

# Spartan-3 FPGA Family: DC and Switching Characteristics

DS099-3 (v1.3) March 4, 2004

**Advance Product Specification** 

# **DC Electrical Characteristics**

In this section, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

**Advance:** Initial estimates based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.

**Preliminary:** Based on characterization. Further changes are not expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. The following applies unless otherwise noted: The parameter values published in this module apply to all Spartan-3 devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. All parameters representing voltages are measured with respect to GND.

Some specifications list different values for one or more die revisions. All presently available Spartan-3 devices are classified as revision 0. Future updates to this module will introduce further die revisions as needed.

| Symbol                          | Description                                                               | Conditions                          | Min  | Max                     | Units |
|---------------------------------|---------------------------------------------------------------------------|-------------------------------------|------|-------------------------|-------|
| V <sub>CCINT</sub>              | Internal supply voltage                                                   |                                     | -0.5 | 1.32                    | V     |
| V <sub>CCAUX</sub>              | Auxiliary supply voltage                                                  |                                     | -0.5 | 3.00                    | V     |
| V <sub>CCO</sub>                | Output driver supply voltage                                              |                                     | -0.5 | 3.75                    | V     |
| $V_{REF}^{(2)}$                 | Input reference voltage                                                   |                                     | -0.5 | V <sub>CCO</sub> + 0.5  | V     |
| V <sub>IN</sub> <sup>(2)</sup>  | Voltage applied to all User I/O pins and Dual-Purpose pins <sup>(3)</sup> | Driver in a<br>high-impedance state | -0.5 | V <sub>CCO</sub> +0.5   | V     |
|                                 | Voltage applied to all Dedicated pins <sup>(4)</sup>                      |                                     | -0.5 | V <sub>CCAUX</sub> +0.5 | V     |
| Т <sub>Ј</sub>                  | Junction temperature                                                      | $V_{CCO} \le 3.0V$                  | -    | 125                     | °C    |
|                                 |                                                                           | V <sub>CCO</sub> > 3.0V             | -    | 105                     | °C    |
| T <sub>SOL</sub> <sup>(5)</sup> | Soldering temperature                                                     |                                     | -    | 220                     | °C    |
| T <sub>STG</sub>                | Storage temperature                                                       |                                     | -65  | 150                     | °C    |

# Table 1: Absolute Maximum Ratings

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings will cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely affects device reliability.

2. Table 5 specifies the range of values for  $V_{CCO}$  and  $V_{CCAUX}$ , which are used to determine the limits of this parameter.

3. All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS\_B, RDWR\_B, BUSY/DOUT, AND INIT\_B) draw power from the V<sub>CCO</sub> power rail of the associated bank.

 All Dedicated pins (M0–M2, CCLK, PROG\_B, DONE, HSWAP\_EN, TCK, TDI, TDO, and TMS) draw power from the V<sub>CCAUX</sub> rail (2.5V). For information concerning the use of 3.3V signals, see the "3.3V-Tolerant Configuration Interface" section in <u>Module 2</u>.

5. For soldering guidelines, see the information on "Packaging and Thermal Characteristics" at www.xilinx.com.

© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at <a href="http://www.xilinx.com/legal.htm">http://www.xilinx.com/legal.htm</a>. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

www.xilinx.com 1-800-255-7778

# Table 2: Supply Voltage Thresholds for Power-On Reset

| Symbol              | Description                                 | Min | Max | Units |
|---------------------|---------------------------------------------|-----|-----|-------|
| V <sub>CCINTT</sub> | Threshold for the V <sub>CCINT</sub> supply | 0.4 | 1.0 | V     |
| V <sub>CCAUXT</sub> | Threshold for the V <sub>CCAUX</sub> supply | 0.8 | 2.0 | V     |
| V <sub>CCO4T</sub>  | Threshold for the $V_{CCO}$ Bank 4 supply   | 0.4 | 1.0 | V     |

Notes:

1.

 $V_{CCINT}$ ,  $V_{CCAUX}$ , and  $V_{CCO}$  supplies may be applied in any order. To ensure successful power-on,  $V_{CCINT}$ ,  $V_{CCO}$  Bank 4, and  $V_{CCAUX}$  supplies must rise through their respective threshold-voltage ranges with no dips at any point. 2.

## Table 3: Other Power-On Requirements

| Symbol           | Description                                       | [      | Device Revision                                                               | Min               | Max | Units |
|------------------|---------------------------------------------------|--------|-------------------------------------------------------------------------------|-------------------|-----|-------|
| T <sub>CCO</sub> | CO V <sub>CCO</sub> ramp time for all eight banks |        | XC3S200, XC3S400,<br>and XC3S1500 in the<br>FT and FG packages <sup>(1)</sup> | 600               | -   | μs    |
|                  |                                                   |        | All other devices                                                             | 2.0               | -   | ms    |
|                  |                                                   | Future |                                                                               | To be<br>improved | -   |       |

Notes:

1. This specification is based on characterization.

2. At present, there are no ramp requirements for the V<sub>CCINT</sub> and V<sub>CCAUX</sub> supplies.

## Table 4: Power Voltage Levels Necessary for Preserving RAM Contents

| Symbol             | Description                                          | Min | Units |
|--------------------|------------------------------------------------------|-----|-------|
| V <sub>DRINT</sub> | V <sub>CCINT</sub> level required to retain RAM data | 1.0 | V     |
| V <sub>DRAUX</sub> | V <sub>CCAUX</sub> level required to retain RAM data | 2.0 | V     |

Notes:

RAM contents include configuration data. 1.

The level of the  $V_{CCO}$  supply has no effect on data retention. 2.

| Symbol                          | Descript                     | Min                            | Nom   | Max   | Units |    |
|---------------------------------|------------------------------|--------------------------------|-------|-------|-------|----|
| TJ                              | Junction temperature         | Inction temperature Commercial |       | -     | 85    | °C |
|                                 |                              | Industrial                     | -40   | -     | 100   | °C |
| V <sub>CCINT</sub>              | Internal supply voltage      |                                | 1.140 | 1.200 | 1.260 | V  |
| V <sub>CCO</sub> <sup>(1)</sup> | Output driver supply voltage |                                | 1.140 | -     | 3.450 | V  |
| V <sub>CCAUX</sub>              | Auxiliary supply voltage     | 2.375                          | 2.500 | 2.625 | V     |    |

# Table 5: General Recommended Operating Conditions

Notes:

The V<sub>CCO</sub> range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V<sub>CCO</sub> range specific to each of the single-ended I/O standards is given in Table 8, and that specific to the differential standards is given in Table 10.

# Table 6: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

| Symbol                          | Description                                                                               | Test Conditions                                                                         | Devi | ce Revision             | Min   | Тур   | Max   | Units |
|---------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------|-------------------------|-------|-------|-------|-------|
| ١ <sub>L</sub>                  | Leakage current at User                                                                   | Driver is in a                                                                          | 0    | $V_{CCO} \ge 3.0V$      | -25   | -     | +25   | μA    |
|                                 | I/O, Dual-Purpose, and<br>Dedicated pins                                                  | high-impedance state,<br>V <sub>IN</sub> = 0V or V <sub>CCO</sub> max,<br>sample-tested |      | V <sub>CCO</sub> < 3.0V | -10   | -     | +10   | μA    |
| I <sub>RPU</sub> <sup>(2)</sup> | Current through pull-up                                                                   | V <sub>IN</sub> =0, V <sub>CCO</sub> = 3.3V                                             |      | 0                       | -0.84 | -     | -2.35 | mA    |
|                                 | resistor at User I/O,<br>Dual-Purpose, and                                                | V <sub>IN</sub> =0, V <sub>CCO</sub> = 3.0V                                             |      |                         | -0.69 | -     | -1.99 | mA    |
| Dedicated pins                  | V <sub>IN</sub> =0, V <sub>CCO</sub> = 2.5V                                               |                                                                                         |      | -0.47                   | -     | -1.41 | mA    |       |
|                                 |                                                                                           | V <sub>IN</sub> =0, V <sub>CCO</sub> = 1.8V                                             |      |                         | -0.21 | -     | -0.69 | mA    |
|                                 |                                                                                           | V <sub>IN</sub> =0, V <sub>CCO</sub> = 1.5V                                             |      |                         | -0.13 | -     | -0.43 | mA    |
|                                 |                                                                                           | V <sub>IN</sub> =0, V <sub>CCO</sub> = 1.2V                                             |      |                         | -0.06 | -     | -0.22 | mA    |
| I <sub>RPD</sub> <sup>(2)</sup> | Current through<br>pull-down resistor at<br>User I/O, Dual-Purpose,<br>and Dedicated pins | V <sub>IN</sub> = V <sub>CCO</sub>                                                      |      |                         | 0.37  | -     | 1.67  | mA    |
| I <sub>REF</sub>                | V <sub>REF</sub> current per pin                                                          |                                                                                         | 0    | $V_{CCO} \ge 3.0V$      | -25   | -     | +25   | μA    |
|                                 |                                                                                           |                                                                                         |      | $V_{\rm CCO} < 3.0V$    | -10   | -     | +10   | μA    |
| C <sub>IN</sub>                 | Input capacitance                                                                         |                                                                                         |      | All                     | 3     | -     | 10    | pF    |

Notes:

1. The numbers in this table are based on the conditions set forth in Table 5.

2. This parameter is based on characterization.

# Table 7: Quiescent Supply Current Characteristics

|                           |                                           |          | Comm | nercial | Indu | strial |       |
|---------------------------|-------------------------------------------|----------|------|---------|------|--------|-------|
| Symbol                    | Description                               | Device   | Тур  | Max     | Тур  | Max    | Units |
| I <sub>CCINTQ</sub>       | Quiescent V <sub>CCINT</sub> supply       | XC3S50   | 10.0 |         |      |        | mA    |
|                           | current                                   | XC3S200  | 20.0 |         |      |        | mA    |
|                           |                                           | XC3S400  | 35.0 |         |      |        | mA    |
|                           |                                           | XC3S1000 | 65.0 |         |      |        | mA    |
|                           |                                           | XC3S1500 |      |         |      |        | mA    |
|                           |                                           | XC3S2000 |      |         |      |        | mA    |
|                           |                                           | XC3S4000 |      |         |      |        | mA    |
|                           |                                           | XC3S5000 |      |         |      |        | mA    |
| I <sub>CCOQ</sub> Quiesce | Quiescent V <sub>CCO</sub> supply current | XC3S50   | 1.5  |         |      |        | mA    |
|                           |                                           | XC3S200  | 1.5  |         |      |        | mA    |
|                           |                                           | XC3S400  | 1.5  |         |      |        | mA    |
|                           |                                           | XC3S1000 | 1.5  |         |      |        | mA    |
|                           |                                           | XC3S1500 |      |         |      |        | mA    |
|                           |                                           | XC3S2000 |      |         |      |        | mA    |
|                           |                                           | XC3S4000 |      |         |      |        | mA    |
|                           |                                           | XC3S5000 |      |         |      |        | mA    |
| I <sub>CCAUXQ</sub>       | Quiescent V <sub>CCAUX</sub> supply       | XC3S50   | 7.0  |         |      |        | mA    |
|                           | current                                   | XC3S200  | 15.0 |         |      |        | mA    |
|                           |                                           | XC3S400  | 20.0 |         |      |        | mA    |
|                           |                                           | XC3S1000 | 25.0 |         |      |        | mA    |
|                           |                                           | XC3S1500 |      |         |      |        | mA    |
|                           |                                           | XC3S2000 |      |         |      |        | mA    |
|                           |                                           | XC3S4000 |      |         |      |        | mA    |
|                           |                                           | XC3S5000 |      |         |      |        | mA    |

#### Notes:

 The numbers in this table are based on the conditions set forth in Table 5. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. For typical values, the ambient temperature (T<sub>A</sub>) is 25 °C with V<sub>CCINT</sub> = 1.2V, V<sub>CCO</sub> = 2.5V, and V<sub>CCAUX</sub> = 2.5V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated).

2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3 Web Power Tool at <u>http://www.xilinx.com/ise/power\_tools</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower, part of the Xilinx development software, takes a netlist as input to provide more accurate maximum and typical estimates.

# Table 8: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

|                                                                       |         | V <sub>cco</sub> |         |         | V <sub>REF</sub> |         | V <sub>IL</sub>          | V <sub>IH</sub>          |  |
|-----------------------------------------------------------------------|---------|------------------|---------|---------|------------------|---------|--------------------------|--------------------------|--|
| Signal Standard                                                       | Min (V) | Nom (V)          | Max (V) | Min (V) | Nom (V)          | Max (V) | Max (V)                  | Min (V)                  |  |
| GTL <sup>(2)</sup>                                                    | -       | -                | -       | 0.74    | 0.8              | 0.86    | V <sub>REF</sub> - 0.05  | V <sub>REF</sub> + 0.05  |  |
| GTL_DCI                                                               | -       | 1.2              | -       | 0.74    | 0.8              | 0.86    | V <sub>REF</sub> - 0.05  | V <sub>REF</sub> + 0.05  |  |
| GTLP <sup>(2)</sup>                                                   | -       | -                | -       | 0.88    | 1                | 1.12    | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| GTLP_DCI                                                              | -       | 1.5              | -       | 0.88    | 1                | 1.12    | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| HSTL_I, HSTL_I_DCI                                                    | 1.4     | 1.5              | 1.6     | 0.68    | 0.75             | 0.9     | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| HSTL_III,<br>HSTL_III_DCI                                             | 1.4     | 1.5              | 1.6     | 0.68    | 0.9              | 0.9     | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| HSTL_I_18,<br>HSTL_I_DCI_18                                           | 1.7     | 1.8              | 1.9     | -       | 0.9              | -       | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| HSTL_II_18,<br>HSTL_II_DCI_18                                         | 1.7     | 1.8              | 1.9     | -       | 0.9              | -       | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| HSTL_III_18,<br>HSTL_III_DCI_18                                       | 1.7     | 1.8              | 1.9     | -       | 1.1              | -       | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |  |
| LVCMOS12 <sup>(3)</sup>                                               | 1.14    | 1.2              | 1.3     | -       | -                | -       | 0.20V <sub>CCO</sub>     | 0.70V <sub>CCO</sub>     |  |
| LVCMOS15,<br>LVDCI_15,<br>LVDCI_DV2_15 <sup>(3)</sup>                 | 1.4     | 1.5              | 1.6     | -       | -                | -       | 0.20V <sub>CCO</sub>     | 0.70V <sub>CCO</sub>     |  |
| LVCMOS18,<br>LVDCI_18,<br>LVDCI_DV2_18 <sup>(3)</sup>                 | 1.7     | 1.8              | 1.9     | -       | -                | -       | 0.20V <sub>CCO</sub>     | 0.70V <sub>CCO</sub>     |  |
| LVCMOS25 <sup>(4)</sup> ,<br>LVDCI_25,<br>LVDCI_DV2_25 <sup>(3)</sup> | 2.3     | 2.5              | 2.7     | -       | -                | -       | 0.7                      | 1.7                      |  |
| LVCMOS33,<br>LVDCI_33,<br>LVDCI_DV2_33 <sup>(3)</sup>                 | 3.0     | 3.3              | 3.45    | -       | -                | -       | 0.8                      | 2.0                      |  |
| LVTTL                                                                 | 3.0     | 3.3              | 3.45    | -       | -                | -       | 0.8                      | 2.0                      |  |
| PCI33_3                                                               | -       | 3.0              | -       | -       | -                | -       | 0.30V <sub>CCO</sub>     | 0.50V <sub>CCO</sub>     |  |
| SSTL18_I,<br>SSTL18_I_DCI                                             | 1.65    | 1.8              | 1.95    | 0.825   | 0.9              | 0.975   | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> + 0.125 |  |
| SSTL2_I,<br>SSTL2_I_DCI                                               | 2.3     | 2.5              | 2.7     | 1.15    | 1.25             | 1.35    | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  |  |
| SSTL2_II,<br>SSTL2_II_DCI                                             | 2.3     | 2.5              | 2.7     | 1.15    | 1.25             | 1.35    | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  |  |

#### Notes:

1. Descriptions of the symbols used in this table are as follows:

V<sub>CCO</sub> -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs

 $V_{\text{REF}}$  -- the reference voltage for setting the input switching threshold  $V_{\text{IL}}$  -- the input voltage that indicates a Low logic level

VIH -- the input voltage that indicates a High logic level

Because the GTL and GTLP standards employ open-drain output buffers,  $V_{CCO}$  lines do not supply current to the I/O circuit, rather this current is provided using an external pull-up resistor connected from the I/O pin to a termination voltage ( $V_{TT}$ ). Nevertheless, the 2. voltage applied to the associated  $V_{CCO}$  lines must always be at or above  $V_{TT}$  and I/O pad voltages.

