
XAPP473 (v1.0) July 11, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other 
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, 
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may 
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties 
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Software is critical to the effective use of programmable logic. The Spartan™-3 family is 
supported by the complete set of Xilinx Integrated Software Environment (ISE) development 
tools, with additional support available from a variety of partners. This document provides an 
overview of those design tools. It is intended primarily for the user who is new to the Xilinx 
development system. This document can be used to get a better understanding of the specific 
tools mentioned elsewhere in the Spartan-3 literature. The first half provides an overview of the 
general design flow, while the second half describes the specific tools used at the different 
steps in the flow. Use the Xilinx development system documentation for detailed information 
and introductory tutorials.

Introduction Combined with the Spartan-3 FPGA family, ISE’s optimized design tools help you finish faster 
and lower your project costs. The ISE package is a collection of Xilinx software design tools that 
concentrate on delivering the most productivity available for your Spartan-3 logic performance. 
With ProActive Timing Closure technology, you get the fastest runtimes in programmable logic 
ensuring you reach your performance goals quicker. Incremental Design delivers faster re-
compile times with guaranteed performance, and the optional Xilinx ChipScope™ Pro 
verification tools provide real-time debug with advantages that are not possible in ASIC 
designs. ISE makes sure you get through the logic design process faster, saving both time and 
project costs, and getting you to market ahead of your competition.

Design Flow The standard design flow for Spartan-3 FPGAs consists of the following three major steps. The 
entire design implementation flow is run simply by selecting the desired result in the Xilinx 
Graphical User Interface (GUI). The tools automatically determine which programs and files are 
needed to bring the appropriate output up to date.

1. Design Entry and Synthesis

In this step of the design flow, you create your design using a Xilinx-supported schematic 
editor, a Hardware Description Language (HDL) for text-based entry, or both. If you use an 
HDL for text-based entry, you must synthesize the HDL file into an industry-standard 
Electronic Data Interchange Format (EDIF) file. If you use the Xilinx Synthesis Technology 
(XST) tool, a Xilinx-specific NGC netlist file is created, which can be converted to an EDIF 
file.

2. Design Implementation

By implementing the specific Xilinx Spartan-3 architecture, you convert the logical design 
file format, such as EDIF, that you created in the design entry or synthesis stage into a 
physical file format. The physical information is contained in the Native Circuit Description 
(NCD) file. Then you create a bitstream file from these files and optionally program a 
PROM for subsequent programming of your Spartan-3 device.

3. Design Verification

Application Note: Spartan-3 FPGA Family

XAPP473 (v1.0) July 11, 2003

Using the ISE Design Tools for Spartan-3 
FPGAs

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


2 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Design Flow
R

Using a gate-level simulator, you ensure that your design meets your timing requirements 
and functions properly. In-circuit verification can be performed by downloading your design 
to the device using Xilinx iMPACT Programming Software. Design verification can begin 
immediately after design entry and can be repeated after various steps of design 
implementation.

Figure 1 shows the general overall design flow for Spartan-3 FPGAs.

Design Entry and Synthesis

You can enter a design with a schematic editor or a text-based tool for HDL code. Design entry 
begins with a design concept, expressed as a drawing or functional description. From the 
original design, a generic EDIF netlist is created, then synthesized and translated into a Xilinx 
netlist file. This file is fed into a program called NGDBuild, which produces a logical Native 
Generic Database (NGD) file. Xilinx libraries provide access to features specific to the Spartan-
3 architecture.

Figure 2 shows the design entry and synthesis flow.

Figure 1:  Design Flow

Design
Synthesis

Design
Verification

Back
Annotation

Design

Download to a
Xilinx Device

Implementation

Optimization

- Mapping
- Placement
- Routing

FPGAs

Bitstream
Generation

x473_01_062103

Timing
Simulation

Static Timing
Analysis

Design Entry

In-Circuit
Verification

Functional
Simulation

http://www.xilinx.com


Design Flow

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 3
1-800-255-7778

R

Hierarchical Design

Design hierarchy is important in both schematic and HDL entry for the following reasons:

• Helps you conceptualize your design

• Adds structure to your design

• Promotes easier design debugging

• Makes it easier to combine different design entry methods (schematic, HDL, or state 
editor) for different parts of your design

• Makes it easier to design incrementally, which consists of designing, implementing, and 
verifying individual parts of a design in stages

• Reduces optimization time

• Facilitates concurrent design, which is the process of dividing a design among a number 
of people who develop different parts of the design in parallel, such as in Modular Design

Xilinx strongly recommends that you name the components and nets in your design. These 
names are preserved and used by the Xilinx tools. These names are also used for back-
annotation and appear in the debug and analysis tools. If you do not name your components 
and nets, the tools automatically generate the names, making it difficult to analyze circuits.

Schematic Entry

Schematic tools provide a graphical interface for design entry. You can use these tools to 
connect symbols representing the logic components in your design. You can build your design 
with individual gates, or you can combine gates to create functional blocks.

