San Jose State University
Department of Electrical Engineering
EE178, Spring 2006, Crabill

Laboratory Assignment #1

Objectives

This lab is an introduction to logic design using Verilog-HDL with the Xilinx ISE 6.3i tools. No new logic
design concepts are presented in this lab. The goals of this lab are for you to become familiar with the tools
you will be using for the rest of the semester:

e Xilinx’s ISE Project Navigator tool for Verilog-HDL.
e Xilinx’s Spartan-3 Starter Kit.
e Model Technology’s Modelsim simulator for Verilog-HDL.

Consider this lab a “no-brainer” warm up for the next labs. In previous semesters, | have heard students
make wistful remarks such as, “I wish | had paid more attention to lab one...” Please read carefully, pay
attention, and take your time. This lab is not a race to see who gets done first.

In order to receive credit for this lab, you must demonstrate to the instructor that your final design works
correctly in hardware. The details of the required demonstration are at the end of the lab handout. For this
lab, no report is due.

Bibliography

This lab draws heavily from documents on the Xilinx website http://www.xilinx.com. The lab leverages
content from the ISE 6 In-Depth Tutorial, the ISE 6 Quick Start Tutorial, and the Spartan-3 Starter Kit
User Guide. | would like to thank Xilinx for making this material available. This lab is effectively a
customized tutorial using Verilog-HDL and the Spartan-3 Starter Kit.

Project Navigator Overview

The Project Navigator is divided into four main sub-windows, as seen in Figure 1. On the top left is the
Sources in Project window which hierarchically displays the elements included in the project. Beneath the
Sources in Project window is the Processes for Current Source window which displays available processes
for the currently selected source. The third window at the bottom of the Project Navigator is the Console
window which displays status messages, errors, and warnings, and which is updated during all project
actions. The fourth window to the right is for viewing and editing text files. Each window may be resized,
undocked from Project Navigator or moved to a new location within the main Project Navigator window.
The default layout can always be restored by selecting View—>Restore Default Layout.

Xlllnx Project Navigator - C:\Projects'sjsu_eel78%eel78_s05'labl'labl.npl - [two_inp: r =10 _|

[] File Edit Wiew Project Source Frocess Window Help »| |8 x|
IEELCIEE AT I %\m“].;eug\nn\m 4w n
1 // File: two_input xor.v =]
Sl ek | 2 j/ Date: 0170172005
""" B b1 3 // Name: Eric Crabill
i Qe 4 gy
two_input_sor [beo_input_xor.v] & // This is the top lewel desitm for the
8 /f EEL78 Lab £l assigument.
T
8 // The “timescale directive specifies vhat
8 /4 the simulation time units are (1 ns here)
10 // and what the simulator timestep should he
11 A4 (1 ps here).
12
13 lns /1ops
14
15 module two_input_xor (inl, in2, out);:
18
17 /¢ Declare the ports for this module. Keep
- 18 /¢ in mind that all inputs are implied to be
S et View | (8 Snapshot view |) Lirary view | 19 /4 of type wire. For inout ports (not used
20 /4 in this example) type wire iz also implied.
=] 21 /¢ The output is also implied to be of type
1 22 /4 wire, unless you add an explicit "reg out:”
Frocesses for Source: "hwo_input_xor" feic) /7 statement.
w3 Add Existing Sowce 24
+ooF3 Create New Source 25 input inl, in2;
=] & Desion Entry Utities 28 output out;
: 3 Create Schematic Symbol 27
. M Launch ModelSim Simulator 28 /4 Below iz a description of what this module
[View Cormmand Line Log File 28 // does. You could substitute other possible
[‘View Verilog Instantiation Template =0 Jf descriptions, like those presented in the
G User Constraints 31 /¢ ¥erilog review presentation.
i 22
B3 Synth -®8T
g = prinesee 33 assign out = inl * in2;
5} Implement Design .
b=y .
=5 GeneratePoganming Fie i anocule
----- Pragramming File Generation Fepart
Generate PROM, ACE, or JTAG File
Coriigure Device (MPACT) _'ﬂ
4 »
= e i | b input .|
E =
hJ >|
[4[4 [= [*] Console £ Findin Files arings Enmurs
[|~

Figure 1: Typical Project Navigator Window

The Sources in Project window consists of three tabs which provide information for the user. Each tab is
discussed in further detail below:

e The Module View tab displays the project name, any user documents, the specified part type and
design flow/synthesis tool, and design source files. Each file in the Module View has an associated
icon. The icon indicates the file type (Verilog-HDL file or text file, for example). For a complete list of
possible source types and their associated icons, see the Project Navigator online help. Select
Help—>ISE Help Contents, select the Index tab and click Source / File types. If a file contains lower
levels of hierarchy, the icon has a + to the left of the name. Verilog-HDL files have this + to show the
modules within the file. You can expand the hierarchy by clicking the +. You can open a file for
editing by double-clicking on the filename.

e The Snapshot View tab displays all snapshots associated with the project currently open in Project
Navigator. A snapshot is a copy of the project including all files in the working directory, and
synthesis and simulation subdirectories. A snapshot is stored with the project for which it was taken,
and can be viewed in the Snapshot View. You can view the reports, user documents, and source files
for all snapshots. All information displayed in the Snapshot View is read-only. Using snapshots
provides an excellent version control system.

e The Library View tab displays all libraries associated with the project open in Project Navigator.

The Processes for Current Source window contains the Process View tab. The Process View tab is context
sensitive and changes based upon the source type selected in the Sources for Project window. From the
Process View tab, you can run the functions necessary to define, run and view your design. The Process
View tab provides access to the following functions:

e Design Entry Utilities. Provides access to symbol generation, instantiation templates, HDL Converter,
Command Line Log Files, Launch MTI, and simulation library compilation.

e User Constraints. Provides access to editing location and timing constraints.

e Synthesis. Provides access to Check Syntax, Synthesize, View RTL Schematic, and synthesis reports.
This varies depending on the synthesis tools you use.

o Implement Design. Provides access to implementation tools and design flow reports.

e Generate Programming File. Provides access to the configuration tools and bitstream generation.

The Processes for Current Source window incorporates automake technology. This enables the user to
select any process in the flow and the software automatically runs the processes necessary to get to the
desired step. For example, when you run the Implementation process, Project Navigator also runs the
synthesis process, if necessary, because implementation is dependent on up-to-date synthesis results.

The Console window displays errors, warnings, and informational messages. Errors are signified by a red
box next to the message, while warnings have a yellow box. Warning and Error messages may also be
viewed separately from other console text messages by selecting either the Warnings or Errors tab at the
bottom of the console window.

You can navigate from a synthesis error or warning message in the Console window to the location of the
error in a source Verilog-HDL file. To do so, select the error or warning message, right-click the mouse,
and from the menu select Goto Source. The Verilog-HDL source file opens and the cursor moves to the line
with the error.

You can also navigate from an error or warning message in the Console window to the relevant solution
records on the Xilinx support website. These types of errors or warnings can be identified by the web icon
to the left of the error. To navigate to the solution record, select the error or warning message, right-click
the mouse, and from the menu select Goto Solution Record. The default web browser opens and displays
all solution records applicable to this message.

In the fourth window, you can access the ISE Text Editor, the ISE Language Templates, and HDL Bencher
Text Editor. The ISE Text Editor enables you to edit source files and to access the ISE Language
Templates, which is a catalog of Verilog-HDL and User Constraint File templates. You can use and modify
these templates for your own design.

