
XAPP690 (v1.0) October 6, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes how block memories efficiently can implement a serializer or a
deserializer function or both with or without pattern matching capabilities in the Virtex™-II,
Virtex-II Pro™, and Spartan™-3 architectures. The used method can deserialize or serialize
with or without data storage. The resulting implementation can be used in either dual-port or
single-port mode, with full functionality at the maximum speed of the Block SelectRAM.

Introduction Since the original Virtex device was introduced, users have had access to block memories in
the Xilinx architecture. These 4 Kbit blocks in the Virtex, VirtexE, and Spartan-II devices were
increased in size to 18 Kbit blocks in the Virtex-II, Virtex-II Pro, and Spartan-3 devices. These
blocks are fully synchronous, true dual-port structures. That is, the user can read from or write
to each port independently (with the exception of simultaneous reads and writes to the same
address). In addition, each port has a separate clock, and the data widths for each port are
independently programmable. Figure 1 shows a block diagram of the dual-port RAM blocks.

Today’s high-speed communications between chips, boards, or systems typically are done
serially. Xilinx has implemented dedicated Multi Gigabit Transceiver (MGT) devices in each
Virtex-II Pro FPGA. Alternatively, other FPGAs can use externally placed MGTs for high-speed
serial communication designs.

Often, however, serial communication at lower speeds is needed. Then any device with Block
SelectRAM can implement serializers/deserializers using the ideas described in this
application note.

Application Note: Virtex-II, Virtex-II Pro, Spartan-3 Families

XAPP690 (v1.0) October 6, 2003

Using Block SelectRAM Memories as
Serializers or Deserializers
Author: Marc Defossez, Nick Sawyer

R

Figure 1: Basic Block RAM Structure

DIN

Clock

ADDR

PORT A

PORT B

DatainA

AddressinA

ClockinA

ControlENA, WEA

ENB, WEB

ADDR

DatainB

AddressinB

ClockClockinB

Control

DIN

DOUT DoutA

DOUT DoutB

x690_01_092403

http://www.xilinx.com/
http://testlinx/bvdocs/appnotes/www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Deserialization
R

The RAM-based serial-to-parallel and parallel-to-serial converters from this application note
can run at the maximum clock speed of the Block SelectRAM. With some extra logic, clock-data
recovery, pattern recognition, Block SelectRAM storage, and a full-featured ‘’Multi Megabit
Transceiver’’ can be implemented.

Deserialization By definition, deserializing means one bit of data is read at a given clock rate into a device, and
after a predetermined number of clock ticks, the serial shifted data is obtained at a parallel
output port. Figure 2 shows a generic deserializer.

In most cases, the device that stores the serial incoming bits is a register constructed of regular
flip-flops, and the number of obtained parallel bits is determined by a (preset) counter.

Often, a given data pattern must be recognized to be valid, for instance a framing application,
before data can be taken from the parallel port. This validation is done with a comparator built
from logic gates.

FPGA deserializer implementations are based on the following principles: slice flip-flops are
used to store the data bits, and LUTs are used to build the comparison logic.

Figure 2: Generic Deserializer

DataIn (N:0)

Clock

N N-1

Cn

n n-1

1 0

1 0
Compare Value (n:0)

Cn-1 C1 C0

FF FF FF FF FF

LUT LUT LUT LUT

Parallel Data Ready

Counter

TermCnt

x690_02_100103

http://www.xilinx.com/

Deserialization

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 3
1-800-255-7778

R

Single-Port Deserialization Implementation

Fixed Address

Figure 3 shows the single-port deserializer circuit with fixed block RAM address. The
corresponding timing diagram is shown in Figure 4.

This design functions due to the latency of the Block SelectRAM. Data appears at the output of
the Block SelectRAM in write-through mode after a delay, Tbcko, following the write clock edge.

The input of the Block SelectRAM is composed of serial input data and one shifted bit of
feedback data from the RAM output (see Table 1).

