Spartan-3 FPGA Family: DC and Switching Characteristics

Advance Product Specification

DC Electrical Characteristics

In this section, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:
Advance: Initial estimates based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes are not expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. The following applies unless otherwise noted: The parameter values published in this module apply to all Spartan-3 devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. All parameters representing voltages are measured with respect to GND.
Some specifications list different values for one or more die revisions. All presently available Spartan-3 devices are classified as revision 0 . Future updates to this module will introduce further die revisions as needed.

Table 1: Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Max	Units
$\mathrm{V}_{\text {CCINT }}$	Internal supply voltage		-0.5	1.32	V
$\mathrm{V}_{\text {CCAUX }}$	Auxiliary supply voltage		-0.5	3.00	V
$\mathrm{V}_{\text {cco }}$	Output driver supply voltage		-0.5	3.75	V
$\mathrm{V}_{\mathrm{REF}}{ }^{(2)}$	Input reference voltage		-0.5	$\mathrm{V}_{\mathrm{CCO}}+0.5$	V
$\mathrm{V}_{\text {IN }}{ }^{(2)}$	Voltage applied to all User I/O pins and Dual-Purpose pins ${ }^{(3)}$	Driver in a high-impedance state	-0.5	$\mathrm{V}_{\mathrm{CCO}}+0.5$	V
	Voltage applied to all Dedicated pins ${ }^{(4)}$		-0.5	$\mathrm{V}_{\text {CCAUX }}+0.5$	V
TJ	Junction temperature	$\mathrm{V}_{\mathrm{CCO}} \leq 3.0 \mathrm{~V}$	-	125	${ }^{\circ} \mathrm{C}$
		$\mathrm{V}_{\mathrm{CCO}}>3.0 \mathrm{~V}$	-	105	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}{ }^{(5)}$	Soldering temperature		-	220	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65	150	${ }^{\circ} \mathrm{C}$

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings will cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely affects device reliability.
2. Table 5 specifies the range of values for $\mathrm{V}_{\mathrm{CCO}}$ and $\mathrm{V}_{\text {CCAUX }}$, which are used to determine the limits of this parameter.
3. All User I/O and Dual-Purpose pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, AND INIT_B) draw power from the VCCO power rail of the associated bank.
4. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the $V_{\text {CCAUX }}$ rail (2.5V). For information concerning the use of 3.3 V signals, see the " 3.3 V -Tolerant Configuration Interface" section in Module 2.
5. For soldering guidelines, see the information on "Packaging and Thermal Characteristics" at www.xilinx.com.

Table 2: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
$\mathrm{V}_{\text {CCINTT }}$	Threshold for the $\mathrm{V}_{\text {CCINT }}$ supply	0.4	1.0	V
$\mathrm{~V}_{\text {CCAUXT }}$	Threshold for the $\mathrm{V}_{\text {CCAUX }}$ supply	0.8	2.0	V
$\mathrm{~V}_{\text {CCO4T }}$	Threshold for the $\mathrm{V}_{\text {CCO }}$ Bank 4 supply	0.4	1.0	V

Notes:

1. $\mathrm{V}_{\mathrm{CCINT}}, \mathrm{V}_{\mathrm{CCAUX}}$, and $\mathrm{V}_{\mathrm{CCO}}$ supplies may be applied in any order.
2. To ensure successful power-on, $\mathrm{V}_{\mathrm{CCINT}}, \mathrm{V}_{\mathrm{CCO}}$ Bank 4 , and $\mathrm{V}_{\mathrm{CCAUX}}$ supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 3: Other Power-On Requirements

Symbol	Description	Device Revision		Min	Max	Units
$\mathrm{T}_{\mathrm{CcO}}$	$\mathrm{V}_{\text {Cco }}$ ramp time for all eight banks	0	XC3S200, XC3S400, and XC3S1500 in the FT and FG packages	600	-	$\mu \mathrm{s}$
			All other devices	2.0	-	ms
		Future	To be improved	-		

Notes:

1. This specification is based on characterization.
2. At present, there are no ramp requirements for the $\mathrm{V}_{\mathrm{CCINT}}$ and $\mathrm{V}_{\text {CCAUX }}$ supplies.

Table 4: Power Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
$\mathrm{V}_{\text {DRINT }}$	$\mathrm{V}_{\text {CCINT }}$ level required to retain RAM data	1.0	V
$\mathrm{~V}_{\text {DRAUX }}$	$\mathrm{V}_{\text {CCAUX }}$ level required to retain RAM data	2.0	V

Notes:

1. RAM contents include configuration data.
2. The level of the $\mathrm{V}_{\mathrm{CCO}}$ supply has no effect on data retention.

Table 5: General Recommended Operating Conditions

Symbol	Description		Min	Nom	Max	Units
T_{J}	Junction temperature	Commercial	0	-	85	${ }^{\circ} \mathrm{C}$
		Industrial	-40	-	100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CCINT }}$	Internal supply voltage	1.140	1.200	1.260	V	
$\mathrm{~V}_{\text {CCO }}{ }^{(1)}$	Output driver supply voltage	1.140	-	3.450	V	
$\mathrm{~V}_{\text {CCAUX }}$	Auxiliary supply voltage	2.375	2.500	2.625	V	

Notes:

1. The $\mathrm{V}_{\mathrm{CcO}}$ range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V_{CCO} range specific to each of the single-ended I/O standards is given in Table 8, and that specific to the differential standards is given in Table 10.

Table 6: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Symbol	Description	Test Conditions	Device Revision		Min	Typ	Max	Units	
I_{L}	Leakage current at User I/O, Dual-Purpose, and Dedicated pins	Driver is in a high-impedance state, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCO}}$ max, sample-tested	0	$\mathrm{V}_{\text {cco }} \geq 3.0 \mathrm{~V}$	-25	-	+25	$\mu \mathrm{A}$	
				$\mathrm{V}_{\text {cco }}<3.0 \mathrm{~V}$	-10	-	+10	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{RPU}}{ }^{(2)}$	Current through pull-up resistor at User I/O, Dual-Purpose, and Dedicated pins	$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	0		-0.84	-	-2.35	mA	
		$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CCO}}=3.0 \mathrm{~V}$			-0.69	-	-1.99	mA	
		$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V}$			-0.47	-	-1.41	mA	
		$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$			-0.21	-	-0.69	mA	
		$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\text {CCO }}=1.5 \mathrm{~V}$			-0.13	-	-0.43	mA	
		$\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{CCO}}=1.2 \mathrm{~V}$			-0.06	-	-0.22	mA	
$\mathrm{I}_{\mathrm{RPD}}{ }^{(2)}$	Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCO }}$			0.37	-	1.67	mA	
$\mathrm{I}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ current per pin		0	$\mathrm{V}_{\mathrm{CCO}} \geq 3.0 \mathrm{~V}$	-25	-	+25	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{cco}}<3.0 \mathrm{~V}$	-10	-	+10	$\mu \mathrm{A}$		
$\mathrm{C}_{\text {IN }}$	Input capacitance				All	3	-	10	pF

Notes:

1. The numbers in this table are based on the conditions set forth in Table 5.
2. This parameter is based on characterization.

Table 7: Quiescent Supply Current Characteristics

Symbol	Description	Device	Commercial		Industrial		Units
			Typ	Max	Typ	Max	
$\mathrm{I}_{\text {CCINTQ }}$	Quiescent $\mathrm{V}_{\text {CCINT }}$ supply current	XC3S50	10.0				mA
		XC3S200	20.0				mA
		XC3S400	35.0				mA
		XC3S1000	65.0				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA
${ }^{\text {ICCOQ }}$	Quiescent $\mathrm{V}_{\mathrm{CcO}}$ supply current	XC3S50	1.5				mA
		XC3S200	1.5				mA
		XC3S400	1.5				mA
		XC3S1000	1.5				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA
$I_{\text {ccauxa }}$	Quiescent $\mathrm{V}_{\text {CcAux }}$ supply current	XC3S50	7.0				mA
		XC3S200	15.0				mA
		XC3S400	20.0				mA
		XC3S1000	25.0				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA

Notes:

1. The numbers in this table are based on the conditions set forth in Table 5 . Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. For typical values, the ambient temperature (T_{A}) is $25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CCINT}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CCAUX}}=2.5 \mathrm{~V}$. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated).
2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3 Web Power Tool at http://www.xilinx.com/ise/power tools provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower, part of the Xilinx development software, takes a netlist as input to provide more accurate maximum and typical estimates.