Design Entry

The design used in this tutorial is a simple two-input XOR. The design will be described in Verilog-HDL.
Double-click the Project Navigator icon on your desktop or select Start->Programs—> Xilinx ISE->Project
Navigator. From Project Navigator, select File>New Project. The first of the New Project dialog boxes
will appear, as shown in Figure 2.

—Enter a Mame and Location for the Project

Praoject Mame: Praoject Locatian:
lab C:AProjectshsjau_sel 78hee178_s08Mabl . |

— Select the type of Top-Level module for the Project

Top-Level Module Tupe:

HOL |

< Back I eRt » I Cancel Help

Figure 2: New Project Dialog 1 of 5

You are prompted to enter a project name, a project location, and a top level module type, as shown in
Figure 2. You may change the project location to another folder if you wish. Do not use file or folder
names that contain spaces. | advise all students to purchase a USB memory stick and store their work on
removable media. Even if you are doing most of your work from home, you must have some means to
transport your project to the lab if you need help debugging it. Never store your projects on the lab
machines. When you are satisfied with the project name and location, click “Next”.

The next dialog allows you to set additional project options. The first group of settings shown in Figure 3
represents the hardware target that is available to you on the Spartan-3 Starter Kit board. The second group
of settings represents the design entry language, synthesis tool, and simulator preferences. Set the options
as shown in Figure 3 and click “Next”.

— Select the Device and Dezign Flow for the Project
Property Hame Yalue
Device Family Spartan3
Device wc3z200
FPackage ft2B6
Speed Grade -4
Top-Level Module Type HOL
Synthesziz Tool =5T WHDL Aerilog)
Sirmulator b odelzim
[aenerated Simulation Language Yerilog

< Back I eRt » I Cancel Help

Figure 3: New Project Dialog 2 of 5

The following dialog box of Figure 4 gives you the opportunity to create new source files as part of the new
project process. Do not create new source files at this time, simply click “Next” to proceed.

— Create a Mew Source

Source File Type Mew Source... |

1
Hemoyve |

Create a new source to add to the project [optional]. Only one new source can be specified now.
Additional new sources can be added after project creation uzing the "Project->Mew Source!
commatd

< Back I eRt » I Cancel Help

Figure 4: New Project Dialog 3 of 5

The following dialog box of Figure 5 gives you the opportunity to add existing source files as part of the
new project process. Do not add existing source files at this time, simply click “Next” to proceed.

x|
—&dd Exizting Sources
Source File Type Copy to Projec| ~
] yP d — ! :I Add Sourze... |
5 —
3 — Bemoyve |
: w1

Add exizting zources ko the project [ophional]. Additional sources can be added after project
creation wzing the "'Project-»4dd Source ar "Project-+4dd Copy of Source’' commands.

< Back I Mext » I Cancel Help

Figure 5: New Project Dialog 4 of 5

The final dialog box in the new project process, shown in Figure 6, provides a summary of the project that
Project Navigator will create based on your settings. Review the summary to make sure it matches what is

shown in Figure 6. If it does not, go “Back” and correct any errors. Otherwise, click “Finish” to complete
this process.

MNew Project Information il

Project Havigatar will create a new Froject with the following zpecifications:

Project:
Project Mame: labl
Project Location: C:\Projectzhezu_sel73heel 78_z054ab1
Project Tvpe: HDL
Device:
Device Family: Spartand
Device: xe3z200
FPackage: ft256
Speed Grade: -4

Top-Level Module Typpe: HOL
Synthesis Tool: #S5T WHDLAEnlog]
Simulator; Modelzim

enerated Simulation Langquage: Yerilag

< Back I Finizh I Cancel Help

Figure 6: New Project Dialog 5 of 5

At this point, the project has been created but it does not contain any source files. Create a new source file
for the two-input XOR. Either select Project->New Source from the main menu or use the equivalent
process in the Processes for Current Source window. The first of the New Source dialog boxes will appear,
as shown in Figure 7.

New Source x|

E Embedded Processor

:ﬁi IF [Corelaen & Architecturs Wizard)
@ Schematic

@ State Diagram

Test Bench W aveform It'“""':'—i”l:"-":—"‘':'r

@ IJzer Docurnent

Yerlog Module Lacation:

Werlog Test Fisture Ic:‘apruiects'\sisu_eﬂ TA\eel TR _l
) vHDL Library

[¥] WHDL Module

[F] YHOL Package

] WHDL Test Bench

File Marne;

W 2dd to project

< Back I M et > I Cancel Help

Figure 7: New Source Dialog 1 of 3

Select Verilog Module to indicate you are creating a Verilog-HDL design module. Then, provide a file
name as shown in Figure 7. You should not need to change the specified location, which should be inside
the project directory you created earlier. Click “Next”.

The next dialog optionally allows you to specify the ports of the module. This may also be done in the text
editor, when creating the module, so skip it at this stage. Simply confirm that the settings match those
shown in Figure 8 and click “Next”.

Define Yerilog Source x|

bodule Mame |two_input_sor

Port Hame Direction M5B LSB
irpLt
input
input
iFpt
it
ifpt
ifpt
ifpt
irpLt
input
input
iFpt
input -|

< Back I M et > I Cancel Help |

Figure 8: New Source Dialog 2 of 3

LI»

The final dialog box of Figure 9 provides a summary of the source that Project Navigator will create based
on your settings. Review the summary to make sure it matches what is shown in Figure 9. If it does not,
go “Back” and correct any errors. Otherwise, click “Finish” to complete this process. The new source file
will be automatically opened in the text editor.

MNew Source Information il

Project M avigator will create a new zkeleton zource with the
following zpecifications:

Source Type: Werlog Module ;I
Source Mame: bwo_input_saor.w
Module Hame: two_input_sar

i o

Source Directony: oprojectsheju_eel¥8heel 78 2054 abl

< Back I Finizh I Cancel | Help |

Figure 9: New Source Dialog 3 of 3

In the text editor, some of the basic file structure is already in place. Keywords are displayed in blue, data
types in red, comments in green, and values in black. This color-coding enhances readability and
recognition of typographical errors. Now, enter the two-input XOR design. You may be able to simply
copy and paste this from the lab handout, but if that doesn’t work, transcribe the contents:

//
//
//
//
//
//

//
//
//
//

File: two_input_xor.v
Date: 01/01/2005
Name: Eric Crabill

This is the top level design for the
EE178 Lab #1 assignment.

The “timescale directive specifies what
the simulation time units are (1 ns here)
and what the simulator timestep should be
(1 ps here).

“timescale 1 ns /7 1 ps

module two_input_xor (inl, in2, out);

// Declare the ports for this module. Keep
// in mind that all inputs are implied to be
// of type wire. For inout ports (not used
// in this example) type wire is also implied.
// The output is also implied to be of type
// wire, unless you add an explicit "reg out;"
// statement.

input inl, in2;
output out;

// Below is a description of what this module
// does. You could substitute other possible
// descriptions, like those presented in the
// Verilog review presentation.

assign out = inl ™ iIn2;
endmodule
At this point, you should end up with a window that looks somewhat like that shown in Figure 10. Once

you are satisfied, save the file and close the window. It is a good idea to get in the habit of saving your
project. There are options on the main menu to save individual files or the complete project.