Figure 3: Single-Port Deserializer Circuit

Figure 4: Single-Port Deserializer Timing Diagram

DataInA(0) DataOutA(n:0)

Din(n:1) DoutA(n-1:0)

Din(n:0)

EnA, WeA

ClkA

AddressinAAddr = xxxxxx

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

x690_03_100103

DataIn = Serial DataIn + Parallel Data Out

Clock

Address

DataIn

DataOut

Tbcko

Tbdck
Tback

Tbdck
Tback

Fixed value

0000000

0000000 000000x 00000xy 0000xyz

000000x 00000xy 0000xyz

 Serial input data can change state within this range.

x690_04_092203

http://www.xilinx.com/

4 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Deserialization
R

The data loopback routing in the FPGA must be achieved in a time less than the input clock
period minus the data setup time [(Tpwh + Tpwl) – Tbdck]. Timing constraints are necessary.

Data is written into the RAM array on the rising clock edge. This data appears at the output of
the RAM after a delay, Tbcko. The new RAM array output is equal to the serial input data
concatenated with the previous output of the Block SelectRAM.

A number of clock cycles later, depending on the desired SERDES factor, the serial input
pattern will have been converted to parallel. The maximum speed obtained for the circuit is the
maximum clocking speed of the Block SelectRAM (Virtex-II Pro FPGA, –6 = 380 MHz;
Spartan-3 FPGA, -4 = 250 MHz). The parallel converted data is available at
clock speed / number of bits.

The width of the parallel output data depends on the chosen Block SelectRAM data output
width. For instance, if the required SERDES factor is 8, then a data width of 8 is chosen. In this
design case, the depth of the Block SelectRAM does not apply because the address is fixed to
one particular location (address 0xFFFF is straightforward, requiring no routing).

If the parallel output is not captured at the correct moment, then the parallel data continues to
shift along with the serial incoming data. This feature can be used only to capture data when a
dedicated pattern is recognized.

Variable Address

It is possible to use the RAM array simultaneously as a deserializer and as storage for parallel
converted data. When the fixed address input value mentioned above is replaced by a counter
that is incremented (decremented) when the maximum data width is reached, it is possible to
store the parallel converted values in memory. The address counter changes state at a
clock/data-width rate, however, the address must be ready at the memory address inputs in a
period less than the clock period minus the address setup time [(Tpwh + Tpwl) – Tback].

Table 1: Single-Port Deserializer I/Os

DataIn BRAM DataOut

Serial In DIA 0 DOA 0 Bit 0

Bit 0 DIA 1 DOA 1 Bit 1

Bit 1 DIA 2 DOA 2 Bit 2

...

Bit n-2 DIA n-1 DOA n-1 Bit n-1

Bit n-1 DIA n DOA n Bit n

http://www.xilinx.com/

Deserialization

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 5
1-800-255-7778

R

Using this technique it is possible to build a circuit as shown in Figure 5. A small counter equal
to the width of the memory data output that is running at the serial bitstream clock rate
determines when the address counter is incremented or decremented.

Serial-to-parallel converted data can be captured at the terminal count of the bit counter, at the
moment when the address is changed. Alternatively, port B of the Block SelectRAM can be
used to read the stored, serial to-parallel converted data into a back-end design. The same
precaution as when reading FIFO-type memories must be taken. That is, do not read the
address used by the serial-to-parallel conversion.

The next step with these designs is to store data either only in memory when a pattern is
matched or from the point a certain data pattern was matched. Figure 6 shows a design where
data is stored when a pattern is matched. This pattern also can be a variable value depending,
for instance, on the state of the design at a certain point in time. In the design shown in
Figure 6, some extra logic has been added to indicate that no pattern was found (missed) after
a number of trials.