Figure 2:  Design Entry and Synthesis Flow

Schematic
Libraries

Synthesis
Libraries

UCF
EDIF and

Constraints/NCF

HDL

NGC
(XST Netlist)

CORE Generator System

Synthesis

NGDBuild

Schematic Capture

x473_02_061703

http://www.xilinx.com


4 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Design Flow
R

Primitives and macros are the “building blocks” of a device library. The Xilinx Spartan-3 library 
provides primitives as well as common high-level macro functions, all optimized for the 
Spartan-3 architecture. Primitives are basic circuit elements, such as AND and OR gates, and 
special device resources, such as the DCM and block RAM. Each primitive has a unique library 
name, symbol, and description.

Macros contain multiple library elements, which can include primitives and other macros. Soft 
macros have pre-defined functionalities, but have flexible mapping, placement, and routing. 
Relationally Placed Macros (RPMs) have fixed mapping and relative placement. Macros are 
not available for synthesis because synthesis tools have their own module generators and do 
not require RPMs. If you wish to override the module generation, you can instantiate Xilinx-
provided CORE Generator  modules, which include pre-built optimization for the Spartan-3 
architecture. For most leading-edge synthesis tools, this is not needed unless it is for a module 
that cannot be inferred.

HDL Entry and Synthesis

A typical Hardware Description Language (HDL) supports a mixed-level description in which 
gate and netlist constructs are used with functional descriptions. This mixed-level capability 
enables you to describe system architectures at a high level of abstraction, then incrementally 
refine a design’s detailed gate-level implementation. HDL descriptions offer the following 
advantages:

• You can verify design functionality early in the design process. A design written as an HDL 
description can be simulated immediately. Design simulation at this high level — at the 
gate-level before implementation — allows you to evaluate architectural and design 
decisions.

• An HDL description is more easily read and understood than a netlist or schematic 
description. HDL descriptions provide technology-independent documentation of a design 
and its functionality. Because the initial HDL design description is technology independent, 
you can use it again to generate the design in a different technology, without having to 
translate it from the original technology.

• Large designs are easier to handle with HDL tools than schematic tools.

After creating your HDL design, you must synthesize it. During synthesis, behavioral 
information in the HDL file is translated into a structural netlist, and the design is optimized for 
the Spartan-3 architecture. Xilinx supports HDL synthesis tools for several third-party synthesis 
vendor partners. In addition, Xilinx offers its own synthesis tool, Xilinx Synthesis Technology 
(XST). 

Functional simulation tests the logic in your design to determine if it works properly. You can 
save time during subsequent design steps if you perform functional simulation early in the 
design flow. 

Although HDL entry offers the advantage of technology independence, it is helpful to 
understand the available resources in the Spartan-3 architecture and design to take advantage 
of those resources. For example, the abundance of registers at every I/O and following every 
look-up table encourages pipelining. Most synthesis tools automatically infer Xilinx-specific 
resources and optimize for the architecture. Simple ways to specify implementation 
requirements are to instantiate Spartan-3 library components or add constraints.

Constraints

You might want to constrain your design within certain timing or placement parameters to 
specify your required pin locations or timing requirements. You can specify logic mapping, block 
placement, and timing specifications. Constraints can be entered as parameters or attributes 
on library components. You can enter constraints by hand or use one of several graphical tools 
for generating constraint files and evaluating the results. Constraints found in the design are 
written to an NCF file (Netlist Constraints File). Constraints created separately are written to a 
UCF file (User Constraints File).

http://www.xilinx.com


Design Flow

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 5
1-800-255-7778

R

Design Implementation

Design Implementation begins with the translating, then mapping, of a logical design file to a 
specific Spartan-3 device; it is complete when the physical design is successfully routed and a 
bitstream is generated. You can alter constraints during implementation in the same way as 
during the Design Entry step.

Figure 3 shows an overall view of the design implementation flow for Spartan-3 FPGAs.

Translating

NGDBuild performs all the steps necessary to read a netlist file in EDIF or NGC format and 
create an NGD file describing the logical design. A logical design is in terms of logic elements, 
such as AND gates, OR gates, decoders, flip-flops, and RAMs. The NGD file resulting from an 
NGDBuild run contains both a logical description of the design reduced to Xilinx primitives and 
a description in terms of the original hierarchy expressed in the input netlist. The output NGD 
file then can be mapped to the Spartan-3 device family resources.

Figure 3:  Design Implementation Flow

BIT

NCD

NGD

NCD & PCF

UCF NGDBuild

MAP

PAR

BitGen

TRACE &
Timing Analyzer

PROM File Formatter

iMPACT

PROMGen &

FPGA Editor

Constraints Editor

Floorplanner

x473_03_062103

http://www.xilinx.com


6 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Design Flow
R

NGDBuild performs the following steps to convert a netlist to an NGD file:

1. Reads the source netlist(s). NGDBuild invokes the Netlister Launcher. The Netlist 
Launcher determines the type of the input netlist and starts the appropriate netlist reader 
program. The netlist readers incorporate NCF files associated with each netlist. NCF files 
contain timing and layout constraints for each module.

2. Reduces all components in the design to NGD primitives. NGDBuild merges components 
that reference other files. NGDBuild also finds the appropriate system library components, 
physical macros, and behavioral models.

