
XAPP562 (v1.0) January 22, 2004 www.xilinx.com 1
1-800-255-7778

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary The Cyclic Redundancy Check (CRC) is a powerful technique to obtain data reliability. This
application note discusses the implementation of Configurable CRC Modules with LocalLink
interfaces. The user can tailor the features of these modules to suit the protocol or application
that is implemented in their system. The user-specified options for each of the configurable
features are input parameters to the VHDL code for the modules. The VHDL source files for the
CRC modules are coded using generate statements. The modules have two LocalLink
interfaces, an upstream interface (US), and a downstream interface (DS)

A module connected to the upstream interface is the source of the data. The CRC module
passes the data from the US interface onto the DS interface. This allows the CRC modules to
be inserted into the data path seamlessly (with consideration for latency).

Refer to XAPP209 for more details on CRC and an alternate implementation of a configurable
CRC module.

Key Features • Standard LocalLink on upstream and downstream interfaces

• Fully configurable according to compile-time parameters

• Key Parameters:

♦ Data Width

♦ CRC Polynomial

♦ CRC Calculation Parameters

- Transpose input data bytes

- Transpose CRC bytes

- Complement input data

- Complement CRC

♦ Receive CRC Parameters

- Strip incoming CRC option

♦ Transmit CRC Parameters

- Overwrite pad Word(s) with CRC1

- Deassert DST_RDY_N_US while CRC words are being inserted

• Transmit CRC Module

♦ Generates CRC over data from US interface using user-specified polynomial

♦ Streams US data to DS interface. A fixed latency depends on the CRC polynomial as
well as the data width.

1 This feature is not supported in the current release.

♦ Appends calculated CRC to the frame on the downstream interface.

Application Note: Virtex Series and Virtex-II Family

XAPP562 (v1.0) January 22, 2004

Configurable LocalLink CRC
Reference Design
Author: Nanditha Jayarajan

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://direct.xilinx.com/bvdocs/appnotes/xapp209.pdf

2 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

Example Module Usage
R

• Receive CRC Module

♦ Generates CRC on data from US interface using user-defined polynomial

♦ Can either keep incoming CRC value or strip it on downstream interface

♦ Indicates validity of incoming CRC from US interface using two out-of-band signals

Example
Module Usage

Figure 1 shows an example use of the CRC modules with a MAC or other streaming protocol
block.

All the port names for the CRC Transmit and Receive modules have been divided into two
parts, upstream and downstream. The upstream interface is the source of the data into the
CRC modules, while the downstream interface receives data from the CRC modules. The
upstream interface signals have a suffix of _US and the downstream signals have a suffix of
_DS.

The configurable CRC solution can be broken into two parts. These parts are discussed in
subsequent sections of this document:

1. TXCRC – generates and inserts CRC on the transmit path.

2. RXCRC – verifies the CRC on the receive path.

TXCRC Module
Functional
Description

The TXCRC module has two LocalLink interfaces shown in Figure 2. The left side is the
upstream interface, while the right side is the downstream interface. This makes this block both
a LocalLink source and destination, which allows this block to be inserted into the transmit path
of the system. The module generates a CRC value from data input on the upstream interface.
The module then inserts the CRC byte(s) at the end of the frame on the downstream interface.

Figure 1: LocalLink CRC Blocks

CRC
Block

Protocol Engine

DATA_DS[d:0]

EOF_N_DS

SRC_RDY_N_DS

DST_RDY_N_DS

CRC RX

SOF_N_DS

DATA_US[d:0]

EOF_N_US

SRC_RDY_N_US

DST_RDY_N_US

SOF_N_US

CRC
Block

DATA_DS[d:0]

EOF_N_DS

SRC_RDY_N_DS

DST_RDY_N_DS

CRC TX

SOF_N_DS

DATA_US[d:0]

EOF_N_US

SRC_RDY_N_US
DST_RDY_N_US

SOF_N_US

CRCPASS_FAIL_N

User Logic

 Channel

FPGA Boundary

8B/10B
Encode-
Serializer
Module

8B/10B
Decode-
De-Serializer
Module

REM_US[p:0] REM_DS[p:0]