B xiliny - Project Navigator - C:\Projects\sjsu_ee178\ee178_s05\labl\lab1.npl - [two_input_xor. (=]
File Edt Wiew Froject Source Process Window Help »| |8 x|
= = = .
EELEE A T R 6% %%
2=
Sources in Project | 1 A4 File: two_input xor.v d
. 2/ Date: Dl/01/2008
i g 'ah; S— S // Nemer Eric Crabill
= £ #c3s200-4f a4 gy
two_input_xor (twa_input_xor.v] 5 // This iz the top lewel desigm for the
8 /f EEL78 Lab £l assigument.
T
8 // The 'timescale directive specifies vhat
8 /4 the simulation time units are (1 ns here)
10 // and what the simulator timestep should be
11 A4 (1 ps here).
12
13 lmns /1ps
14
18 module two_input_xor ({inl, in2, out);:
18
17 /¢ Declare the ports for this module. Keep
- 18 /¢ in mind that all inputs are implied to be
S et View | (8 Snapshot view |) Lirary view | 19 /4 of type wire. For inout ports (not used
20 /4 in this example) type wire iz also implied.
=] 21 /¢ The output is also implied to be of type
= =~ 1 22 /4 wire, unless you add an explicit "reg out:”
Processes for Source: "hwo_input_kor' 23 /7 statement.
w3 Add Existing Sowce 24
+ooF3 Create New Source 25 input inl, in2;
=] & Desion Entry Utities 28 output out;
: 3 Create Schematic Symbol 27
; M Launch ModelSim Simulator =2 /¢ Below is a description of what this module
[View Command Line Log Flls 28 // does. You could substitute other possible
[‘View Verilog Instantiation Template =0 Jf descriptions, like those presented in the
G User Constraints 31 /¢ ¥erilog review presentation.
i 22
Y3 Synthesize - XST :
i (k] - ~ .
) |mplement Desin B agzsign out = inl * inz;
=¥ Generate Programming Fils S oaule
----- Pragramming File Generation Fepart
Generate PROM, ACE, or JTAG File
Coriigure Device (MPACT) _'ﬂ
4 »
= e i | b input .|
E =
< _'I_I
[4[4 [= [*] Console £ Findin Files arings Enmurs
[|

Figure 10: Completed Design
Functional Simulation

Functional simulation is done before the design is synthesized to verify that the logic you have created is
correct. This allows a designer to find and fix any bugs in the design before spending time with subsequent
steps. Project Navigator provides an integrated flow with the Modelsim simulator that allows simulations
to be run from the Project Navigator. In order to simulate the design, a test bench is required to stimulate
the design. Create a new source file for the test bench. Either select Project->New Source from the main
menu or use the equivalent process in the Processes for Current Source window. The first of the New
Source dialog boxes will appear, as shown in Figure 11.

New Source X|

Bt File

E Embedded Processor

@ Implementation I:Dn_stralnts FI|I.3 File Narme:

:ﬁi IF [Corelaen & Architecturs Wizard)

FEM File Itestl:uenu:h

@ Schematic

@ State Diagram Location:

Test Bench W avefam Ic:\pruiects\sisu_em Tahee17E_ L |

@ Izer Document
Yenlog Module
Yerilog Test Fisture
) vHDL Library

[] wHDL Madule

[F] YHDL Package
4] WHOL Test Bench

v add to project

¢ Back I M et > I Cancel Help

Figure 11: New Source Dialog 1 of 3

Select Verilog Test Fixture to indicate you are creating a Verilog-HDL testbench module. Then, provide a
file name as shown in Figure 11. You should not need to change the specified location, which should be
inside the project directory you created earlier. Click “Next”.

The second dialog, shown in Figure 12, asks you to identify a design module with which the test bench
should be associated. Select the two-input XOR design as shown and click “Next”.

Source File

< Back I M et > I Cancel Help

Figure 12: New Source Dialog 2 of 3

The final dialog box of Figure 13 provides a summary of the source that Project Navigator will create based
on your settings. Review the summary to make sure it matches what is shown in Figure 13. If it does not,
go “Back” and correct any errors. Otherwise, click “Finish” to complete this process. The new source file
will be automatically opened in the text editor.

MNew Source Information il

Project M avigator will create a new zkeleton zource with the
following zpecifications:

Source Type: Werlog Test Fisture ;I
Source Mame: testbench. v
Agzociation: bwo_input_xor

i o

Source Directony: oprojectsheju_eel¥8heel 78 2054 abl

< Back I Finizh I Cancel | Help |

Figure 13: New Source Dialog 3 of 3

In the text editor, some of the basic file structure is already in place. Keywords are displayed in blue, data
types in red, comments in green, and values in black. This color-coding enhances readability and
recognition of typographical errors. Now, enter the test bench for the two-input XOR design. You may be
able to simply copy and paste this from the lab handout, but if that doesn’t work, transcribe the contents:

// File: testbench.v

// Date: 01/01/2005

// Name: Eric Crabill

//

// This is a top level testbench for the
// two_input_xor design, which is part of
// the EE178 Lab #1 assignment.

// The "timescale directive specifies what
// the simulation time units are (1 ns here)
// and what the simulator timestep should be
// (1 ps here).

“timescale 1 ns / 1 ps

module two_input_xor_testbench_v_tf;
// Declare a wire to be driven by the output
// of the two_input_xor design. Also declare
// two regs to drive the input of the design.
// These two regs may be assigned values by
// a behavioral stimulus.

wire sig3;

reg sigl, sig2;
// Instantiate the two_input_xor design module.
two_input_xor my_xor (.inl(sigl),.in2(sig2),.out(sig3));

// Assign values to the input signals and

// check the output results. This example
// is meant to illustrate the concept of a
// self-checking testbench, not to suggest
// that you should feel the need to verify
// the correct behavior of logical operators.

reg test passed;

initial

begin
// Let"s start off assuming we are going
// to pass the tests until we find a case
// that contradicts!
test _passed = 1"bl;

// Test Case #0

sigl = 17b0;

sig2 = 1°b0;

#5;

Sdisplay("At time %t, sigl = %b, sig2 = %b, output = %b.",
$time, sigl, sig2, sig3);

if (sig3 = 1"b0) test passed = 1°b0;

// Test Case #1

sigl = 1b0;

sig2 = 1"b1;

#5;

$display(""At time %t, sigl = %b, sig2 = %b, output = %b.",
$time, sigl, sig2, sig3);

if (sig3 = 1"bl) test passed = 1"b0;

// Test Case #2

sigl = 1"b1;

sig2 = 1"b0;

#5;

$display(""At time %t, sigl = %b, sig2 = %b, output = %b.",
$time, sigl, sig2, sig3);

if (sig3 = 1"bl) test passed = 1"b0;

// Test Case #3

sigl = 1"b1;

sig2 = 1"b1;

#5;

$display("'At time %t, sigl = %b, sig2 = %b, output = %b.",

$time, sigl, sig2, sig3);
if (sig3 = 1"b0) test passed = 1°bO;

// Now, print out a message with the test
// results and then finish the simulation.
if (test_passed) $display(*'Result: PASS™);

else $display("'Result: FAIL™);
$stop;
end

endmodule
At this point, you should end up with a window that looks somewhat like that shown in Figure 14. Once

you are satisfied, save the file and close the window. It is a good idea to get in the habit of saving your
project. There are options on the main menu to save individual files or the complete project.