There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard. З.

All Dedicated pins (M0-M2, CCLK, PROG\_B, DONE, HSWAP\_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw 4. power from the V<sub>CCAUX</sub> rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS\_B, RDWR\_B, BUSY/DOUT, and INIT\_B) use the LVCMOS25 standard before the User mode. For these pins, apply 2.5V to the V<sub>CCO</sub> Bank 4 and V<sub>CCO</sub> Bank 5 rails at power-on as well as throughout configuration. For information concerning the use of 3.3V signals, see the "3.3V-Tolerant Configuration Interface" section in Module 2

The global clock inputs have the following bank associations: GCLK0 and GCLK1 with Bank 4, GCLK2 and GCLK3 with Bank 5, 5. GCLK4 and GCLK5 with Bank 1, and GCLK6 and GCLK7 with Bank 0. The signal standards assigned to the Global Clock Lines (and I/Os) of a given bank determine the V<sub>CCO</sub> voltage for that bank.

# Table 9: DC Characteristics of User I/Os Using Single-Ended Standards

| Signal Standa             | rd and | Test Co         | nditions        | Logic Level (   | Characteristics        |  |
|---------------------------|--------|-----------------|-----------------|-----------------|------------------------|--|
| Current Drive A           |        | I <sub>OL</sub> | I <sub>ОН</sub> | V <sub>OL</sub> | V <sub>OH</sub>        |  |
| (mA)                      |        | (mA)            | (mA)            | Max (V)         | Min (V)                |  |
| GTL                       |        | 32              | -               | 0.4             | -                      |  |
| GTL_DCI                   |        | Note 3          | Note 3          | -               |                        |  |
| GTLP                      |        | 36              | -               | 0.6             | -                      |  |
| GTLP_DCI                  |        | Note 3          | Note 3          | -               |                        |  |
| HSTL_I                    |        | 8               | -8              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| HSTL_I_DCI                |        | Note 3          | Note 3          | -               |                        |  |
| HSTL_III                  |        | 24              | -8              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| HSTL_III_DCI              |        | Note 3          | Note 3          | -               |                        |  |
| HSTL_I_18                 |        | 8               | -8              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| HSTL_I_DCI_18             |        | Note 3          | Note 3          | -               | v <sub>CCO</sub> - 0.4 |  |
| HSTL_II_18                |        | 16              | -16             | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| HSTL_II_DCI_18            |        | Note 3          | Note 3          | 1               |                        |  |
| HSTL_III_18               |        | 24              | -8              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| HSTL_III_DCI_18           |        | Note 3          | Note 3          | ]               |                        |  |
| LVCMOS12 <sup>(4)</sup>   | 2      | 2               | -2              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| -                         | 4      | 4               | -4              | ]               |                        |  |
| -                         | 6      | 6               | -6              | -               |                        |  |
| LVCMOS15 <sup>(4)</sup>   | 2      | 2               | -2              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| _                         | 4      | 4               | -4              | -               |                        |  |
|                           | 6      | 6               | -6              | -               |                        |  |
| -                         | 8      | 8               | -8              | -               |                        |  |
| -                         | 12     | 12              | –12             | -               |                        |  |
| LVDCI_15,<br>LVDCI_DV2_15 |        | Note 3          | Note 3          |                 |                        |  |
| LVCMOS18 <sup>(4)</sup>   | 2      | 2               | -2              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| -                         | 4      | 4               | -4              | -               |                        |  |
|                           | 6      | 6               | -6              |                 |                        |  |
| -                         | 8      | 8               | -8              | ]               |                        |  |
|                           | 12     | 12              | –12             |                 |                        |  |
|                           | 16     | 16              | –16             |                 |                        |  |
| LVDCI_18,<br>LVDCI_DV2_18 |        | Note 3          | Note 3          |                 |                        |  |
| LVCMOS25 <sup>(4,5)</sup> | 2      | 2               | -2              | 0.4             | V <sub>CCO</sub> - 0.4 |  |
| -                         | 4      | 4               | -4              | 1               |                        |  |
| -                         | 6      | 6               | -6              | ]               |                        |  |
| -                         | 8      | 8               | -8              | ]               |                        |  |
|                           | 12     | 12              | -12             |                 |                        |  |
| -                         | 16     | 16              | -16             | 1               |                        |  |
|                           | 24     | 24              | -24             | 1               |                        |  |
| LVDCI_25,<br>LVDCI_DV2_25 |        | Note 3          | Note 3          |                 |                        |  |

| Signal Standa            | ard and | Test Co         | nditions        | Logic Level C           | haracteristics          |
|--------------------------|---------|-----------------|-----------------|-------------------------|-------------------------|
| Current Drive            |         | I <sub>OL</sub> | I <sub>ОН</sub> | V <sub>OL</sub>         | V <sub>OH</sub>         |
| (mA)                     |         | (mA)            | (mA)            | Max (V)                 | Min (V)                 |
| LVCMOS33 <sup>(4)</sup>  | 2       | 2               | -2              | 0.4                     | V <sub>CCO</sub> - 0.4  |
|                          | 4       | 4               | -4              | -                       |                         |
|                          | 6       | 6               | -6              | _                       |                         |
|                          | 8       | 8               | -8              | _                       |                         |
|                          | 12      | 12              | -12             |                         |                         |
|                          | 16      | 16              | -16             |                         |                         |
|                          | 24      | 24              | -24             |                         |                         |
| VDCI_33,<br>.VDCI_DV2_33 |         | Note 3          | Note 3          | _                       |                         |
| LVTTL <sup>(4)</sup>     | 2       | 2               | -2              | 0.4                     | 2.4                     |
|                          | 4       | 4               | -4              | _                       |                         |
|                          | 6       | 6               | -6              |                         |                         |
|                          | 8       | 8               | -8              |                         |                         |
|                          | 12      | 12              | -12             |                         |                         |
|                          | 16      | 16              | -16             |                         |                         |
|                          | 24      | 24              | -24             |                         |                         |
| PCI33_3                  |         | Note 6          | Note 6          | 0.10V <sub>CCO</sub>    | 0.90V <sub>CCO</sub>    |
| SSTL18_I                 |         | 6.7             | -6.7            | V <sub>TT</sub> - 0.475 | V <sub>TT</sub> + 0.475 |
| SSTL18_I_DCI             |         | Note 3          | Note 3          |                         |                         |
| SSTL2_I                  |         | 7.5             | -7.5            | V <sub>TT</sub> - 0.61  | V <sub>TT</sub> + 0.61  |
| SSTL2_I_DCI              |         | Note 3          | Note 3          |                         |                         |
| SSTL2_II                 |         | 15              | -15             | V <sub>TT</sub> - 0.80  | V <sub>TT</sub> + 0.80  |
| SSTL2_II_DCI             |         | Note 3          | Note 3          |                         |                         |

## Table 9: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)

#### Notes:

The numbers in this table are based on the conditions set forth in Table 5 and Table 8. 1.

2.

Descriptions of the symbols used in this table are as follows:  $I_{OL}$  -- the output current condition under which  $V_{OL}$  is tested  $I_{OH}$  -- the output current condition under which  $V_{OH}$  is tested  $V_{OL}$  -- the output voltage that indicates a Low logic level  $V_{OH}$  -- the output voltage that indicates a High logic level  $V_{IL}$  -- the input voltage that indicates a High logic level  $V_{IL}$  -- the input voltage that indicates a High logic level  $V_{OL}$  -- the supply voltage that indicates a Well as LVCM

 $V_{CCO}$  -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs  $V_{REF}$  -- the reference voltage for setting the input switching threshold  $V_{TT}$  -- the voltage applied to a resistor termination

Tested according to the standard's relevant specifications. З.

For the LVCMOS and LVTTL standards: the same V<sub>OL</sub> and V<sub>OH</sub> limits apply for both the Fast and Slow slew attributes. 4.

- All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (D0-D7 and BUSY/DOUT) 5. exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3V signals, see the "3.3V-Tolerant Configuration Interface" section in Module 2.
- Tested according to the relevant PCI specifications. 6.

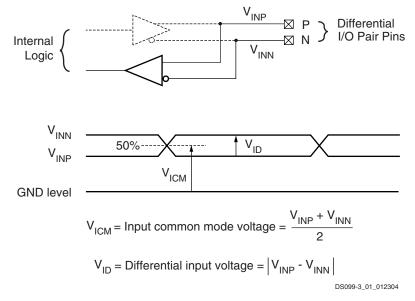



Figure 1: Differential Input Voltages

| Table 10: | Recommended Op   | perating Conditions | for User I/Os Usina  | Differential Signal Standards   |
|-----------|------------------|---------------------|----------------------|---------------------------------|
| 10010 10. | noooninnonaoa op | orading contaitione | ioi ocoi i/oc ociiig | Billorolliai Orginai Otaliaarao |

|                               |            | V <sub>CCO</sub> <sup>(1)</sup> |            |             | V <sub>ID</sub> |             |            | VICM       |            | V <sub>IH</sub> |            | V <sub>IL</sub> |            |
|-------------------------------|------------|---------------------------------|------------|-------------|-----------------|-------------|------------|------------|------------|-----------------|------------|-----------------|------------|
| Signal Standard               | Min<br>(V) | Nom<br>(V)                      | Max<br>(V) | Min<br>(mV) | Nom<br>(mV)     | Max<br>(mV) | Min<br>(V) | Nom<br>(V) | Max<br>(V) | Min<br>(V)      | Max<br>(V) | Min<br>(V)      | Max<br>(V) |
| LDT_25                        | 2.375      | 2.50                            | 2.625      | 200         | 600             | 1000        | 0.44       | 0.60       | 0.78       | -               | -          | -               | -          |
| LVDS_25,<br>LVDS_25_DCI       | 2.375      | 2.50                            | 2.625      | 100         | 350             | 600         | 0.30       | 1.25       | 2.20       | -               | -          | -               | -          |
| BLVDS_25                      | 2.375      | 2.50                            | 2.625      | -           | 350             | -           | -          | 1.25       | -          | -               | -          | -               | -          |
| LVDSEXT_25,<br>LVDSEXT_25_DCI | 2.375      | 2.50                            | 2.625      | 100         | 540             | 1000        | 0.30       | 1.20       | 2.20       | -               | -          | -               | -          |
| ULVDS_25                      | 2.375      | 2.50                            | 2.625      | 200         | 600             | 1000        | 0.44       | 0.60       | 0.78       | -               | -          | -               | -          |
| LVPECL_25                     | 2.375      | 2.50                            | 2.625      | 100         | -               | -           | -          | -          | -          | 0.8             | 2.0        | 0.5             | 1.7        |
| RSDS_25                       | 2.375      | 2.50                            | 2.625      | 100         | 200             | -           | -          | 1.20       | -          | -               | -          | -               | -          |

#### Notes:

1.

 $V_{CCO}$  only supplies differential output drivers, not input circuits.  $V_{REF}$  inputs are not used for any of the differential I/O standards.  $V_{ID}$  is a differential measurement. 2.

З.

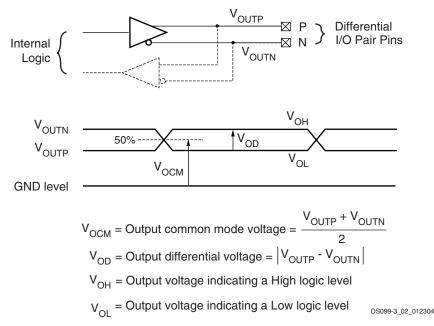



Figure 2: Differential Output Voltages

Table 11: DC Characteristics of User I/Os Using Differential Signal Standards

|                          |                    |                    | VOD         |             | ΔV          | ор          |            | V <sub>OCM</sub> |            | ΔV <sub>C</sub> | ОСМ         | v          | он         | ٧ <sub>c</sub> | DL         |
|--------------------------|--------------------|--------------------|-------------|-------------|-------------|-------------|------------|------------------|------------|-----------------|-------------|------------|------------|----------------|------------|
| Signal Standard          | Device<br>Revision | Min<br>(mV)        | Typ<br>(mV) | Max<br>(mV) | Min<br>(mV) | Max<br>(mV) | Min<br>(V) | Тур<br>(V)       | Max<br>(V) | Min<br>(mV)     | Max<br>(mV) | Min<br>(V) | Max<br>(V) | Min<br>(V)     | Max<br>(V) |
| LDT_25                   | All <sup>(3)</sup> | 430 <sup>(4)</sup> | 600         | 670         | -15         | 15          | 0.495      | 0.600            | 0.715      | -15             | 15          | -          | -          | -              | -          |
| LVDS_25                  | 0 <sup>(3)</sup>   | 100                | -           | 600         | -           | -           | 0.80       | -                | 1.6        | -               | -           | -          | -          | -              | -          |
|                          | Future             | 250                | -           | 400         | -           | -           | 1.125      | -                | 1.375      | -               | -           | 1.00       | 1.475      | 0.925          | 1.38       |
| BLVDS_25                 | All                | 250                | 350         | 450         | -           | -           | -          | 1.20             | -          | -               | -           | -          | -          | -              | -          |
| LVDSEXT_25               | 0(3)               | 100                | -           | 600         | -           | -           | 0.80       | -                | 1.6        | -               | -           | -          | -          | -              | -          |
|                          | Future             | 330                | -           | 700         | -           | -           | 1.125      | -                | 1.375      | -               | -           | -          | 1.700      | 0.705          | -          |
| ULVDS_25                 | All <sup>(3)</sup> | 430                | 600         | 670         | -           | -           | 0.495      | 0.600            | 0.715      | -               | -           | -          | -          | -              | -          |
| LVPECL_25 <sup>(7)</sup> | All                | -                  | -           | -           | -           | -           | -          | -                | -          | -               | -           | 1.35       | 1.745      | 0.565          | 1.005      |
| RSDS_25                  | 0 <sup>(3)</sup>   | 100                | -           | 600         | -           | -           | 0.80       | -                | 1.6        | -               | -           | -          | -          | -              | -          |
|                          | Future             | 100                | -           | 400         | -           | -           | 1.1        | -                | 1.4        | -               | -           | -          | -          | -              | -          |

#### Notes:

1. The numbers in this table are based on the conditions set forth in Table 5 and Table 10.

2.  $V_{OD}$ ,  $\Delta V_{OD}$ , and  $\Delta V_{OCM}$  are differential measurements.