Table 8: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

Signal Standard	$\mathrm{V}_{\text {CCO }}$			$V_{\text {REF }}$			V_{IL}	$\mathbf{V}_{\mathbf{I H}}$
	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
GTL ${ }^{(2)}$	-	-	-	0.74	0.8	0.86	$\mathrm{V}_{\text {REF }}-0.05$	$\mathrm{V}_{\text {REF }}+0.05$
GTL_DCI	-	1.2	-	0.74	0.8	0.86	$\mathrm{V}_{\text {REF }}-0.05$	$\mathrm{V}_{\text {REF }}+0.05$
GTLP ${ }^{(2)}$	-	-	-	0.88	1	1.12	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
GTLP_DCI	-	1.5	-	0.88	1	1.12	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
HSTL_I, HSTL_I_DCI	1.4	1.5	1.6	0.68	0.75	0.9	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
$\begin{array}{\|l\|} \hline \text { HSTL_III, } \\ \text { HSTL_III_DCI } \end{array}$	1.4	1.5	1.6	0.68	0.9	0.9	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
$\begin{aligned} & \text { HSTL_I_18, } \\ & \text { HSTL_I_DCI_18 } \end{aligned}$	1.7	1.8	1.9	-	0.9	-	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
$\begin{aligned} & \text { HSTL_II_18, } \\ & \text { HSTL_II_DCI_18 } \end{aligned}$	1.7	1.8	1.9	-	0.9	-	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
$\begin{aligned} & \hline \text { HSTL_III_18, } \\ & \text { HSTL_II_DCI_18 } \end{aligned}$	1.7	1.8	1.9	-	1.1	-	$\mathrm{V}_{\text {REF }}-0.1$	$\mathrm{V}_{\text {REF }}+0.1$
LVCMOS12 ${ }^{(3)}$	1.14	1.2	1.3	-	-	-	$0.20 \mathrm{~V}_{\text {CCO }}$	$0.70 \mathrm{~V}_{\mathrm{CCO}}$
LVCMOS15, LVDCI_15, LVDCI_DV2_15 ${ }^{(3)}$	1.4	1.5	1.6	-	-	-	$0.20 \mathrm{~V}_{\mathrm{Cco}}$	$0.70 \mathrm{~V}_{\mathrm{cco}}$
LVCMOS18, LVDCI_18, LVDCI_DV2_18 ${ }^{(3)}$	1.7	1.8	1.9	-	-	-	$0.20 \mathrm{~V}_{\mathrm{CCO}}$	$0.70 \mathrm{~V}_{\mathrm{cco}}$
LVCMOS25(4), LVDCI_25, LVDCI_DV2_25 ${ }^{(3)}$	2.3	2.5	2.7	-	-	-	0.7	1.7
LVCMOS33, LVDCI_33, LVDCI_DV2_33(3)	3.0	3.3	3.45	-	-	-	0.8	2.0
LVTTL	3.0	3.3	3.45	-	-	-	0.8	2.0
PCI33_3	-	3.0	-	-	-	-	$0.30 \mathrm{~V}_{\mathrm{CCO}}$	$0.50 \mathrm{~V}_{\text {CCO }}$
$\begin{aligned} & \text { SSTL18_I, } \\ & \text { SSTL18_I_DCI } \end{aligned}$	1.65	1.8	1.95	0.825	0.9	0.975	$\mathrm{V}_{\text {REF }}-0.125$	$\mathrm{V}_{\text {REF }}+0.125$
$\begin{aligned} & \text { SSTL2_I, } \\ & \text { SSTL2_I_DCI } \end{aligned}$	2.3	2.5	2.7	1.15	1.25	1.35	$\mathrm{V}_{\text {REF }}-0.15$	$\mathrm{V}_{\text {REF }}+0.15$
$\begin{aligned} & \text { SSTL2_II, } \\ & \text { SSTL2_II_DCI } \end{aligned}$	2.3	2.5	2.7	1.15	1.25	1.35	$\mathrm{V}_{\text {REF }}-0.15$	$\mathrm{V}_{\text {REF }}+0.15$

Notes:

1. Descriptions of the symbols used in this table are as follows:
$\mathrm{V}_{\text {CCO }}{ }^{--}$the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs
$V_{\text {REF }}$-- the reference voltage for setting the input switching threshold
$\mathrm{V}_{\text {IL }}-$ - the input voltage that indicates a Low logic level
$V_{I H}$-- the input voltage that indicates a High logic level
2. Because the GTL and GTLP standards employ open-drain output buffers, $\mathrm{V}_{\mathrm{CcO}}$ lines do not supply current to the I / O circuit, rather this current is provided using an external pull-up resistor connected from the $1 / \mathrm{O}$ pin to a termination voltage (V_{TT}). Nevertheless, the voltage applied to the associated $\mathrm{V}_{\mathrm{CCO}}$ lines must always be at or above V_{TT} and I / O pad voltages.
3. There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard.
4. All Dedicated pins (MO-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the $V_{\text {CCAUX }}$ rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) use the LVCMOS25 standard before the User mode. For these pins, apply 2.5 V to the $\mathrm{V}_{\mathrm{CCO}}$ Bank 4 and $\mathrm{V}_{\text {CCO }}$ Bank 5 rails at power-on as well as throughout configuration. For information concerning the use of 3.3 V signals, see the "3.3V-Tolerant Configuration Interface" section in Module 2.
5. The global clock inputs have the following bank associations: GCLK0 and GCLK1 with Bank 4, GCLK2 and GCLK3 with Bank 5, GCLK4 and GCLK5 with Bank 1, and GCLK6 and GCLK7 with Bank 0. The signal standards assigned to the Global Clock Lines (and I / Os) of a given bank determine the $\mathrm{V}_{\mathrm{CCO}}$ voltage for that bank.

Table 9: DC Characteristics of User I/Os Using Single-Ended Standards

Signal Standard and Current Drive Attribute (mA)		Test Conditions		Logic Level Characteristics	
		$\begin{gathered} \mathrm{I}_{\mathrm{OL}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{OL}} \\ \operatorname{Max}(\mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \operatorname{Min}(\mathrm{~V}) \end{gathered}$
GTL		32	-	0.4	-
GTL_DCI		Note 3	Note 3		
GTLP		36	-	0.6	-
GTLP_DCI		Note 3	Note 3		
HSTL_I		8	-8	0.4	$\mathrm{V}_{\text {CCO }}-0.4$
HSTL_I_DCI		Note 3	Note 3		
HSTL_III		24	-8	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
HSTL_III_DCI		Note 3	Note 3		
HSTL_I_18		8	-8	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
HSTL_I_DCI_18		Note 3	Note 3		
HSTL_II_18		16	-16	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
HSTL_II_DCI_18		Note 3	Note 3		
HSTL_III_18		24	-8	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
HSTL_III_DCI_18		Note 3	Note 3		
LVCMOS12 ${ }^{(4)}$	2	2	-2	0.4	$\mathrm{V}_{\text {CCO }}-0.4$
	4	4	-4		
	6	6	-6		
LVCMOS15 ${ }^{(4)}$	2	2	-2	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
$\begin{aligned} & \text { LVDCI_15, } \\ & \text { LVDCI_DV2_15 } \end{aligned}$		Note 3	Note 3		
LVCMOS18(4)	2	2	-2	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
$\begin{aligned} & \text { LVDCI_18, } \\ & \text { LVDCI_DV2_18 } \end{aligned}$		Note 3	Note 3		
LVCMOS25(4,5)	2	2	-2	0.4	$\mathrm{V}_{\mathrm{CCO}}-0.4$
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
$\begin{aligned} & \text { LVDCI_25, } \\ & \text { LVDCI_DV2_25 } \end{aligned}$		Note 3	Note 3		

Table 9: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)

Signal Standard and Current Drive Attribute (mA)		Test Conditions		Logic Level Characteristics	
		$\begin{gathered} \mathrm{I}_{\mathrm{OL}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{OH}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OL}} \\ \operatorname{Max}(\mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ \operatorname{Min}(\mathrm{~V}) \end{gathered}$
LVCMOS33 ${ }^{(4)}$	2	2	-2	0.4	$\mathrm{V}_{\text {CCO }}-0.4$
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
LVDCI_33, LVDCI_DV2_33		Note 3	Note 3		
LVTTL ${ }^{(4)}$	2	2	-2	0.4	2.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
PCI33_3		Note 6	Note 6	$\frac{0.10 \mathrm{~V}_{\mathrm{CCO}}}{\mathrm{~V}_{\mathrm{TT}}-0.475}$	
SSTL18_I		6.7	-6.7		$\mathrm{V}_{\mathrm{TT}}+0.475$
SSTL18_I_DCI		Note 3	Note 3		
SSTL2_I		7.5	-7.5	$\mathrm{V}_{\mathrm{TT}}-0.61$	$\mathrm{V}_{\mathrm{TT}}+0.61$
SSTL2_I_DCI		Note 3	Note 3		
SSTL2_II		15	-15	$\mathrm{V}_{\mathrm{TT}}-0.80$	$\mathrm{V}_{\mathrm{TT}}+0.80$
SSTL2_II_DCI		Note 3	Note 3		

Notes:

1. The numbers in this table are based on the conditions set forth in Table 5 and Table 8.
2. Descriptions of the symbols used in this table are as follows:
I_{OL}-- the output current condition under which V_{OL} is tested
$\mathrm{IOH}_{\mathrm{OH}}-$ the output current condition under which V_{OH} is tested
V_{OL}-- the output voltage that indicates a Low logic level
$V_{\mathrm{OH}}--$ the output voltage that indicates a High logic level
$V_{\text {IL }}$-- the input voltage that indicates a Low logic level
$V_{I H}$-- the input voltage that indicates a High logic level
$V_{\text {CCO }}{ }^{--}$the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs
$V_{\text {REF }}$-- the reference voltage for setting the input switching threshold
$V_{T T}$-- the voltage applied to a resistor termination
3. Tested according to the standard's relevant specifications.
4. For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes.
5. All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (DO-D7 and BUSY/DOUT) exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3 V signals, see the "3.3V-Tolerant Configuration Interface" section in Module 2.
6. Tested according to the relevant PCI specifications.