REM_DS[p:0]
REM_US[p:0]

TX FIFO

RX FIFO

CRC_VALID

x562_01_011504

http://www.xilinx.com

TXCRC Module Functional Description

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 3
1-800-255-7778

R

The user can choose the method of CRC insertion from two options2:

1. The user can choose to provide pad Word(s) after the data. The number of pad Words must
be equal to the width of the CRC and the last pad Word must coincide with the
TX_EOF_N_US. The RX_REM_US must coincide with TX_EOF_N_US and must indicate
the number of valid bytes for the frame including the pad Word(s). These pad Word(s) are
overwritten by the generated CRC value on the downstream interface2.

2. TX_DST_RDY_N_US can be used to pause the transfer of data from the upstream module.
When the CRC Word(s) are being inserted into the downstream interface,
TX_DST_RDY_N_US is deasserted, indicating that the CRC module is not ready to accept
new data. After the CRC Word(s) have been inserted, TX_DST_RDY_N_US is asserted.

Refer to “LocalLink CRC Parameters” for more details on these parameters.

A module that uses the TX_DST_RDY_N_US option cannot accept back-to-back frames,
because TX_DST_RDY_N_US is deasserted to stop the transfer of data to the TXCRC module
at TX_EOF_N_US. Hence, the module is not ready to accept a new frame until
TX_DST_RDY_N_US is asserted after all the CRC Word(s) have been inserted.

There is a fixed latency through the TXCRC module. See Table 1 for resource numbers as well
as latency through the modules for various parameter options.

2 In the current release, only the DST_RDY_N_US option is supported.

Figure 2: TXCRC Module

CRC
Block

CRC TX
DATA_US[d:0]

EOF_N_US

SRC_RDY_N_US
DST_RDY_N_US

SOF_N_US

REM_US[p:0]
DATA_DS[d:0]

EOF_N_DS

SRC_RDY_N_DS

DST_RDY_N_DS

SOF_N_DS

REM_DS[p:0]

x562_02_011504

Table 1: TXCRC Module FPGA Resource Requirements

Data width
Aligned

Latency = 2
(Slices/LUTs/FFs)

Pipelined
Non-Aligned
Latency = 3

(Slices/LUTs/FFs)

Non-Pipelined
Non-Aligned
Latency = 2

(Slices/LUTs/FFs)

128 648/595/315 1283/1836/437 1675/2404/1088

64 372/382/191 1,121/1,775/569 1,048/1,717/242

32 225/251/128 465/678/307 425/640/142

16 152/175/114 231/309/198 198/268/115

8 128/168/103 128/168/103 128/168/103

http://www.xilinx.com

4 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

TXCRC Module Functional Description
R

Table 2 shows the performance numbers and latency for target device: XC2VP7 speed
grade = -6.

Interface Signals for TXCRC Modules

The interface signals for TXCRC modules are defined in Table 3.

Table 2: Design Performance: Target Device XC2VP7 Speed Grade = -6

Data width

Non-Pipelined
Aligned

Latency = 2
(Slices/LUTs/FFs)

Pipelined
Non-Aligned
Latency = 3

(Slices/LUTs/FFs)

Non-Pipelined
Non-Aligned
Latency = 2

(Slices/LUTs/FFs)

128 200 MHz 127.3 MHz 103.3 MHz

64 226 MHz 184.5 MHz 135.6MHz

32 227MHz 223.9 MHz 180.5 MHz

16 288.85 MHz 252 MHz 227.1 MHz

8 257.MHz 257MHz 257MHz

Table 3: TXCRC Module Interface Signals

Name Direction Active Definition

RESET I High Reset: The TXCRC module is reset. The reset is synchronous to
CLK.

CLK I N/A Clock Input: All signals are synchronous to this clock.

Upstream LocalLink Interface

TX_DATA_US
[(d-1):0]

I N/A Data Bus: Packet data is transmitted across this bus. The variable
d is a multiple of eight. The user specifies this value.

TX_SOF_N_US I Low Start of Frame: Indicates the beginning of a frame transfer on the
data bus. This signal is coincident with the first data word. This
signal also indicates the start of calculation.