P xilin - Project Navigator - C:\Projects)sjsu_ee178'ee178_s054labiilabl.npl - [testbemn 3 -1ol x|
File Edit Wew Project Source Process ‘Window Help 2| 18] x|
jpeRa|»E|aesE|[eEE R 2e | | deaan
==l
Sources in Proect | 1 4/ File: testbench.w =
(=58 2 7/ Date: 01/0L/2005
[lab1 3 // Name: Eric Crahill
=€ wo300-4258 a
=[¥] twa_input_sor [two_input_sor.v] & 4/ Thisz is a top level testbench for the
(] two_input_sor_testbench_v_tf (testbench.y] 8 // two_input_xor design, which is part of
7 // the EE178 Lab #1 assigument.
8
€ 4/ The ‘timescale directive specifies what
10 // the simulation time units are (1 ns here)
11 /4 and what the simulator timestep should he
12 /7 (1 ps here).
13
14 lns /1ps
15
16 module two_input xor_testhench v tf;
17 =
L 18 Jf Declare a wire to be driven by the ourput
4% e View | 8 snapshot View | [Lirary view | 18 /¢ Of the two input xor design. Also declare
20 // two regs to drive the input of the design.
| 21 /¢ These two regs may be assigned wvalues by
1| 2 // & behavioral stimulus.
Processes for Source: "twa_input_sar_testbench_v_tf" | 23
; B AddEsisting Source 24 wire sig3;
O Create New Source 25 reg sigl, sige:
@@ Modelsim Simulator 28
..... 5 Wods 27 7/ Instantiate the two_input xor desicm module.
----- Simulate Past-Translate Verilog Model e
Simulate Past-Map Verilog Made! 28 two_input_xor my xor (.inlisigl),.inZ(sig2),.out(sigd
Simulate Fost Flace & Route Verlog Mods! e
31 #/ Assigm walues to the input sigmals and
32 /¢ check the output results. This exauple
23 /4 i3 meant to illustrate the concept of a
24 /4 self-checking testbench, not to suggest
35 /¢ that you should feel the need to werify
EE] // the correct behavior of logical operators.
27
&l rer fast nasead: A2
[l 3
B4 Process View I testherch.y |
i ﬂ
4 DI
(4[4 [# console £ Findin Files b Wamings }_Emors
[| I

Figure 14: Completed Test Bench

Now that you have a test bench in your project, you can perform functional simulation on the design. The
simulation processes enable you to run simulation on the design using Modelsim. To locate the Modelsim
simulator processes, select the test bench in the Sources in Project window. Then, click the + next to the
Modelsim Simulator entry in the Processes for Current Source window to expand the item, this is also
shown in Figure 14. The following simulation processes are available:

e Simulate Behavioral Model. This process will start the design simulation.

e Simulate Post-Translate Verilog Model. Simulates the netlist after the NGDBuild stage.
e Simulate Post-Map Verilog Model. Simulates the netlist after the Map stage.

e Simulate Post-Place & Route Verilog Model. Simulates the netlist after Place & Route.

At this point, you will perform a functional simulation using Simulate Behavioral Model but you must
specify the simulation process properties first. Right click on Simulate Behavioral Model, and select
Simulation Properties. The Process Properties dialog box appears, as shown in Figure 15.

Process Properties x|
Sirulation Properties | Display Properties
Property Hame Yalue
Lze Custom Do File F
Cuztom Do File P A,
IJse Autornatic Da File +
Custarn Compile File List
Other %51k Command Line Options
Other Y¥LOG Command Line Optionz
Other YCOM Command Line Options
Simulation Fun Time 1000nz
Simulation Fezolution Default [1 pz
WHOL Syntax 93
Uze Explicit Declarations Only +
] 4 I Cancel | [refault | Help

Figure 15: Simulation Process Properties

If you do not have all the properties shown in Figure 15, you can make them visible by canceling the dialog
box, then selecting Edit > Preferences from the main menu. Select the Processes tab, set the Property
Display Level to advanced, and then return to Simulation Properties. Make sure the properties are set as
shown in Figure 15. The most interesting of these parameters is probably the simulation run time — 1000 ns
is more than sufficient for the test bench in the project. For test benches that require more simulation time,
this property should be adjusted as needed. Click “Ok”.

To start the simulation, double-click Simulate Behavioral Model. Modelsim creates a work directory,
compiles the source files, loads the design, and performs simulation for the time specified. Four Modelsim
windows will appear. The first, and most important, is the main Modelsim console, shown in Figure 16.
This window displays messages from the simulator. These messages include notes, warnings, and errors,
plus any output created by the design being simulated. You should see text output from the test bench.

lET_:jMndeISim XE II/Starter 5.8c - Custom Xilinx Yersion :;: =13l x|

Fle Edt Vew Comple Smulate Took Window Help

EXTr eI e e

Workspace =

1 Loading work.two_input_sor_testhench,_v_t =]
Loading work. two_input_xar
EF-t # Loading work.glbl

o my_xor two_input_sor Mc| [|# wave

stucture

& gl glbl Mc i signals
Ak time 5000, sigl =10, sig2 = 0, output = 0.
&b time 10000, 5ig1 =0, sig2 = 1, output = 1
AL time: 15000, sigl =1, sig2 = 0, output = 1
Ak time: 20000, sigl =1, sig2 = 1, output = 0

Resul: PASS

Break. at testbench.v lins 83

Simulation Breakpoint: Break at testbench.y line 83

MACRO . Mwo_input_xor_testbench_v_tf.fdo PAUSED at fine 14

A | oy 5 IM[pausad]
sim [Files =
|an 20ns Delta: 0 ‘slm'ftwn_lnput_xnr_teathench_v_tf P

Figure 16: Modelsim Console Window

The second window is the structure window, shown in Figure 17. This window allows you to browse the
hierarchy of the test bench and the design under test. In large hierarchical designs, it is very handy.

_ o] x|
File Edit Wiew indow
TI Instance Crezign umit I Dezign unit lype ”
E—t bwo_input_xor_teztbench... bwo_input_x... Module
o my_=or bwio_input_wor bModule
o qlbl albl kodule
simiftwo_input_xor_testbench v if y

Figure 17: Modelsim Structure Window

The third window is the signals window, shown in Figure 18. This window shows the signals that are
present in the portion of the design selected in the structure window.

_iol x|
File Edit W¥iew add Tools ‘Window
J dh % EE. J Contains: @

*| Mame Yalue tode
R X Internal
Internal

Internal

Internal

|sim:ftwn_input_}{nr_testhench_v_tf y

Figure 18: Modelsim Signals Window

The fourth and final window is the wave window, which is used to display simulated waveforms. Project
Navigator automatically adds all top-level signals to the wave window, as shown in Figure 19. Additional
signals are displayed in the signal window based upon the selected structure in the structure window.

== wave - default =lolx]

File Edit Yiew Insert Format Tools Window

Dﬂé & IEM k}éLJ !_J QQQHH«- I'F (L [t (2

|Dp5t021 ns |

Figure 19: Modelsim Wave Window

There are two basic methods for adding signals to the wave window. You can drag and drop them from the
signals window, or highlight them in the signals window and then select Add—>Wave-> Selected Signals. If
you use this second technique, you will see that there are additional options available.

When you add new signals to the wave window, you will notice that waveforms do not automatically
appear. This is because Modelsim did not record the simulation data for these signals. By default,
Modelsim will only record data for the signals that have been added to the waveform window before or
during the simulation. Therefore, when new signals are added to the waveform window, the simulation

needs to be restarted and re-run for the desired amount of time. To restart and re-run the simulation, click
the “Restart Simulation” button at the top of the console window. This button is shown in Figure 20.

Figure 20: Restart Simulation Button

The Restart dialog box appears, as shown in Figure 21. Simply click “Restart”. At the Modelsim prompt,
you will need to manually enter the run command. Enter “run 1000 ns” and hit enter. The simulation will
run again, just like it did the first time.