Figure 1: Differential Input Voltages

Table 10: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

	$\mathrm{V}_{\text {cco }}{ }^{(1)}$			$V_{\text {ID }}$			$\mathrm{V}_{\text {ICM }}$			$\mathrm{V}_{\mathbf{I H}}$		V_{IL}	
Signal Standard	Min (V)	Nom (V)	Max (V)	$\begin{aligned} & \text { Min } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \text { Nom } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & (\mathrm{mV}) \end{aligned}$	Min (V)	Nom (V)	Max (V)	Min (V)	Max (V)	Min (V)	Max (V)
LDT_25	2.375	2.50	2.625	200	600	1000	0.44	0.60	0.78	-	-	-	-
LVDS_25, LVDS_25_DCI	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	-	-	-	-
BLVDS_25	2.375	2.50	2.625	-	350	-	-	1.25	-	-	-	-	-
LVDSEXT_25, LVDSEXT_25_DCI	2.375	2.50	2.625	100	540	1000	0.30	1.20	2.20	-	-	-	-
ULVDS_25	2.375	2.50	2.625	200	600	1000	0.44	0.60	0.78	-	-	-	-
LVPECL_25	2.375	2.50	2.625	100	-	-	-	-	-	0.8	2.0	0.5	1.7
RSDS_25	2.375	2.50	2.625	100	200	-	-	1.20	-	-	-	-	-

Notes:

1. $\mathrm{V}_{\mathrm{CCO}}$ only supplies differential output drivers, not input circuits.
2. $\mathrm{V}_{\mathrm{REF}}$ inputs are not used for any of the differential I/O standards.
3. $\mathrm{V}_{\text {ID }}$ is a differential measurement.

$\begin{aligned} \mathrm{V}_{\mathrm{OCM}} & =\text { Output common mode voltage }=\frac{\mathrm{V}_{\text {OUTP }}+\mathrm{V}_{\text {OUTN }}}{2} \\ \mathrm{~V}_{\mathrm{OD}} & =\text { Output differential voltage }=\left|\mathrm{V}_{\text {OUTP }}-\mathrm{V}_{\text {OUTN }}\right| \\ \mathrm{V}_{\mathrm{OH}} & =\text { Output voltage indicating a High logic level } \\ \mathrm{V}_{\mathrm{OL}} & =\text { Output voltage indicating a Low logic level } \quad \text { DSO99-3_02_012304 }\end{aligned}$
Figure 2: Differential Output Voltages

Table 11: DC Characteristics of User I/Os Using Differential Signal Standards

	Device Revision	$V_{\text {OD }}$			$\Delta V_{\text {OD }}$		$\mathrm{V}_{\text {осм }}$			$\Delta V_{\text {OCM }}$		V_{OH}		V_{OL}	
Signal Standard		$\begin{aligned} & \operatorname{Min} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { (mV) } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \operatorname{Min} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \text { Max } \\ & (\mathrm{mV}) \end{aligned}$	Min (V)	Typ (V)	Max (V)	$\begin{aligned} & \operatorname{Min} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & (\mathrm{mV}) \end{aligned}$	Min (V)	Max (V)	Min (V)	Max (V)
LDT_25	All ${ }^{(3)}$	430(4)	600	670	-15	15	0.495	0.600	0.715	-15	15	-	-	-	-
LVDS_25	$0^{(3)}$	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	250	-	400	-	-	1.125	-	1.375	-	-	1.00	1.475	0.925	1.38
BLVDS_25	All	250	350	450	-	-	-	1.20	-	-	-	-	-	-	-
LVDSEXT_25	$0^{(3)}$	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	330	-	700	-	-	1.125	-	1.375	-	-	-	1.700	0.705	-
ULVDS_25	All ${ }^{(3)}$	430	600	670	-	-	0.495	0.600	0.715	-	-	-	-	-	-
LVPECL_25 ${ }^{(7)}$	All	-	-	-	-	-	-	-	-	-	-	1.35	1.745	0.565	1.005
RSDS_25	$0^{(3)}$	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	100	-	400	-	-	1.1	-	1.4	-	-	-	-	-	-

Notes:

1. The numbers in this table are based on the conditions set forth in Table 5 and Table 10.
2. $\mathrm{V}_{O D}, \Delta \mathrm{~V}_{\mathrm{OD}}$, and $\triangle \mathrm{V}_{O C M}$ are differential measurements.
3. For this standard, to ensure that the FPGA's output pair meets specifications, it is necessary to set the LVDSBIAS option in the BitGen utility, part of the Xilinx development software. See XAPP751. The option settings for LVDS_25, LVDSEXT_25, and RSDS_25 are different from those for LDT_25 and ULVDS_25.
4. This value must be compatible with the receiver to which the FPGA's output pair is connected.
5. Output voltage measurements for all differential standards are made with a termination resistor (R_{T}) of 100Ω across the N and P pins of the differential signal pair.
6. At any given time, only one differential standard may be assigned to each bank.
7. Each LVPECL output-pair requires three external resistors: a 70Ω resistor in series with each output followed by a 240Ω shunt resistor. These are in addition to the external 100Ω termination resistor at the receiver side. See Figure 3.

Figure 3: External Terminations for LVPECL

Switching Characteristics

All Spartan-3 devices are available in two speed grades: -4 and the higher performance -5 . Switching characteristics in this document may be designated as Advance, Preliminary, or Production. Each category is defined as follows:
Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. All -5 grade numbers are engineering targets: characterization is still in progress.
Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.
Production: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation
between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.
All specified limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the following applies: Parameter values apply to all Spartan-3 devices. All parameters representing voltages are measured with respect to GND.
Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3 speed files (V1.29), part of the Xilinx Development Software, are the original source for many but not all of the values. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

I/O Timing

Table 12: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

Symbol	Description	Conditions	Device	Speed Grade		Units
				-5	-4	
				Max	Max	
Clock-to-Output Times						
TICKOFDCM	When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is in use.	LVCMOS25(2), 12mA output drive, Fast slew rate, with $\mathrm{DCM}^{(3)}$	XC3S50		2.59	ns
			XC3S200		2.59	ns
			XC3S400		2.59	ns
			XC3S1000		2.59	ns
			XC3S1500		2.60	ns
			XC3S2000		2.60	ns
			XC3S4000		2.60	ns
			XC3S5000		2.60	ns
TICKOF	When reading from OFF, the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is not in use.	LVCMOS25(2), 12 mA output drive, Fast slew rate, without DCM	XC3S50		5.37	ns
			XC3S200		5.39	ns
			XC3S400		5.42	ns
			XC3S1000		5.51	ns
			XC3S1500		5.65	ns
			XC3S2000		5.83	ns
			XC3S4000		5.95	ns
			XC3S5000		6.19	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 16. If the latter is true, add the appropriate Output adjustment from Table 19.
3. DCM output jitter is included in all measurements.

Table 13: Pin-to-Pin Setup and Hold Times for the IOB Input Path

Symbol	Description	Conditions	Device	Speed Grade		Units
				-5	-4	
				Min	Min	
Setup Times						
TPSDCM	When writing to the Input Flip-Flop (IFF), the time from the setup of data at the Input pin to the active transition at a Global Clock pin. The DCM is in use.	$\begin{aligned} & \text { LVCMOS25(2) }^{(2)} \\ & \text { IOBDELAY }^{(1)} \text { NONE }^{(4)}, \\ & \text { with } \text { DCM }^{(5)} \end{aligned}$	XC3S50		2.72	ns
			XC3S200		2.72	ns
			XC3S400		2.74	ns
			XC3S1000		2.76	ns
			XC3S1500		2.86	ns
			XC3S2000		2.98	ns
			XC3S4000		3.06	ns
			XC3S5000		3.23	ns
$\mathrm{T}_{\text {PSFD }}$	When writing to IFF, the time from the setup of data at the Input pin to an active transition at the Global Clock pin. The DCM is not in use.	$\begin{aligned} & \text { LVCMOS25(2) }^{(2)} \\ & \text { IOBDELAY }=\operatorname{NONE}^{(4)}, \\ & \text { without DCM } \end{aligned}$	XC3S50		2.43	ns
			XC3S200		3.53	ns
			XC3S400		3.52	ns
			XC3S1000		3.77	ns
			XC3S1500		4.15	ns
			XC3S2000		4.34	ns
			XC3S4000		4.53	ns
			XC3S5000		4.90	ns
Hold Times						
T ${ }_{\text {PHDCM }}$	When writing to IFF, the time from the active transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is in use.	$\begin{aligned} & {\operatorname{LVCMOS} 25^{(3)}}^{\text {IOBDELAY }=\operatorname{NONE}^{(4)},} \\ & \text { with } \mathrm{DCM}^{(5)} \end{aligned}$	XC3S50		-1.81	ns
			XC3S200		-1.81	ns
			XC3S400		-1.81	ns
			XC3S1000		-1.81	ns
			XC3S1500		-1.81	ns
			XC3S2000		-1.81	ns
			XC3S4000		-1.80	ns
			XC3S5000		-1.80	ns
TPHFD	When writing to IFF, the time from the active transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is not in use.	$\begin{aligned} & \text { LVCMOS25(3), } \\ & \text { IOBDELAY = } \text { NONE }^{(4)} \text {, } \\ & \text { without DCM } \end{aligned}$	XC3S50		-1.03	ns
			XC3S200		-1.89	ns
			XC3S400		-1.87	ns
			XC3S1000		-2.01	ns
			XC3S1500		-2.20	ns
			XC3S2000		-2.20	ns
			XC3S4000		-2.24	ns
			XC3S5000		-2.32	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 16. If this is true of the data Input, add the appropriate input adjustment from the same table.
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 16. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.
4. All numbers measured with no programmed input delay.
5. DCM output jitter is included in all measurements.