TX_EOF_N_US I Low End of Frame: Indicates the end of a frame transfer. This signal
also indicates the end of calculation.
This signal is coincident with the pad Word if one is being
provided. Otherwise, it is coincident with the last valid data word
and DST_RDY_N_US is deasserted during the insertion of the
CRC bytes.

Note: All data over which the CRC is to be calculated should be
within the SOF_N_US and EOF_N_US signals.

TX_SRC_RDY_N_US I Low Source Ready: Indicates data that is provided by the source
interface on the data bus is valid during the current cycle.

TX_DST_RDY_N_US O Low Destination Ready: Indicates that the destination interface is
ready to accept data presented to it on the data bus in the current
cycle.

http://www.xilinx.com

TXCRC Module Functional Description

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 5
1-800-255-7778

R

Data Transfer Through the TXCRC Module

Figure 3 shows the waveforms through the TXCRC block. The calculation of the CRC starts on
the assertion of the TX_SOF_N_US signal on the upstream interface. The calculation is
paused whenever TX_SRC_RDY_N_US or TX_DST_RDY_N_US are deasserted and
resumes when both are asserted.

There is a fixed latency between the upstream and downstream interface. The TX_EOF_N_US
signal terminates the calculation of the CRC. CRC is not calculated on any data on the
upstream data bus after the TX_EOF_N_US signal. In Figure 3, the data width is assumed to
be 32, while the CRC polynomial used is assumed to be CRC32. As shown in Figure 3, the

TX_REM_US[p:0]
(p=log2(d/8)-1)

I Low Remainder: Indicates the byte offset of the last valid byte on the
data bus for the last PDU transfer. Remainder value is valid
concurrent with end-of-frame assertions. The remainder is binary
encoded.

If the data width is 32-bit, then the remainder signal is REM[1:0].
Remainder value of 0 indicates byte data [31:24] is valid, while a
value of 3 indicates all bytes are valid.

Downstream LocalLink Interface

TX_DATA_DS[d -1:0] O N/A Data bus: Packet data is transmitted across this bus. The variable
d is a multiple of eight.

A fixed latency is inserted into the data from the upstream
interface and is streamed to the downstream interface. The CRC
that is calculated over the entire frame is appended to the end of
the frame. The amount of latency depends on the width of the
CRC as well as the width of the data bus.

TX_SOF_N_DS O Low Start of frame: Indicates the start of frame transfer.

The upstream TX_SOF_N_US signal is forwarded to the
downstream interface with a fixed latency.

TX_EOF_N_DS O Low End of Frame: Indicates the end of a frame transfer including the
CRC.

The TX_EOF_N_US signal is passed to the downstream interface
with a fixed latency.

TX_DST_RDY_N_DS I Low Destination Ready: Indicates that the destination interface is
ready to accept data presented to it on the data bus in the current
cycle.

The DST_RDY_N_DS signal is passed through to the upstream
interface without any latency.

TX_SRC_RDY_N_DS O Low Source Ready: Indicates data that is provided by the source
interface on the data bus is valid during the current cycle.

The SRC_RDY_N_US is passed through to the downstream
interface with a fixed latency.

TX_REM_DS[p:0] O N/A Remainder: Indicates the byte offset of the last valid byte on the
data bus for the last PDU transfer. Remainder value is valid
concurrent with end-of-frame assertions.

The TX_REM_US is appropriately delayed and modified on the
downstream interface.

Table 3: TXCRC Module Interface Signals (Continued)

Name Direction Active Definition

http://www.xilinx.com

6 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

TXCRC Module Functional Description
R

TX_REM_US value coinciding with RX_EOF_N_US is 1. This means that 2 bytes of data are
valid. The 4 bytes of CRC are appended to the end of the packet, and the REM value is
modified and appropriately shifted to coincide with TX_EOF_N_DS. While the CRC bytes are
being appended, the TX_DST_RDY_N_US signal is deasserted indicating that the CRC block
is not ready to accept new data on the upstream interface.