=10l x|

— Feep:

I+ List Format

¥ wWave Fomat
¥ EBreakpointz

v Logged Signals
V¥ Wirtual Definition:

v Aszzertions

Bestart LCancel

Figure 21: Restart Dialog

The Modelsim simulator provides the capability of saving the signals list in the wave window. This can be
important when additional signals or stimuli are added, and the simulation is restarted. In the wave
window, select File—>Save Format. After restarting a simulation, you can select File>Load Format in the
wave window to restore.

Design Synthesis

With a functionally correct design description in Verilog-HDL, the next step is to use a synthesis tool to
transform your description into a netlist. A netlist is a machine-readable schematic. In this class, we will be
using a tool called XST, which is integrated with Project Navigator and can only target Xilinx devices.

Select two_input_xor in the Sources in Project window. Then, double click on the Synthesize—XST
process in the Processes for Current Source window. Project Navigator will synthesize the design and print
information to the Console window in the process. As an informational note, it is possible to change the
synthesis options before you synthesize by right clicking on Synthesize—XST and then selecting
Properties. For this tutorial, however, leave the options at their default settings.

You should not see any errors in the Console window. However, you should always review the log file,
which is available for viewing if you expand the Synthesize—XST process item by clicking on the + next
to it. Select View Synthesis Report. If you don’t understand a particular message, you should not simply
ignore it. Instead, search the Xilinx support web site or ask the instructor. For comparison purposes, here
is a sample log file.

Release 6.3.031 - xst G.38

Copyright (c) 1995-2004 Xilinx,

TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) HDL Analysis
4) HDL Synthesis
5) Advanced HDL Synthesis
5.1) HDL Synthesis Report
6) Low Level Synthesis
7) Final Report

7.1) Device Utilization Summary

7.2) Timing Report

Inc.

All rights reserved.

* Synthesis Options Summary

-——-— Source Parameters

Input File Name

Input Format

Ignore Synthesis Constraint File
Verilog Include Directory

-—-- Target Parameters
Output File Name
Output Format

Target Device

-—-- Source Options

Top Module Name

Automatic FSM Extraction
FSM Encoding Algorithm

FSM Style

RAM Extraction

RAM Style

ROM Extraction

ROM Style

Mux Extraction

Mux Style

Decoder Extraction

Priority Encoder Extraction
Shift Register Extraction
Logical Shifter Extraction
XOR Collapsing

Resource Sharing

Multiplier Style

Automatic Register Balancing

-—-- Target Options

Add 10 Buffers

Global Maximum Fanout

Add Generic Clock Buffer (BUFG)
Register Duplication

Equivalent register Removal
Slice Packing

Pack 10 Registers into I0Bs

two_input_xor.prj
mixed
no

two_input_xor
ngc
Xxc3s200-4-ft256

two_input_xor
yes
auto
lut
yes
auto
yes
auto
yes
auto
yes
yes
yes
yes
yes
yes
auto
no

yes
500

yes
yes
yes
auto

-—-- General Options

Optimization Goal > speed
Optimization Effort :1

Keep Hierarchy : no
Global Optimization : allclocknets
RTL Output . yes
Write Timing Constraints > no
Hierarchy Separator T

Bus Delimiter T<>

Case Specifier : maintain
Slice Utilization Ratio : 100
Slice Utilization Ratio Delta 5

-—-- Other Options

Lso > two_input_xor.lIso
Read Cores I yes
Cross_clock_analysis I no

Verilog2001 > yes

Optimize Instantiated Primitives : no

* HDL Compilation

Compiling source file "two_input_xor.v"

Module <two_input_xor> compiled

No errors in compilation

Analysis of file <two_input_xor.prj> succeeded.

* HDL Analysis

Analyzing top module <two_input_xor>.
Module <two_input_xor> is correct for synthesis.

* HDL Synthesis

Synthesizing Unit <two_input_Xxor>.
Related source file is two_input_xor.v.
Found 1-bit xor2 for signal <out>.

Unit <two_input_xor> synthesized.

* Advanced HDL Synthesis

Advanced RAM inference ...

Advanced Multiplier inference ...
Advanced Registered AddSub inference ...
Dynamic shift register inference ...

HDL Synthesis Report
Macro Statistics

Xors -1
1-bit xor2 -1
* Low Level Synthesis

Optimizing unit <two_input_xor> ...
Loading device for application Xst from file "3s200.nph*
in environment C:/Xilinx.

Mapping all equations...

Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block two_input_xor,
actual ratio is O.

* Final Report

Final Results

RTL Top Level Output File Name
Top Level Output File Name
Output Format

Optimization Goal

Keep Hierarchy

two_input_xor.ngr
two_input_xor

ngc

speed

no

Design Statistics
10s 3

Cell Usage :
BELS

LUT2
10 Buffers
I1BUF
OBUF

PNWR R

Device utilization summary:

Selected Device : 3s200ft256-4
Number of Slices: 1 out of 1920 0%
Number of 4 input LUTs: 1 out of 3840 0%
Number of bonded I10Bs: 3 out of 173 1%

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE
REPORT GENERATED AFTER PLACE-AND-ROUTE.

Clock Information:

No clock signals found in this design

Timing Summary:

Speed Grade: -4

Minimum period: No path found

Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 7.836ns

Timing Detail:

Timing constraint: Default path analysis

Delay: 7.836ns (Levels of Logic = 3)
Source: in2 (PAD)
Destination: out (PAD)
Data Path: in2 to out
Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
IBUF:1->0 1 1.930 0.240 1in2_IBUF (in2_IBUF)
LUT2:10->0 1 0.551 0.240 Mxor_Resultl (out_OBUF)
OBUF:1->0 4.875 out_OBUF (out)
Total 7.836ns (7.356ns logic, 0.480ns route)

(93.9% logic, 6.1% route)

CPU: 22.00 / 26.81 s | Elapsed: 22.00 /7 27.00 s
Total memory usage is 63464 Kkilobytes

Reading the report is a good way to find out what types of (and how many) resources the synthesis tool
used. You can also catch other problems this way. For example, if you found that this design description
resulted in flip flops, in addition to a look-up table and 1/O buffers, you had better go back and figure out
what went wrong. This is why you must have an understanding of the hardware you are attempting to
create when you write your design description. At this point, you should have a green checkmark next to
the Synthesize—XST process.

Design Implementation

Design implementation is the sequence of events that translates your synthesized design netlist into a
programming file for the FPGA device. Your design description, which you have now synthesized, has a
number of ports at the top level. The implementation tools need to know how to assign the ports in your
top level to physical pins on the FPGA, which are connected to various resources on the Spartan-3 Starter
Kit board. If you do not make explicit assignments, the tools will randomly assign pins for you. However,
this is generally a bad idea because random assignments will be wrong.

The top-level design has two input ports, and a single output port. We will want to have two switches,
SWO0 and SW1, connected to the inputs. Additionally, we will want the output connected to an LED so that
we can observe it — indicator LDO is appropriate for this purpose.

If you inspect the top of the Spartan-3 Starter Kit board, you will notice that almost every resource has been
thoughtfully annotated with text indicating which FPGA pins are connected to it. This information is also
available in the Spartan-3 Starter Kit User Guide in tabular and schematic form. Try to identify which
FPGA pins are used for SWO0, SW1, and LDO, and then check your results with what is shown below. You
will need to be able to do this on your own in future lab assignments:

e SWO0 > FPGA Pin F12
e SWI1-> FPGA Pin G12
e LDO > FPGA Pin K12

You now have enough information to create what is called a user constraint file, or UCF. This file contains
design constraints that you did not specify in the Verilog-HDL description, such as pin location and design
performance constraints. It is convenient to provide them in a UCF rather than in the Verilog-HDL
description. For instance, if you make a mistake in the pin assignments, you do not need to go back and re-
synthesize your design.