Table 14: Setup and Hold Times for the IOB Input Path

Symbol	Description	Conditions	Device	Speed Grade		Units
				-5	-4	
				Min	Min	
Setup Times						
TIOPICK	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No input delay is programmed.	LVCMOS25(2), IOBDELAY = NONE	All	1.15	1.32	ns
TIOPICKD	Time from the setup of data at the Input pin to the active transition at the IFF's ICLK input. The input delay is programmed.	$\begin{aligned} & \text { LVCMOS25 }^{(2)}, \\ & \text { IOBDELAY = IFD } \end{aligned}$	XC3S50	3.26	3.75	ns
			XC3S200	3.89	4.47	ns
			XC3S400	3.89	4.47	ns
			XC3S1000	4.15	4.77	ns
			XC3S1500	4.32	4.97	ns
			XC3S2000	4.50	5.17	ns
			XC3S4000	4.67	5.37	ns
			XC3S5000	5.02	5.77	ns
Hold Times						
TIOICKP	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No input delay is programmed.	$\begin{aligned} & \text { LVCMOS25(3), } \\ & \text { IOBDELAY = NONE } \end{aligned}$	All		-0.66	ns
TIOICKPD	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. The input delay is programmed.	$\begin{aligned} & \text { LVCMOS25(3), } \\ & \text { IOBDELAY = IFD } \end{aligned}$	XC3S50		-2.36	ns
			XC3S200		-2.87	ns
			XC3S400		-2.87	ns
			XC3S1000		-3.08	ns
			XC3S1500		-3.22	ns
			XC3S2000		-3.36	ns
			XC3S4000		-3.50	ns
			XC3S5000		-3.78	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 16.
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 16. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 15: Propagation Times for the IOB Input Path

Symbol	Description	Conditions	Device	Speed Grade		Units
				-5	-4	
				Max	Max	
Propagation Times						
$\mathrm{T}_{\text {IOPI }}$	The time it takes for data to travel from the Input pin to the IOB's I output with no input delay programmed	$\begin{aligned} & \text { LVCMOS25(2), } \\ & \text { IOBDELAY = NONE } \end{aligned}$	All	1.05	1.20	ns
TIOPID	The time it takes for data to travel from the Input pin to the I output with the Input delay programmed	$\begin{aligned} & \operatorname{LVCMOS25}^{(2)}, \\ & \text { IOBDELAY = IFD } \end{aligned}$	XC3S50	3.16	3.63	ns
			XC3S200	3.79	4.35	ns
			XC3S400	3.79	4.35	ns
			XC3S1000	4.05	4.65	ns
			XC3S1500	4.22	4.85	ns
			XC3S2000	4.40	5.05	ns
			XC3S4000	4.57	5.25	ns
			XC3S5000	4.92	5.65	ns
$\mathrm{T}_{\text {IOPLI }}$	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	$\begin{aligned} & \text { LVCMOS25(2), } \\ & \text { IOBDELAY = NONE } \end{aligned}$	All	1.55	1.78	ns
$\mathrm{T}_{\text {IOPLID }}$	The time it takes for data to travel from the Input pin through the IFF latch to the I output with the input delay programmed	$\begin{aligned} & \text { LVCMOS25(2), } \\ & \text { IOBDELAY = IFD } \end{aligned}$	XC3S50	3.66	4.21	ns
			XC3S200	4.29	4.93	ns
			XC3S400	4.29	4.93	ns
			XC3S1000	4.55	5.23	ns
			XC3S1500	4.73	5.43	ns
			XC3S2000	4.90	5.63	ns
			XC3S4000	5.07	5.83	ns
			XC3S5000	5.42	6.23	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, add the appropriate Input adjustment from Table 16.

Table 16: Input Timing Adjustments for IOB

Convert Input Time from LVCMOS25 to the Following Signal Standard	Adjust		Units
	Speed Grade		
	-5	-4	
Single-Ended Standards			
GTL, GTL_DCI	-0.37	-0.37	ns
GTLP, GTLP_DCI	-0.37	-0.37	ns
HSTL_I, HSTL_I_DCI	-0.18	-0.18	ns
HSTL_III, HSTL_III_DCI	-0.19	-0.19	ns
$\begin{aligned} & \text { HSTL_I_18, } \\ & \text { HSTL_I_DCI_18 } \end{aligned}$	-0.26	-0.26	ns
$\begin{aligned} & \text { HSTL_II_18, } \\ & \text { HSTL_II_DCI_18 } \end{aligned}$	-0.26	-0.26	ns
HSTL_III_18, HSTL_III_DCI_18	-0.20	-0.20	ns
LVCMOS12	0.40	0.40	ns
LVCMOS15, LVDCI_15, LVDCI_DV2_15	0.47	0.47	ns
LVCMOS18, LVDCI_18, LVDCI_DV2_18	0.30	0.30	ns
$\begin{aligned} & \text { LVCMOS25, LVDCI_25, } \\ & \text { LVDCI_DV2_25 } \end{aligned}$	0	0	ns
LVCMOS33, LVDCI_33, LVDCI_DV2_33	0.09	0.09	ns
LVTTL	-0.31	-0.31	ns

Table 16: Input Timing Adjustments for IOB (Continued)

	Add the Convert Input Time from LVCMOS25 to the			
Adjustment Below				
Following Signal Standard	-5	$\mathbf{- 4}$	Units	
PCI33_3	0.32	0.32		
SSTL18_I, SSTL18_I_DCI	-0.17	-0.17	ns	
SSTL2_I, SSTL2_I_DCI	-0.19	-0.19	ns	
SSTL2_II, SSTL2_II_DCI	-0.21	-0.21	ns	

Differential Standards

LDT_25	0.04	0.04	ns
LVDS_25, LVDS_25_DCI	0.06	0.06	ns
BLVDS_25			ns
LVDSEXT_25, LVDSEXT_25_DCI			ns
ULVDS_25	-0.05	-0.05	ns
LVPECL_25			ns
RSDS_25			ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.
2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Table 17: Timing for the IOB Output Path

Symbol	Description	Conditions	Speed Grade		Units
			-5	-4	
			Max	Max	
Clock-to-Output Times					
TIOCKP	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OTCLK input to data appearing at the Output pin	LVCMOS25(2), 12mA output drive, Fast slew rate	3.64	4.18	ns
Propagation Times					
TIOOP	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25(2), 12mA output drive, Fast slew rate	2.97	3.42	ns
TIOOLP	The time it takes for data to travel from the O input through the OFF latch to the Output pin		3.41	3.92	ns
Set/Reset Times					
TIOSRP	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25(2), 12mA output drive, Fast slew rate	4.44	5.10	ns
TIOGSRQ	Time from asserting the Global Set Reset (GSR) net to setting/resetting data at the Output pin		8.07	9.28	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 19.

Table 18: Timing for the IOB Three-State Path

Symbol	Description	Conditions	Speed Grade		Units
			-5	-4	
			Max	Max	
Synchronous Output Enable/Disable Times					
TIOCKHZ	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	2.32	2.66	ns
$\mathrm{T}_{\text {IOCKON }}{ }^{(2)}$	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data		3.78	4.34	ns
Asynchronous Output Enable/Disable Times					
$\mathrm{T}_{\text {GTS }}$	Time from asserting the Global Three State net (GTS) net to when the Output pin enters the high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	7.03	8.08	ns
Set/Reset Times					
TIOSRHZ	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	3.28	3.77	ns
$\mathrm{T}_{\text {IOSRON }}{ }^{(2)}$	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data		4.75	5.45	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 19.

