
Summary Dedicated 18x18 multipliers speed up DSP logic in the Spartan™-3 family. The multipliers are
fast and efficient at implementing signed or unsigned multiplication of up to 18 bits. In addition
to basic multiplication functions, the embedded multiplier block can be used as a shifter or to
generate magnitude or two’s-complement return of a value. The multipliers can be cascaded
with each other or CLB logic for larger or more complex functions.

Introduction Spartan-3 FPGAs have a number of features to fortify the chip’s arithmetic capabilities. Carry
logic and dedicated carry routing continues to be provided as in past generations. Dedicated
AND gates in the CLBs accelerate array multiplication operations. The newest and most
significant addition is the dedicated 18x18 two’s-complement multiplier block. With 4 to 104 of
these dedicated multipliers in each device, fast arithmetic functions can be implemented with
minimal use of the general-purpose resources. In addition to the performance advantage,
dedicated multipliers require less power than CLB-based multipliers.

The embedded multipliers offer fast, efficient means to create 18-bit signed by 18-bit signed
multiplication products. The multiplier blocks share routing resources with the Block
SelectRAM™ memory, allowing for increased efficiency for many applications. Cascading of
multipliers can be implemented with additional logic resources in local Spartan-3 slices.

Applications such as signed-signed, signed-unsigned, and unsigned-unsigned multiplication,
logical, arithmetic, and barrel shifters, two’s-complement and magnitude return are easily
implemented.

The 18-bit x 18-bit multipliers can be quickly created using the CORE Generator™ system, or
they can be instantiated (or inferred) using VHDL or Verilog.

Two’s-
Complement
Signed
Multiplier

Data Flow
Each embedded multiplier block (MULT18X18 primitive) supports two independent dynamic
data input ports: 18-bit signed or 17-bit unsigned. The two inputs are referred to as the
multiplicand and the multiplier, or the factors, while the output is the product. The MULT18X18
primitive is illustrated in Figure 1.

Application Note: Spartan-3

XAPP467 (v1.1) May 13, 2003

Using Embedded Multipliers
in Spartan-3 FPGAs

R

Figure 1: Embedded Multiplier

A [17:0]

MULT18X18
X467_01_032503

B [17:0]

P [35:0]
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Using Embedded Multipliers in Spartan-3 FPGAs
R

In addition, efficient cascading of multipliers up to 35-bit x 35-bit signed can be accomplished
by using four embedded multipliers, one 36-bit adder, and one 53-bit adder. See Figure 6.

Binary multiplication is similar to regular multiplication with the multiplicand multiplied by each
bit of the multiplier to generate partial products, and then the partial products added together to
create the result. The Xilinx multiplier block uses the modified Booth algorithm, in effect using
multiplexers to create the partial products.

Timing Specification
The result is generated faster for the LSBs than the MSBs, since the MSBs require more levels
of addition, so timing specifications are different for each of the 36 multiplier outputs. Designs
should use only as many output bits as are necessary. For example, if two unsigned numbers
will never have a product of 235 or higher, the P[35] output is always zero. For any pair of signed
numbers of n bits, if you will never have -2n-1 x -2n-1, then the MSB is always identical to the
next lower-order bit (P[2n-1] = P[2n-2]). Also consider that if some outputs must have longer
routing delays, they should be put on the output LSBs to balance with the MSB delays.

For the same reason, the data input setup time for the pipelined multiplier will be shorter for the
MSBs than the LSBs, but the timing parameters do not differentiate between pins for setup
time. For additional safety margin in a design, slower inputs should be put on the MSBs. The
Reset and Clock Enable inputs have much faster setup times than any of the data inputs, and
all have zero hold times. The timing parameter name "tMULIDCK" (MULtiplier Input Data to
ClocK) is used for both the data and control inputs, but will have different values for each type.

Library
Primitives

Two library primitives are available for the embedded multipliers. Table 1 describes these
primitives.

The registered version of the multiplier adds a clock input C, an active-High Clock Enable CE,
and a synchronous Reset R (see Figure 2). The registers are implemented in the multiplier
itself and do not require any other resources. The control inputs C, CE, and R all have built-in
programmable polarity. The data inputs, clock enable, and reset all must meet a setup time
before the clock edge, and the data on the P outputs changes after the clock-to-output delay.

The pin names used in the Xilinx implementation tools, such as the FPGA Editor, are identical
to those used in the library primitives.