Figure 3: Frame Transfer Through the TXCRC Block

CLK

TX_SOF_N_US

TX_EOF_N_US

 TX_DATA_US[31:0]

TX_SRC_RDY_N_US

TX_DST_RDY_N_US

H0 D0 D1 D2 D3

TX_DATA_DS[31:0]

TX_EOF_N_DS

TX_SOF_N_DS

TX_SRC_RDY_N_DS

TX_DST_RDY_N_DS

H0 D0 D1 D2 D3/
CRC

CRC

TX_REM_US[1:0] 1

TX_REM_DS[1:0] 1

Upstream Signals

Downstream Signals

x562_03_011504

http://www.xilinx.com

RXCRC Module Functional Description

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 7
1-800-255-7778

R

RXCRC Module
Functional
Description

The RXCRC module calculates the CRC on incoming data from the upstream LocalLink
interface. It also passes the data through to its downstream LocalLink interface. The
downstream interface includes two extra signals, CRCPASS_FAIL_N and CRC_VALID. The
CRCPASS_FAIL_N signal indicates whether or not the incoming frame contains a valid CRC.
This signal is valid only when CRC_VALID is asserted High. The interface of the RXCRC block
is shown in Figure 4.

The interface on both sides of this block follows the LocalLink Protocol specification.

The user can choose the frame format in which the incoming data from the upstream interface
is passed on to the downstream interface. There are two options:

1. The CRC that is received at the end of the frame is stripped and the raw data is passed on.
The RX_EOF_N_DS signal is shifted to indicate the new EOF without the CRC. The
CRCPASS_FAIL_N signal indicates whether the packet passes. This signal is valid at
CRC_VALID.

2. The data is passed on without removing the CRC. The CRCPASS_FAIL_N signal indicates
whether the packet passes. This signal is valid at CRC_VALID.

See Table 4 for RXCRC module resource numbers as well as latency through the module for
various parameter options

Figure 4: Module

CRC
Block

RX_DATA_US[d:0]

RX_EOF_N_US

RX_SRC_RDY_N_US

RX_DST_RDY_N_US

CRC RX

RX_SOF_N_US

RX_DATA_DS[d:0]

RX_EOF_N_DS

RX_SRC_RDY_N_DS

RX_DST_RDY_N_DS

RX_SOF_N_DS

CRCPASS_FAIL_N

CLK RESET

RX_REM_US[p:0]
RX_REM_US[p:0]

CRC_VALID

x562_05_011504

Table 4: RXCRC Module FPGA Resource Requirements

Data width
Aligned

Latency = 2
(Slices/LUTs/FFs)

Pipelined
Non-Aligned
Latency = 3

(Slices/LUTs/FFs)

Non-Pipelined
Non-Aligned
Latency = 2

(Slices/LUTs/FFs)

128 578/439/176

64 335/285/267 973/1473/440 875/1352/233

32 201/187/68 387/512/235 347/481/168

16 121/108/61 175/188/146 145/160/61

8 145/160/93 145/160/93 145/160/93

http://www.xilinx.com

8 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

RXCRC Module Functional Description
R

Table 5 shows the performance numbers and latency for target device: XC2VP7 speed
grade = -6.

Interface Signals for RXCRC Modules

The interface signals for RXCRC modules are defined in Table 6.

Table 5: Design Performance: Target Device XC2VP7 Speed Grade = -6

Data width

Non-Pipelined
Aligned

Latency = 2
(Slices/LUTs/FFs)

Pipelined
Non-Aligned
Latency = 3

(Slices/LUTs/FFs)

Non-Pipelined
Non-Aligned
Latency = 2

(Slices/LUTs/FFs)

128 202 MHz

64 223.6 MHz 182 MHz 133 MHz

32 268 MHz 227 MHz 182 MHz

16 295 MHz 287 MHz 191.35 MHz

8 263 MHz 263 MHz 263 MHz

Table 6: RXCRC Module Interface Signals

Name Direction Active Definition

RESET I High Reset: The TXCRC module is reset. The reset is
synchronous to CLK.

CLK I N/A Clock input: All signals are synchronous to this clock.

Upstream LocalLink Interface

RX_DATA_US
[(d-1):0]

I N/A Data bus: Packet data is transmitted across this bus. The
variable d is a multiple of 8. The user specifies this value.