For this standard, to ensure that the FPGA's output pair meets specifications, it is necessary to set the LVDSBIAS option in the BitGen utility, part of the Xilinx development software. See <u>XAPP751</u>. The option settings for LVDS\_25, LVDSEXT\_25, and RSDS\_25 are different from those for LDT\_25 and ULVDS\_25.

4. This value must be compatible with the receiver to which the FPGA's output pair is connected.

5. Output voltage measurements for all differential standards are made with a termination resistor (R<sub>T</sub>) of 100Ω across the N and P pins of the differential signal pair.

6. At any given time, only one differential standard may be assigned to each bank.

 Each LVPECL output-pair requires three external resistors: a 70Ω resistor in series with each output followed by a 240Ω shunt resistor. These are in addition to the external 100Ω termination resistor at the receiver side. See Figure 3.

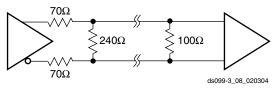



Figure 3: External Terminations for LVPECL

# **Switching Characteristics**

All Spartan-3 devices are available in two speed grades: -4 and the higher performance -5. Switching characteristics in this document may be designated as Advance, Preliminary, or Production. Each category is defined as follows:

**Advance**: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. *All –5 grade numbers are engineering targets: characterization is still in progress.* 

**Preliminary**: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.

**Production**: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specified limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the following applies: Parameter values apply to all Spartan-3 devices. All parameters representing voltages are measured with respect to GND.

Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3 speed files (V1.29), part of the Xilinx Development Software, are the original source for many but not all of the values. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

# I/O Timing

| Table | 12: | Pin-to-Pin | Clock-to-Output | Times for the | <b>IOB Output Path</b> |
|-------|-----|------------|-----------------|---------------|------------------------|
|-------|-----|------------|-----------------|---------------|------------------------|

|                       |                                                                                                                                                                                     |                                                       | Speed    |     | Grade |       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|-----|-------|-------|
|                       |                                                                                                                                                                                     |                                                       |          | -5  | -4    | 1     |
| Symbol                | Description                                                                                                                                                                         | Conditions                                            | Device   | Max | Max   | Units |
| Clock-to-Outpu        | it Times                                                                                                                                                                            | ·                                                     |          |     |       |       |
| T <sub>ICKOFDCM</sub> | When reading from the<br>Output Flip-Flop (OFF), the<br>time from the active<br>transition on the Global<br>Clock pin to data appearing<br>at the Output pin. The DCM<br>is in use. | LVCMOS25 <sup>(2)</sup> , 12mA                        | XC3S50   |     | 2.59  | ns    |
|                       |                                                                                                                                                                                     | output drive, Fast slew rate, with DCM <sup>(3)</sup> | XC3S200  |     | 2.59  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S400  |     | 2.59  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S1000 |     | 2.59  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S1500 |     | 2.60  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S2000 |     | 2.60  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S4000 |     | 2.60  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S5000 |     | 2.60  | ns    |
| T <sub>ICKOF</sub>    | When reading from OFF, the                                                                                                                                                          | LVCMOS25 <sup>(2)</sup> , 12mA                        | XC3S50   |     | 5.37  | ns    |
|                       | time from the active                                                                                                                                                                | output drive, Fast slew                               | XC3S200  |     | 5.39  | ns    |
|                       | transition on the Global<br>Clock pin to data appearing                                                                                                                             | rate, without DCM                                     | XC3S400  |     | 5.42  | ns    |
|                       | at the Output pin. The DCM                                                                                                                                                          |                                                       | XC3S1000 |     | 5.51  | ns    |
|                       | is not in use.                                                                                                                                                                      |                                                       | XC3S1500 |     | 5.65  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S2000 |     | 5.83  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S4000 |     | 5.95  | ns    |
|                       |                                                                                                                                                                                     |                                                       | XC3S5000 |     | 6.19  | ns    |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

 This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 16. If the latter is true, add the appropriate Output adjustment from Table 19.
 DCM output it inter is included in all measurements.

3. DCM output jitter is included in all measurements.

|                    |                                                                                                            |                                                                                    |          | Speed | Grade |       |  |
|--------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------|-------|-------|-------|--|
|                    |                                                                                                            |                                                                                    |          | -5    | -4    |       |  |
| Symbol             | Description                                                                                                | Conditions                                                                         | Device   | Min   | Min   | Units |  |
| Setup Times        |                                                                                                            |                                                                                    |          |       |       |       |  |
| T <sub>PSDCM</sub> | When writing to the Input                                                                                  | $LVCMOS25^{(2)},$                                                                  | XC3S50   |       | 2.72  | ns    |  |
|                    | Flip-Flop (IFF), the time from the setup of data at                                                        | IOBDELAY = NONE <sup><math>(4)</math></sup> , with DCM <sup><math>(5)</math></sup> | XC3S200  |       | 2.72  | ns    |  |
|                    | the Input pin to the active                                                                                |                                                                                    | XC3S400  |       | 2.74  | ns    |  |
|                    | transition at a Global                                                                                     |                                                                                    | XC3S1000 |       | 2.76  | ns    |  |
|                    | Clock pin. The DCM is in                                                                                   |                                                                                    | XC3S1500 |       | 2.86  | ns    |  |
|                    | use.                                                                                                       |                                                                                    | XC3S2000 |       | 2.98  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S4000 |       | 3.06  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S5000 |       | 3.23  | ns    |  |
| T <sub>PSFD</sub>  | When writing to IFF, the                                                                                   | LVCMOS25 <sup>(2)</sup> ,                                                          | XC3S50   |       | 2.43  | ns    |  |
|                    | time from the setup of<br>data at the Input pin to<br>an active transition at the<br>Global Clock pin. The | IOBDELAY = $NONE^{(4)}$ , without DCM                                              | XC3S200  |       | 3.53  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S400  |       | 3.52  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S1000 |       | 3.77  | ns    |  |
|                    | DCM is not in use.                                                                                         |                                                                                    | XC3S1500 |       | 4.15  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S2000 |       | 4.34  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S4000 |       | 4.53  | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S5000 |       | 4.90  | ns    |  |
| Hold Times         |                                                                                                            | +                                                                                  |          | •     | +     | -     |  |
| T <sub>PHDCM</sub> | When writing to IFF, the                                                                                   | LVCMOS25 <sup>(3)</sup> ,                                                          | XC3S50   |       | -1.81 | ns    |  |
|                    | time from the active                                                                                       | IOBDELAY = NONE <sup>(4)</sup> ,                                                   | XC3S200  |       | -1.81 | ns    |  |
|                    | transition at the Global<br>Clock pin to the point                                                         | with DCM <sup>(5)</sup>                                                            | XC3S400  |       | -1.81 | ns    |  |
|                    | when data must be held                                                                                     |                                                                                    | XC3S1000 |       | -1.81 | ns    |  |
|                    | at the Input pin. The                                                                                      |                                                                                    | XC3S1500 |       | -1.81 | ns    |  |
|                    | DCM is in use.                                                                                             |                                                                                    | XC3S2000 |       | -1.81 | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S4000 |       | -1.80 | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S5000 |       | -1.80 | ns    |  |
| T <sub>PHFD</sub>  | When writing to IFF, the                                                                                   | LVCMOS25 <sup>(3)</sup> ,                                                          | XC3S50   |       | -1.03 | ns    |  |
|                    | time from the active                                                                                       | $IOBDELAY = NONE^{(4)},$                                                           | XC3S200  |       | -1.89 | ns    |  |
|                    | transition at the Global<br>Clock pin to the point                                                         | without DCM                                                                        | XC3S400  |       | -1.87 | ns    |  |
|                    | when data must be held                                                                                     |                                                                                    | XC3S1000 |       | -2.01 | ns    |  |
|                    | at the Input pin. The                                                                                      |                                                                                    | XC3S1500 |       | -2.20 | ns    |  |
|                    | DCM is not in use.                                                                                         |                                                                                    | XC3S2000 |       | -2.20 | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S4000 |       | -2.24 | ns    |  |
|                    |                                                                                                            |                                                                                    | XC3S5000 |       | -2.32 | ns    |  |

# Table 13: Pin-to-Pin Setup and Hold Times for the IOB Input Path

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, *subtract* the appropriate adjustment from Table 16. If this is true of the data Input, *add* the appropriate input adjustment from the same table.

3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, *add* the appropriate Input adjustment from Table 16. If this is true of the data Input, *subtract* the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

4. All numbers measured with no programmed input delay.

5. DCM output jitter is included in all measurements.

| Table 14: | Setup and Hold Times for the IOB Input Path |
|-----------|---------------------------------------------|
|-----------|---------------------------------------------|

|                      |                                                                                                                                                                    |                                              |          | Speed    | Grade    |       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|----------|----------|-------|
|                      |                                                                                                                                                                    |                                              |          | -5       | -4       |       |
| Symbol               | Description                                                                                                                                                        | Conditions                                   | Device   | Min      | Min      | Units |
| Setup Times          |                                                                                                                                                                    |                                              |          | <u>.</u> | <u>.</u> |       |
| T <sub>IOPICK</sub>  | Time from the setup of data<br>at the Input pin to the active<br>transition at the ICLK input<br>of the Input Flip-Flop (IFF).<br>No input delay is<br>programmed. | LVCMOS25 <sup>(2)</sup> ,<br>IOBDELAY = NONE | All      | 1.15     | 1.32     | ns    |
| T <sub>IOPICKD</sub> | Time from the setup of data                                                                                                                                        |                                              | XC3S50   | 3.26     | 3.75     | ns    |
|                      | at the Input pin to the active transition at the IFF's ICLK                                                                                                        | IOBDELAY = IFD                               | XC3S200  | 3.89     | 4.47     | ns    |
|                      | input. The input delay is programmed.                                                                                                                              |                                              | XC3S400  | 3.89     | 4.47     | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S1000 | 4.15     | 4.77     | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S1500 | 4.32     | 4.97     | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S2000 | 4.50     | 5.17     | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S4000 | 4.67     | 5.37     | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S5000 | 5.02     | 5.77     | ns    |
| lold Times           |                                                                                                                                                                    | 1                                            |          | 1        |          | -1    |
| Т <sub>ЮІСКР</sub>   | Time from the active<br>transition at the IFF's ICLK<br>input to the point where<br>data must be held at the<br>Input pin. No input delay is<br>programmed.        | LVCMOS25 <sup>(3)</sup> ,<br>IOBDELAY = NONE | All      |          | -0.66    | ns    |
| T <sub>IOICKPD</sub> | Time from the active                                                                                                                                               | LVCMOS25 <sup>(3)</sup> ,                    | XC3S50   |          | -2.36    | ns    |
|                      | transition at the IFF's ICLK input to the point where                                                                                                              | IOBDELAY = IFD                               | XC3S200  |          | -2.87    | ns    |
|                      | data must be held at the                                                                                                                                           |                                              | XC3S400  |          | -2.87    | ns    |
|                      | Input pin. The input delay is programmed.                                                                                                                          |                                              | XC3S1000 |          | -3.08    | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S1500 |          | -3.22    | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S2000 |          | -3.36    | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S4000 |          | -3.50    | ns    |
|                      |                                                                                                                                                                    |                                              | XC3S5000 |          | -3.78    | ns    |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, *add* the appropriate Input adjustment from Table 16.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, *subtract* the appropriate Input adjustment from Table 16. When the hold time is negative, it is possible to change the data before the clock's active edge.

|                     |                                                                                                                                          |                                              |          | Speed |      |       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|-------|------|-------|
|                     |                                                                                                                                          |                                              |          | -5    | -4   |       |
| Symbol              | Description                                                                                                                              | Conditions                                   | Device   | Max   | Max  | Units |
| Propagation T       | imes                                                                                                                                     |                                              |          |       |      |       |
| T <sub>IOPI</sub>   | The time it takes for data<br>to travel from the Input<br>pin to the IOB's I output<br>with no input delay<br>programmed                 | LVCMOS25 <sup>(2)</sup> ,<br>IOBDELAY = NONE | All      | 1.05  | 1.20 | ns    |
| T <sub>IOPID</sub>  | The time it takes for data                                                                                                               | IOBDELAY = IFD                               | XC3S50   | 3.16  | 3.63 | ns    |
|                     | to travel from the Input<br>pin to the I output with the                                                                                 |                                              | XC3S200  | 3.79  | 4.35 | ns    |
|                     | Input delay programmed                                                                                                                   |                                              | XC3S400  | 3.79  | 4.35 | ns    |
|                     |                                                                                                                                          |                                              | XC3S1000 | 4.05  | 4.65 | ns    |
|                     |                                                                                                                                          |                                              | XC3S1500 | 4.22  | 4.85 | ns    |
|                     |                                                                                                                                          |                                              | XC3S2000 | 4.40  | 5.05 | ns    |
|                     |                                                                                                                                          |                                              | XC3S4000 | 4.57  | 5.25 | ns    |
|                     |                                                                                                                                          |                                              | XC3S5000 | 4.92  | 5.65 | ns    |
| T <sub>IOPLI</sub>  | The time it takes for data<br>to travel from the Input<br>pin through the IFF latch<br>to the I output with no<br>input delay programmed | LVCMOS25 <sup>(2)</sup> ,<br>IOBDELAY = NONE | All      | 1.55  | 1.78 | ns    |
| T <sub>IOPLID</sub> | The time it takes for data                                                                                                               | LVCMOS25 <sup>(2)</sup> ,                    | XC3S50   | 3.66  | 4.21 | ns    |
|                     | to travel from the Input<br>pin through the IFF latch                                                                                    | IOBDELAY = IFD                               | XC3S200  | 4.29  | 4.93 | ns    |
|                     | to the I output with the                                                                                                                 |                                              | XC3S400  | 4.29  | 4.93 | ns    |
|                     | input delay programmed                                                                                                                   |                                              | XC3S1000 | 4.55  | 5.23 | ns    |
|                     |                                                                                                                                          |                                              | XC3S1500 | 4.73  | 5.43 | ns    |
|                     |                                                                                                                                          |                                              | XC3S2000 | 4.90  | 5.63 | ns    |
|                     |                                                                                                                                          |                                              | XC3S4000 | 5.07  | 5.83 | ns    |
|                     |                                                                                                                                          |                                              | XC3S5000 | 5.42  | 6.23 | ns    |

# Table 15: Propagation Times for the IOB Input Path

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 16.