Table 1: Multiplier Primitives

Primitive A Width B Width P Width Signed/Unsigned Output

MULT18X18 18 18 36 Signed
(Two’s Complement)

Combinatorial

MULT18X18S 18 18 36 Signed
(Two’s Complement)

Registered

Figure 2: Combinatorial and Registered Multiplier Primitives

X467_02_032403

MULT18X18S

A[17:0]

B[17:0]

C

CE

R

P[35:0]

A[17:0]

MULT18X18

B[17:0]

P[35:0]
2 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

VHDL Instantiation Template
-- Component Declaration for MULT18X18 should be placed
-- after architecture statement but before begin keyword
component MULT18X18
port (P : out STD_LOGIC_VECTOR (35 downto 0);

A : in STD_LOGIC_VECTOR (17 downto 0);
B : in STD_LOGIC_VECTOR (17 downto 0));

end component;
-- Component Attribute specification for MULT18X18
-- should be placed after architecture declaration but
-- before the begin keyword
-- Attributes should be placed here
-- Component Instantiation for MULT18X18 should be placed
-- in architecture after the begin keyword
MULT18X18_INSTANCE_NAME : MULT18X18
port map (P => user_P,

A => user_A,
B => user_B);

Verilog Instantiation Template
MULT18X18 MULT18X18_instance_name (.P (user_P),

.A (user_A),

.B (user_B));

MULT_STYLE Constraint
The MULT_STYLE constraint controls the implementation of the MULT18X18 primitives. In the
Project Navigator (see Figure 3), the default is that the Xilinx Synthesis Tool (XST) will select
the best type of implementation. To ensure that the embedded multipliers are used, set
MULT_STYLE = Block or select "Block" for the "Multiplier Style" property in the Project
Navigator. The MULT_STYLE constraint can also be applied globally at the XST command line
or attached to a MULT18X18 primitive. For the MULT18X18S, attach the MULT_STYLE
constraint to the component, not the output bus. See the Constraints Guide for more
information.

Figure 3: Setting Multiplier Style in Project Navigator Process Properties
X467_03_032403
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Multipliers in the Spartan-3 Architecture
The multipliers are located adjacent to the block RAM, making it convenient to store inputs or
results in the block memory (see Figure 4). There are two or four columns of multipliers in each
device. Where there are two columns, they have two rows of CLBs between them and the edge,
allowing the multiplier to be easily driven by CLB or IOB logic. There are four CLBs, or 16 slices
and 32 LUTs, on either side of a given multiplier block, allowing 32 input and output signals to
be connected immediately adjacent to the multiplier block. One possible high-speed layout is to
put A[15:0] on one side, B[15:0] on the other side, and intersperse the P[31:0] outputs on both
sides. For a full-size 18x18 multiplier, the extra inputs and outputs can connect to the next CLB
column. For best performance, pipeline the inputs with registers in the adjacent CLBs.

The 18-bit width of the Spartan-3 multiplier is unusual but matches with the 18-bit width of the
block RAM, which includes parity bits. Standard 8-bit or 16-bit multipliers can be created by
using part of the multiplier block, or a 32-bit multiplier can be created via cascading. The Xilinx
architecture allows any non-standard bit width to be implemented, exactly matching the needs
of the application. Unused multiplier inputs are connected automatically to zero via connections
to unused LUTs that are set to zero.

Figure 4: Location of Multipliers in Spartan-3 Architecture

Table 2: Number of Multipliers per Spartan-3 Device

Device Multiplier Columns Multipliers

XC3S50 1 4

XC3S200 2 12

XC3S400 2 16

XC3S1000 2 24

XC3S1500 2 32

XC3S2000 2 40

XC3S4000 4 96

XC3S5000 4 104

x467_04_040303

Notes:
1. The two additional block RAM/multiplier columns of the XC3S4000 and

XC3S5000 devices are shown with dashed lines. The XC3S50 device has a
single column of block RAM/multipliers along the left edge.
4 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Expanding
Multipliers

Multiplication using inputs with more than 18 bits is possible by decomposing the multiplication
process into smaller subprocesses. The binary representation of either input can be split at any
point, provided the proper weighting and sign of the MSBs is taken into account. Splitting off the
18 MSBs of the input makes the best use of the 18-bit signed multipliers.

For example, Figure 5 shows how a 22x16 multiplier could be implemented. The 22-bit value is
decomposed into an 18-bit signed value and a 4-bit unsigned value from the LSBs. Two partial
products are formed. The first is a 20-bit signed product, which is the result of multiplying the
16-bit signed value by the 4-bit unsigned section. The second is a 34-bit signed product, formed
by multiplying the 16-bit signed value by the 18-bit signed section. The addition process
restores the weighting of the products (note the least significant bits of the first product bypass
the addition) and forms the final 38-bit product. Since the first product is signed, the 20-bit value
needs to be sign-extended before addition. The adder itself only needs to be 34 bits, requiring
17 slices.