Table 19: Output Timing Adjustments for IOB

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard			Add the Adjustment Below Speed Grade		Units
			-5	-4	
Single-Ended Standards					
GTL			-0.18	-0.18	ns
GTL_DCI			-0.15	-0.15	ns
GTLP			-0.15	-0.15	ns
GTLP_DCI			-0.13	-0.13	ns
HSTL_I			0.08	0.08	ns
HSTL_I_DCI			0.07	0.07	ns
HSTL_III			-0.05	-0.05	ns
HSTL_III_DCI			-0.05	-0.05	ns
HSTL_I_18			0.14	0.14	ns
HSTL_I_DCI_18			0	0	ns
HSTL_II_18			-0.13	-0.13	ns
HSTL_II_DCI_18			0.31	0.31	ns
HSTL_III_18			-0.02	-0.02	ns
HSTL_III_DCI_18			-0.03	-0.03	ns
LVCMOS12	Slow	2 mA	6.47	6.47	ns
		4 mA	6.70	6.70	ns
		6 mA	5.60	5.60	ns
	Fast	2 mA	3.04	3.04	ns
		4 mA	2.25	2.25	ns
		6 mA	2.10	2.10	ns
LVCMOS15	Slow	2 mA	3.95	3.95	ns
		4 mA	3.49	3.49	ns
		6 mA	2.85	2.85	ns
		8 mA	3.44	3.44	ns
		12 mA	2.82	2.82	ns
	Fast	2 mA	2.29	2.29	ns
		4 mA	1.37	1.37	ns
		6 mA	1.15	1.15	ns
		8 mA	1.13	1.13	ns
		12 mA	1.00	1.00	ns
LVDCI_15			1.34	1.34	ns
LVDCI_DV2_15			1.14	1.14	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard			Add the Adjustment Below Speed Grade		Units
			-5	-4	
LVCMOS18	Slow	2 mA	4.31	4.31	ns
		4 mA	2.69	2.69	ns
		6 mA	2.23	2.23	ns
		8 mA	1.83	1.83	ns
		12 mA	1.97	1.97	ns
		16 mA	1.62	1.62	ns
	Fast	2 mA	2.07	2.07	ns
		4 mA	0.90	0.90	ns
		6 mA	0.77	0.77	ns
		8 mA	0.61	0.61	ns
		12 mA	0.56	0.56	ns
		16 mA	0.50	0.50	ns
LVDCI_18			0.72	0.72	ns
LVDCI_DV2_			0.58	0.58	ns
LVCMOS25	Slow	2 mA	5.11	5.11	ns
		4 mA	3.17	3.17	ns
		6 mA	2.53	2.53	ns
		8 mA	2.21	2.21	ns
		12 mA	1.79	1.79	ns
		16 mA	1.77	1.77	ns
		24 mA	1.53	1.53	ns
	Fast	2 mA	2.30	2.30	ns
		4 mA	0.87	0.87	ns
		6 mA	0.30	0.30	ns
		8 mA	0.21	0.21	ns
		12 mA	0	0	ns
		16 mA	0.11	0.11	ns
		24 mA	0.04	0.04	ns
LVDCI_25			0.19	0.19	ns
LVDCI_DV2			0.10	0.10	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard			Add the Adjustment Below Speed Grade		Units
			-5	-4	
LVCMOS33	Slow	2 mA	6.22	6.22	ns
		4 mA	3.80	3.80	ns
		6 mA	3.02	3.02	ns
		8 mA	3.04	3.04	ns
		12 mA	2.18	2.18	ns
		16 mA	2.05	2.05	ns
		24 mA	1.82	1.82	ns
	Fast	2 mA	3.15	3.15	ns
		4 mA	1.30	1.30	ns
		6 mA	0.53	0.53	ns
		8 mA	0.54	0.54	ns
		12 mA	0.14	0.14	ns
		16 mA	0.08	0.08	ns
		24 mA	-0.03	-0.03	ns
LVDCI_33			0	0	ns
LVDCI_DV2_3			0	0	ns
LVTTL	Slow	2 mA	6.24	6.24	ns
		4 mA	3.81	3.81	ns
		6 mA	3.03	3.03	ns
		8 mA	3.02	3.02	ns
		12 mA	2.17	2.17	ns
		16 mA	2.05	2.05	ns
		24 mA	1.88	1.88	ns
	Fast	2 mA	3.14	3.14	ns
		4 mA	1.31	1.31	ns
		6 mA	0.50	0.50	ns
		8 mA	0.51	0.51	ns
		12 mA	0.12	0.12	ns
		16 mA	0.06	0.06	ns
		24 mA	0	0	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard	Add the Adjustment Below Speed Grade		Units
	-5	-4	
PCI33_3	-0.26	-0.26	ns
SSTL18_I	-0.05	-0.05	ns
SSTL18_I_DCI	-0.01	-0.01	ns
SSTL2_I	0.08	0.08	ns
SSTL2_I_DCI	0.01	0.01	ns
SSTL2_II	-0.04	-0.04	ns
SSTL2_II_DCI	-0.14	-0.14	ns

Differential Standards

LDT_25	-0.52	-0.52	ns
LVDS_25	-0.50	-0.50	ns
LVDS_25_DCI			ns
BLVDS_25	-0.01	-0.01	ns
LVDSEXT_25	-0.50	-0.50	ns
LVDSEXT_25_DCI			ns
ULVDS_25	-0.48	-0.48	ns
LVPECL_25			ns
RSDS_25		ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.
2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 20 presents the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_{L} and a High logic level of V_{H} is applied to the Input under test. Some standards also require the application of a bias voltage to the $\mathrm{V}_{\text {REF }}$ pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal $\left(\mathrm{V}_{\mathrm{M}}\right)$ is commonly located halfway between V_{L} and V_{H}.
The Output test setup is shown in Figure 4. A termination voltage V_{T} is applied to the termination resistor R_{T}, the other end of which is connected to the Output. For each standard, R_{T} and V_{T} generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g., LVCMOS,

Table 20: Test Methods for Timing Measurement at I/Os

LVTTL), then R_{T} is set to $1 M \Omega$ to indicate an open connection, and V_{T} is set to zero. The same measurement point $\left(\mathrm{V}_{\mathrm{M}}\right)$ that was used at the Input is also used at the Output.

Notes:

1. The names shown in parentheses are used in the IBIS file.

Figure 4: Output Test Setup

Signal Standard	Inputs			Outputs		Inputs and Outputs
	$V_{\text {REF }}$ (V)	$\begin{aligned} & V_{\mathrm{L}} \\ & (\mathrm{~V}) \end{aligned}$	V_{H} (V)	$\mathbf{R}_{\mathbf{T}}$ (Ω)	V_{T} (V)	V_{M} (V)
Single-Ended						
GTL	0.8	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	25	1.2	$\mathrm{V}_{\text {REF }}$
GTL_DCI				50	1.2	
GTLP	1.0	$\mathrm{V}_{\text {REF }}-0.2$	$\mathrm{V}_{\text {REF }}+0.2$	25	1.5	$\mathrm{V}_{\text {REF }}$
GTLP_DCI				50	1.5	
HSTL_I	0.75	$\mathrm{V}_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	50	0.75	$\mathrm{V}_{\text {REF }}$
HSTL_I_DCI				50	0.75	
HSTL_III	0.90	$\mathrm{V}_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	50	1.5	$V_{\text {REF }}$
HSTL_III_DCI				50	1.5	
HSTL_I_18	0.90	$\mathrm{V}_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	50	0.9	$V_{\text {REF }}$
HSTL_I_DCI_18				50	0.9	
HSTL_II_18	0.90	$\mathrm{V}_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	25	0.9	$\mathrm{V}_{\text {REF }}$
HSTL_II_DCI_18				50	0.9	
HSTL_III_18	1.1	$\mathrm{V}_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	50	1.8	$V_{\text {REF }}$
HSTL_III_DCI_18				50	1.8	
LVCMOS12	-	0	1.2	1M	0	
LVCMOS15	-	0	1.5	1M	0	0.75
LVDCI_15				1M	0	
LVDCI_DV2_15				1M	0	

Table 20: Test Methods for Timing Measurement at I/Os (Continued)

Signal Standard	Inputs			Outputs		Inputs and Outputs V_{M} (V)
	$V_{\text {REF }}$ (V)	$\begin{aligned} & V_{\mathrm{L}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathbf{R}_{\mathbf{T}}$ (Ω)	$\begin{aligned} & V_{T} \\ & (V) \end{aligned}$	
LVCMOS18	-	0	1.8	1M	0	0.9
LVDCI_18				1M	0	
LVDCI_DV2_18				1M	0	
LVCMOS25	-	0	2.5	1M	0	1.25
LVDCI_25				1M	0	
LVDCI_DV2_25				1M	0	
LVCMOS33	-	0	3.3	1M	0	1.65
LVDCI_33				1M	0	
LVDCI_DV2_33				1M	0	
LVTTL	-	0	3.3	1M	0	1.4
PCI33_3	-	Note 2	Note 2	25	0	0.94
				25	3.3	2.03
SSTL18_I	0.9	$V_{\text {REF }}-0.5$	$\mathrm{V}_{\text {REF }}+0.5$	50	0.9	$\mathrm{V}_{\text {REF }}$
SSTL18_I_DCI				50	0.9	
SSTL2_I	1.25	$V_{\text {REF }}-0.75$	$\mathrm{V}_{\text {REF }}+0.75$	50	1.25	$\mathrm{V}_{\text {REF }}$
SSTL2_I_DCI				50	1.25	
SSTL2_II	1.25	$V_{\text {REF }}-0.75$	$\mathrm{V}_{\text {REF }}+0.75$	25	1.25	$\mathrm{V}_{\text {REF }}$
SSTL2_II_DCI				50	1.25	
Differential						
LDT_25	-	0.6-0.125	$0.6+0.125$	60	0.6	0.6
LVDS_25	-	1.2-0.125	$1.2+0.125$	50	1.2	1.2
LVDS_25_DCI				1M	0	
BLVDS_25	-	1.2-0.125	$1.2+0.125$	1M	0	1.2
LVDSEXT_25	-	1.2-0.125	$1.2+0.125$	50	1.2	1.2
LVDSEXT_25_DCI				-	-	
ULVDS_25	-	0.6-0.125	$0.6+0.125$	60	0.6	0.6
LVPECL_25	-	1.6-0.3	$1.6+0.3$	1M	0	1.6
RSDS_25	-	1.3-0.1	$1.3+0.1$	50	1.2	1.2

Notes:

1. Descriptions of the relevant symbols are as follows:
$\mathrm{V}_{\text {REF }}$-- The reference voltage for setting the input switching threshold
V_{M}-- Voltage of measurement point on signal transition
V_{L}-- Low-level test voltage at Input pin
$\mathrm{V}_{\mathrm{H}}-$ - High-level test voltage at Input pin
R_{T}-- Effective termination resistance, which takes on a value of $1 \mathrm{M} \Omega$ when no parallel termination is required
V_{T}-- Termination voltage
C_{L}-- Load capacitance at Output pin, which is 0 pF for all standards
2. According to the PCl specification.