3. Checks the design by running a Logical Design Rule Check (DRC) on the converted 
design. The Logical DRC is a series of tests on the logical design.

4. Writes an NGD file as output.

Mapping

The MAP program maps a logical design to a Spartan-3 FPGA. The input to MAP is an NGD 
file, which contains a logical description of the design in terms of both the hierarchical 
components used to develop the design and the lower-level Xilinx primitives. Additionally, it 
contains any number of hard placed-and-routed physical macro files. MAP then maps the logic 
to the components (logic cells, I/O cells, and other components) in the Spartan-3 architecture. 
The output design is a Native Circuit Description (NCD) file, which is a physical representation 
of the design mapped to the components in the Spartan-3 architecture. The NCD file then can 
be placed and routed.

MAP performs the following steps when mapping a design:

1. Selects the target Xilinx device, package, and speed.

2. Reads the information in the input design file.

3. Performs a Logical DRC (Design Rule Check) on the input design. If any DRC errors are 
detected, the MAP run is aborted. If any DRC warnings are detected, the warnings are 
reported, but MAP continues to run.

4. Removes unused logic, where all unused components and nets are removed.

5. Maps pads and their associated logic into IOBs.

6. Maps the logic into Xilinx components (IOBs, CLBs, etc.). If any Xilinx mapping control 
symbols appear in the design hierarchy of the input file, MAP uses the existing mapping of 
these components in preference to re-mapping them. The mapping is influenced by various 
constraints.

7. Updates the information received from the input NGD file and writes this updated 
information into an NGM file. This NGM file contains both logical information about the 
design and physical information about how the design was mapped. The NGM file is used 
only for back-annotation.

8. Creates a physical constraints (PCF) file. This text file contains any constraints specified 
during design entry. If no constraints were specified during design entry, an empty file is 
created so that you can enter constraints directly into the file using a text editor.

9. Runs a physical Design Rule Check (DRC) on the mapped design. If DRC errors are found, 
MAP does not write an NCD file.

10. Creates an NCD file, which represents the physical design. The NCD file describes the 
design in terms of Xilinx components (CLBs, IOBs, and so forth).

11. Writes a MAP report (MRP) file, which lists any errors or warnings found in the design, 
details how the design was mapped, and supplies statistics about component usage in the 
mapped design.

http://www.xilinx.com


Design Flow

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 7
1-800-255-7778

R

Placing and Routing

After creating a mapped NCD file, you can place and route the file using the automatic Place 
And Route (PAR) tool. PAR accepts an NCD file as input, places and routes the design, and 
outputs an NCD file to be used by the bitstream generator (BitGen). You can use the output 
NCD file as a guide file for additional runs of PAR after making minor changes to your design. 

PAR places and routes a design based on the following considerations:

• Cost-Based: Placement and routing are performed using various cost tables that assign 
weighted values to relevant factors such as constraints, length of connection, and 
available routing resources.

• Timing-Driven: The Xilinx timing analysis software enables PAR to place and route a 
design based upon your timing constraints.

Placing

The PAR placer executes multiple phases of the placer. PAR writes the NCD after all the 
phases are completed. During placement, PAR places components into sites based on factors 
such as constraints specified in the PCF file, the length of connections, and the available 
routing resources. Timing-driven placement is automatically invoked if PAR finds timing 
constraints in the physical constraints file.

Routing

The next stage is routing the placed design. PAR writes the NCD file when the design is fully 
routed. There still may exist unroutes since power and ground are not considered. At this point 
the design can be analyzed against timing. A new NCD will be written as the routing improves. 
The router performs a procedure to converge on a solution that routes the design to completion 
and meets timing constraints. Timing-driven routing is automatically invoked if PAR finds timing 
constraints in the physical constraints file.

Floorplanning

Floorplanning is the process of specifying user placement constraints. The Floorplanner 
provides a graphical view of placement, while the FPGA Editor provides a graphical view of 
both placement and routing. Both tools can be used before or after PAR to analyze or constrain 
the design.

Bitstream Generation

After the design has been completely routed, it is necessary to configure the device so that it 
can execute the desired function. This configuration is done using files generated by BitGen, 
the Xilinx bitstream generation program. BitGen takes a fully routed NCD file as its input and 
produces a configuration bitstream (binary BIT file).

The BIT file contains all of the configuration information from the NCD file defining the internal 
logic and interconnections of the Spartan-3 FPGA, plus device-specific information from other 
files associated with the target device. The binary data in the BIT file then can be downloaded 
into the FPGA memory cells or it can be used to create a PROM file. The PROM file is created 
by the PROM File Formatter, which is the GUI for the PROMGen tool.

Design Verification

Design verification is the process of testing the functionality and performance of your design. 
You can verify Xilinx designs in the following ways:

• Simulation (functional and timing using back-annotation)

• Static timing analysis

• In-circuit verification

http://www.xilinx.com


8 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Design Flow
R

Design verification procedures should occur throughout your design process, as shown in 
Figure 4.