RX_SOF_N_US I Low Start of Frame: Indicates the beginning of a frame transfer
on the data bus. This signal also indicates the start of
calculation to the RXCRC module.

This signal is coincident with the pad Word if one is
provided.

RX_EOF_N_US I Low End of Frame: Indicates the end of a frame transfer on the
data. This signal indicates the end of calculation of the CRC.
This signal is coincident with the last Word of the CRC of an
incoming frame.

RX_SRC_RDY_N_US I Low Source Ready: Indicates data that is provided by the
source interface on the data bus is valid during the current
cycle.

RX_DST_RDY_N_US O Low Destination Ready: Indicates that the destination interface
is ready to accept data presented to it on the data bus in the
current cycle.

RX_REM_US[p:0]
(p=log2(d/8)-1)

I N/A Remainder: Indicates the byte offset of the last valid byte
on the data bus for the last PDU transfer. Remainder value
is valid concurrent with end-of-frame assertions.

If the data width is 32-bit, then the remainder signal is
REM[1:0]. Remainder value of 0 indicates byte data[31:24]
is valid, while a value of 3 indicates all bytes are valid.

http://www.xilinx.com

RXCRC Module Functional Description

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 9
1-800-255-7778

R

Data Transfer Through RXCRC Module

Figure 5 below shows the data transfer through the RXCRC block when the strip CRC option is
chosen. The calculation of the CRC starts on the assertion of the SOF_N_US signal on the
upstream interface.

There is fixed latency between the upstream and downstream interface. The value of this
latency depends on the CRC chosen as well as the data width. The EOF_N_US signal

Downstream LocalLink Interface

RX_DATA_DS[d:0] O N/A Data bus: Packet data is transmitted across this bus. The
variable d is a multiple of eight.

A fixed latency is inserted into RX_DATA_US before it is
passed on to the downstream interface. The CRC bytes at
the end of the packet can be stripped and the raw data
passed on, or the entire packet including the CRC bytes can
be passed to the downstream interface.

RX_SOF_N_DS O Low Start of Frame: Indicates the start of a frame transfer on the
data and CRC.

The RX_SOF_N_US signal is passed to the downstream
interface with a fixed latency.

RX_EOF_N_DS O Low End of Frame: Indicates the end of a frame transfer
including the CRC.

The input end-of-frame signal is passed on to the
downstream interface with a fixed latency.

RX_DST_RDY_N_DS I Low Destination Ready: Indicates that the destination interface
is ready to accept data presented to it on the data bus in the
current cycle.

The DST_RDY _N_DS signal is passed through to the
upstream interface without any latency.

RX_SRC_RDY_N_DS O Low Source Ready: Indicates data that is provided by the
source interface on the data bus is valid during the current
cycle.

The SRC_RDY_N_US is passed through to the
downstream interface with a fixed latency.

RX_REM_DS[p:0] O N/A Remainder: Indicates the byte offset of the last valid byte
on the data bus for the last PDU transfer. Remainder value
is valid concurrent end-of-frame assertions.

The REM_US is appropriately modified to indicate the new
value of REM if the user chooses the strip CRC option.

RX_CRCPASS_FAIL_N O High Pass/Fail: Indicates whether the incoming frame passes or
fails the CRC verification. This signal is valid when
CRC_VALID is asserted High.

• A High logic level indicates CRC pass.

• A Low logic level indicates CRC failure.

CRC_VALID O High Valid: The RX_CRCPASS_FAIL_N is valid when
CRC_VALID is asserted hIgh.

Table 6: RXCRC Module Interface Signals (Continued)

Name Direction Active Definition

http://www.xilinx.com

10 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

RXCRC Module Functional Description
R

terminates the calculation of the CRC. CRC is not calculated on any data after the EOF_N_US
signal. In Figure 5, the CRC polynomial is assumed to be CRC16. As shown in Figure 5, the
REM_US value coinciding with EOS_N_US is 3. This means that all 4 bytes of data are valid.
When The CRC bytes are stripped, the REM value coinciding with EOF_N_DS is modified to 1,
indicating that 2 bytes of data are valid.