# Table 16: Input Timing Adjustments for IOB

|                                            |       | l the<br>ent Below |       |
|--------------------------------------------|-------|--------------------|-------|
| Convert Input Time from<br>LVCMOS25 to the | Speed |                    |       |
| Following Signal Standard                  | -5    | -4                 | Units |
| Single-Ended Standards                     |       |                    |       |
| GTL, GTL_DCI                               | -0.37 | -0.37              | ns    |
| GTLP, GTLP_DCI                             | -0.37 | -0.37              | ns    |
| HSTL_I, HSTL_I_DCI                         | -0.18 | -0.18              | ns    |
| HSTL_III, HSTL_III_DCI                     | -0.19 | -0.19              | ns    |
| HSTL_I_18,<br>HSTL_I_DCI_18                | -0.26 | -0.26              | ns    |
| HSTL_II_18,<br>HSTL_II_DCI_18              | -0.26 | -0.26              | ns    |
| HSTL_III_18,<br>HSTL_III_DCI_18            | -0.20 | -0.20              | ns    |
| LVCMOS12                                   | 0.40  | 0.40               | ns    |
| LVCMOS15, LVDCI_15,<br>LVDCI_DV2_15        | 0.47  | 0.47               | ns    |
| LVCMOS18, LVDCI_18,<br>LVDCI_DV2_18        | 0.30  | 0.30               | ns    |
| LVCMOS25, LVDCI_25,<br>LVDCI_DV2_25        | 0     | 0                  | ns    |
| LVCMOS33, LVDCI_33,<br>LVDCI_DV2_33        | 0.09  | 0.09               | ns    |
| LVTTL                                      | -0.31 | -0.31              | ns    |

## Table 16: Input Timing Adjustments for IOB (Continued)

|                                            | ,     | the<br>ent Below |       |
|--------------------------------------------|-------|------------------|-------|
| Convert Input Time from<br>LVCMOS25 to the | Speed | Grade            |       |
| Following Signal Standard                  | -5    | -4               | Units |
| PCI33_3                                    | 0.32  | 0.32             | ns    |
| SSTL18_I, SSTL18_I_DCI                     | -0.17 | -0.17            | ns    |
| SSTL2_I, SSTL2_I_DCI                       | -0.19 | -0.19            | ns    |
| SSTL2_II, SSTL2_II_DCI                     | -0.21 | -0.21            | ns    |
| Differential Standards                     |       | •                |       |
| LDT_25                                     | 0.04  | 0.04             | ns    |
| LVDS_25, LVDS_25_DCI                       | 0.06  | 0.06             | ns    |
| BLVDS_25                                   |       |                  | ns    |
| LVDSEXT_25,<br>LVDSEXT_25_DCI              |       |                  | ns    |
| ULVDS_25                                   | -0.05 | -0.05            | ns    |
| LVPECL_25                                  |       |                  | ns    |
| RSDS_25                                    |       |                  | ns    |

#### Notes:

<sup>1.</sup> The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.

<sup>2.</sup> These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

## Table 17: Timing for the IOB Output Path

|                     |                                                                                                                                                      |                                                                   | Speed | Grade |       |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|-------|-------|--|
|                     |                                                                                                                                                      |                                                                   | -5    | -4    | -     |  |
| Symbol              | Description                                                                                                                                          | Conditions                                                        | Max   | Мах   | Units |  |
| Clock-to-Outp       | ut Times                                                                                                                                             |                                                                   |       |       |       |  |
| Т <sub>ЮСКР</sub>   | When reading from the<br>Output Flip-Flop (OFF), the<br>time from the active transition<br>at the OTCLK input to data<br>appearing at the Output pin | LVCMOS25 <sup>(2)</sup> , 12mA<br>output drive, Fast slew<br>rate | 3.64  | 4.18  | ns    |  |
| Propagation T       | ïmes                                                                                                                                                 |                                                                   |       |       | I     |  |
| T <sub>IOOP</sub>   | The time it takes for data to<br>travel from the IOB's O input<br>to the Output pin                                                                  | LVCMOS25 <sup>(2)</sup> , 12mA<br>output drive, Fast slew<br>rate | 2.97  | 3.42  | ns    |  |
| T <sub>IOOLP</sub>  | The time it takes for data to<br>travel from the O input<br>through the OFF latch to the<br>Output pin                                               |                                                                   | 3.41  | 3.92  | ns    |  |
| Set/Reset Tim       | es                                                                                                                                                   |                                                                   |       |       | I     |  |
| T <sub>IOSRP</sub>  | Time from asserting the<br>OFF's SR input to<br>setting/resetting data at the<br>Output pin                                                          | LVCMOS25 <sup>(2)</sup> , 12mA<br>output drive, Fast slew<br>rate | 4.44  | 5.10  | ns    |  |
| T <sub>IOGSRQ</sub> | Time from asserting the<br>Global Set Reset (GSR) net<br>to setting/resetting data at<br>the Output pin                                              |                                                                   | 8.07  | 9.28  | ns    |  |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 19.

|                                    |                                                                                                                                                          |                                                   | Speed | Grade |       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|-------|-------|
|                                    |                                                                                                                                                          |                                                   | -5    | -4    |       |
| Symbol                             | Description                                                                                                                                              | Conditions                                        | Max   | Max   | Units |
| Synchronous O                      | utput Enable/Disable Times                                                                                                                               |                                                   |       |       |       |
| Т <sub>ЮСКНZ</sub>                 | Time from the active transition at<br>the OTCLK input of the<br>Three-state Flip-Flop (TFF) to<br>when the Output pin enters the<br>high-impedance state | LVCMOS25, 12mA<br>output drive, Fast<br>slew rate | 2.32  | 2.66  | ns    |
| T <sub>IOCKON</sub> <sup>(2)</sup> | Time from the active transition at<br>TFF's OTCLK input to when the<br>Output pin drives valid data                                                      |                                                   | 3.78  | 4.34  | ns    |
| Asynchronous                       | Output Enable/Disable Times                                                                                                                              |                                                   |       |       |       |
| T <sub>GTS</sub>                   | Time from asserting the Global<br>Three State net (GTS) net to<br>when the Output pin enters the<br>high-impedance state                                 | LVCMOS25, 12mA<br>output drive, Fast<br>slew rate | 7.03  | 8.08  | ns    |
| Set/Reset Times                    | 5                                                                                                                                                        |                                                   |       | 1     |       |
| T <sub>IOSRHZ</sub>                | Time from asserting TFF's SR<br>input to when the Output pin<br>enters a high-impedance state                                                            | LVCMOS25, 12mA<br>output drive, Fast<br>slew rate | 3.28  | 3.77  | ns    |
| T <sub>IOSRON</sub> <sup>(2)</sup> | Time from asserting TFF's SR<br>input at TFF to when the Output<br>pin drives valid data                                                                 |                                                   | 4.75  | 5.45  | ns    |

## Table 18: Timing for the IOB Three-State Path

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 19.

#### Table 19: Output Timing Adjustments for IOB

| Convert Ou    | utput Time | e from   | Add<br>Adjus<br>Bel | the<br>tment<br>low |       |  |
|---------------|------------|----------|---------------------|---------------------|-------|--|
| Fast Slew Rat | e to the F | ollowing | Speed               | Grade               |       |  |
| -             | I Standar  |          | -5                  | -4                  | Units |  |
| Single-Ended  | Standard   | S        |                     |                     |       |  |
| GTL           |            |          | -0.18               | -0.18               | ns    |  |
| GTL_DCI       |            |          | -0.15               | -0.15               | ns    |  |
| GTLP          |            |          | -0.15               | -0.15               | ns    |  |
| GTLP_DCI      |            |          | -0.13               | -0.13               | ns    |  |
| HSTL_I        |            |          | 0.08                | 0.08                | ns    |  |
| HSTL_I_DCI    |            |          | 0.07                | 0.07                | ns    |  |
| HSTL_III      |            |          | -0.05               | -0.05               | ns    |  |
| HSTL_III_DCI  |            |          | -0.05               | -0.05               | ns    |  |
| HSTL_I_18     |            |          | 0.14                | 0.14                | ns    |  |
| HSTL_I_DCI_1  | 8          |          | 0                   | 0                   | ns    |  |
| HSTL_II_18    |            |          | -0.13               | -0.13               | ns    |  |
| HSTL_II_DCI_  | 18         |          | 0.31                | 0.31                | ns    |  |
| HSTL_III_18   |            |          | -0.02               | -0.02               | ns    |  |
| HSTL_III_DCI_ | 18         |          | -0.03               | -0.03               | ns    |  |
| LVCMOS12      | Slow       | 2 mA     | 6.47                | 6.47                | ns    |  |
|               |            | 4 mA     | 6.70                | 6.70                | ns    |  |
|               |            | 6 mA     | 5.60                | 5.60                | ns    |  |
|               | Fast       | 2 mA     | 3.04                | 3.04                | ns    |  |
|               |            | 4 mA     | 2.25                | 2.25                | ns    |  |
|               |            | 6 mA     | 2.10                | 2.10                | ns    |  |
| LVCMOS15      | Slow       | 2 mA     | 3.95                | 3.95                | ns    |  |
|               |            | 4 mA     | 3.49                | 3.49                | ns    |  |
|               |            | 6 mA     | 2.85                | 2.85                | ns    |  |
|               |            | 8 mA     | 3.44                | 3.44                | ns    |  |
|               |            | 12 mA    | 2.82                | 2.82                | ns    |  |
|               | Fast       | 2 mA     | 2.29                | 2.29                | ns    |  |
|               |            |          | 1.37                | 1.37                | ns    |  |
|               |            | 6 mA     | 1.15                | 1.15                | ns    |  |
|               |            | 8 mA     | 1.13                | 1.13                | ns    |  |
|               |            | 12 mA    | 1.00                | 1.00                | ns    |  |
| LVDCI_15      | ļ          | Į        | 1.34                | 1.34                | ns    |  |
| LVDCI_DV2_1   | 5          |          | 1.14                | 1.14                | ns    |  |

Table 19: Output Timing Adjustments for IOB (Continued)

| Convert Ou<br>LVCMOS25 wit                         | th 12mA D | Drive and | Adjus<br>Be | I the<br>tment<br>low<br>Grade |       |
|----------------------------------------------------|-----------|-----------|-------------|--------------------------------|-------|
| Fast Slew Rate to the Following<br>Signal Standard |           |           | -5          | -4                             | Units |
| LVCMOS18                                           | Slow      | 2 mA      | 4.31        | 4.31                           | ns    |
|                                                    |           | 4 mA      | 2.69        | 2.69                           | ns    |
|                                                    |           | 6 mA      | 2.23        | 2.23                           | ns    |
|                                                    |           | 8 mA      | 1.83        | 1.83                           | ns    |
|                                                    |           | 12 mA     | 1.97        | 1.97                           | ns    |
|                                                    |           | 16 mA     | 1.62        | 1.62                           | ns    |
|                                                    | Fast      | 2 mA      | 2.07        | 2.07                           | ns    |
|                                                    |           | 4 mA      | 0.90        | 0.90                           | ns    |
|                                                    |           | 6 mA      | 0.77        | 0.77                           | ns    |
|                                                    |           | 8 mA      | 0.61        | 0.61                           | ns    |
|                                                    |           | 12 mA     | 0.56        | 0.56                           | ns    |
|                                                    |           | 16 mA     | 0.50        | 0.50                           | ns    |
| LVDCI_18                                           | L         |           | 0.72        | 0.72                           | ns    |
| LVDCI_DV2_18                                       | 3         |           | 0.58        | 0.58                           | ns    |
| LVCMOS25                                           | Slow      | 2 mA      | 5.11        | 5.11                           | ns    |
|                                                    |           | 4 mA      | 3.17        | 3.17                           | ns    |
|                                                    |           | 6 mA      | 2.53        | 2.53                           | ns    |
|                                                    |           | 8 mA      | 2.21        | 2.21                           | ns    |
|                                                    |           | 12 mA     | 1.79        | 1.79                           | ns    |
|                                                    |           | 16 mA     | 1.77        | 1.77                           | ns    |
|                                                    |           | 24 mA     | 1.53        | 1.53                           | ns    |
|                                                    | Fast      | 2 mA      | 2.30        | 2.30                           | ns    |
|                                                    |           | 4 mA      | 0.87        | 0.87                           | ns    |
|                                                    |           | 6 mA      | 0.30        | 0.30                           | ns    |
|                                                    |           | 8 mA      | 0.21        | 0.21                           | ns    |
|                                                    |           | 12 mA     | 0           | 0                              | ns    |
|                                                    |           | 16 mA     | 0.11        | 0.11                           | ns    |
|                                                    |           | 24 mA     | 0.04        | 0.04                           | ns    |
| LVDCI_25                                           |           |           | 0.19        | 0.19                           | ns    |
| LVDCI_DV2_25                                       | 5         |           | 0.10        | 0.10                           | ns    |