The implementation can vary depending on the performance needs and available resources.
The second multiplier can be implemented in the MULT18X18 resource or in CLBs if it is small.
Pipelining can be added to improve performance, using the built-in capabilities of the dedicated
multipliers. If both inputs are greater than 18 bits, then four partial products are formed, but the
purely unsigned result from the LSBs simply can be concatenated with the 36-bit signed
product of the MSBs and added to the other two results.

Figure 6 represents the cascaded scheme used to implement a 35-bit by 35-bit signed
multiplier utilizing four embedded multipliers and two adders.

The fixed adder is 53 bits wide (17 LSBs are always 0 on one input).

The 34-bit by 34-bit unsigned submodule is constructed in a similar manner with the most
significant bit on each operand being tied to logic Low.

Figure 5: 22x16 Multiplier Implementation

MULT18X18

34

Unsigned

16

44

34

38

16

18

16

20

22A

B
P

16
+

X467_14_051303
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Two Multipliers
in a Single
Primitive

The dedicated multiplier can be used to multiply two smaller numbers at the same time. By
putting one value on the LSBs and one on the MSBs, two independent results can be obtained
as long as the results do not overlap with each other on the outputs. Shifting one of the values
n positions to the MSBs is the same as multiplying it by 2n. If the value shifted to the MSBs is
X, then the new value is X * 2n. If the value on the LSBs is Y, then the complete multiplier input
is X * 2n + Y.

For simplified illustration purposes, an assumption of two squares being implemented in the
same MULT18X18 primitive is used. The following equation shows the form of the
multiplication.

Two Multipliers per Primitive:

(X * 2n + Y)(X * 2n + Y) = (X2 * 22n) + (XY * 2n+1) + (Y2)

For values 0 on X or Y, the equation becomes:

X2 * 22n {Y=0} (X2 on the output MSBs)

Y2 {X=0} (Y2 on the output LSBs)

0 {X=0, Y=0}

With both X and Y at non-zero values, care must be taken to avoid overlap between the results
on the MSBs and LSBs and the middle term (XY * 2n+1). Two multipliers can coexist in one
MULT18X18 primitive, if the conditions in the following inequalities are met when neither X nor
Y are 0.

Inequality Conditions for Two Multipliers per Primitive:

(X2 * 22n)min > (XY * 2n+1)max, (XY * 2n+1)min > (Y2)max

Figure 6: 35x35 Signed Multiplier

MULT18X18

AA[34:17]

B
P

36
B[34:17] [69:34]

[33:0]

36

36

70 70

MULT18X18

AA[34:17]

B
P

36
0, B[16:0]

36

36
[52:17]

0
•
•
0

16
•
•
0

MSB
•
•

MSB

69
•
•
53

MULT18X18

A0, A[16:0]

B
P

36
B[34:17]

36

36

MULT18X18

A0, A[16:0]

B

+

+

P
34

0, B[16:0]
34 34

X467_11_051303
6 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Table 3 shows values for X and Y where these conditions are met.

Figure 7 represents the MULT18X18 connections for calculating the square of both a 6-bit
signed number and a 5-bit unsigned number.

Design Entry There are many options for including the Spartan-3 multiplier in a design. The library primitives
MULT18X18 and MULT18X18S described earlier can be instantiated in the schematic or HDL
code. Synthesis tools can infer a multiplier block from the multiply operator, including Xilinx
XST, Synplicity Synplify, and Mentor LeonardoSpectrum. They will infer the MULT18X18S
when the operation is controlled by a clock for a synchronous multiplier.

LeonardoSpectrum features a pipeline multiplier that involves putting levels of registers in the
logic to introduce parallelism and, as a result, use CLB resources instead of the dedicated
multipliers. A certain construct in the input RTL source code description is required to allow the
pipelined multiplier feature to take effect. See the Synthesis and Simulation Design Guide for
more information.

The following VHDL example will infer the MULT18X18S using XST or Synplify:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18s is
port (a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 prod : out std_logic_vector(15 downto 0));
end mult18x18s;
architecture arch_mult18x18s of

Table 3: Two Multipliers per MULT18X18 Allowable Sizes

X * X Y * Y

Signed Size Unsigned Size Signed Size Unsigned Size

7 X 7 6 X 6 - 4 X 4

6 X 6 5 X 5 - 5 X 5

5 X 5 4 X 4 3 X 3 6 X 6

4 X 4 3 X 3 3 X 3 7 X 7

3 X 3 2 X 2 4 X 4 8 X 8

Figure 7: Two Multipliers in One Primitive

A_5U [4:0]

P_5U[9:0]

x00 [11:5]