The user should note that the CRC is stripped by realigning the EOF_N_DS signal as well as
modifying the REM_DS. The CRC bytes are still on the data bus and should be ignored. This is
especially important if the user application considers that valid data could occur even after the
end-of-frame.

Figure 5 shows a packet that has passed the CRC verification. This is indicated by the
CRCPASS_FAIL_N signal, which is High at CRC_VALID.

Figure 6 shows the data transfer through the RXCRC block when the strip CRC option is not
chosen. The CRC calculation starts on the assertion of the SOF_N_US signal on the upstream
interface.

The EOF_N_US signal terminates the calculation of the CRC. In Figure 6, the CRC polynomial
is assumed to be CRC16. Since the CRC is not stripped, the incoming frame is just passed on
to the downstream interface without any modification. The additional signal

Figure 5: Frame Transfers Through RXCRC Module - CRC Stripped

H0 D0 D1 D2 D3/
CRC

H0 D0 D1 D2 D3

3

1

Upstream Signals

Downstream Signals

CLK

RX_SOF_N_US

RX_EOF_N_US

RX_DATA_US[31:0]

RX_SRC_RDY_N_US

RX_DST_RDY_N_US

RX_DATA_DS[31:0]

RX_EOF_N_DS

RX_SOF_N_DS

RX_SRC_RDY_N_DS

RX_DST_RDY_N_DS

RX_REM_US[1:0]

RX_REM_DS[1:0]

CRCPASS_N_FAIL

CRC_VALID

x562_06_010504

http://www.xilinx.com

RXCRC Module Functional Description

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 11
1-800-255-7778

R

CRC_PASS_N_FAIL is used to indicate whether the incoming packet passes the CRC
verification. This signal is valid at CRC_VALID.

Figure 6 shows a frame that has passed the CRC verification. This is indicated by the
CRCPASS_FAIL_N signal, which is High at CRC_VALID.

Figure 6: Frame Transfers Through RXCRC Module - CRC Not Stripped

H0 D0 D1 D2 D3/
CRC

H0 D0 D1 D2 D3/
CRC

3

3

CLK

RX_SOF_N_US

RX_EOF_N_US

RX_DATA_US[31:0]

RX_SRC_RDY_N_US

RX_DST_RDY_N_US

RX_DATA_DS[31:0]

RX_EOF_N_DS

RX_SOF_N_DS

RX_SRC_RDY_N_DS

RX_DST_RDY_N_DS

RX_REM_US[1:0]

RX_REM_DS[1:0]

CRCPASS_N_FAIL

Upstream Signals

Downstream Signals

CRC_VALID

x562_07_011504

http://www.xilinx.com

12 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

LocalLink CRC Parameters
R

LocalLink CRC
Parameters

Table 7 provides descriptions of the LocalLink CRC parameters.

Table 7: LocalLink CRC Parameters

Parameter

name
Legal values Default value

Variable
type

Description

1 data_width 8 – 128 in multiples of 8 32 Integer Data Width

2 crc_width 8, 16, 32, 64 CRC Width

3 poly 4C11DB7(hex) String CRC Polynomial: The user can
specify any CRC polynomial.
However, the maximum degree of
the polynomial allowed is 64. Also
the polynomial value specified
must have a coefficient of 1 in the
LSB position as well as in the MSB
position. The default value used is
4C11DB7(hex) which is the
polynomial for CRC32.

4 Insertcrc 0 – deassert ST_RDY_N_US

1 – pad byte(1)

0 String TX - Pad or DST_RDY_N_US
Option(2): This option allows the
user to choose how the CRC bytes
are inserted into the data stream in
the TX block. The insertion can be
done in two ways:

• User provides pad bytes that
are overwritten with the CRC.

• CRC is appended while
DST_RDY_N_US is
deasserted.

5 aligned_data 0 – not aligned

1 – aligned

0 bit Aligned Data: This option restricts
alignment of data. If this option is
chosen, it results in a much smaller
as well as faster module,
especially in the non-pipelined
case. Refer to Table 7 for resource
numbers and speeds. When this
option is chosen, the REM value is
ignored and is always assumed to
be all 1s.