You can add a UCF to the project using the same process you used for adding the design and its test bench.
Create a new source file; select Project->New Source from the main menu or use the equivalent process in
the Processes for Current Source window. The first of the New Source dialog boxes will appear, as shown
in Figure 22.

New Source EI
BMM File
E Embedded Processar
@ Irmplementation I:Dn_stralnts Flln? File Mame:
:ﬁ:- IF [Corelaen & Architecture Wizard) :
MEM File Itwn_lnput_:-:l:ur
@ Schematic
[£] State Diagram Location:
Test Bench ' avefom IE:"aF'ru:uiects'\.sisu_eﬂ ToheelVd . |

@ I1zer Document
Yerilog Module
Werlog Test Fisture
) vHDL Library

[¥] ¥HOL Module

[F] ¥HDL Package
8] WHDL Test Bench

W 2dd to project

< Back I M et > I Cancel Help

Figure 22: New Source Dialog 1 of 3

Select Implementation Constraints File to indicate you are creating a constraints file. Then, provide a file
name as shown in Figure 22. You should not need to change the specified location, which should be inside
the project directory you created earlier. Click “Next”.

The second dialog, shown in Figure 23, asks you to identify a design module with which the constraints file
should be associated. Select the two-input XOR design as shown and click “Next”.

Source File

< Back I M et > I Cancel Help

Figure 23: New Source Dialog 2 of 3

The final dialog box of Figure 24 provides a summary of the source that Project Navigator will create based
on your settings. Review the summary to make sure it matches what is shown in Figure 24. If it does not,
go “Back” and correct any errors. Otherwise, click “Finish” to complete this process. This time, however,
you will notice that the new source file is not automatically opened in the text editor.

MNew Source Information il

Project M avigator will create a new zkeleton zource with the
following zpecifications:

Source Type: Implementation Conztraints File ;I
Source Mame: bwo_input_saor. uck
Agzociation: bwo_input_xor

i o

Source Directony: C:\Projectshsjzu_eel 734eel 78_z054abl

< Back I Finizh I Cancel | Help |

Figure 24: New Source Dialog 3 of 3

If you select the constraint file in the Sources in Project Window, and then expand the Processes for
Current Source window item for User Constraints by clicking on the + next to it, you will see that there are
a number of ways to edit a user constraint file, including a text editor. The default user constraint editor is
called PACE. Simply double click the constraint file in the Sources in Project window, and PACE will
open, see Figure 25. PACE is a fairly powerful constraint editor but we will only be using a small portion
of its capabilities in this tutorial.

The PACE sub-windows shown in Figure 25 have been moved from their default positions in order to yield
an improved screen capture. First click on 1/0 Pins in the Design Browser window. The Design Object
List window will then show the names of the three top level ports and their signal directions. In this
window, fill in the LOC fields based on the previously determined FPGA pin assignments. For the three
10 STD fields select LVCMOS33, which is a common 3.3 volt signaling standard.

After entering each pin assignment, you will notice that the corresponding package pin shown in the
Package Pins window will be grayed out, indicating it is in use. This diagram represents the physical pins
on the package that holds the FPGA die. You will also notice the highlighting of regions shown in the
Device Architecture window. This diagram represents resources in use on the FPGA die related to your
constraints — in this case, the input and output buffers and 1/O pads. When you are done, save your work
and exit the PACE program.

i xilinx PACE - C:\Projects\sjsu_ee178'ee178_s054lab1'jtwa_input_xor.ucf

File Edit View IOBs Areas

Taols

‘window Help

=10ix]

IFEEEIE IR EE

Design Browser

3140 Pns
(2 Global Logic
~ [Logic

Ll

1/0 Hame]1/0 Direction|

B Design Object List - I,/0 Pins

Loc

Bank

140 Std.

Vref| Yeco| Diive Sir.

Termination

RiMEBREED (AR ORBODONECN

=101

Slew | Delay

out Output

K12

BANK3|LWCMOS33

Na 330

Diff. Type|Pair Hame| Local Clock|
Unknowir r

| in2 gt Gi2 BANKZ|LVEMOS33 Nz 330 Unknown [l
inl Input F12 BANKZ[LVEMOS32 N | 2.30 Unknown [l
E || fiTPackage Pins for I] b3
=
User [0 =
[User Prahibit Top View
[GhD
L] WCCINT _2.3.45 67 691011213141516
YOCALK A LT EEOTm C1M] g
u oo E e B
CONFIG c c
ITAG e L
= E E
o] GCLK | GCK F F
Power Management G G
hok Connected H H
J J
EBankd K K
L L
bkt v el | v
an M u 0 {] N
Bank3 P] () F
Bankt B[Lol as g
Banks T EO ju] (oh] oel T
Banké 12345676 91M11213141516
Bank?
= B
', Package Wiews /i_Architecture iiie 4 » [| L[Fackage iew), Architecture Vie 4 Iz
A

Figure 25: Entering Pin Location Constraints using PACE

Now that you have a constraint file in your project, you can implement the design. Select two_input_xor in
the Sources in Project window. Then, double click on the Implement Design process in the Processes for
Current Source window. Project Navigator will implement the design and print information to the Console
window in the process. As an informational note, it is possible to change the implementation options
before you implement by right clicking on Implement Design and then selecting Properties. For this
tutorial, however, leave the options at their default settings.

You should not see any errors in the Console window. However, you should always review the three log
files, which are available for viewing if you expand the Implement Design process item by clicking on the
+ next to it. There are log files located under Translate, Map, and Place and Route. If you don’t understand
a particular message, you should not simply ignore it. Instead, search the Xilinx support web site or ask the
instructor. At this point, you should have a green checkmark next to the Implement Design process.

Timing Simulation

After completing the implementation steps, you can simulate your design again — this time, using a
structural representation of your synthesized, placed, and routed design with worst-case delay information.

The idea is to simulate your design, as physically implemented in the FPGA device.

The simulation processes enable you to run simulation on the design using Modelsim. To locate the
Modelsim simulator processes, select the test bench in the Sources in Project window. Then, click the +
next to the Modelsim Simulator entry in the Processes for Source window to expand the item. You will
perform a timing simulation using Simulate Post-Place & Route Verilog Model but you must specify the
simulation process properties first, just like you did for functional simulation. Right click on Simulate
Post-Place & Route Verilog Model, and select Simulation Properties. The Process Properties dialog box

appears, as shown in Figure 26.

Process Properties il

Simulation Properties | Display Properties | Simulation Model Properties |

Property Hame Yalue

Lze Custom Do File F
Cuztom Do File P A,
Uze Automatic Do File for ModelSim Simulation +
Other %51k Command Line Options
Other Y¥LOG Command Line Options
Other %COM Command Line Options

Simulation Fun Time 1000z
Simulation Rezolution Default [1 ps]
Simulation Mode b asirum Delay
WHOL Syntax 93

Uze Explicit Declarations Only +

LUT Instance Mame T

Gererate YLD File r

k. I Cancel | [refaut | Help

Figure 26: Simulation Process Properties

Make sure the properties are set as shown in Figure 26. The most interesting of these parameters is
probably the simulation run time — again, 1000 ns is more than sufficient for the test bench in the project.
For test benches that require more simulation time, this property should be adjusted as needed. Click “Ok”.

To start the simulation, double-click Simulate Post-Place & Route Verilog Model. Modelsim creates a
work directory, compiles the source files, loads the design, and performs simulation for the time specified.
The simulator will run, and you’ll see results as before. Unless you are lucky, your simulation will fail...