The capacitive load $\left(C_{L}\right)$ is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a C_{L} value of zero unless otherwise specified. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

Using IBIS Models to Simulate Load Conditions in Application

IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model ($\mathrm{V}_{\text {REF }}, \mathrm{R}_{\text {REF }}, \mathrm{C}_{\text {REF }}$, and $\mathrm{V}_{\text {MEAS }}$) correspond directly with the parameters used in Table 20, $\mathrm{V}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}}, \mathrm{C}_{\mathrm{L}}$, and V_{M}. Do not confuse $\mathrm{V}_{\text {REF }}$ (the termination voltage) from the IBIS model with $\mathrm{V}_{\text {REF }}$ (the input-switching threshold) from the table! The four parameters describe all relevant output test conditions.

IBIS models are found at the following link:
http://www.xilinx.com/support/sw ibis.htm
Simulate delays for a given application according to its specific load conditions as follows:

1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 4. Use parameter values V_{T}, R_{T}, C_{L}, and V_{M} from Table 20.
2. Record the time to V_{M}.
3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including $\mathrm{V}_{\text {REF }} \mathrm{R}_{\text {REF }} \mathrm{C}_{\text {REF }}$ and $V_{\text {MEAS }}$ values) or capacitive value to represent the load.
4. Record the time to $\mathrm{V}_{\text {MEAS }}$.
5. Compare the results of steps 2 and 4 . The increase (or decrease) in delay should be added to (or subtracted from) the appropriate Output standard adjustment (Table 19) to yield the worst-case delay of the PCB trace.

Simultaneously Switching Output Guidelines

Table 21: Equivalent $\mathrm{V}_{\text {cco }}$ /GND Pairs per Bank

Device	VQ100	TQ144	PQ208	FT256	FG320	FG456	FG676	FG900	FG1156
XC3S50	1	1	2	-	-	-	-	-	-
XC3S200	1	1	2	3	-	-	-	-	-
XC3S400	-	1	2	3	3	5	-	-	-
XC3S1000	-	-	2	3	3	5	5	-	-
XC3S1500	-	-	-	-	3	5	6	-	-
XC3S2000	-	-	-	-	-	-	6	9	-
XC3S4000	-	-	-	-	-	-	-	10	12
XC3S5000	-	-	-	-	-	-	-	10	12

Table 22: Maximum Number of Simultaneously Switching Outputs per V $\mathrm{cco}^{-G N D}$ Pair

Signal Standard			Package	
			VQ100, TQ144, PQ208	$\begin{aligned} & \text { FT256, } \\ & \text { FG320, } \\ & \text { FG456, } \\ & \text { FG676, } \\ & \text { FG900, } \\ & \text { FG115 } \end{aligned}$
Single-Ended Standards				
GTL				4
GTLP_DCI				3
GTLP				4
GTLP_DCI				3
HSTL_I				17
HSTL_I_DCI				17
HSTL_III				7
HSTL_III_DCI				7
HSTL_I_18				17
HSTL_I_DCI_18				
HSTL_II_18				9
HSTL_II_DCI_18				
HSTL_III_18				8
HSTL_III_DCI_18				
LVCMOS12	Slow	2		55
		4		32
		6		18
	Fast	2		31
		4		13
		6		9
LVCMOS15	Slow	2		55
		4		31
		6		18
		8		15
		12		10
	Fast	2		25
		4		16
		6		13
		8		11
		12		7
LVDCI_15				10
LVDCI_DV2_15				5

Table 22: Maximum Number of Simultaneously Switching Outputs per $\mathrm{V}_{\mathrm{Cco}}$-GND Pair (Continued)

Signal	andard		VQ100, TQ144, PQ208	$\begin{aligned} & \text { FT256, } \\ & \text { FG320, } \\ & \text { FG456, } \\ & \text { FG676, } \\ & \text { FG900, } \\ & \text { FG1156 } \end{aligned}$
LVCMOS18	Slow	2		64
		4		34
		6		22
		8		18
		12		13
		16		10
	Fast	2		36
		4		21
		6		13
		8		10
		12		9
		16		6
LVDCI_18				11
LVDCI_DV2				6
LVCMOS25	Slow	2		76
		4		46
		6		33
		8		24
		12		18
		16		11
		24		7
	Fast	2		42
		4		20
		6		15
		8		13
		12		11
		16		8
		24		5
LVDCI_25				13
LVDCI_DV2				7

Table 22: Maximum Number of Simultaneously Switching Outputs per $\mathrm{V}_{\mathrm{cco}}$-GND Pair (Continued)

Table 22: Maximum Number of Simultaneously Switching Outputs per $\mathrm{V}_{\mathrm{CCO}}$-GND Pair (Continued)

	Package	
		FT256,
		FG320,
	FG456,	
Signal Standard	VQ100,	FG676,
	PQ144,	FG900,

Differential Standards		
LDT_25		
LVDS_25		
LVDS_25_DCI		
BLVDS_25		
LVDSEXT_25		
LVDSEXT_25_DCI		
ULVDS_25		
LVPECL_25		
RSDS_25		

Notes:

1. The numbers in this table are recommendations that assume sound board layout practice. For cases that exceed these maximum numbers, perform IBIS simulations to confirm signal integrity.

Core Logic Timing

Table 23: CLB Timing

Symbol	Description	Speed Grade				Units
		-5		-4		
		Min	Max	Min	Max	
Clock-to-Output Times						
$\mathrm{T}_{\text {CKO }}$	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the $\mathrm{XQ}(\mathrm{YQ})$ output	-	0.67	-	0.77	ns
Setup Times						
$\mathrm{T}_{\text {DYCK }}$	Time from the setup of data at the D input to the active transition at the CLK input of FFX	0.08	-	0.09	-	ns
$\mathrm{T}_{\text {DXCK }}$	Time from the setup of data at the D input to the active transition at the CLK input of FFY	0.08	-	0.09	-	ns
Hold Times						
$\mathrm{T}_{\text {CKDY }}$	Time from the active transition at FFY's CLK input to the point where data is last held at the D input	0.01	-	0.01	-	ns
$\mathrm{T}_{\text {CKDX }}$	Time from the active transition at FFX's CLK input to the point where data is last held at the D input	0.01	-	0.01	-	ns
Clock Timing						
T_{CH}	The High pulse width of the CLB's CLK signal	0.76	-	0.87	-	ns
T_{CL}	The Low pulse width of the CLK signal	0.76	-	0.87	-	ns
$\mathrm{F}_{\text {TOG }}$	Maximum toggle frequency (for export control)	-	500	-	500	MHz
Propagation Times						
TILO	The time it takes for data to travel from the CLB's $F(G)$ input to input to the $X(Y)$ output	-	0.65	-	0.75	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Table 24: Synchronous 18×18 Multiplier Timing

Symbol	Description	P Outputs	Speed Grade				Units
			-5		-4		
			Min	Max	Min	Max	
Clock-to-Output Times							
$\mathrm{T}_{\text {MULTCK }}$	When reading from the Multiplier, the time from the active transition at the C clock input to data appearing at the P outputs	P[0]	-	0.76	-	0.88	ns
		P [15]	-	0.97	-	1.11	ns
		$\mathrm{P}[17]$	-	1.17	-	1.34	ns
		$\mathrm{P}[19]$	-	1.37	-	1.58	ns
		$\mathrm{P}[23]$	-	1.78	-	2.04	ns
		$\mathrm{P}[31]$	-	2.59	-	2.97	ns
		$\mathrm{P}[35]$	-	3.00	-	3.44	ns
Setup Times							
TMULIDCK	Time from the setup of data at the A and B inputs to the active transition at the C input of the Multiplier	-	2.18	-	2.50	-	ns
Hold Times							
TMULCKID	Time from the active transition at the Multiplier's C input to the point where data is last held at the A and B inputs	-	0	-	0	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Table 25: Asynchronous 18×18 Multiplier Timing

Symbol	Description	P Outputs	Speed Grade		Units
			-5	-4	
			Max	Max	
Propagation Times					
TMULT	The time it takes for data to travel from the A and B inputs to the P outputs	P[0]	1.25	1.44	ns
		P [15]	2.88	3.31	ns
		P [17]	3.10	3.56	ns
		P [19]	3.32	3.81	ns
		P [23]	3.75	4.31	ns
		P[31]	4.62	5.31	ns
		$\mathrm{P}[35]$	5.06	5.81	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Table 26: Block RAM Timing

Symbol	Description	Speed Grade				Units
		-5		-4		
		Min	Max	Min	Max	
Clock-to-Output Times						
$\mathrm{T}_{\text {BCKо }}$	When reading from the Block RAM, the time from the active transition at the CLK input to data appearing at the DOUT output	-	2.10	-	2.41	ns
Setup Times						
$\mathrm{T}_{\text {BDCK }}$	Time from the setup of data at the DIN inputs to the active transition at the CLK input of the Block RAM	0.43	-	0.49	-	ns
Hold Times						
$\mathrm{T}_{\text {BCKD }}$	Time from the active transition at the Block RAM's CLK input to the point where data is last held at the DIN inputs	0	-	0	-	ns
Clock Timing						
$\mathrm{T}_{\text {BPWH }}$	The High pulse width of the Block RAM's CLK signal	1.26	-	1.44	-	ns
$\mathrm{T}_{\text {BPWL }}$	The Low pulse width of the CLK signal	1.26	-	1.44	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 27 and Table 28) apply to any application that
only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 29 through Table 32) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 27 and Table 28.