Simulation

Design simulation involves testing your design using software models. It is most effective when 
testing the functionality of your design and its performance under worst-case conditions. You 
can easily probe internal nodes to check your circuit’s behavior, and then use these results to 
make changes in your design. Simulation is performed using third-party tools that are linked to 
the Xilinx Development System. The software models provided for your simulation tools are 
designed to perform detailed characterization of your design. You can perform functional or 
timing simulation.

Functional Simulation

Functional simulation determines if the logic in your design is correct before you implement it in 
a device. Functional simulation can take place at the earliest stages of the design flow. 
Because timing information for the implemented design is not available at this stage, the 
simulator tests the logic in the design using unit delays.

Figure 4:  Design Verification Flow

Timing Simulation Path

Integrated Tool

Functional Simulator Paths

Xilinx FPGA

Design EntrySimulation

Mapping, Placement,
and Routing

Translate to
Simulator Format

Translate to
Simulator Format

BitGen

Back-Annotation

iMPACT In-Circuit
Verification

In-Circuit Verification

Static Timing Analysis

Static Timing

Basic Design Flow

Simulation

Translation

Simulation Netlist

Input Stimulus

BIT

NGD

NCD

NGA

x473_04_062103

http://www.xilinx.com


Design Flow

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 9
1-800-255-7778

R

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device under 
worst-case conditions. This process is performed after your design is mapped, placed, and 
routed. At this time, all design delays are known. Timing simulation is valuable because it can 
verify timing relationships and determine the critical paths for the design under worst-case 
conditions. It also can determine whether or not the design contains setup or hold violations. 
Before you can simulate your design, you must go through the back-annotation process, as 
described below. During this process, the Xilinx netlist writers create suitable formats for 
various simulators.

Note that naming the nets during your design entry is important for both functional and timing 
simulation because it allows you to find the nets in the simulations more easily than looking for 
a software-generated name.

Back-Annotation

Before timing simulation can occur, the physical design information must be translated and 
distributed back to the logical design. This back-annotation process is done with a program 
called NGDAnno. These programs create a database for the netlist writers, which translate the 
back-annotated information into a netlist format that can be used for timing simulation.

NGDAnno is a command line program that distributes information about delays, setup and hold 
times, clock to out, and pulse widths found in the physical NCD design file back to the logical 
NGD file. NGDAnno reads an NCD file as input. The NCD file can be a mapped-only design, or 
a partial or fully placed and routed design. An NGM file, created by MAP, is an optional source 
of input. NGDAnno merges mapping information from the NGM file with placement, routing, 
and timing information from the NCD file. NGDAnno outputs a Native Generic Annotated (NGA) 
file, which is a back-annotated NGD file. This file is input to the appropriate netlist writer, which 
converts the binary Xilinx database format back to an ASCII netlist.

Netlist Writers (NGD2EDIF, NGD2VER, or NGD2VHDL) take the output of NGDAnno and 
create a simulation netlist in the specified format. An NGD or NGA file is input to each of the 
netlist writers. The NGD file is a logical design file containing primitive components, while the 
NGA file is a back-annotated logical design file.

Static Timing Analysis

Static timing analysis is best for quick timing checks of a design after it is placed and routed. It 
also allows you to determine path delays in your design. Following are the two major goals of 
static timing analysis:

• Timing verification is the process of verifying that the design meets your timing constraints.

• Reporting is the process of enumerating input constraint violations and placing them into 
an accessible file. You can analyze partially or completely placed and routed designs. The 
timing information depends on the placement and routing of the input design.

You can run static timing analysis using the Timing Reporter And Circuit Evaluator (TRACE) 
program, which is accessible through the Timing Analyzer GUI. Use either tool to evaluate how 
well the place and route tools met the input timing constraints.

In-Circuit Verification

As a final test, you can verify how your design performs in the target application. In-circuit 
verification tests the circuit under typical operating conditions. Because you can program your 
Xilinx devices repeatedly, you can easily load different iterations of your design into your device 
and test it in-circuit. To verify your design in-circuit, download your design bitstream into a 
device using the iMPACT programming software with the Parallel Cable IV or MultiPRO cable.

http://www.xilinx.com


10 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

ISE Development Environment
R

ISE 
Development 
Environment

Introduction to ISE

Xilinx development systems are available in a number of easy to use configurations, collectively 
known as the Integrated Software Environment (ISE) Series. Creating Spartan-3 designs is 
easy with Xilinx ISE development systems, which support advanced design capabilities, 
including ProActive Timing Closure, integrated logic analysis, and the fastest place and route 
runtimes in the industry. ISE solutions enable designers to get the performance they need, 
quickly and easily.

Note: To get the full details on ISE tools for Spartan-3 devices, go to 
http://www.xilinx.com/ise/ise_promo/ise5_spartan3.htm.

Project Navigator is the user interface that helps you manage the entire design process 
including design entry, simulation, synthesis, implementation and finally configuration of your 
device.