#### Table 19: Output Timing Adjustments for IOB (Continued)

| Convert Ou<br>LVCMOS25 wit | th 12mA C                | Adjus<br>Bel | the<br>tment<br>ow<br>Grade |       |       |
|----------------------------|--------------------------|--------------|-----------------------------|-------|-------|
| Fast Slew Rat<br>Signa     | e to the F<br>I Standard | -            | -5                          | -4    | Units |
| LVCMOS33                   | Slow                     | 2 mA         | 6.22                        | 6.22  | ns    |
|                            |                          | 4 mA         | 3.80                        | 3.80  | ns    |
|                            |                          | 6 mA         | 3.02                        | 3.02  | ns    |
|                            |                          | 8 mA         | 3.04                        | 3.04  | ns    |
|                            |                          | 12 mA        | 2.18                        | 2.18  | ns    |
|                            |                          | 16 mA        | 2.05                        | 2.05  | ns    |
|                            |                          | 24 mA        | 1.82                        | 1.82  | ns    |
|                            | Fast                     | 2 mA         | 3.15                        | 3.15  | ns    |
|                            |                          | 4 mA         | 1.30                        | 1.30  | ns    |
|                            |                          | 6 mA         | 0.53                        | 0.53  | ns    |
|                            |                          | 8 mA         | 0.54                        | 0.54  | ns    |
|                            |                          | 12 mA        | 0.14                        | 0.14  | ns    |
|                            |                          | 16 mA        | 0.08                        | 0.08  | ns    |
|                            |                          | 24 mA        | -0.03                       | -0.03 | ns    |
| LVDCI_33                   |                          |              | 0                           | 0     | ns    |
| LVDCI_DV2_33               | 3                        |              | 0                           | 0     | ns    |
| LVTTL                      | Slow                     | 2 mA         | 6.24                        | 6.24  | ns    |
|                            |                          | 4 mA         | 3.81                        | 3.81  | ns    |
|                            |                          | 6 mA         | 3.03                        | 3.03  | ns    |
|                            |                          | 8 mA         | 3.02                        | 3.02  | ns    |
|                            |                          | 12 mA        | 2.17                        | 2.17  | ns    |
|                            |                          | 16 mA        | 2.05                        | 2.05  | ns    |
|                            |                          | 24 mA        | 1.88                        | 1.88  | ns    |
|                            | Fast                     | 2 mA         | 3.14                        | 3.14  | ns    |
|                            |                          | 4 mA         | 1.31                        | 1.31  | ns    |
|                            |                          | 6 mA         | 0.50                        | 0.50  | ns    |
|                            |                          | 8 mA         | 0.51                        | 0.51  | ns    |
|                            |                          | 12 mA        | 0.12                        | 0.12  | ns    |
|                            |                          | 16 mA        | 0.06                        | 0.06  | ns    |
|                            |                          | 24 mA        | 0                           | 0     | ns    |

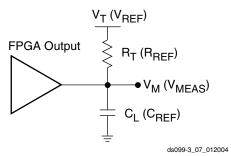
#### Table 19: Output Timing Adjustments for IOB (Continued)

| Convert Output Time from                                        | Add<br>Adjus<br>Be |       |       |
|-----------------------------------------------------------------|--------------------|-------|-------|
| LVCMOS25 with 12mA Drive and<br>Fast Slew Rate to the Following | Speed              | Grade |       |
| Signal Standard                                                 | -5                 | -4    | Units |
| PCI33_3                                                         | -0.26              | -0.26 | ns    |
| SSTL18_I                                                        | -0.05              | -0.05 | ns    |
| SSTL18_I_DCI                                                    | -0.01              | -0.01 | ns    |
| SSTL2_I                                                         | 0.08               | 0.08  | ns    |
| SSTL2_I_DCI                                                     | 0.01               | 0.01  | ns    |
| SSTL2_II                                                        | -0.04              | -0.04 | ns    |
| SSTL2_II_DCI                                                    | -0.14              | -0.14 | ns    |
| Differential Standards                                          |                    |       |       |
| LDT_25                                                          | -0.52              | -0.52 | ns    |
| LVDS_25                                                         | -0.50              | -0.50 | ns    |
| LVDS_25_DCI                                                     |                    |       | ns    |
| BLVDS_25                                                        | -0.01              | -0.01 | ns    |
| LVDSEXT_25                                                      | -0.50              | -0.50 | ns    |
| LVDSEXT_25_DCI                                                  |                    |       | ns    |
| ULVDS_25                                                        | -0.48              | -0.48 | ns    |
| LVPECL_25                                                       |                    |       | ns    |
| RSDS_25                                                         |                    |       | ns    |

#### Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.
- 2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

# **Timing Measurement Methodology**


When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 20 presents the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V<sub>L</sub> and a High logic level of V<sub>H</sub> is applied to the Input under test. Some standards also require the application of a bias voltage to the V<sub>REF</sub> pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V<sub>M</sub>) is commonly located halfway between V<sub>L</sub> and V<sub>H</sub>.

The Output test setup is shown in Figure 4. A termination voltage V<sub>T</sub> is applied to the termination resistor R<sub>T</sub>, the other end of which is connected to the Output. For each standard, R<sub>T</sub> and V<sub>T</sub> generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g., LVCMOS,

Table 20: Test Methods for Timing Measurement at I/Os

LVTTL), then  $R_T$  is set to  $1M\Omega$  to indicate an open connection, and  $V_T$  is set to zero. The same measurement point  $(V_M)$  that was used at the Input is also used at the Output.



Notes:

1. The names shown in parentheses are used in the IBIS file.

|                 |                         | Inputs                 |                        | Out                   | puts                  | Inputs and<br>Outputs |  |
|-----------------|-------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|--|
| Signal Standard | V <sub>REF</sub><br>(V) | V <sub>L</sub><br>(V)  | V <sub>H</sub><br>(V)  | R <sub>T</sub><br>(Ω) | V <sub>T</sub><br>(V) | V <sub>M</sub><br>(V) |  |
| Single-Ended    |                         |                        |                        |                       |                       |                       |  |
| GTL             | 0.8                     | V <sub>REF</sub> - 0.2 | V <sub>REF</sub> + 0.2 | 25                    | 1.2                   | V <sub>REF</sub>      |  |
| GTL_DCI         |                         |                        | _                      | 50                    | 1.2                   |                       |  |
| GTLP            | 1.0                     | V <sub>REF</sub> - 0.2 | V <sub>REF</sub> + 0.2 | 25                    | 1.5                   | V <sub>REF</sub>      |  |
| GTLP_DCI        |                         |                        | _                      | 50                    | 1.5                   |                       |  |
| HSTL_I          | 0.75                    | V <sub>REF</sub> - 0.5 | V <sub>REF</sub> + 0.5 | 50                    | 0.75                  | V <sub>REF</sub>      |  |
| HSTL_I_DCI      |                         |                        | _                      | 50                    | 0.75                  |                       |  |
| HSTL_III        | 0.90                    | V <sub>REF</sub> - 0.5 | V <sub>REF</sub> + 0.5 | 50                    | 1.5                   | V <sub>REF</sub>      |  |
| HSTL_III_DCI    |                         |                        | _                      | 50                    | 1.5                   |                       |  |
| HSTL_I_18       | 0.90                    | V <sub>REF</sub> - 0.5 | V <sub>REF</sub> + 0.5 | 50                    | 0.9                   | V <sub>REF</sub>      |  |
| HSTL_I_DCI_18   |                         |                        |                        | 50                    | 0.9                   |                       |  |
| HSTL_II_18      | 0.90                    | V <sub>REF</sub> - 0.5 | V <sub>REF</sub> + 0.5 | 25                    | 0.9                   | V <sub>REF</sub>      |  |
| HSTL_II_DCI_18  |                         |                        |                        | 50                    | 0.9                   |                       |  |
| HSTL_III_18     | 1.1                     | V <sub>REF</sub> - 0.5 | V <sub>REF</sub> + 0.5 | 50                    | 1.8                   | V <sub>REF</sub>      |  |
| HSTL_III_DCI_18 |                         |                        |                        | 50                    | 1.8                   |                       |  |
| LVCMOS12        | -                       | 0                      | 1.2                    | 1M                    | 0                     |                       |  |
| LVCMOS15        | -                       | 0                      | 1.5                    | 1M                    | 0                     | 0.75                  |  |
| LVDCI_15        |                         |                        |                        | 1M                    | 0                     |                       |  |
| LVDCI_DV2_15    |                         |                        |                        | 1M                    | 0                     |                       |  |

Figure 4: Output Test Setup

|             |          |                  | Inputs                  |                         | Out            | puts           | Inputs and<br>Outputs |
|-------------|----------|------------------|-------------------------|-------------------------|----------------|----------------|-----------------------|
|             |          | V <sub>REF</sub> | VL                      | V <sub>H</sub>          | R <sub>T</sub> | V <sub>T</sub> | V <sub>M</sub>        |
| Signal S    | Standard | (V)              | (V)                     | (V)                     | (Ω)            | (V)            | (V)                   |
| LVCMOS1     | 8        | -                | 0                       | 1.8                     | 1M             | 0              | 0.9                   |
| LVDCI_18    |          |                  |                         |                         | 1M             | 0              |                       |
| LVDCI_DV    | 2_18     |                  |                         |                         | 1M             | 0              |                       |
| LVCMOS2     | 5        | -                | 0                       | 2.5                     | 1M             | 0              | 1.25                  |
| LVDCI_25    |          |                  |                         |                         | 1M             | 0              |                       |
| LVDCI_DV    | 2_25     |                  |                         |                         | 1M             | 0              |                       |
| LVCMOS3     | 3        | -                | 0                       | 3.3                     | 1M             | 0              | 1.65                  |
| LVDCI_33    |          |                  |                         |                         | 1M             | 0              |                       |
| LVDCI_DV    | 2_33     |                  |                         |                         | 1M             | 0              |                       |
| LVTTL       |          | -                | 0                       | 3.3                     | 1M             | 0              | 1.4                   |
| PCI33_3     | Rising   | -                | Note 2                  | Note 2                  | 25             | 0              | 0.94                  |
|             | Falling  |                  |                         |                         | 25             | 3.3            | 2.03                  |
| SSTL18_I    |          | 0.9              | V <sub>REF</sub> - 0.5  | V <sub>REF</sub> + 0.5  | 50             | 0.9            | V <sub>REF</sub>      |
| SSTL18_I_   | DCI      |                  |                         |                         | 50             | 0.9            | _                     |
| SSTL2_I     |          | 1.25             | V <sub>REF</sub> - 0.75 | V <sub>REF</sub> + 0.75 | 50             | 1.25           | V <sub>REF</sub>      |
| SSTL2_I_C   | DCI      |                  |                         |                         | 50             | 1.25           | _                     |
| SSTL2_II    |          | 1.25             | V <sub>REF</sub> - 0.75 | V <sub>REF</sub> + 0.75 | 25             | 1.25           | V <sub>REF</sub>      |
| SSTL2_II_   | DCI      |                  |                         |                         | 50 1.25        |                | _                     |
| Differentia | I        |                  |                         |                         |                |                |                       |
| LDT_25      |          | -                | 0.6 - 0.125             | 0.6 + 0.125             | 60             | 0.6            | 0.6                   |
| LVDS_25     |          | -                | 1.2 - 0.125             | 1.2 + 0.125             | 50             | 1.2            | 1.2                   |
| LVDS_25_    | DCI      |                  |                         |                         | 1M             | 0              |                       |
| BLVDS_25    | 5        | -                | 1.2 - 0.125             | 1.2 + 0.125             | 1M             | 0              | 1.2                   |
| LVDSEXT_    | _25      | -                | 1.2 - 0.125             | 1.2 + 0.125             | 50             | 1.2            | 1.2                   |
| LVDSEXT_    | _25_DCI  |                  |                         |                         | -              | -              |                       |
| ULVDS_25    | 5        | -                | 0.6 - 0.125             | 0.6 + 0.125             | 60             | 0.6            | 0.6                   |
| LVPECL_2    | 25       | -                | 1.6 - 0.3               | 1.6 + 0.3               | 1M             | 0              | 1.6                   |
| RSDS_25     |          | -                | 1.3 - 0.1               | 1.3 + 0.1               | 50             | 1.2            | 1.2                   |

# Table 20: Test Methods for Timing Measurement at I/Os (Continued)

#### Notes:

1. Descriptions of the relevant symbols are as follows:

 $V_{\mathsf{REF}}$  -- The reference voltage for setting the input switching threshold

 $V_{\mbox{\scriptsize M}}$  -- Voltage of measurement point on signal transition

 $V_L$  -- Low-level test voltage at Input pin

V<sub>H</sub> -- High-level test voltage at Input pin

R<sub>T</sub> -- Effective termination resistance, which takes on a value of 1MΩ when no parallel termination is required

V<sub>T</sub> -- Termination voltage

 $C_{L}^{'}$  -- Load capacitance at Output pin, which is 0 pF for all standards

2. According to the PCI specification.

The capacitive load  $(C_L)$  is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a  $C_L$  value of zero unless otherwise specified. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

# Using IBIS Models to Simulate Load Conditions in Application

IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model ( $V_{REF}$ ,  $R_{REF}$ ,  $C_{REF}$ , and  $V_{MEAS}$ ) correspond directly with the parameters used in Table 20,  $V_T$ ,  $R_T$ ,  $C_L$ , and  $V_M$ . Do not confuse  $V_{REF}$  (the termination voltage) from the IBIS model with  $V_{REF}$  (the input-switching threshold) from the table! The four parameters describe all relevant output test conditions.

## IBIS models are found at the following link:

# http://www.xilinx.com/support/sw\_ibis.htm

Simulate delays for a given application according to its specific load conditions as follows:

- Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 4. Use parameter values V<sub>T</sub>, R<sub>T</sub>, C<sub>L</sub>, and V<sub>M</sub> from Table 20.
- 2. Record the time to V<sub>M</sub>.
- 3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including  $V_{REF}$ ,  $R_{REF}$ ,  $C_{REF}$ , and  $V_{MEAS}$  values) or capacitive value to represent the load.
- 4. Record the time to V<sub>MEAS</sub>.
- Compare the results of steps 2 and 4. The increase (or decrease) in delay should be added to (or subtracted from) the appropriate Output standard adjustment (Table 19) to yield the worst-case delay of the PCB trace.

| Device   | VQ100 | TQ144 | PQ208 | FT256 | FG320 | FG456 | FG676 | FG900 | FG1156 |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| XC3S50   | 1     | 1     | 2     | -     | -     | -     | -     | -     | -      |
| XC3S200  | 1     | 1     | 2     | 3     | -     | -     | -     | -     | -      |
| XC3S400  | -     | 1     | 2     | 3     | 3     | 5     | -     | -     | -      |
| XC3S1000 | -     | -     | 2     | 3     | 3     | 5     | 5     | -     | -      |
| XC3S1500 | -     | -     | -     | -     | 3     | 5     | 6     | -     | -      |
| XC3S2000 | -     | -     | -     | -     | -     | -     | 6     | 9     | -      |
| XC3S4000 | -     | -     | -     | -     | -     | -     | -     | 10    | 12     |
| XC3S5000 | -     | -     | -     | -     | -     | -     | -     | 10    | 12     |