Figure 5: Single-Port Deserializer with Second Port Readout Functionality

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

+

BitCnt

Clk
En

Tc

Rst

AddrCnt

Clk
En Tc

Outt

Rst

ClockA

ClockA

Reset

EnableA RAMB16_S36_s36

AddrA [8:0]

BitCnt = [4:0]

Serial DataIn

Parallel DataOut [31:0]

Stored Parallel DataOut [31:0]

DataIn [31:1] DataOut [30:0]

DataIn [31:0]

DataIn [0]

From back-end design control logic

x690_05_100103

http://www.xilinx.com/

6 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Deserialization
R

Dual-Port Deserialization Implementation

The dual-port implementation of the serial-to-parallel converter allows each block RAM to
implement two serial-to-parallel converters, and is limited to the fixed address implementation.
Only one address place per Block SelectRAM port can be used, and there is no data storage
ability. Each port of the RAM uses a different address. For the functionality description, read the
single-port implementation described in “Single-Port Deserialization Implementation,” and
duplicate it for both RAM ports.

Figure 7 shows the circuit for the dual-port deserialization implementation.

Figure 6: Single-Port Deserializer with Second Port Readout and Pattern Matching

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

+
Out

AddrCnt

Clk
En Tc

RstClockA

Reset

EnableA

ClockA

Reset

EnableA

Reset

RAMB16_S36_s36

BitCnt = [4:0]

MisCnt = [1:0]

Missed

ShiftEnd

AddrA [8:0]

AddrEn

Serial DataIn

Parallel DataOut [31:0]

Stored Parallel DataOut [31:0]

DataIn [31:1] DataOut [30:0]

DataIn [31:0]

DataIn [0]

x690_06_100103

BitCnt

Clk
En

Tc

Rst
ClockA

Reset

EnableA

Rst

MisCnt

Clk
En

Tc

Pattern

Value
AddrEn

A

B
Equ

http://www.xilinx.com/

Deserialization

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 7
1-800-255-7778

R

Incoming DDR data can be deserialized directly using a dual-port implementation as shown in
Figure 8. The same serial input data is connected to both RAM input ports. Odd bits are
clocked in on the rising clock edge into port A, and even bits are clocked in on the falling clock
edge into port B. Both ports then are read at the same time interleaving the obtained data. This
way it is possible to double the serializer speed.

Figure 7: Dual-Port Deserializer Functionality

DataInA(0) DataOutA(n:0)

DataOutB(n:0)

Din(n:1) DoutA(n-1:0)

Din(n:0)

EnA, WeA

ClkA

AddressinAAddr = xxxxxx

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Din(n:1) DoutB(n-1:0)
x690_07_092403

DataInB(0)

EnB, WeB

ClkB

AddressinBAddr = yyyyyy

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

http://www.xilinx.com/

8 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Serialization
R

Serialization By definition, serializing means n number of bits are stored in a register at the rate of a load
enable signal and the bits are shifted serially at a given clock rate out at the MSB or LSB
position of the register. The parallel loading of the register happens once every n clock bits and
usually is controlled through the terminal count of a bit counter.

In most cases, the device used to store the parallel-loaded bits is a register constructed of
regular flip-flops preceded by a small logic function enabling the load or shift operation. This
function is performed in a LUT.

Figure 9 shows a generic serializer circuit.

Figure 8: Dual-Port Deserializer with Interleaved DDR

DataInA(0)
DataIn

DataOutA(n:0) DataOut(n:0)

DataOutB(n:0)

Din(n:1) DoutA(n-1:0)

Din(n:0)

EnA, WeA

SysClk

AddressinA = xxxxxx

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Din(n:1) DoutB(n-1:0)
x690_08_092203

DataInB(0)

EnB, WeB

AddressinB = yyyyyy

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

http://www.xilinx.com/

Serialization

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 9
1-800-255-7778

R

FPGA serialization implementations are based on these principles: slice flip-flops and LUTs
are used to store, load, and shift the data bits.

Single-Port Serialization Implementation

Fixed Address

The operation of the single-port circuit with fixed address is shown in Figure 10. The
corresponding timing diagram is shown in Figure 11.