The testbench should report that your design has failed because it is checking the output of your design five
nanoseconds after it has changed the inputs. If you look at the wave window, it appears that the FPGA
implementation requires more than five nanoseconds for signals to propagate through the design — more
like ten to fifteen nanoseconds. The exact number depends on the device you are using, the placement, the
routing, and your design. Close Modelsim, go back to your testbench, and change the delays to fifty
nanoseconds (to be safe...) Then perform the simulation again. This time, it should pass.

At this point, you are ready to program the FPGA with your design. The Spartan-3 Starter Kit board may
be programmed by two different methods. One is to program the FPGA by download cable. The other is
to program the PROM by download cable, and then have the PROM program the FPGA. Both are covered
in the following sections.

Programming the FPGA by Download Cable

Programming the FPGA directly by the download cable is a convenient way to try out a design. This
method is useful when you want to quickly test something, or are not certain your design is final. For
example, at this point you are fairly confident your design is correct. However, you should realize by this
point in your education that complex designs rarely ever work “on the first try”. One of the great
advantages FPGAs have over ASICs is that the penalty for being wrong on the first try is minimal.

The first order of business is to create a programming file for the FPGA. Select two_input_xor in the
Sources in Project window. In the Processes for Current Source window, right click on Generate
Programming File and then select Properties. The Process Properties dialog box appears. Select the
Configuration Options tab, as shown in Figure 27.

Process Properties : il
General Options ~ Configuration Options | Statup Options | Feadback Options I
Property Hame Yalue
Configuration R ate 3
Configuration Clk [Configuration Ping) Pull Up
Configuration Fin k0 Pull Up
Configuration Fin k1 Pull Up
Configuration Fin k2 Pull Up
Configuration Pin Program Pull Up
Configuration Pin Done Pull Up
JTAG Pin TCE Pull Up
JTAG Pin TDI Pull Up
JTAG Pin TDO Pull Up
JTAG Pin THS Pull U
Unuzed IOB Pinz Float -
UzellD Code [3 Digit Hexadecimal] (=FFFFFFFF
Feset DCK if SHUTDOWH & AGHIGH perfarmed r
] 4 I Cancel | Drefault | Help |

Figure 27: Generate Programming File Process Properties

Change the Unused IOB Pins option to Float. The other settings should already be correct, but make sure
they match what is shown in Figure 27. Next, select the Startup Options tab, as shown in Figure 28.

Process Properties El

Gereral Dptinnsl Configuration Options Startup Optionz | Beadback Dptiu:unsl

FProperty Hame Value
FPGA Start-Up Clock, JTAG Clock,
Enable Internal Done Pipe r
Done [Output E ventsz) Default [4]
Enable Outputs [Dutput E ventsz) Drefault [5]
Releaze "Write Enable [Output Events] Drefault [5]
Releaze DLL [Output Events] Drefault [Mois ait]
b atch Cycle Auto
Cirive Done Fin High r

2k, I Cancel Drefault Help

Figure 28: Generate Programming File Process Properties

Change the FPGA Start-Up Clock option to JTAG Clock. The other settings should already be correct, but
make sure they match what is shown in Figure 28. Click “Ok” to save the settings.

Confirm that two_input_xor is selected in the Sources in Project window. Then, double click on the
Generate Programming File process in the Processes for Current Source window. Project Navigator will
generate a programming file and print information to the Console window in the process.

Before you continue, you must have the Spartan-3 Starter Kit board, power supply, and download cable
available. Connect the download cable to the parallel port of the machine you are using. Plug the power
supply into the wall. Look at the Spartan-3 Starter Kit board and identify the following. If you need help,
ask the instructor or refer to the Spartan-3 Starter Kit User Guide:

e PROM Jumper, JP1, at Top Right

e Mode Jumper, J8, near Top Center

o DC Power Jack, J4, at Left Center

e Download Cable Connector, J7, at Top Center

Make sure that the PROM Jumper is set to Default and that the Mode Jumper has all three jumpers
installed. You should have received the board in this state, but it is better to confirm. Then, insert the
power plug into the DC Power Jack. Be aware that if a programming file was previously stored in the
PROM, it will automatically load, and may result in board activity, like flashing LEDs, etc... This can be
safely ignored. Finally, connect the download cable to its connector, as shown in Figure 29.

Figure 29: Download Cable Connection

To download your bitstream to the FPGA device, expand the Generate Programming File process by
clicking on the + next to it, and then double click on the Configure Device (iMPACT) process. This will
launch the iIMPACT program in another window. You will be immediately presented with several dialog
boxes, the first of which is shown in Figure 30.

Configure Devices : X|

| waant to configure device wia

* Boundary-Scan Mode

" Slave Serial Mode

" SelectMAP Made

" Desktop Configuration Mode

¢ Back I M et > I Cancel Help

Figure 30: Configuration Mode Selection

There are actually a bewildering number of ways to configure an FPGA device. The board has an
integrated JTAG programming function, which is also called Boundary-Scan mode. Select this option and
proceed to the next dialog box, shown in Figure 31.

Boundary-Scan Mode Selection x|

i Autamatically connect to cable and identify
Boundary-Scan chain

™ Enter a Boundany-5can Chain

¢ Back I Finizh I Cancel | Help

Figure 31: Boundary-Scan Mode Selection

Allow the program to automatically connect to the cable and identify the devices on the board. After you
finish this sequence, the program will automatically detect the FPGA and PROM devices and prompt you

to specify a programming file for each device. You should see a message like that shown in Figure 32.
Click “Ok™.

Boundary-Scan Chain Contents Summary x|

There were 2 devices detected in the baundary-scan chain,
iMPACT will nowve direct wou to associake a programming or

B3DL File with each device, starting with the First. ..

Figure 32: Notification

Next, you should get a sequence of two file requestors. | have observed, on occasion, that this does not
occur; | think it may be a bug in iIMPACT. If you do not get file requestors at this point, skip forward to
Figure 35. Otherwise, keep reading...

In the first file requestor, shown in Figure 33, select the two_input_xor.bit file you created with the
implementation process. This is the FPGA programming file.

Assign New Configuration File x|

Laak in: Iﬁ lab j - £ -

|:I __projnaw

1 _rgo

_work

|:I xsk
bwio_jmpuk_or, bit

Fil= narne: Itw::u_input_:-:-:ur.l:-it Dpen I
Files of type: [l Desian Files =l Cancel |
Cancel Al I Bypazs |

A

Figure 33: Selecting the FPGA Programming File

The next file requestor, shown in Figure 34, asks for a PROM programming file. We are not programming
the PROM at this time, therefore select Bypass.

Assign Mew Configuration File 2=l

Loak in: | i3l lab1 - - @k E-

|:I __projnavy
[:I _hgo
_Jwark

[:I wsk

File name: | Open |
Files of type: [MCS Files(*.mes) =l Cancel |

Cancel Al I | Bypazs I

4

Figure 34: Placing the PROM in Bypass Mode

At this point, you should be ready to program the FPGA. If you have made a mistake, you can correct your
assignments by using the technique illustrated in Figure 35.

8. untitled [Configuration Mode] - |
File Edit Wiew Mode Operations ©Output Help

BEEEREELIEEC D
Boundary-Scan | Slave Serial | SelectMAP | Desktop

=101 %]

Y

TDI ForILINK
wof02s
- File 7 -
TDO—— iGet Device ID
aet Device Signature/Usercode
I GOE Looping. .. |
Welrome to iWPAL

Desrice #1 selected

1| | o

Far Help, press F1 I 2

Figure 35: Alternate File Assignment Method

To correct a file assignment, or to make initial assignments if iMPACT does not automatically prompt you
for programming files, select the FPGA icon in the iMPACT window. Right click and select Assign New
Configuration File. You will get a file requestor like that shown in Figure 33. You can repeat this process
with the PROM icon, and you will get a file requestor like that shown in Figure 34.