# Table 21: Equivalent V<sub>CCO</sub>/GND Pairs per Bank

Simultaneously Switching Output Guidelines

# Table 22: Maximum Number of Simultaneously Switching Outputs per $V_{CCO}\mbox{-}GND$ Pair

# Table 22: Maximum Number of SimultaneouslySwitching Outputs per V<sub>CCO</sub>-GND Pair (Continued)

|                |          | -000 | Pacl                      | kage                                                     |
|----------------|----------|------|---------------------------|----------------------------------------------------------|
| Signal S       | tandard  |      | VQ100,<br>TQ144,<br>PQ208 | FT256,<br>FG320,<br>FG456,<br>FG676,<br>FG900,<br>FG1156 |
| Single-Ended S | tandards | ;    |                           |                                                          |
| GTL            |          |      |                           | 4                                                        |
| GTLP_DCI       |          |      |                           | 3                                                        |
| GTLP           |          |      |                           | 4                                                        |
| GTLP_DCI       |          |      |                           | 3                                                        |
| HSTL_I         |          |      |                           | 17                                                       |
| HSTL_I_DCI     |          |      |                           | 17                                                       |
| HSTL_III       |          |      |                           | 7                                                        |
| HSTL_III_DCI   |          |      |                           | 7                                                        |
| HSTL_I_18      |          |      |                           | 17                                                       |
| HSTL_I_DCI_1   | 8        |      |                           |                                                          |
| HSTL_II_18     |          |      |                           | 9                                                        |
| HSTL_II_DCI_   | 18       |      |                           |                                                          |
| HSTL_III_18    |          |      |                           | 8                                                        |
| HSTL_III_DCI_  | 18       |      |                           |                                                          |
| LVCMOS12       | Slow     | 2    |                           | 55                                                       |
|                |          | 4    |                           | 32                                                       |
|                |          | 6    |                           | 18                                                       |
|                | Fast     | 2    |                           | 31                                                       |
|                |          | 4    |                           | 13                                                       |
|                |          | 6    |                           | 9                                                        |
| LVCMOS15       | Slow     | 2    |                           | 55                                                       |
|                | -        | 4    |                           | 31                                                       |
|                | -        | 6    |                           | 18                                                       |
|                |          | 8    |                           | 15                                                       |
|                |          | 12   |                           | 10                                                       |
|                | Fast     | 2    |                           | 25                                                       |
|                |          | 4    |                           | 16                                                       |
|                |          | 6    |                           | 13                                                       |
|                |          | 8    |                           | 11                                                       |
|                |          | 12   |                           | 7                                                        |
| LVDCI_15       |          |      |                           | 10                                                       |
| LVDCI_DV2_15   | 5        |      |                           | 5                                                        |

|              |         |    | Pac                       | kage                                                     |
|--------------|---------|----|---------------------------|----------------------------------------------------------|
| Signal Si    | tandard |    | VQ100,<br>TQ144,<br>PQ208 | FT256,<br>FG320,<br>FG456,<br>FG676,<br>FG900,<br>FG1156 |
| LVCMOS18     | Slow    | 2  |                           | 64                                                       |
|              |         | 4  |                           | 34                                                       |
|              |         | 6  |                           | 22                                                       |
|              |         | 8  |                           | 18                                                       |
|              |         | 12 |                           | 13                                                       |
|              |         | 16 |                           | 10                                                       |
|              | Fast    | 2  |                           | 36                                                       |
|              |         | 4  |                           | 21                                                       |
|              |         | 6  |                           | 13                                                       |
|              |         | 8  |                           | 10                                                       |
|              |         | 12 |                           | 9                                                        |
|              |         | 16 |                           | 6                                                        |
| LVDCI_18     |         |    |                           | 11                                                       |
| LVDCI_DV2_18 | }       |    |                           | 6                                                        |
| LVCMOS25     | Slow    | 2  |                           | 76                                                       |
|              |         | 4  |                           | 46                                                       |
|              |         | 6  |                           | 33                                                       |
|              |         | 8  |                           | 24                                                       |
|              |         | 12 |                           | 18                                                       |
|              |         | 16 |                           | 11                                                       |
|              |         | 24 |                           | 7                                                        |
|              | Fast    | 2  |                           | 42                                                       |
|              |         | 4  |                           | 20                                                       |
|              |         | 6  |                           | 15                                                       |
|              |         | 8  |                           | 13                                                       |
|              |         | 12 |                           | 11                                                       |
|              |         | 16 |                           | 8                                                        |
|              |         | 24 |                           | 5                                                        |
| LVDCI_25     |         |    |                           | 13                                                       |
| LVDCI_DV2_25 | 5       |    |                           | 7                                                        |

# Table 22: Maximum Number of SimultaneouslySwitching Outputs per V<sub>CCO</sub>-GND Pair (Continued)

|                         |        |    | Pac                       | kage                                                     |
|-------------------------|--------|----|---------------------------|----------------------------------------------------------|
| Signal St               | andard |    | VQ100,<br>TQ144,<br>PQ208 | FT256,<br>FG320,<br>FG456,<br>FG676,<br>FG900,<br>FG1156 |
| LVCMOS33 <sup>(1)</sup> | Slow   | 2  |                           | 76                                                       |
|                         |        | 4  |                           | 46                                                       |
|                         |        | 6  |                           | 27                                                       |
|                         |        | 8  |                           | 20                                                       |
|                         |        | 12 |                           | 13                                                       |
|                         |        | 16 |                           | 10                                                       |
|                         |        | 24 |                           | 9                                                        |
|                         | Fast   | 2  |                           | 44                                                       |
|                         |        | 4  |                           | 26                                                       |
|                         |        | 6  |                           | 16                                                       |
|                         |        | 8  |                           | 12                                                       |
|                         |        | 12 |                           | 10                                                       |
|                         |        | 16 |                           | 7                                                        |
|                         |        | 24 |                           | 3                                                        |
| LVDCI_33 <sup>(1)</sup> |        |    |                           | 13                                                       |
| LVDCI_DV2_33            | (1)    |    |                           | 7                                                        |
| LVTTL <sup>(1)</sup>    | Slow   | 2  |                           | 60                                                       |
|                         |        | 4  |                           | 41                                                       |
|                         |        | 6  |                           | 29                                                       |
|                         |        | 8  |                           | 22                                                       |
|                         |        | 12 |                           | 13                                                       |
|                         |        | 16 |                           | 11                                                       |
|                         |        | 24 |                           | 9                                                        |
|                         | Fast   | 2  |                           | 34                                                       |
|                         |        | 4  |                           | 20                                                       |
|                         |        | 6  |                           | 15                                                       |
|                         |        | 8  |                           | 12                                                       |
|                         |        | 12 |                           | 10                                                       |
| 1                       |        |    |                           |                                                          |
|                         |        | 16 |                           | 9                                                        |

Table 22: Maximum Number of SimultaneouslySwitching Outputs per V<sub>CCO</sub>-GND Pair (Continued)

|                        | Package                   |                                                          |  |
|------------------------|---------------------------|----------------------------------------------------------|--|
| Signal Standard        | VQ100,<br>TQ144,<br>PQ208 | FT256,<br>FG320,<br>FG456,<br>FG676,<br>FG900,<br>FG1156 |  |
| PCI33_3 <sup>(1)</sup> |                           |                                                          |  |
| SSTL18_I               |                           | 17                                                       |  |
| SSTL18_I_DCI           |                           |                                                          |  |
| SSTL2_I                |                           | 13                                                       |  |
| SSTL2_I_DCI            |                           | 15                                                       |  |
| SSTL2_II               |                           | 9                                                        |  |
| SSTL2_II_DCI           |                           | 5                                                        |  |
| Differential Standards |                           |                                                          |  |
| LDT_25                 |                           |                                                          |  |
| LVDS_25                |                           |                                                          |  |
| LVDS_25_DCI            |                           |                                                          |  |
| BLVDS_25               |                           |                                                          |  |
| LVDSEXT_25             |                           |                                                          |  |
| LVDSEXT_25_DCI         |                           |                                                          |  |
| ULVDS_25               |                           |                                                          |  |
| LVPECL_25              |                           |                                                          |  |
| RSDS_25                |                           |                                                          |  |

#### Notes:

1. The numbers in this table are recommendations that assume sound board layout practice. For cases that exceed these maximum numbers, perform IBIS simulations to confirm signal integrity.

# **Core Logic Timing**

Table 23: CLB Timing

|                   |                                                                                                                                               | •    | -5   | -4   |      |       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| Symbol            | Description                                                                                                                                   | Min  | Мах  | Min  | Мах  | Units |
| Clock-to-Output   | t Times                                                                                                                                       |      |      |      |      |       |
| Тско              | When reading from the FFX (FFY) Flip-Flop,<br>the time from the active transition at the CLK<br>input to data appearing at the XQ (YQ) output | -    | 0.67 | -    | 0.77 | ns    |
| Setup Times       |                                                                                                                                               |      |      |      |      |       |
| T <sub>DYCK</sub> | Time from the setup of data at the D input to the active transition at the CLK input of FFX                                                   | 0.08 | -    | 0.09 | -    | ns    |
| T <sub>DXCK</sub> | Time from the setup of data at the D input to the active transition at the CLK input of FFY                                                   | 0.08 | -    | 0.09 | -    | ns    |
| Hold Times        | - I                                                                                                                                           |      |      | 1    |      | 1     |
| T <sub>CKDY</sub> | Time from the active transition at FFY's CLK input to the point where data is last held at the D input                                        | 0.01 | -    | 0.01 | -    | ns    |
| Т <sub>СКDX</sub> | Time from the active transition at FFX's CLK input to the point where data is last held at the D input                                        | 0.01 | -    | 0.01 | -    | ns    |
| Clock Timing      | - <u>-</u>                                                                                                                                    |      | 4    | 1    |      | 1     |
| Т <sub>СН</sub>   | The High pulse width of the CLB's CLK signal                                                                                                  | 0.76 | -    | 0.87 | -    | ns    |
| T <sub>CL</sub>   | The Low pulse width of the CLK signal                                                                                                         | 0.76 | -    | 0.87 | -    | ns    |
| F <sub>TOG</sub>  | Maximum toggle frequency (for export control)                                                                                                 | -    | 500  | -    | 500  | MHz   |
| Propagation Tin   | nes                                                                                                                                           |      |      |      |      |       |
| T <sub>ILO</sub>  | The time it takes for data to travel from the CLB's F (G) input to input to the X (Y) output                                                  | -    | 0.65 | -    | 0.75 | ns    |

Notes:

# Table 24: Synchronous 18 x 18 Multiplier Timing

|                      |                                                                                                                                    |           |      | Speed | Grade |      |       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------|-------|------|-------|
|                      |                                                                                                                                    |           | -5   |       | -4    |      | _     |
| Symbol               | Description                                                                                                                        | P Outputs | Min  | Max   | Min   | Max  | Units |
| Clock-to-Outp        | out Times                                                                                                                          | ·         |      |       |       |      |       |
| T <sub>MULTCK</sub>  | When reading from the                                                                                                              | P[0]      | -    | 0.76  | -     | 0.88 | ns    |
|                      | Multiplier, the time from the active transition at the C                                                                           | P[15]     | -    | 0.97  | -     | 1.11 | ns    |
|                      | clock input to data                                                                                                                | P[17]     | -    | 1.17  | -     | 1.34 | ns    |
|                      | appearing at the P outputs                                                                                                         | P[19]     | -    | 1.37  | -     | 1.58 | ns    |
|                      |                                                                                                                                    | P[23]     | -    | 1.78  | -     | 2.04 | ns    |
|                      |                                                                                                                                    | P[31]     | -    | 2.59  | -     | 2.97 | ns    |
|                      |                                                                                                                                    | P[35]     | -    | 3.00  | -     | 3.44 | ns    |
| Setup Times          |                                                                                                                                    | 1         |      |       | 1     |      |       |
| T <sub>MULIDCK</sub> | Time from the setup of data<br>at the A and B inputs to the<br>active transition at the C<br>input of the Multiplier               | -         | 2.18 | -     | 2.50  | -    | ns    |
| Hold Times           |                                                                                                                                    |           |      |       |       |      |       |
| T <sub>MULCKID</sub> | Time from the active<br>transition at the Multiplier's<br>C input to the point where<br>data is last held at the A<br>and B inputs | -         | 0    | -     | 0     | -    | ns    |

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

## Table 25: Asynchronous 18 x 18 Multiplier Timing

|                   |                                             |           | Speed |      |       |
|-------------------|---------------------------------------------|-----------|-------|------|-------|
|                   |                                             |           | -5    | -4   | -     |
| Symbol            | Description                                 | P Outputs | Max   | Max  | Units |
| Propagation T     | imes                                        |           |       |      | 1     |
| T <sub>MULT</sub> | The time it takes for data to travel        | P[0]      | 1.25  | 1.44 | ns    |
|                   | from the A and B inputs to the P<br>outputs | P[15]     | 2.88  | 3.31 | ns    |
|                   |                                             | P[17]     | 3.10  | 3.56 | ns    |
|                   |                                             | P[19]     | 3.32  | 3.81 | ns    |
|                   |                                             | P[23]     | 3.75  | 4.31 | ns    |
|                   |                                             | P[31]     | 4.62  | 5.31 | ns    |
|                   |                                             | P[35]     | 5.06  | 5.81 | ns    |

#### Notes:

# Table 26: Block RAM Timing

|                   |                                                                                                                                        | -    | 5    | -    | -    |       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| Symbol            | Description                                                                                                                            | Min  | Max  | Min  | Max  | Units |
| Clock-to-Outpu    | t Times                                                                                                                                |      | ·    | ·    |      |       |
| Т <sub>ВСКО</sub> | When reading from the Block<br>RAM, the time from the active<br>transition at the CLK input to<br>data appearing at the DOUT<br>output | -    | 2.10 | -    | 2.41 | ns    |
| Setup Times       |                                                                                                                                        |      | 1    |      | 1    |       |
| T <sub>BDCK</sub> | Time from the setup of data at<br>the DIN inputs to the active<br>transition at the CLK input of the<br>Block RAM                      | 0.43 | -    | 0.49 | -    | ns    |
| Hold Times        |                                                                                                                                        |      |      |      |      |       |
| T <sub>BCKD</sub> | Time from the active transition<br>at the Block RAM's CLK input to<br>the point where data is last held<br>at the DIN inputs           | 0    | -    | 0    | -    | ns    |
| Clock Timing      |                                                                                                                                        |      |      |      |      | 1     |
| T <sub>BPWH</sub> | The High pulse width of the Block RAM's CLK signal                                                                                     | 1.26 | -    | 1.44 | -    | ns    |
| T <sub>BPWL</sub> | The Low pulse width of the CLK signal                                                                                                  | 1.26 | -    | 1.44 | -    | ns    |

Notes:

# **Digital Clock Manager (DCM) Timing**

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 27 and Table 28) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 29 through Table 32) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 27 and Table 28.

|                     |                           |                                                                                                | _                               |          |                   | Speed              | Grade |                    |       |  |
|---------------------|---------------------------|------------------------------------------------------------------------------------------------|---------------------------------|----------|-------------------|--------------------|-------|--------------------|-------|--|
|                     |                           |                                                                                                | Frequency<br>Mode/              | Device   | -5                |                    | -4    |                    |       |  |
| Symbol              |                           | Description                                                                                    | F <sub>CLKIN</sub> Range        | Revision | Min               | Max                | Min   | Max                | Units |  |
| Input Fi            | requency Ranges           |                                                                                                |                                 |          |                   |                    |       |                    |       |  |
| F <sub>CLKIN</sub>  | CLKIN_FREQ_DLL_LF         | Frequency for the                                                                              | Low                             | All      | 24 <sup>(2)</sup> | 165 <sup>(3)</sup> | 24    | 165 <sup>(3)</sup> | MHz   |  |
|                     | CLKIN_FREQ_DLL_HF         | CLKIN input                                                                                    | High                            | 0        | 48                | 280 <sup>(3)</sup> | 48    | 280 <sup>(3)</sup> | MHz   |  |
|                     |                           |                                                                                                |                                 | Future   | 48                | 326                | 48    | TBD                | MHz   |  |
| Input P             | ulse Requirements         | 1                                                                                              |                                 |          |                   |                    |       |                    | L     |  |
| CLKIN_              | PULSE                     | CLKIN pulse width as                                                                           | All                             | 0        | 45%               | 55%                | 45%   | 55%                | -     |  |
|                     |                           | a percentage of the<br>CLKIN period                                                            | $F_{CLKIN} \le 200 \text{ MHz}$ | Future   | 40%               | 60%                | 40%   | 60%                | -     |  |
|                     |                           | OLIVIN period                                                                                  | F <sub>CLKIN</sub> > 200 MHz    |          | 45%               | 55%                | 45%   | 55%                | -     |  |
| Input C             | lock Jitter and Delay Pat | h Variation                                                                                    |                                 |          |                   |                    |       |                    |       |  |
| CLKIN_              | CYC_JITT_DLL_LF           | Cycle-to-cycle jitter at                                                                       | Low                             | All      | -300              | +300               | -300  | +300               | ps    |  |
| CLKIN_              | CYC_JITT_DLL_HF           | the CLKIN input                                                                                | High                            |          | -150              | +150               | -150  | +150               | ps    |  |
| CLKIN_              | CYC_PER_DLL_LF            | Period jitter at the                                                                           | Low                             |          | -1                | +1                 | -1    | +1                 | ns    |  |
| CLKIN_              | CYC_PER_DLL_HF            | CLKIN input                                                                                    | High                            |          | -1                | +1                 | -1    | +1                 | ns    |  |
| CLKFB_DELAY_VAR_EXT |                           | Allowable variation of<br>off-chip feedback delay<br>from the DCM output<br>to the CLKFB input | All                             |          | -1                | +1                 | -1    | +1                 | ns    |  |

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. Use of the DFS permits lower F<sub>CLKIN</sub> frequencies. See Table 29.