Figure 9: Generic Serializer

DataOut

Clock

n-1

Parallel Data (n:0)

FF

Serial shift complete

Counter

TermCnt

FF FF FF FF

n-1 1 0

LUTLUTLUTLUT

n-1

Load

Load

External Load

LUT

LUT

x690_09_100103

Figure 10: Single-Port Serializer

DataOut(n)Din(n:0)

EnA, WeA

ClkA

Addr = xxxxxx

Load

DataInA(0)

DataInA(n:0)

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

DataIn(n:1) DoutA(n-1:0)

x690_10_092403

http://www.xilinx.com/

10 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Serialization
R

This design functions due to the latency of the Block SelectRAM. Data appears at the output of
the Block SelectRAM in write-through mode after a delay, Tbcko, following the write clock edge.

The input of the Block SelectRAM is composed of the output of a multiplexer selecting at the
rate of a load strobe, parallel input data, or the feedback data of the RAM output, shifted one bit
with MSB or LSB fixed Low or High (see Table 2).

The data loopback routing in the FPGA must be achieved in a time less than the clock period
minus the data setup time [(Tpwh + Tpwl) – Tbdck] minus the multiplexer logic delay time
(Tmuxlogic). Timing constraints are necessary.

At the clock edge, when Load is High, parallel data is written into the RAM array from an
external source. This data appears at the output of the RAM after a delay, Tbcko. The new RAM

Figure 11: Single-Port Serializer Timing Diagram

DataIn = Parallel DataIn or RAM Data Out & Fixed Bit

Tbcko

Fixed value

Load data Shift serial data out

Tback

Load

Tmuxlogic

1 1 00

Clock

Address

DataIn

DataOut

DataOut(n)

AAA0100 AAA1000 AAA0000

AAA0100 AAA1000 AAA0000

AAAA

AAAA

x690_11_092403

Table 2: Dual-Port Deserializer I/Os

DataIn Load
BRAM DataOut

1 0

Bit 0 Gnd DIA 0 DOA 0 Bit 0

Bit 1 Bit 0 DIA 1 DOA 1 Bit 1

Bit 2 Bit 1 DIA 2 DOA 2 Bit 2

...

Bit n-2 Bit n-3 DIA n-1 DOA n-1 Bit n-1

Bit n-1 Bit n-2 DIA n DOA n Serial Out

http://www.xilinx.com/

Serialization

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 11
1-800-255-7778

R

array output is equal to the parallel input data. When Load is Low, the output of the Block
SelectRAM (shifted one bit and most-significant bit or least-significant bit made Low or High) is
fed back to the input of the RAM through a multiplexer. After a delay, Tbcko, the RAM output
shows the new value. The Msb or Lsb output of the Block SelectRAM shows a serial bit pattern
that represents, after a number of clock cycles, the parallel input pattern.

The maximum speed obtained for the circuit is equal to the multiplexer logic delay + some
routing delay + the clock speed of the Block SelectRAM (Virtex-II Pro FPGA, –6 > 300 MHz
SDR; Spartan-3 FPGA, -4 = 200 MHz SDR).

The number of bits in the serial output depends of the chosen Block SelectRAM data width. In
this case, the depth of the Block SelectRAM is not applicable because the address is fixed to
one particular place (use address 0x0000 or 0xFFFF, which is easy and requires no routing).

When the parallel output is not loaded at the correct moment, the serial data continues to shift
and displays all zeros or ones, depending on the fixed input bit.

Variable Address

It is possible to use the RAM array simultaneously as storage for data and serialized data using
both ports of the Block SelectRAM. When the fixed address input value is replaced by a
counter, which is incremented (decremented) when all bits of a data word are shifted, it is
possible to work with data stored in the memory. The address counter changes state at the
clock rate divided by the number of data bits. The address data must be ready at the memory
address inputs in a period less than the clock period minus the address setup time
[(Tpwh + Tpwl) – Tback] and multiplexer delay (Tmuxlogic).

Using this technique, it is possible to build a circuit as shown in Figure 12. Port A of the Block
SelectRAM is used as normal memory, with the possibility of storing n data words. Port B
serves as a parallel-to-serial converter on data stored in the RAM array.