6 pipeline 0 – not pipelined

1 – pipeline

0 bit Pipeline Option: This option allows
the user to use a pipelined version
of the CRC modules. In this case,
the CRC calculation is pipelined by
one stage, providing higher
speeds. Refer to Table 7 for
resource numbers and speeds.

http://www.xilinx.com

LocalLink CRC Parameters

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 13
1-800-255-7778

R

7 crcstrip 0 – not stripped

1 – CRC stripped

0 bit The CRC is stripped by moving
RX_EOF_N_US to indicate the
new End-of-Frame without the
CRC Word(s) and also by
modifying the RX_REM_US value
on the downstream interface. The
CRC Word(s) are still present in
the frame.

8 back_to_back 0 – not back-to-back

1 – back-to-back

0 bit Back-to-Back Data Transfers: This
option is available for the RXCRC
module only. This option allows the
RXCRC module to accept back-to-
back frame transfers. This option
results in a larger number of FFs
for the design. If this option is not
chosen, then the
DST_RDY_N_US is deasserted
for 1-2 cycles at the end of the
frame.

9 residue_value C704DD7B String Residue Value: This parameter is
used to accept the residue value of
the polynomial from the user. By
default, this value is set to
C704DD7B, which is the residue
value for the standard 32-bit
Ethernet polynomial.

10 crcinit All ‘1’s String Initial Value of CRC: Most
protocols specify a starting value
of CRC of all 1s. This is the default
starting value. The user can
specify the desired starting value.
The CRC register is loaded with
the specified value at RESET.

11 compdata 0 – not complemented

1 – complemented

1 bit Complement Input Data: Some
protocols specify that each data
byte should be complemented
before it is passed through the
CRC calculator. This parameter
allows the user to implement this
feature.

Table 7: LocalLink CRC Parameters

Parameter

name
Legal values Default value

Variable
type

Description

http://www.xilinx.com

14 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

Implementation Block Diagrams
R

Implementation
Block Diagrams

Figure 7 shows a simplified view of the implementation of the non-pipelined version of the
TXCRC modules. The data from the upstream interface is passed through SRL16s to introduce
the appropriate latency. The output of the SRL16 is then complemented and/or transposed
according to the parameter specified from the user. This is then passed to the combinatorial
CRC generator function. The function calculates the CRC only over the valid data as indicated
by the REM_US value.

The incoming data is streamed to the output interface. The registered CRC is again
complemented and/or transposed depending on the parameters. The CRC Word(s) is then
inserted into the frame on the downstream interface.

Figure 8 shows the block diagram of the implementation for the pipelined version of the
modules. As can be seen in Figure 8, the CRC is calculated for all possible values of REM and
then registered to provide one stage of pipelining. These CRC values are then passed through
a MUX to obtain the correct value of the CRC based on the input value of REM_US.

12 trandata 0 – not transposed

1 – transposed

1 bit Transpose Input Data Bytes: If this
option is set, each
RX/TX_DATA_US byte is
transposed before it is passed
through the CRC equations.

Transpose Input Data: For
example, consider an input word of
C0010203 (hex) for a data width of
32. Each byte in this word is
transposed before it is passed
through the CRC generator, i.e.,
the input to the CRC equations is
038040C0 (hex).

13 compCRC 0 – not transposed

1 – transposed

1 bit Complement CRC Bytes: This
parameter is useful for protocols,
such as Ethernet and Fibre
Channel which require a final
complementing of each of the
CRC bytes.

14 tranCRC 0 – not transposed

1 – transposed

1 bit Transpose CRC Bytes: If this
option is set, each byte of the CRC
generated from the CRC generator
is transposed. For example,
consider a generated CRC of
9B61F408 (hex). Each byte is
transposed to get D9862F10 (hex).

Notes:
1. This feature is not implemented in the current release of the reference design. The source files contain the insertcrc parameter, but a value

of 1 for this parameter is invalid.
2. Only the DST_RDY_N_US is supported in the current release.

Table 7: LocalLink CRC Parameters

Parameter

name
Legal values Default value

Variable
type

Description

http://www.xilinx.com

Reference Design Files

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 15
1-800-255-7778

R

Figure 7 and Figure 8 are simplified drawings to illustrate the implementation. Different
parameter values for different cases could cause some deviation. The RXCRC module is
similar, with added logic for validation.