3. To double the maximum effective F<sub>CLKIN</sub> limit, set the CLKIN\_DIVIDE\_BY\_2 attribute to TRUE.

# Table 28: Switching Characteristics for the DLL

|                                      |                                                                                                                |                          |                    |                     |      | Speed Grade |      |      |       |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|---------------------|------|-------------|------|------|-------|
|                                      |                                                                                                                | Frequency Mode /         | Device<br>Revision |                     | -5   |             | -4   |      |       |
| Symbol                               | Description                                                                                                    | F <sub>CLKIN</sub> Range |                    |                     | Min  | Max         | Min  | Max  | Units |
| Output Frequency Ranges              |                                                                                                                |                          |                    |                     |      |             |      |      |       |
| CLKOUT_FREQ_1X_LF                    | Frequency for the<br>CLK0, CLK90,<br>CLK180, and<br>CLK270 outputs                                             | Low                      |                    | All                 | 24   | 165         | 24   | 165  | MHz   |
| CLKOUT_FREQ_1X_HF                    | Frequency for the<br>CLK0 and CLK180                                                                           | High                     | 0                  | Nophase<br>shifting | 48   | 280         | 48   | 280  | MHz   |
|                                      | outputs                                                                                                        |                          |                    | Phase shifting      | 48   | 200         | 48   | 200  | MHz   |
|                                      |                                                                                                                |                          |                    | Future              | 48   | 326         | 48   | TBD  | MHz   |
| CLKOUT_FREQ_2X_LF                    | Frequency for the                                                                                              | Low                      |                    | 0(3)                | 48   | 330         | 48   | 330  | MHz   |
|                                      | CLK2X and<br>CLK2X180 outputs                                                                                  |                          |                    | Future              | 48   | 330         | 48   | 330  | MHz   |
| CLKOUT_FREQ_DV_LF                    | Frequency for the                                                                                              | Low                      |                    | All                 | 1.5  | 100         | 1.5  | 100  | MHz   |
| CLKOUT_FREQ_DV_HF                    | CLKDV output                                                                                                   | High                     | ligh All           |                     | 3    | 215         | 3    | 215  | MHz   |
| Output Clock Jitter                  |                                                                                                                |                          |                    |                     |      |             |      |      |       |
| CLKOUT_PER_JITT_0                    | Period jitter at the<br>CLK0 output                                                                            | All                      |                    | All                 | -100 | +100        | -100 | +100 | ps    |
| CLKOUT_PER_JITT_90                   | Period jitter at the<br>CLK90 output                                                                           |                          |                    |                     | -150 | +150        | -150 | +150 | ps    |
| CLKOUT_PER_JITT_180                  | Period jitter at the<br>CLK180 output                                                                          |                          |                    |                     | -150 | +150        | -150 | +150 | ps    |
| CLKOUT_PER_JITT_270                  | Period jitter at the<br>CLK270 output                                                                          |                          |                    |                     | -150 | +150        | -150 | +150 | ps    |
| CLKOUT_PER_JITT_2X                   | Period jitter at the<br>CLK2X and<br>CLK2X180 outputs                                                          |                          |                    |                     | -200 | +200        | -200 | +200 | ps    |
| CLKOUT_PER_JITT_DV1                  | Period jitter at the<br>CLKDV output<br>when performing<br>integer division                                    |                          |                    |                     | -150 | +150        | -150 | +150 | ps    |
| CLKOUT_PER_JITT_DV2                  | Period jitter at the<br>CLKDV output<br>when performing<br>non-integer<br>division                             |                          |                    |                     | -300 | +300        | -300 | +300 | ps    |
| Duty Cycle                           | · · ·                                                                                                          |                          | <u> </u>           |                     |      |             |      | u.   |       |
| CLKOUT_DUTY_CYCLE_DLL <sup>(4)</sup> | Duty cycle<br>variation for the<br>CLK0, CLK90,<br>CLK180, CLK270,<br>CLK2X,<br>CLK2X180, and<br>CLKDV outputs | All                      |                    | All                 | -150 | +150        | -150 | +150 | ps    |

# Table 28: Switching Characteristics for the DLL (Continued)

|                   |                                                                        |                                                                 |        | Speed Gra |      |      | rade |       |
|-------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------|-----------|------|------|------|-------|
|                   |                                                                        | Frequency Mode /                                                | Device | -5        |      | -4   |      | -     |
| Symbol            | Description                                                            |                                                                 |        | Min       | Max  | Min  | Max  | Units |
| Phase Alignment   |                                                                        |                                                                 |        |           |      |      |      |       |
| CLKIN_CLKFB_PHASE | Phase offset<br>between the<br>CLKIN and CLKFB<br>inputs               | All                                                             | All    | -50       | +50  | -50  | +50  | ps    |
| CLKOUT_PHASE      | Phase offset<br>between any DLL<br>output and any<br>other DCM outputs | All                                                             | All    | -140      | +140 | -140 | +140 | ps    |
| Lock Time         |                                                                        |                                                                 |        |           | 1    | 1    |      | 1     |
| LOCK_DLL_24_30    | Time required to                                                       | $24 \text{ MHz} \le \text{F}_{\text{CLKIN}} \le 30 \text{ MHz}$ | All    | -         | 960  | -    | 960  | μs    |
| LOCK_DLL_30_40    | achieve lock                                                           | $30 \text{ MHz} < \text{F}_{\text{CLKIN}} \le 40 \text{ MHz}$   |        | -         | 720  | -    | 720  | μs    |
| LOCK_DLL_40_50    |                                                                        | $40 \text{ MHz} < \text{F}_{\text{CLKIN}} \le 50 \text{ MHz}$   |        | -         | 400  | -    | 400  | μs    |
| LOCK_DLL_50_60    |                                                                        | $50 \text{ MHz} < \text{F}_{\text{CLKIN}} \le 60 \text{ MHz}$   |        | -         | 200  | -    | 200  | μs    |
| LOCK_DLL_60       |                                                                        | F <sub>CLKIN</sub> > 60 MHz                                     |        | -         | 160  | -    | 160  | μs    |
| Delay Lines       | L                                                                      | · · · · · · · · · · · · · · · · · · ·                           |        |           |      |      | 1    | 1     |
| DCM_TAP           | Delay tap resolution                                                   | All                                                             | All    | 30.0      | 60.0 | 30.0 | 60.0 | ps    |

Notes:

1.

The numbers in this table are based on the operating conditions set forth in Table 5 and Table 27. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. For Rev. 0 devices only, use feedback from the CLK0 output (instead of the CLK2X output) and set the CLK\_FEEDBACK attribute to 2. 3. 1X.

This specification only applies if the attribute *DUTY\_CYCLE\_CORRECTION* = TRUE. 4.

# Table 29: Recommended Operating Conditions for the DFS

|                    |                              |                          |                   |      | Speed | Grade    |      |       |
|--------------------|------------------------------|--------------------------|-------------------|------|-------|----------|------|-------|
|                    |                              |                          |                   | -    | 5     | -        |      |       |
|                    | Symbol                       | Description              | Frequency<br>Mode | Min  | Max   | Min      | Max  | Units |
| Input Fre          | quency Ranges <sup>(2)</sup> |                          |                   |      |       | <u>.</u> |      |       |
| F <sub>CLKIN</sub> | CLK_FREQ_FX                  | Frequency for the        | Low               | 1    | 210   | 1        | 210  | MHz   |
|                    | CLK_FREQ_FX_HF               | CLKIN input              | High              | 48   | 280   | 48       | 280  | MHz   |
| Input Clo          | ck Jitter                    | 1                        | 1                 |      |       |          |      |       |
| CLKIN_C            | YC_JITT_FX_LF                | Cycle-to-cycle jitter at | Low               | -300 | +300  | -300     | +300 | ps    |
| CLKIN_C            | YC_JITT_FX_HF                | the CLKIN input          | High              | -150 | +150  | -150     | +150 | ps    |
|                    |                              | Period jitter at the     | Low               | -1   | +1    | -1       | +1   | ns    |
|                    |                              | CLKIN input              | High              | -1   | +1    | -1       | +1   | ns    |

#### Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are in use.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN\_FREQ\_DLL specifications in Table 27.

### Table 30: Switching Characteristics for the DFS

|                           |                                                                                                                         |                   |                    |      | Speed G | arade |      |       |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------|---------|-------|------|-------|
|                           | Description                                                                                                             | Frequency<br>Mode | Device<br>Revision | -5   |         | -4    |      |       |
| Symbol                    |                                                                                                                         |                   |                    | Min  | Max     | Min   | Max  | Units |
| Output Frequency Ranges   |                                                                                                                         | ·                 |                    |      |         | ·     |      | ·     |
| CLKOUT_FREQ_FX_LF         | Frequency for the CLKFX                                                                                                 | Low               | All                | 24   | 210     | 24    | 210  | MHz   |
| CLKOUT_FREQ_FX_HF         | and CLKFX180 outputs                                                                                                    | High              | 0                  | 210  | 280     | 210   | 280  | MHz   |
|                           |                                                                                                                         |                   | Future             | 210  | 326     | 210   | TBD  | MHz   |
| Output Clock Jitter       | 1                                                                                                                       | ŀ                 |                    |      | -       | L     | 1    | I     |
| CLKOUT_PER_JITT_FX        | Period jitter at the CLKFX and CLKFX180 outputs                                                                         | All               | All                |      |         |       |      | ps    |
| Duty Cycle <sup>(3)</sup> |                                                                                                                         |                   |                    |      |         | I     | I    | I     |
| CLKOUT_DUTY_CYCLE_FX      | Duty cycle precision for<br>the CLKFX and<br>CLKFX180 outputs                                                           | All               | All                | -100 | +100    | -100  | +100 | ps    |
| Phase Alignment           | 1                                                                                                                       |                   | 11                 |      | 1       | L     | 1    | I     |
| CLKOUT_PHASE              | Phase offset between<br>either DFS output and<br>any other DCM output                                                   | All               | All                | -140 | +140    | -140  | +140 | ps    |
| Lock Time                 |                                                                                                                         | Г                 |                    |      | -       |       |      |       |
| LOCK_FX                   | Once the CLKIN and<br>CLKFB signals become<br>in-phase, the time it takes<br>for the DCM's LOCKED<br>output to go High. | All               | All                | -    | 10.0    | -     | 10.0 | ms    |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 29.

2. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.

3. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.

# Phase Shifter (PS)

Phase Shifter operation is only supported in the Low frequency mode. For Rev. 0 devices, the Variable Phase mode only permits positive shifts. For any desired negative phase shift (-S), an equivalent positive phase shift ( $360^{\circ} - S$ ) is possible. In order to use the Variable Phase mode, it is necessary to set the BitGen option *Centered\_x#y#* option to 0. BitGen is part of the Xilinx development software. The lines to be typed in the command prompt are shown in Table 33, page 33.

|                                     |                                     |                                                              |                                 |          | Speed Grade |     |     |     |       |
|-------------------------------------|-------------------------------------|--------------------------------------------------------------|---------------------------------|----------|-------------|-----|-----|-----|-------|
|                                     |                                     | Frequency Mode/ Devic<br>ion F <sub>PSCLK</sub> Range Revisi |                                 | Dovico   | -5          |     | -4  |     | 1     |
| Symbol                              | Description                         |                                                              |                                 | Revision | Min         | Max | Min | Max | Units |
| Operating Frequ                     | ency Ranges                         |                                                              |                                 |          |             |     |     |     |       |
| PSCLK_FREQ<br>(F <sub>PSCLK</sub> ) | Frequency for the<br>PSCLK input    | Low                                                          |                                 | All      | 1           | 165 | 1   | 165 | MHz   |
| Input Pulse and                     | Requirements                        |                                                              |                                 |          |             |     |     |     |       |
| PSCLK_PULSE                         | PSCLK pulse width                   |                                                              | Low                             | 0        | 45%         | 55% | 45% | 55% | -     |
|                                     | as a percentage of the PSCLK period | Low                                                          | $F_{PSCLK} \le 200 \text{ MHz}$ | Future   | 40%         | 60% | 40% | 60% | -     |
|                                     |                                     |                                                              | F <sub>PSCLK</sub> > 200 MHz    |          | 45%         | 55% | 45% | 55% | -     |

### Notes:

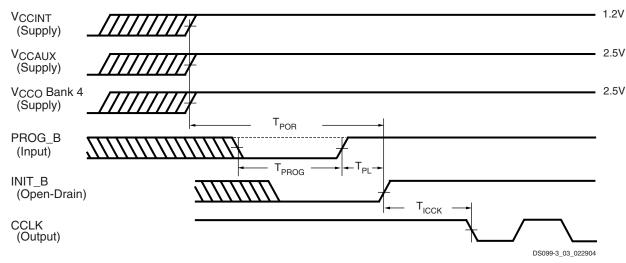
1. The PS specifications in this table apply when the PS attribute CLKOUT\_PHASE\_SHIFT= VARIABLE.