Table 27: Recommended Operating Conditions for the DLL

Symbol		Description	FrequencyMode/FCLKIN Range	Device Revision	Speed Grade				Units	
		-5			-4					
		Min			Max	Min	Max			
Input Frequency Ranges										
$\mathrm{F}_{\text {CLKIN }}$	CLKIN_FREQ_DLL_LF		Frequency for the CLKIN input	Low	All	$24^{(2)}$	165 ${ }^{(3)}$	24	165 ${ }^{(3)}$	MHz
	CLKIN_FREQ_DLL_HF			High	0	48	280(3)	48	280(3)	MHz
		Future			48	326	48	TBD	MHz	
Input Pulse Requirements										
CLKIN_PULSE		CLKIN pulse width as a percentage of the CLKIN period	All	0	45\%	55\%	45\%	55\%	-	
		$\mathrm{F}_{\text {CLKIN }} \leq 200 \mathrm{MHz}$	Future	40\%	60\%	40\%	60\%	-		
		$\mathrm{F}_{\text {CLKIN }}>200 \mathrm{MHz}$		45\%	55\%	45\%	55\%	-		
Input Clock Jitter and Delay Path Variation										
CLKIN_	CYC_JITT_DLL_LF		Cycle-to-cycle jitter at the CLKIN input	Low	All	-300	+300	-300	+300	ps
CLKIN_	CYC_JITT_DLL_HF			High		-150	+150	-150	+150	ps
CLKIN_	CYC_PER_DLL_LF	Period jitter at the CLKIN input	Low	-1		+1	-1	+1	ns	
CLKIN_CYC_PER_DLL_HF			High	-1		+1	-1	+1	ns	
CLKFB_DELAY_VAR_EXT		Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input	All	-1		+1	-1	+1	ns	

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2. Use of the DFS permits lower $\mathrm{F}_{\text {CLKIN }}$ frequencies. See Table 29.
3. To double the maximum effective F $_{\text {CLKIN }}$ limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE.

Table 28: Switching Characteristics for the DLL

Symbol	Description	Frequency Mode / Fclkin Range	Device Revision		Speed Grade				Units
					-5		-4		
					Min	Max	Min	Max	
Output Frequency Ranges									
CLKOUT_FREQ_1X_LF	Frequency for the CLK0, CLK90, CLK180, and CLK270 outputs	Low		All	24	165	24	165	MHz
CLKOUT_FREQ_1X_HF	Frequency for the CLK0 and CLK180 outputs	High	0	Nophase shifting	48	280	48	280	MHz
				Phase shifting	48	200	48	200	MHz
				Future	48	326	48	TBD	MHz
CLKOUT_FREQ_2X_LF	Frequency for the CLK2X and CLK2X180 outputs	Low		$0^{(3)}$	48	330	48	330	MHz
				Future	48	330	48	330	MHz
CLKOUT_FREQ_DV_LF	Frequency for the CLKDV output	Low		All	1.5	100	1.5	100	MHz
CLKOUT_FREQ_DV_HF		High		All	3	215	3	215	MHz
Output Clock Jitter									
CLKOUT_PER_JITT_0	Period jitter at the CLKO output	All	All		-100	+100	-100	+100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs				-200	+200	-200	+200	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division				-300	+300	-300	+300	ps
Duty Cycle									
CLKOUT_DUTY_CYCLE_DLL ${ }^{(4)}$	Duty cycle variation for the CLKO, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs	All		All	-150	+150	-150	+150	ps

Table 28: Switching Characteristics for the DLL (Continued)

Symbol	Description	Frequency Mode / F CLKIN $^{\text {Range }}$	Device Revision	Speed Grade				Units
				-5		-4		
				Min	Max	Min	Max	
Phase Alignment								
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and CLKFB inputs	All	All	-50	+50	-50	+50	ps
CLKOUT_PHASE	Phase offset between any DLL output and any other DCM outputs	All	All	-140	+140	-140	+140	ps
Lock Time								
LOCK_DLL_24_30	Time required to achieve lock	$24 \mathrm{MHz} \leq \mathrm{F}_{\text {CLKIN }} \leq 30 \mathrm{MHz}$	All	-	960	-	960	$\mu \mathrm{s}$
LOCK_DLL_30_40		$30 \mathrm{MHz}<\mathrm{F}_{\text {CLKIN }} \leq 40 \mathrm{MHz}$		-	720	-	720	$\mu \mathrm{s}$
LOCK_DLL_40_50		$40 \mathrm{MHz}<\mathrm{F}_{\text {CLKIN }} \leq 50 \mathrm{MHz}$		-	400	-	400	$\mu \mathrm{s}$
LOCK_DLL_50_60		$50 \mathrm{MHz}<\mathrm{F}_{\text {CLKIN }} \leq 60 \mathrm{MHz}$		-	200	-	200	$\mu \mathrm{s}$
LOCK_DLL_60		$\mathrm{F}_{\text {CLKIN }}>60 \mathrm{MHz}$		-	160	-	160	$\mu \mathrm{s}$
Delay Lines								
DCM_TAP	Delay tap resolution	All	All	30.0	60.0	30.0	60.0	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 27.
2. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
3. For Rev. 0 devices only, use feedback from the CLK0 output (instead of the CLK2X output) and set the CLK_FEEDBACK attribute to 1 .
4. This specification only applies if the attribute $D U T Y _C Y C L E _C O R R E C T I O N=T R U E$.

Table 29: Recommended Operating Conditions for the DFS

Symbol		Description	Frequency Mode	Speed Grade				Units	
		-5		-4					
		Min		Max	Min	Max			
Input Frequency Ranges ${ }^{(2)}$									
$\mathrm{F}_{\text {CLKIN }}$	CLK_FREQ_FX		Frequency for the CLKIN input	Low	1	210	1	210	MHz
	CLK_FREQ_FX_HF			High	48	280	48	280	MHz
Input Clock Jitter									
CLKIN_CYC_JITT_FX_LF		Cycle-to-cycle jitter at the CLKIN input	Low	-300	+300	-300	+300	ps	
CLKIN_CYC_JITT_FX_HF			High	-150	+150	-150	+150	ps	
CLKIN_CYC_PER_FX_LF		Period jitter at the CLKIN input	Low	-1	+1	-1	+1	ns	
CLKIN_CYC_PER_FX_HF			High	-1	+1	-1	+1	ns	

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are in use.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 27.

Table 30: Switching Characteristics for the DFS

Symbol	Description	Frequency Mode	Device Revision	Speed Grade				Units
				-5		-4		
				Min	Max	Min	Max	
Output Frequency Ranges								
CLKOUT_FREQ_FX_LF	Frequency for the CLKFX and CLKFX180 outputs	Low	All	24	210	24	210	MHz
CLKOUT_FREQ_FX_HF		High	0	210	280	210	280	MHz
			Future	210	326	210	TBD	MHz
Output Clock Jitter								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs	All	All					ps
Duty Cycle ${ }^{(3)}$								
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs	All	All	-100	+100	-100	+100	ps
Phase Alignment								
CLKOUT_PHASE	Phase offset between either DFS output and any other DCM output	All	All	-140	+140	-140	+140	ps
Lock Time								
LOCK_FX	Once the CLKIN and CLKFB signals become in-phase, the time it takes for the DCM's LOCKED output to go High.	All	All	-	10.0	-	10.0	ms

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 29.
2. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.
3. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.

Phase Shifter (PS)

Phase Shifter operation is only supported in the Low frequency mode. For Rev. 0 devices, the Variable Phase mode only permits positive shifts. For any desired negative phase shift ($-S$), an equivalent positive phase shift $\left(360^{\circ}-S\right)$ is
possible. In order to use the Variable Phase mode, it is necessary to set the BitGen option Centered_x\#y\# option to 0 . BitGen is part of the Xilinx development software. The lines to be typed in the command prompt are shown in Table 33, page 33.