The following is an outline of the features offered in ISE:

Design Entry

• HDL Editor

• StateCAD  State Machine Editor

• Schematic Editor - Engineering Capture System (ECS)

• CORE Generator system

Synthesis

• XST - Xilinx Synthesis Technology

• Integration with LeonardoSpectrum synthesis from Mentor Graphics

• Integration with Synplify/Pro and Amplify synthesis from Synplicity

Simulation

• HDL Bencher™ Testbench Generator

• Integration with ModelSim Simulator from Model Technology

Implementation

• Translate

• Map

• Place and Route (PAR)

• Floorplanner

• FPGA Editor

• Timing Analyzer

• XPower Power Analysis

Device Download 

• BitGen Bitstream Generator

• PROMGen PROM File Formatter

• iMPACT Configuration Tool

• ChipScope Pro Logic Analyzer

http://www.xilinx.com
http://www.xilinx.com/ise/ise_promo/ise5_spartan3.htm


ISE Development Environment

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 11
1-800-255-7778

R

ISE Versions

The ISE development systems are available in the following configurations.

• ISE WebPACK™ Tool

The ISE WebPACK tool is the easiest development system to get. This free tool is 
downloadable from the Web at: 
(http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack). 

ISE WebPACK software combines support for advanced HDL entry, synthesis, and 
verification capabilities for all Xilinx CPLDs and lower-density FPGAs.

• ISE BaseX Tool

The ISE BaseX tool is the industry's most cost-effective, PC-based programmable logic 
design environment. The ISE BaseX configuration provides all of the capabilities contained 
within the ISE WebPACK software plus additional tools like the CORE Generator system 
and FPGA Editor that help you complete your programmable logic design even faster.

• ISE Alliance Tool

The ISE Alliance tool is designed to fit into your existing design environment. This tool 
provides full device support and works seamlessly with those tools of our EDA partners. 
The ISE Alliance tool is for those designers looking to add programmable logic design 
capabilities into their existing design environment. This tool does not include XST synthesis 
or ECS schematic capture.

• ISE Foundation™ Tool

The ISE Foundation tool is a complete, ready-to-use design environment that integrates 
schematic, synthesis, and verification technologies into an intuitive, yet highly advanced 
design solution. The tool has full device support as well as the full suite of tools.

To see a table comparison of these versions, see the Development Systems Overview at 
http://www.xilinx.com/ise/devsys_feature_guide.pdf.

Development system updates are provided on a regular basis. These are available as Service 
Packs that can be downloaded from the Xilinx website 
(http://www.xilinx.com/support/software/install_info.htm). Always use the latest development 
system update for the best results.

Project Navigator

Project Navigator is the primary user interface for the Xilinx ISE tools. You can create, define, 
and compile your Spartan-3 design using a suite of tools accessible from Project Navigator. 
Each step of the design process, from design entry to downloading the design to the device, is 
managed from Project Navigator as part of a project. These include:

• Design Entry

• Constraint Entry

• Synthesis

• Simulation

• Implementation

• Device Programming

Project Navigator Main Window

The Project Navigator workspace is made up of a title bar, a status bar, a menu bar, toolbars 
and windows.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack
http://www.xilinx.com/ise/devsys_feature_guide.pdf
http://www.xilinx.com/support/software/install_info.htm


12 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

ISE Development Environment
R

Project

ISE organizes and tracks your design as a project. A project is a collection of all files necessary 
to create and download your design to the selected device. The following information is 
required for each project:

• A unique project name

• A specified target device family (architecture)

• A specified target device

• A specified design flow

Each project has a directory, device family, device, and design flow associated with it as project 
properties. The project properties enable Project Navigator to display and run only those 
processes appropriate for the targeted device and design flow.

Sources

A source is any element that contains information about a design. In Project Navigator, you can 
create and add sources to your project. Each project can contain many sources, each one 
representing a different part of the overall design. Sources can include the description of 
circuits (as represented by schematics and hardware description language files), state 
diagrams, simulation models, test files, and documentation of the design.

Source Hierarchy

One source file in a project is the top-level source for the design. The top-level source defines 
the inputs and outputs to be mapped into the device, and references the logic descriptions 
contained in lower-level sources in a hierarchical design. A project must contain at least one 
source as the top-level source. All source files and their accompanying icons are displayed in 
the Sources in Project window below the project file.

Figure 5:  Project Navigator Main Window

x473_05_071103

http://www.xilinx.com


ISE Development Environment

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 13
1-800-255-7778

R

The term instantiation describes when one source references another. Lower-level sources 
also can instantiate sources to build as many levels of logic hierarchy as necessary to describe 
your design.

Valid top-level source types include the following:

• Schematics

• HDL files (VHDL or Verilog)

• EDIF

ISE Tools

ISE includes a number of individual tools and capabilities that can be accessed standalone or 
within the Project Navigator.

Engineering Capture System (ECS)

The Engineering Capture System (ECS) allows you to create, view, and edit schematics and 
symbols. You can use ECS to create a top-level schematic and use any of the following to 
define the lower levels of the design: ECS, CORE Generator System, or HDL code. Then you 
can translate the schematics created by ECS to a structural HDL for simulation and synthesis, 
or use the schematics solely for documentation purposes.

HDL Editor

The HDL Editor is a text editor designed especially for editing HDL source files. In addition to 
regular editing features, the editor provides syntax coloring. The syntax-coloring feature 
supports both VHDL and Verilog. The HDL Editor operates as a standard text editor as well. 
ISE provides optimized, ready-to-use language and synthesis templates for easy insertion into 
an HDL source file.