### *Table 32:* Switching Characteristics for the PS in Variable Phase Mode

|                                    |                                                                                                                |           |              | Speed |     |      |       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--------------|-------|-----|------|-------|
|                                    |                                                                                                                | Frequency | Erequency -5 |       | -   |      |       |
| Symbol                             | Description                                                                                                    | Mode      | Min          | Max   | Min | Max  | Units |
| Phase Shifting Range               |                                                                                                                |           |              |       |     |      |       |
| FINE_SHIFT_RANGE                   | Range for variable phase shifting                                                                              | Low       | -            | 10.0  | -   | 10.0 | ns    |
| Lock Time                          |                                                                                                                |           |              |       |     |      |       |
| LOCK_DLL_FINE_SHIFT <sup>(3)</sup> | In the Variable<br>Phase mode, the<br>additional time it<br>takes for the DCM's<br>LOCKED output to<br>go High | Low       | -            |       | -   |      | ms    |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 31.


2. The PS specifications in this table apply when the PS attribute CLKOUT\_PHASE\_SHIFT= VARIABLE.

3. When in the Variable Phase mode, add the values for this parameter to the appropriate LOCK\_DLL parameter from Table 28 for the total lock time.

# Table 33: BitGen Commands for Variable Phase Mode

| Device     | DCM Location (Device Top View) | BitGen Command Line                               |
|------------|--------------------------------|---------------------------------------------------|
| XC3S50     | Upper                          | bitgen -g centered_x0y1:0 <i>design_name</i> .ncd |
|            | Lower                          | bitgen -g centered_x0y0:0 <i>design_name</i> .ncd |
| All others | Upper left                     | bitgen -g centered_x0y1:0 design_name.ncd         |
|            | Upper right                    | bitgen -g centered_x1y1:0 <i>design_name</i> .ncd |
|            | Lower left                     | bitgen -g centered_x0y0:0 <i>design_name</i> .ncd |
|            | Lower right                    | bitgen -g centered_x1y0:0 design_name.ncd         |

# **Configuration and JTAG Timing**

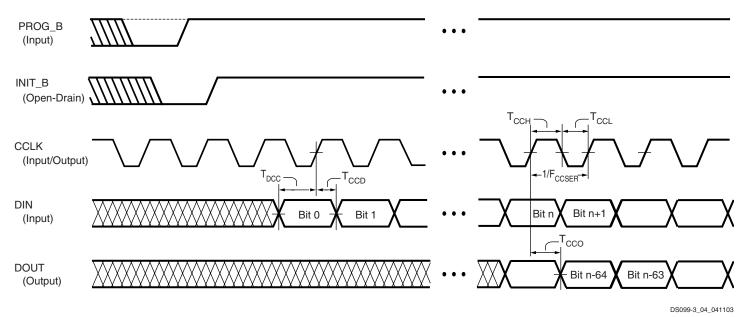


## Notes:

- 1. The  $V_{CCINT}\!, V_{CCAUX}\!,$  and  $V_{CCO}$  supplies may be applied in any order.
- 2. The Low-going pulse on PROG\_B is optional after power-on but necessary for reconfiguration without a power cycle.
  - 3. The rising edge of INIT\_B samples the voltage levels applied to the mode pins (M0 M2).

## Figure 5: Waveforms for Power-On and the Beginning of Configuration

## Table 34: Power-On Timing and the Beginning of Configuration


|                                  |                                                                                                                            |          | All Speed Grades |     |       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----|-------|
| Symbol                           | Description                                                                                                                | Device   | Min              | Max | Units |
| T <sub>POR</sub> <sup>(2)</sup>  | The time from the application of $V_{CCINT}$ , $V_{CCAUX}$ , and                                                           | XC3S50   | -                | 5   | ms    |
|                                  | V <sub>CCO</sub> Bank 4 supply voltages (whichever occurs last)                                                            | XC3S200  | -                | 5   | ms    |
|                                  | to the rising transition of the INIT_B pin                                                                                 | XC3S400  | -                | 5   | ms    |
|                                  |                                                                                                                            | XC3S1000 | -                | 5   | ms    |
|                                  |                                                                                                                            | XC3S1500 | -                | 7   | ms    |
|                                  |                                                                                                                            | XC3S2000 | -                | 7   | ms    |
|                                  |                                                                                                                            | XC3S4000 | -                | 7   | ms    |
|                                  |                                                                                                                            | XC3S5000 | -                | 7   | ms    |
| T <sub>PROG</sub>                | The width of the low-going pulse on the PROG_B pin                                                                         | All      | 0.3              | -   | μs    |
| T <sub>PL</sub> <sup>(2)</sup>   | The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin                                 | XC3S50   | -                | 2   | ms    |
|                                  |                                                                                                                            | XC3S200  | -                | 2   | ms    |
|                                  |                                                                                                                            | XC3S400  | -                | 2   | ms    |
|                                  |                                                                                                                            | XC3S1000 | -                | 2   | ms    |
|                                  |                                                                                                                            | XC3S1500 | -                | 3   | ms    |
|                                  |                                                                                                                            | XC3S2000 | -                | 3   | ms    |
|                                  |                                                                                                                            | XC3S4000 | -                | 3   | ms    |
|                                  |                                                                                                                            | XC3S5000 | -                | 3   | ms    |
| T <sub>ICCK</sub> <sup>(3)</sup> | The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin | All      | 0.5              | 4.0 | μs    |

#### Notes:

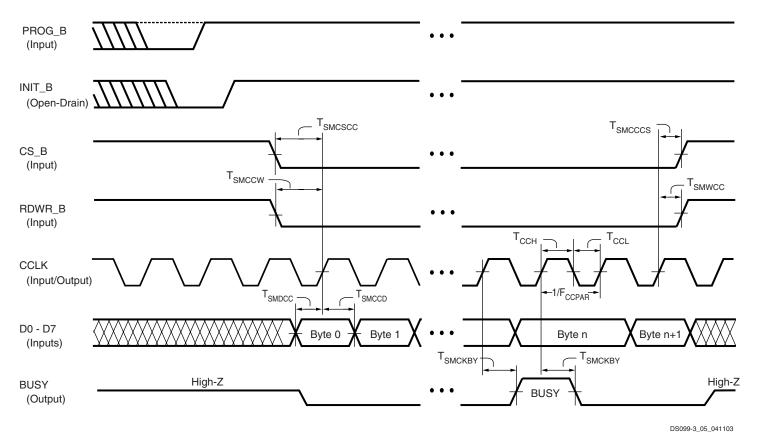
1. The numbers in this table are based on the operating conditions set forth in Table 5.

2. Power-on reset and the clearing of configuration memory occurs during this period.

3. This specification applies only for the Master Serial and Master Parallel modes.



#### Notes:


1. The CS\_B, WRITE\_B, and BUSY signals are not used in the serial modes. Keep the CS\_B and WRITE\_B inputs inactive (i.e., both pins High).

# Figure 6: Waveforms for Master and Slave Serial Configuration

# Table 35: Timing for the Master and Slave Serial Configuration Modes

|                                                                                                             |                                                                                                              |              | All Speed Grades |      |       |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|------------------|------|-------|--|
| Symbol Description                                                                                          |                                                                                                              | Slave/Master | Min              | Max  | Units |  |
| Clock-to-Output                                                                                             | Times                                                                                                        |              |                  |      |       |  |
| TCCOThe time from the rising transition on the<br>CCLK pin to data appearing at the DOUT pin                |                                                                                                              | Both         | -                | 12.0 | ns    |  |
| Setup Times                                                                                                 |                                                                                                              |              |                  | 1    | I     |  |
| T <sub>DCC</sub> The time from the setup of data at the DIN pin<br>to the rising transition at the CCLK pin |                                                                                                              | Both         | -                | 10.0 | ns    |  |
| Hold Times                                                                                                  |                                                                                                              |              |                  | 1    | I     |  |
| T <sub>CCD</sub>                                                                                            | The time from the rising transition at the<br>CCLK pin to the point when data is last held<br>at the DIN pin |              | -                | 0    | ns    |  |
| Clock Timing                                                                                                |                                                                                                              |              |                  |      | I     |  |
| Т <sub>ССН</sub>                                                                                            | The High pulse width at the CCLK input pin                                                                   | Slave        | 5.0              | -    | ns    |  |
| T <sub>CCL</sub>                                                                                            | The Low pulse width at the CCLK input pin                                                                    | -            | 5.0              | -    | ns    |  |
| F <sub>CCSER</sub>                                                                                          | Frequency of the clock signal at the CCLK input pin                                                          |              | -                | 66   | MHz   |  |
| $\Delta F_{CCSER}$                                                                                          | Variation from the generated CCLK frequency set using the ConfigRate BitGen option                           |              | -50%             | +50% | -     |  |

#### Notes:



#### Notes:

1. Switching RDWR\_B High or Low while holding CS\_B Low asynchronously aborts configuration.

# Figure 7: Waveforms for Master and Slave Parallel Configuration

|                                   |                                                                                                     |              | All Speed Grades |      |       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|--------------|------------------|------|-------|
| Symbol Description S              |                                                                                                     | Slave/Master | Min              | Max  | Units |
| Clock-to-Out                      | put Times                                                                                           |              |                  |      |       |
| Т <sub>SMCKBY</sub>               | Y The time from the rising transition on the CCLK pin to a Slave signal transition at the BUSY pin  |              | -                | 12.0 | ns    |
| Setup Times                       |                                                                                                     |              |                  |      | L     |
| T <sub>SMDCC</sub>                | The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin          | Both         | 10.0             | -    | ns    |
| T <sub>SMCSCC</sub>               | The time from the setup of a logic level at the CS_B pin to the rising transition at the CCLK pin   |              | 10.0             | -    | ns    |
| T <sub>SMCCW</sub> <sup>(2)</sup> | The time from the setup of a logic level at the RDWR_B pin to the rising transition at the CCLK pin |              | 10.0             | -    | ns    |

| Tahlo | 36. | Timing for | r tha Maeta | r and Slave | Parallol | Configuration Modes |
|-------|-----|------------|-------------|-------------|----------|---------------------|
| rabic | 00. | THINING IV |             |             |          |                     |

|                                   |                                                                  |                                       |       | All Spee | d Grades |     |
|-----------------------------------|------------------------------------------------------------------|---------------------------------------|-------|----------|----------|-----|
| Symbol Description                |                                                                  | Slave/Master                          | Min   | Max      | Units    |     |
| Hold Times                        |                                                                  |                                       |       |          |          |     |
| T <sub>SMCCD</sub>                | The time from the rising transi point when data is last held at  | Both                                  | 0     | -        | ns       |     |
| T <sub>SMCCCS</sub>               | The time from the rising transi point when a logic level is last |                                       | 0     | -        | ns       |     |
| T <sub>SMWCC</sub> <sup>(2)</sup> | The time from the rising transi point when a logic level is last |                                       | 0     | -        | ns       |     |
| <b>Clock Timing</b>               |                                                                  |                                       | l     |          | 1        | I   |
| Т <sub>ССН</sub>                  | The High pulse width at the CCLK input pin                       |                                       | Slave | 5        | -        | ns  |
| T <sub>CCL</sub>                  | The Low pulse width at the CO                                    | -                                     | 5     | -        | ns       |     |
| F <sub>CCPAR</sub>                | Frequency of the clock signal                                    | Not using the BUSY pin <sup>(3)</sup> | -     | -        | 66       | MHz |
|                                   | at the CCLK input pin                                            | Using the BUSY pin                    |       | -        | 100      | MHz |
| $\Delta F_{CCPAR}$                | Variation from the generated C<br>the BitGen option ConfigRate   | Master                                | -50%  | +50%     | -        |     |

# Table 36: Timing for the Master and Slave Parallel Configuration Modes (Continued)

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

2. RDWR\_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the driver impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR\_B High when CS\_B is Low.

3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

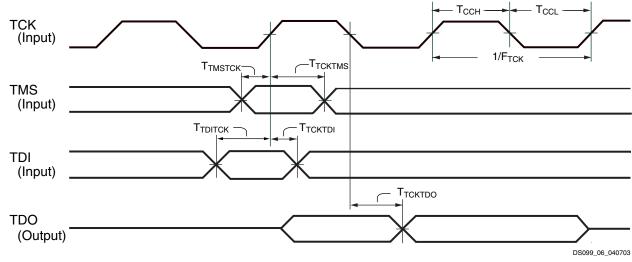



Figure 8: JTAG Waveforms

|                                                                                                                                    |                                                                                                       | All Spee | d Grades |       |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|----------|-------|
| Symbol Description                                                                                                                 |                                                                                                       | Min      | Max      | Units |
| Clock-to-Outpu                                                                                                                     | t Times                                                                                               |          |          |       |
| T <sub>TCKTDO</sub> The time from the falling transition on the TCK pin to data appearing at the TDO pin                           |                                                                                                       | -        | 11.0     | ns    |
| Setup Times                                                                                                                        |                                                                                                       |          | 1        | 1     |
| T <sub>TDITCK</sub>                                                                                                                | The time from the setup of data at the TDI pin to the rising transition at the TCK pin                | 5.0      | -        | ns    |
| T <sub>TMSTCK</sub>                                                                                                                | The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin       | 5.0      | -        | ns    |
| Hold Times                                                                                                                         |                                                                                                       |          | 1        | I     |
| T <sub>TCKTDI</sub>                                                                                                                | The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin |          | -        | ns    |
| T <sub>TCKTMS</sub> The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin |                                                                                                       | 0        | -        | ns    |
| Clock Timing                                                                                                                       |                                                                                                       |          |          | -     |
| T <sub>CCH</sub>                                                                                                                   | The High pulse width at the TCK pin                                                                   | 5        | -        | ns    |
| T <sub>CCL</sub>                                                                                                                   | The Low pulse width at the TCK pin                                                                    | 5        | -        | ns    |
| F <sub>TCK</sub>                                                                                                                   | Frequency of the TCK signal                                                                           | - 33 MH  |          | MHz   |

# Table 37: Timing for the JTAG Test Access Port

Notes:

# **Revision History**

| Date     | Version No. | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04/11/03 | 1.0         | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                |
| 07/11/03 | 1.1         | Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for typical quiescent supply current (Table 7) and DLL timing.                                                                                                                                                                                                                                                                     |
| 02/06/04 | 1.2         | Revised V <sub>IN</sub> maximum rating (Table 1). Added power-on requirements (Table 3), leakage current number (Table 6), and differential output voltage levels (Table 11) for Rev. 0. Published new quiescent current numbers (Table 7). Updated pull-up and pull-down resistor strengths (Table 6). Added LVDCI_DV2 and LVPECL standards (Table 10 and Table 11). Changed CCLK setup time (Table 35 and Table 36). |
| 03/04/04 | 1.3         | Added timing numbers from v1.29 speed files as well as DCM timing (Table 27 through Table 32).                                                                                                                                                                                                                                                                                                                         |

# The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)