A small counter running at the serial bitstream clock rate with the same clock as applied to port
B of the RAM, determines when the address counter is incremented or decremented. A fully

Figure 12: Dual-Port Serializer

DataInA(0)

EnA, WeA

ClkA

AddressinA

ClkB

AddressinB

DinB(0) DataOutB(n)

Din(n:1) DoutB(n-1:0)

AddrCnt

Clk

En
Tc

Out

Rst
ClkB

AddrEn

Serial
BitCnt

Clk

En Tc

Rst

Enable
ClkB

AddrEn

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

x690_12_100103

http://www.xilinx.com/

12 www.xilinx.com XAPP690 (v1.0) October 6, 2003
1-800-255-7778

Serialization
R

serial shifted data word is available at the terminal count of the bit counter, at the moment that
the address changes state.

Dual-Port Serialization Implementation

The dual-port implementation of the parallel-to-serial converter in Block SelectRAM is limited to
the fixed address implementation. Only one address place per Block SelectRAM port can be
used, and there is no data storage capability. For the functionality and description, read the
above described single-port implementation in “Single-Port Serialization Implementation,” and
duplicate it for both RAM ports.

This type of application typically is used for easy implementation of DDR applications (see
Figure 13). Interleaved input data is presented to both multiplexers. When Load is one, data is
stored in the RAM array. When Load is zero, the Block SelectRAM output is fed back through
the multiplexer to the RAM input.

Odd bits are clocked in on the rising clock edge to port A, and even bits are clocked in on the
falling clock edge to port B. Then the RAM output bits are used as serial outputs into a DDR I/O
flip-flop, making it possible to double the serializer speed.

Figure 13: Dual-Port Serializer with DDR Output

DinB(0) DataOutB(n)

DinA(0)
DataOutA(n)

RAMB16_xxxxxx

RAMB16_yyyyyy
Clk

Clk

D0

D1 DO DdrDataOut

DDR FF

DataIn(n:0)

Load

If (n = 8) then
at point X DataIn(n-2:0)
at point Y DataIn(n-1:1)

X

Y

Clk0

Clk180

Clk0

Clk180

Port A

DIA
DIPA
ADDRA

CLKA

WEA
ENA

SSRA

DOA
DOPA

Port B

DIB
DIPB
ADDRB

CLKB

WEB
ENB

SSRB

DOB
DOPB

x690_13_092403

http://www.xilinx.com/

Reference Design

XAPP690 (v1.0) October 6, 2003 www.xilinx.com 13
1-800-255-7778

R

Reference
Design

Either design concept (serializing or deserializing) is suitable for use in either the Virtex-II,
Virtex-II Pro or Spartan-3 families. The fully synthesizable design files in xapp690.zip are
written in both VHDL and Verilog for both the single-port and dual-port cases described above.

Conclusion Using the techniques described here, with some external logic for address decoding, the
requirements for lower speed serial communication devices can be met efficiently using Block
SelectRAM. Together with design ideas from existing Xilinx application notes (such as
XAPP224, XAPP225), full-featured serial communication devices can be implemented
efficiently in FPGA devices.

One example is where data/clock arrives differentially (LVDS). In this case, data is extracted
from the stream and fed into the Block SelectRAM. When a certain, predefined, programmable
pattern is recognized, data is passed or stored in the same Block SelectRAM for further
treatment by another design level.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/06/03 1.0 Initial Xilinx release.

http://www.xilinx.com/
http://www.xilinx.com/bvdocs/appnotes/xapp224.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp225.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp690.zip

	testlinx
	Xilinx XAPP690 Using Block SelectRAM Memories as Serializers or Deserializers application note
	Using Block SelectRAM Memories as Serializers or Deserializers
	Summary
	Introduction
	Deserialization
	Single-Port Deserialization Implementation
	Fixed Address
	Variable Address

	Dual-Port Deserialization Implementation

	Serialization
	Single-Port Serialization Implementation
	Fixed Address
	Variable Address

	Dual-Port Serialization Implementation

	Reference Design
	Conclusion
	Revision History