StateCAD State Machine Editor

StateCAD accelerates design entry by allowing quick entry of finite state machines (FSMs). 
Each step is automated, reducing development costs and enhancing effectiveness. StateCAD 
allows users to quickly design FSMs, find and fix design errors, verify behavior, and generate 
optimized HDL. StateCAD automatically analyzes designs for problems such as stuck-in-
states, conflicting state assignments, and indeterminate conditions. This automated error 
analysis ensures that designs are logically consistent, reducing simulation requirements and 
improving product reliability.

Xilinx Synthesis Technology (XST)

Xilinx Synthesis Technology (XST) provides cutting edge design optimization techniques from 
a Xilinx-developed synthesis tool. XST supports the Verilog and VHDL design languages. XST 
is included in ISE WebPACK, ISE BaseX, and ISE Foundation packages. RTL Viewer displays 
the results of XST synthesis in a schematic view.

HDL Advisor

The HDL Advisor gives advisory messages in the XST synthesis report files. The messages 
are designed to make suggestions on how code can be changed to reduce design size and 
meet timing requirements. These HDL advisors allow designers to produce better code earlier, 
reducing design time, and resulting in better space utilization in the Spartan-3 FPGA.

Partner Tools

The Xilinx tools provide easy integration with third-party tools including LeonardoSpectrum 
synthesis from Mentor Graphics, Synplify/Pro and Amplify synthesis from Synplicity, and FPGA 
Compiler II from Synopsys. These tools can be purchased separately from the vendor.

ModelSim simulators from Model Technology provide the simulation functions for ISE. 
ModelSim Xilinx Edition II (MXE-II) is available as an option from Xilinx. It offers a complete PC 

http://www.xilinx.com


14 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

ISE Development Environment
R

HDL simulation environment that enables you to verify the HDL source code as well as the 
functional and timing models of your designs.

Intellectual Property (IP)

Get to market faster and less expensively using the latest pre-verified, pre-optimized 
Intellectual Property (IP) Cores, Reference Designs, and Design Services for Xilinx FPGAs. 
Xilinx-created LogiCORE  products form the most successful core program in the 
programmable logic industry, including PCI bus interfaces and MicroBlaze  soft processors. As 
a result, Xilinx has gained considerable experience developing and selling cores, and servicing 
FPGA core customers. Through the AllianceCORE™ program, Xilinx is expanding the 
availability of quality cores for programmable logic by sharing what has been learned with 
leading third-party core developers. The AllianceCORE program is a cooperative effort 
between Xilinx and independent third-party core developers. It is designed to produce a broad 
selection of industry-standard solutions dedicated for use in Xilinx programmable logic. Xilinx 
also provides many reference designs and design examples provided “as-is” to help get you 
started with your own designs. 

CORE Generator System

The Xilinx CORE Generator System provides a catalog of ready-made functions, ranging in 
complexity from simple arithmetic operators like adders, accumulators, and multipliers, to 
system-level building blocks such as filters, transforms, and memory resources. Cores are 
organized by functional type into folders that expand or contract on demand.

The Xilinx CORE Generator System produces an EDIF netlist, schematic symbol, Verilog 
template file with a Verilog wrapper file, and a VHDL template file with a VHDL wrapper file. The 
Electronic Data Netlist (EDN) file contains the information for implementing the module. Cores 
generated in the Xilinx CORE Generator tool can be used in schematic designs. After the core 
is selected and customized, the CORE Generator tool generates its schematic symbol. The 
core then can be added to the schematic like any other library component. Finally, the template 
files contain code that can be used as a model to instantiate a CORE Generator module in a 
Verilog or VHDL design so that it can be simulated and integrated into a design.

System Generator for DSP

The System Generator for DSP software enables electronic designs to be created, tested, and 
translated into hardware for Spartan-3 FPGAs. The tool extends Simulink (from The 
MathWorks, Inc.) to support bit- and cycle-accurate system-level simulation, and automatic 
code generation for Xilinx FPGAs. System Generator co-simulation interfaces extend Simulink 
to incorporate FPGA hardware and HDL simulation into the system-level environment as 
naturally as other library blocks. System Generator presents a high-level and abstract view of 
the design, but also exposes key features in the underlying silicon, making it possible to build 
extremely high-performance FPGA implementations.

DCM Wizard

To reduce the complexities of new device technologies like Digital Clock Managers (DCM), ISE 
includes Architecture Wizards, allowing users access through an intuitive easy-to-use dialog. 
Through the use of the ISE Architecture Wizards, designers can access these leading edge 
technologies quickly by creating the component through a push-button flow rather than learning 
all the attributes in HDL. Then the component simply can be instantiated in the user’s design by 
copying the instantiation template created by ISE. The DCM Wizard supports all the 
capabilities of the Spartan-3 DCMs.