Table 31: Recommended Operating Conditions for the PS in Variable Phase Mode

Symbol	Description	Frequency Mode/ $F_{\text {PSCLK }}$ Range		Device Revision	Speed Grade				Units	
				-5	-4					
				Min	Max	Min	Max			
Operating Frequency Ranges										
PSCLK_FREQ ($\mathrm{F}_{\text {PSCLK }}$)	Frequency for the PSCLK input		Low		All	1	165	1	165	MHz
Input Pulse and Requirements										
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period		Low		0	45\%	55\%	45\%	55\%	-
		Low	$\mathrm{F}_{\text {PSCLK }} \leq 200 \mathrm{MHz}$	Future	40\%	60\%	40\%	60\%	-	
			$\mathrm{F}_{\text {PSCLK }}>200 \mathrm{MHz}$		45\%	55\%	45\%	55\%	-	

Notes:

1. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.

Table 32: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description	Frequency Mode	Speed Grade				Units
			-5		-4		
			Min	Max	Min	Max	
Phase Shifting Range							
FINE_SHIFT_RANGE	Range for variable phase shifting	Low	-	10.0	-	10.0	ns
Lock Time							
LOCK_DLL_FINE_SHIFT ${ }^{(3)}$	In the Variable Phase mode, the additional time it takes for the DCM's LOCKED output to go High	Low	-		-		ms

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 31.
2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.
3. When in the Variable Phase mode, add the values for this parameter to the appropriate LOCK_DLL parameter from Table 28 for the total lock time.

Table 33: BitGen Commands for Variable Phase Mode

Device	DCM Location (Device Top View)	BitGen Command Line
XC3S50	Upper	bitgen -g centered_x0y1:0 design_name.ncd
	Lower	bitgen -g centered_x0y0:0 design_name.ncd
All others	Upper left	bitgen -g centered_x0y1:0 design_name.ncd
	Upper right	bitgen -g centered_x1y1:0 design_name.ncd
	Lower left	bitgen -g centered_x0y0:0 design_name.ncd
	Lower right	bitgen -g centered_x1y0:0 design_name.ncd

Configuration and JTAG Timing

Notes:

1. The $\mathrm{V}_{\mathrm{CCINT}}, \mathrm{V}_{\text {CCAUX }}$, and $\mathrm{V}_{\mathrm{CCO}}$ supplies may be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (MO-M2).

Figure 5: Waveforms for Power-On and the Beginning of Configuration
Table 34: Power-On Timing and the Beginning of Configuration

Symbol	Description	Device	All Speed Grades		Units
			Min	Max	
$\mathrm{T}_{\mathrm{POR}}{ }^{(2)}$	The time from the application of $\mathrm{V}_{\mathrm{CCINT}}, \mathrm{V}_{\mathrm{CCAUX}}$, and $\mathrm{V}_{\mathrm{CCO}}$ Bank 4 supply voltages (whichever occurs last) to the rising transition of the INIT_B pin	XC3S50	-	5	ms
		XC3S200	-	5	ms
		XC3S400	-	5	ms
		XC3S1000	-	5	ms
		XC3S1500	-	7	ms
		XC3S2000	-	7	ms
		XC3S4000	-	7	ms
		XC3S5000	-	7	ms
TPROG	The width of the low-going pulse on the PROG_B pin	All	0.3	-	$\mu \mathrm{s}$
$\mathrm{TPL}^{(2)}$	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	XC3S50	-	2	ms
		XC3S200	-	2	ms
		XC3S400	-	2	ms
		XC3S1000	-	2	ms
		XC3S1500	-	3	ms
		XC3S2000	-	3	ms
		XC3S4000	-	3	ms
		XC3S5000	-	3	ms
$\mathrm{T}_{\text {ICCK }}{ }^{(3)}$	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	$\mu \mathrm{s}$

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only for the Master Serial and Master Parallel modes.

DS099-3_04_041103
Notes:

1. The CS_B, WRITE_B, and BUSY signals are not used in the serial modes. Keep the CS_B and WRITE_B inputs inactive (i.e., both pins High).

Figure 6: Waveforms for Master and Slave Serial Configuration

Table 35: Timing for the Master and Slave Serial Configuration Modes

Symbol	Description	Slave/Master	All Speed Grades		Units
			Min	Max	
Clock-to-Output Times					
T CCO	The time from the rising transition on the CCLK pin to data appearing at the DOUT pin	Both	-	12.0	ns
Setup Times					
$\mathrm{T}_{\mathrm{DCC}}$	The time from the setup of data at the DIN pin to the rising transition at the CCLK pin	Both	-	10.0	ns
Hold Times					
$\mathrm{T}_{\text {CCD }}$	The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin	Both	-	0	ns
Clock Timing					
$\mathrm{T}_{\mathrm{CCH}}$	The High pulse width at the CCLK input pin	Slave	5.0	-	ns
$\mathrm{T}_{\mathrm{CCL}}$	The Low pulse width at the CCLK input pin		5.0	-	ns
$\mathrm{F}_{\text {CCSER }}$	Frequency of the clock signal at the CCLK input pin		-	66	MHz
$\Delta \mathrm{F}_{\text {CCSER }}$	Variation from the generated CCLK frequency set using the ConfigRate BitGen option	Master	-50\%	+50\%	-

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

DS099-3_05_041103
Notes:

1. Switching RDWR_B High or Low while holding CS_B Low asynchronously aborts configuration.

Figure 7: Waveforms for Master and Slave Parallel Configuration

Table 36: Timing for the Master and Slave Parallel Configuration Modes

Symbol	Description	Slave/Master	All Speed Grades		Units
			Min	Max	
Clock-to-Output Times					
TSMCKBY	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin	Slave	-	12.0	ns
Setup Times					
$\mathrm{T}_{\text {SMDCC }}$	The time from the setup of data at the DO-D7 pins to the rising transition at the CCLK pin	Both	10.0	-	ns
$\mathrm{T}_{\text {SMCSCC }}$	The time from the setup of a logic level at the CS_B pin to the rising transition at the CCLK pin		10.0	-	ns
$\mathrm{T}_{\text {SMCCW }}{ }^{(2)}$	The time from the setup of a logic level at the RDWR_B pin to the rising transition at the CCLK pin		10.0	-	ns

Table 36: Timing for the Master and Slave Parallel Configuration Modes (Continued)

Symbol	Description		Slave/Master	All Speed Grades		Units	
			Min	Max			
Hold Times							
$\mathrm{T}_{\text {SMCCD }}$	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins			Both	0	-	ns
$\mathrm{T}_{\text {SMCCCS }}$	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CS_B pin		0		-	ns	
$\mathrm{T}_{\text {SMWCC }}{ }^{(2)}$	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin		0		-	ns	
Clock Timing							
$\mathrm{T}_{\mathrm{CCH}}$	The High pulse width at the CCLK input pin		Slave	5	-	ns	
$\mathrm{T}_{\text {CCL }}$	The Low pulse width at the CCLK input pin			5	-	ns	
$\mathrm{F}_{\text {CCPAR }}$	Frequency of the clock signal at the CCLK input pin	Not using the BUSY pin ${ }^{(3)}$		-	66	MHz	
		Using the BUSY pin		-	100	MHz	
$\Delta \mathrm{F}_{\text {CCPAR }}$	Variation from the generated CCLK frequency set using the BitGen option ConfigRate		Master	-50\%	+50\%	-	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.
2. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the driver impedance of the D0-D7 pins. To avoid contention when writing configuration data to the D0-D7 bus, do not bring RDWR_B High when CS_B is Low.
3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

Figure 8: JTAG Waveforms

Table 37: Timing for the JTAG Test Access Port

Symbol	Description	All Speed Grades		Units
		Min	Max	
Clock-to-Output Times				
T TCKTDO	The time from the falling transition on the TCK pin to data appearing at the TDO pin	-	11.0	ns
Setup Times				
T ${ }_{\text {TDITCK }}$	The time from the setup of data at the TDI pin to the rising transition at the TCK pin	5.0	-	ns
TTMSTCK	The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin	5.0	-	ns
Hold Times				
$\mathrm{T}_{\text {TCKTDI }}$	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin	0	-	ns
TTCKTMS	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin	0	-	ns
Clock Timing				
$\mathrm{T}_{\mathrm{CCH}}$	The High pulse width at the TCK pin	5	-	ns
$\mathrm{T}_{\text {CCL }}$	The Low pulse width at the TCK pin	5	-	ns
$\mathrm{F}_{\text {TCK }}$	Frequency of the TCK signal	-	33	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Revision History

Date	Version No.	Description
$04 / 11 / 03$	1.0	Initial Xilinx release.
$07 / 11 / 03$	1.1	Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for typical quiescent supply current (Table 7) and DLL timing.
02/06/04	1.2	Revised VIN maximum rating (Table 1). Added power-on requirements (Table 3), leakage current number (Table 6), and differential output voltage levels (Table 11) for Rev. 0. Published new quiescent current numbers (Table 7). Updated pull-up and pull-down resistor strengths (Table 6). Added LVDCI_DV2 and LVPECL standards (Table 10 and Table 11). Changed CCLK setup time (Table 35 and Table 36).
03/04/04	1.3	Added timing numbers from v1.29 speed files as well as DCM timing (Table 27 through Table 32).

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)
DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)
DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)
DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)