Reference
Design Files

The reference design contains full VHDL source code for the Transmit and Receive CRC
modules described in this application note. The current release contains only VHDL source
which is available in a downloadable ZIP file at: XAPP562.ZIP.

Figure 7: Implementation Block Diagram of Non-Pipelined TXCRC Module

U
ps

tr
ea

m
 In

te
rf

ac
e

REM
= 1

REM
= 0

REM
= 3

REM
= 2

REM_US

D
ow

ns
tr

ea
m

 In
te

rf
ac

e

combinatorial

R
eg

EOF_N_US

D
at

a
C

on
tr

ol

D
at

a
C

on
tr

ol

C
om

pl
em

en
t a

nd
tr

an
sp

os
in

g

C
om

pl
em

en
t a

nd
tr

an
sp

os
in

g

S
R

L1
6

x562_08_010504

crc_gen

Figure 8: Implementation Block Diagram of Pipelined Modules

U
ps

tr
ea

m
 In

te
rf

ac
e

REM
= 1

REM
= 3

REM
= 2

REM_US

D
ow

ns
tr

ea
m

 In
te

rf
ac

e

R
eg

!dst_rdy_n
&&

!src_rdy_n
EOF_N_US

D
at

a
C

on
tr

ol

D
at

a
C

on
tr

ol

C
om

pl
em

en
t a

nd
tr

an
sp

os
in

g

C
om

pl
em

en
t a

nd
tr

an
sp

os
in

g

S
R

L1
6

R
eg

R
eg

R
eg

R
eg

x562_09_010504

REM
= 0

crc_gen

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/appnotes/xapp562.zip

16 www.xilinx.com XAPP562 (v1.0) January 22, 2004
1-800-255-7778

References
R

Directory Structure

The directory structure for the reference design is illustrated in Figure 9.

The src/ directory contains the implementation source code.

The synth/ directory contains synthesis scripts for Synplify and XST.

The test/ directory contains test bench source and run scripts for functional simulation.

Functional Simulation

Figure 10 shows the block diagram of the simulation test bench shipped with the reference
design.

The test bench instantiates both the TXCRC and RXCRC modules, setup so that the TXCRC
module passes a frame with a generated CRC, and the RXCRC takes it as input and verifies
the CRC, asserting CRCPASS_FAIL_N appropriately.

The parameters were chosen to match the CRC characteristics of Ethernet. This makes it easy
to compare against existing captured frames from a real Ethernet network. Ten Ethernet frames
captured from a live network are included in the xapp562/func_sim/stim/ directory. These
frames are read from the stimulus files by the LocalLink Stimulus module and used as stimulus
in the test bench, which is shown in Figure 10.

References • Xilinx: LocalLink Interface Specification.

• Rajesh Nair, Gerry Ryan and Farivar Farzaneh, A Symbol Based Algorithm for Hardware
Implementation of Cyclic Redundancy Check, Bay Networks.

• http://www.nobugconsulting.com/crc_details.pdf

Figure 9: Directory Structure

Figure 10: Test Bench Block Diagram

x562_11_010504

Test
Vectors

Local
Link

Stimulus
TXCRC
Module

RXCRC
Module

x562_10_010504

Test Bench

http://www.xilinx.com
http://www.nobugconsulting.com/crc_details.pdf

Revision History

XAPP562 (v1.0) January 22, 2004 www.xilinx.com 17
1-800-255-7778

R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

01/22/04 1.0 Initial Xilinx release.

http://www.xilinx.com

	Configurable LocalLink CRC Reference Design
	Summary
	Key Features
	Example Module Usage
	TXCRC Module Functional Description
	Interface Signals for TXCRC Modules
	Data Transfer Through the TXCRC Module

	RXCRC Module Functional Description
	Interface Signals for RXCRC Modules
	Data Transfer Through RXCRC Module

	LocalLink CRC Parameters
	Implementation Block Diagrams
	Reference Design Files
	Directory Structure
	Functional Simulation

	References
	Revision History