Data2BRAM Tool

Data2BRAM is fundamentally a data translation tool. It translates contiguous fragments of data 
into the proper initialization records for Block RAMs. It automates distribution of that data 
across multiple physical Block RAMs that constitute a contiguous logical data space. 
Data2BRAM is also a simplified means for initializing block RAMs.

http://www.xilinx.com


ISE Development Environment

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 15
1-800-255-7778

R

Automatic Implementation Tools

The automatic implementation tools (synthesis, translation, mapping, placement, and routing) 
provide the best results for any design. ProActive Timing Closure technologies deliver the 
industry's highest performance in programmable logic designs, quickly and efficiently. The 
technologies include:

• Physical Synthesis

♦ Includes place and route information to work on the real critical paths first 

♦ Achieves better quality of results of 5 to 20% 

♦ Supported through Synplicity's Amplify, Mentor Graphic's LeonardoSpectrum Time 
Closer, and Xilinx's own XST synthesis tool 

♦ Timing optimization prior to physical place and route 

• Macro Builder 

♦ Lets you freeze placement information for a given design 

♦ You can then re-use that macro in future designs using relative placement 

♦ Performance preservation

• Advanced Place and Route Algorithms

♦ Critical Path Placement first 

♦ Extra-Effort Mode 

♦ Directed Routing that lets the designer specify routing with IP 

• Timing Improvement Wizard

♦ Interactively helps designer improve design 

♦ Click on a timing problem and receive suggestions that can improve design timing 

• Timing Cross-Probing

♦ Decreases debug time by cross-probing from the timing report directly to Floorplanner 

♦ Click on the error, path, or net in the timing report and instantly see it in Floorplanner 
or Synthesis Source Tool

• HDL Advisors

♦ Included in XST synthesis reports, clicking on an error or warning suggests changes 
to HDL to improve the implementation

Incremental Design

Incremental Design gets your overall design to market faster by minimizing the impact from 
late-arriving design changes. The Incremental Design flow facilitates more debug cycles in a 
day when making small design changes. A designer quickly and easily can floorplan design 
areas along hierarchy boundaries, and then finish the design as normal. Later, if a design 
change is required, Incremental Design ensures that only the area of the design change need 
be re-implemented; the rest of the design stays locked and intact, delivering overall design 
completion faster. 

Modular Design

Modular Design lets you implement a “divide and conquer” approach to multi-million gate 
FPGA designs. Partitioning a design into smaller functional modules reduces the complexities 
of design, implementation, and verification. These design modules then can be brought 
through the design flow independently, leveraging all of the powerful tools within the Xilinx 
FPGA design flow. Once completed, a module's implementation is preserved, guaranteeing the 
timing in the finished device. This technology is a requirement for any organization employing a 
team design methodology for the design of a multi-million gate FPGA.

http://www.xilinx.com


16 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

ISE Development Environment
R

Constraints Editor

Constraints are user instructions placed on elements of a schematic or HDL design, either in 
the design itself or in a separate file. They can indicate a number of things such as placement, 
implementation, naming, signal direction, and timing considerations. In the Xilinx development 
system, logical constraints are placed in a file called the UCF (User Constraints File). The 
Constraints Editor is a graphical program that you can use to create and modify those 
constraints.

PACE

Pinout and Area Constraints Editor (PACE) is an interactive graphical application that you can 
use to do the following functions:

• View and edit location constraints for I/Os and global logic

• View and create area constraints for hierarchical symbols in your design

• Determine connectivity and resource requirements of your design

• Determine resource layout of your target FPGA

• Determine how your design maps onto the FPGA via location and area constraints

PACE fits into the Xilinx implementation flow at the very beginning. Because PACE supports I/O 
layout with an NGD file, it can be used early at the design entry stage of the flow. PACE reads 
an NGD file and reads and writes a UCF file.

Floorplanner

Use the Floorplanner interactive graphical tool to perform the following functions on your 
designs:

• Floorplan resource placement at a detailed level

• Use Macro Builder to create a Relationally Placed Macro (RPM) core that can be used in 
other designs

• View and edit location constraints

• Find logic or nets by name or connectivity

• Cross-probe from the Timing Analyzer to the Floorplanner

• Automatic placement of ports for modular design

The graphical user interface includes pull-down menus and toolbar buttons that contain all of 
the necessary commands for changing the design hierarchy, floorplanning, and performing 
design rule checks. Dialog boxes allow you to quickly set parameters and options for command 
execution.

FPGA Editor

The FPGA Editor is a graphical application for displaying and configuring FPGAs. The FPGA 
Editor requires an NCD file. This file contains the logic of your design mapped to components 
such as CLBs and IOBs. In addition, the FPGA Editor reads from and writes to a Physical 
Constraints File (PCF).

The following is a list of a few of the functions you can perform on your designs in the FPGA 
Editor:

• Place and route critical components before running automatic place and route

• Fine-tune placement and routing after running automatic place and route

• Add probes to design to examine the signal states of the targeted device

• Run the Bitstream Generator and download the resulting file to the targeted device

• View and change the nets connected to the capture units of an Integrated Logic Analyzer 
(ILA) core

http://www.xilinx.com


ISE Development Environment

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 17
1-800-255-7778

R

• Create an entire design by hand (for advanced users)

HDL Bencher Software

The HDL Bencher software automates verification of VHDL sources, Verilog sources, and 
schematics created within ISE. Design sources are imported, a waveform is created, and 
stimulus is specified by filling in the WaveTable spreadsheet cells. Outputs may be auto-
simulated via a command from ISE. A self-checking test bench is exported whenever the 
waveform is saved. No knowledge of HDL or language scripting is needed to verify the design 
functions as intended.

