaneous read and/or write to both ports.
- Each port has independent controls.
 - Address
 - Clock/Enable
 - Data
 - Read/Write
 - Reset
- May be used as two independent half-sized single port memories.

Dual-Port Flexibility

- Each port can be configured with different data width.
- Provides easy data width conversion.

Embedded Memory Summary

- Flexible BlockRAMs enable:
 - Single and True Dual-Port RAMs.
 - FIFOs for buffering data.
 - Data width conversion.
 - Caches and register banks.

Xilinx Spartan-3 Family

- Programmable Input Output Blocks (IOB).
- Clock Management Blocks (DCM).
- Configurable Logic Blocks (CLB).
- Flexible Synchronous Memory (BlockRAM).
- A variety of programmable routing resources.

Routing Wire Types

(b) Hex Line

(c) Double Line

Global Routing

- Distribute clocks and other high fanout signals throughout the device with minimum skew.
- Eight global clock nets designed to distribute high fanout clock signals.

Routing Summary

- Vector-based routing provides predictable routing delays independent of:
 - Design placement.
 - Device size.
- Superior routing results in quick routing times and increased design performance.