Finally, you will reach the point shown in Figure 36. iIMPACT is ready to program the FPGA. Select the

FPGA icon in the window and then use the right mouse button to activate the menu as shown and select the
Program option.

C untitled [Configuration Mode] - iM =101 x|
File Edit Wiew Mode Operations ©Output Help

BEEEREELIEE D
Boundary-Scan | Slave Serial | SelectMAP | Desktop

Y

TDI —— | F LN
weas200 wof02s
bwwo_input_xor bit |
TDO— Tl |

Werify

Get Device ID

|
Get Device SignaturefUsercode g
IDCODE Looping. ..

Bssign Mew Configuration File. .

Diesrize #1 selected

-
1| | 3

Far Help, press F1 I'_

&

Figure 36: Select Program Device

You will be presented with a dialog box listing programming options. Most of these options are ghosted

out for FPGA programming and are of no concern, see Figure 37. Disable the Verify option, if selected,
and then click “Ok” to start the programming sequence.

2 x

™| Erase Betore Programming [T Functional Test
[Werify [T GOn:The-Fly Frogram
™| Bead Protect
™ wiite Praotect
FROM
—Wike | ———————— [T | Load FRGA
™| Secure Mode ™| Parallel Mode
I | Frogram Key ™ Use D4 for CF

[T EROM/CooFunmerl Userzode (8 Hex Digits]
| FFFFFFFF

]
[T =Pl UES: Enter up ta 13 characters

|
] I Cancel Help |

Figure 37: Programming Options

A progress indicator will appear. Once the programming is complete, the program will be sure to let you
know if it was successful or if it failed. If the programming has failed, re-check your cable connections, the
power connections, and the jumpers — and then try again. If it still fails, ask the instructor for assistance.

Now, you can test your design in hardware. Locate SWO0 and SW1 on the board, and exercise your design
by trying the four possible combinations of switch settings while observing LD0. Does the circuit behave
as you expect? If it does not, seek assistance. If it does work properly, you are ready to try the other
programming method. Exit iMPACT (you do not need to save). Keep the board connected to power and
the download cable.

Programming the PROM by Download Cable

The other method is to program the PROM by download cable, and then have the PROM program the
FPGA. Typically you would program the PROM when you believe your design is completely done. After
the PROM is programmed, each time the power is cycled, the FPGA will automatically load the
programming file from the PROM. After the PROM is programmed, the need for the download cable is
eliminated.

Expand the Generate Programming File process by clicking on the + next to it, and then double click on the
Generate PROM, ACE, or JTAG File process. This will launch the iMPACT program again.

Prepare Configuration Files

Figure 38: File Type Selection

You will be immediately presented with several dialog boxes, the first of which is shown in Figure 38.
Select the PROM File option and proceed to the next dialog box, shown in Figure 39.

Prepare PROM Files

| weant to target a
£ Hiling Serial PROM
£ Parallel PROM

" Wiline PROM with Design B evisioning Enablad
[T Compress Data

PROM File Farmat
o MCS O TEK 0 UFP['Cfarmat]

Ex0 HExX O BIM O ISC
[T Swap Bits

kemaory Fill ' alue [2 Hex Digit]: IFF

PROM File Mame: |Iab1

Locatiar: cohprojectzhaau_eel7Ehee1 73 _s05%al - Browse... |

¢ Back I M et > I Cancel Help

Figure 39: PROM Property Selection

In the dialog box of Figure 39, change the settings to match those shown. Do not forget to change the
PROM File Name. Then proceed to the next dialog box.

specify Xiline PROM Device X|

[T auto Select PROM

Select a PROM: wcf x| fucfizs =] Add |

Paosition Part Mame
I} wof02s

M urnter af B evisions: I * I Delete All |

¢ Back I M et > I Cancel Help

Figure 40: PROM Selection

In the dialog box of Figure 40, select the XCF—XCF02S PROM type, and then click “Add”. You should
see the PROM listed in the sub-window, at position zero. Then click “Next”.

File Generation Summary : : 5[

—'1'ou have entered following infarmation
FROM Tope: Senal

File Farmat; mos
Fill % aluie; FF
FROM Filername: labi

Murnber af PROMz: 1

Position Part Mame
1] woflZs

Click 'Mext' ta add device file.

¢ Back I M et > I Cancel Help

Figure 41: Summary Window

Figure 41 shows a summary of what you have selected. If your results do not match that shown in Figure
41, go “Back” and correct your error. Otherwise, click “Next” to proceed.

Add Device File X

[rata Stream 0

Starting Address [Max 8 Hex Digitz] : I':I
Maw start adding device filelz] : Add File...

¢ Back [et > Cancel Help

Figure 42: Add FPGA Programming Files

In the dialog box of Figure 42, click “Add File...” When the file requestor dialog box appears, select the
two_input_xor.bit file, which is the same one you used before. You will receive a warning that iIMPACT
needed to change the startup clock; dismiss the warning. You may recall, from a previous step, that we set
the Startup Clock option to JTAG Clock when creating the programming file. This setting is required when
programming the FPGA directly by the cable, but for programming the PROM the CCLK setting should be
used. iIMPACT makes this change for you without requiring that you revisit the Generate Programming
File process.

After you add the two_input_xor.bit file, IMPACT will ask you if you want to add another design file to the
PROM data stream. Click “No”. You will see another dialog box that looks almost identical to Figure 42,
which instructs you to click “Finish” to start generating the PROM file. Click “Finish”. iMPACT will ask
you if you want to create the file now. Click “Yes”.

You have now created the PROM programming file. You need to program the PROM. From the iMPACT
main menu, select Mode—> Configuration Mode. Then, select File=>Initialize Chain. At this point, you will
be prompted for programming files for the two devices in the chain, just like you were in the previous
section. However, this time around, put the FPGA in Bypass mode and assign the labl.mcs file to the
PROM. Then, select the PROM icon, right click, and select Program.

You will be presented with a dialog box listing programming options. Most of these options are ghosted
out for PROM programming and are of no concern, see Figure 43. Verify the options are set as shown in
Figure 43 and click “Ok” to start the programming sequence.

¥ Erase Before Programming [T Functional Test

v erify [T GOn:The-Fly Frogram

[Read Protect

™ wiite Praotect

PROM —————

—Wike | ———————— [T Load FPGA

™| Secure Mode ™| Parallel Mode

I | Frogram Key ™ Use D4 for CF

[~ PROM/CoolFunner-l Usercode [8 Hex Digits]
| FFFFFFFF

]
[T =Pl UES: Enter up ta 13 characters

] I Cancel Help |

Figure 43: Programming Options

A progress indicator will appear. Once the programming is complete, the program will be sure to let you
know if it was successful or if it failed. If the programming has failed, re-check your cable connections, the
power connections, and the jumpers — and then try again. If it still fails, ask the instructor for assistance.

Now, you can test your design again. Exit iMPACT (you do not need to save). Unplug the download cable
from the board. Unplug the power supply, wait three seconds, and then reapply power. The FPGA should
load your design automatically from the PROM. To verify it worked properly, locate SW0 and SW1 on the
board, and exercise your design by trying the four possible combinations of switch settings while observing
LDO0. Does the circuit behave as you expect? If it does not, seek assistance. If it does work properly, you
are done with the lab. In order to receive credit, demonstrate your final result to the instructor.