Multiple layers of simulation are supported. Waveforms that include the expected timing results 
are developed for behavioral designs. The waveforms may be simulated behaviorally, after 
translation, after mapping, or after routing.

The HDL Bencher software constrains the test run to a specific sequence of events, initial 
conditions, and user-determined results. With the HDL Bencher software, you quickly can 
validate your design functions as intended.

Interactive Timing Analyzer

The Interactive Timing Analyzer provides a powerful, flexible, and easy way to perform static 
timing analysis. With Timing Analyzer, analysis can be performed immediately after mapping, 
placing, or routing a Spartan-3 FPGA design.

Timing Analyzer verifies that the delay along a given path or paths meets specified timing 
requirements. It organizes and displays data that allows you to analyze critical paths in a circuit, 
the cycle time of the circuit, the delay along any specified path(s), and the path with the greatest 
delay. It also provides a quick analysis of the effect different speed grades have on the same 
design. 

Timing Analyzer creates timing analysis reports based on existing timing constraints or user 
specified paths within the program. Timing reports have a hierarchical browser to quickly jump 
to different sections of the reports. Timing paths in reports can be cross-probed to synthesis 
tools (Exemplar and Synplicity) and the Floorplanner.

iMPACT Configuration Tool

The iMPACT configuration tool, a command line and GUI based tool, allows you to configure 
your PLD designs using Boundary Scan, Slave Serial, SelectMap, and Desktop Configuration 
modes. It also allows you to do the following:

• Download

• Read back and verify design configuration data

• Debug configuration problems

• Create PROM, SVF, STAPL, System ACE  CF, and System ACE MPM programming files

ChipScope Pro Analyzer

The ChipScope Pro analyzer delivers in-circuit real-time debugging with shorter verification 
cycles and lower project costs. By inserting special low-impact IP debugging cores directly into 
your HDL code or design netlist, you can debug and verify FPGA logic and system bus activity, 
capturing signals at or near system operating speeds. You easily can change your trace points 
without having to recompile your design. The ChipScope Pro analyzer embeds Integrated 
Logic Analyzer (ILA) and Integrated Bus Analyzer (IBA) cores into your design. These cores 
allow the user to view all the internal signals and nodes within the Spartan-3 FPGA.

XPower Analysis Tool

XPower is a post-route analysis tool for interactively and automatically analyzing power 
consumption for Xilinx devices. XPower includes both GUI (XPower) and batch (xpwr) 
applications.

http://www.xilinx.com


18 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Conclusion
R

Earlier in the design flow than ever, you can analyze total device power, power per net, routed, 
partially routed or unrouted designs, all driven from a comprehensive graphical interface or 
command-line driven batch mode. XPower also reads VCD simulation data from the ModelSim 
family of HDL simulators to set estimation stimulus, reducing setup time, as well as from 
additional simulators.

XPower uses device knowledge and design data to estimate device power and by-net power 
utilization. Information is presented in both HTML and ASCII (text) report formats. The 
accuracy of XPower is higher than the power estimator worksheets available for pre-design 
analysis.

Conclusion The ISE design environment brings you the fastest, most complete family of design tools 
available. The ISE tools are available in multiple configurations with various optional tools and 
interfaces to third-party tools, allowing you to customize the set of tools for your own needs. ISE 
combines advanced technologies such as ProActive Timing Closure with a flexible, easy-to-use 
graphical interface to help you achieve the best possible designs with the least time and effort, 
regardless of your experience level. 

Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

07/11/03 1.0 Initial Xilinx release.

http://www.xilinx.com

	Introduction
	Design Flow
	Design Entry and Synthesis
	Hierarchical Design
	Schematic Entry
	HDL Entry and Synthesis
	Constraints

	Design Implementation
	Translating
	Mapping
	Placing and Routing
	Bitstream Generation

	Design Verification
	Simulation
	Static Timing Analysis
	In-Circuit Verification


	ISE Development Environment
	Introduction to ISE
	Design Entry
	Synthesis
	Simulation
	Implementation
	Device Download

	ISE Versions
	Project Navigator
	Project Navigator Main Window
	Project
	Sources
	Source Hierarchy

	ISE Tools
	Engineering Capture System (ECS)
	HDL Editor
	StateCAD State Machine Editor
	Xilinx Synthesis Technology (XST)
	HDL Advisor
	Partner Tools
	Intellectual Property (IP)
	CORE Generator System
	System Generator for DSP
	DCM Wizard
	Data2BRAM Tool
	Automatic Implementation Tools
	Incremental Design
	Modular Design
	Constraints Editor
	PACE
	Floorplanner
	FPGA Editor
	HDL Bencher Software
	Interactive Timing Analyzer
	iMPACT Configuration Tool
	ChipScope Pro Analyzer
	XPower Analysis Tool


	Conclusion
	Summary
	Revision History