A_6S [17:12]

P_6S[35:24]

NC[23:10]

A

B_5U [4:0]

x00 [11:5]

B_6S [17:12]

B

P

MULT18X18

X467_05_032403
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

mult18x18s is
begin
process(clk) is begin
if clk’event and clk = ’1’ then
prod <= a*b;

end if;
end process;
end arch_mult18x18s;

The following is a Synchronous Multiplier VHDL Example coded for LeonardoSpectrum:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18s is
port(clk: in std_logic;

 a: in std_logic_vector(7 downto 0);
 b: in std_logic_vector(7 downto 0);
 prod: out std_logic_vector(15 downto 0));
end mult18x18s;
architecture arch_mult18x18s of
mult18x18s is

signal reg_prod : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if(rising_edge(clk))then
reg_prod <= a * b;
prod <= reg_prod;

end if;
end process;
end arch_mult18x18s;

The following is a Synchronous Multiplier Verilog Example coded for Synplify and XST:

module mult18x18s(a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] prod;
always @(posedge clk) prod <= a*b;

endmodule

The following is a Synchronous Multiplier Verilog Example coded for LeonardoSpectrum:

module mult18x18s (a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] reg_prod, prod;
always @(posedge clk) begin
reg_prod <= a*b;
prod <= reg_prod;

endmodule
8 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Using the CORE
Generator
System

Multipliers that make use of the embedded Spartan-3 18-bit x 18-bit two’s-complement
multipliers can be easily generated using v6.0 of the CORE Generator Multiplier module. This
core is available with version 5.1i and later of the CORE Generator system. Features of the
Multiplier Generator include:

• Generates parallel multipliers using the dedicated multiplier blocks

- Also can use other resources for parallel multipliers or generate sequential/serial-
sequential, and fixed/reloadable constant coefficient multipliers

• Supports two’s-complement signed/unsigned modes

• Supports inputs ranging from 1 to 64 bits wide

• Supports outputs ranging from 1 to 129 bits wide

• Generates purely combinatorial and fully pipelined implementations

• Provides optional registered output with optional clock enable and asynchronous and
synchronous clears

• Provides optional handshaking signals

Figure 8 shows the logic symbol for the Core Multiplier Generator. The RFD (Ready For Data)
output goes High to indicate the multiplier is ready to accept data. The ND (New Data) input can
be asserted to indicate new data is available on the multiplier inputs. The RDY (Ready) signal
indicates that the output is the current product. LOADB and SWAPB are used in constant
coefficient multipliers.

The CORE Generator system uses the embedded multiplier for the default Parallel multiplier
type. The Multiplier Construction option gives the user the choice to implement the function in
look-up tables instead.

Figure 9 shows the timing diagram for the Multiplier Generator.

Figure 8: Core Multiplier Generator Symbol

A

X467_06_032403

A_SIGNED

ND

B

LOADB

SWAPB

ACLR

SCLR

CE

CLK

O

Q

RFD

RDY

LOAD_DONE
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

System Generator
The Multiplier Generator is used by the System Generator for DSP when the MULT block is
used. System Generator presents a high level and abstract view of the design, but also
exposes key features in the underlying silicon, making it possible to build extremely high-
performance FPGA implementations. The System Generator also provides blocks for compiling
MATLAB® M-code into synthesizable HDL code. The System Generator uses the embedded
multiplier when a parallel multiplier is selected and the use of the dedicated multiplier is
checked in the System Generator interface.

MAC Cores
The CORE Generator system and the System Generator can also implement more complex
functions using the multiplier as a building block. The Multiply Accumulator (MAC) core
supports up to 32-bit inputs and optional user-defined pipelining. The options of an Embedded
or LUT Based implementation control whether the dedicated multipliers or CLB resources are
used for the function. The MAC implementation uses relatively few CLB resources beyond the
dedicated multipliers and provides flexibility that is key to matching a design to the lowest
density and lowest cost solution possible.

The MAC and MAC-based FIR filters include an automatic pipeline control which is based on
required system clock performance. Levels of pipeline will automatically be inserted based on
the design requirement for a perfect speed/area trade-off.

Figure 9: Multiplier Generator Timing Diagram

CLK

SCLR

X467_07_040303

RFD

ND

A & B
Input

DOUT

RDY

XXX XXX

RFD active unless ACLR or SCLR active

interval depends on multiplier latency

XXX XXX A0 A1 An An

DnDnD0

An+1

Dn+1

new multiplier inputs A(n) & B(n)

multiplier output still valid
but RDY low (ND was 0)

new multiplier output
DOUT = 0 (SCLR was 1)
10 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Multiplier
Submodules

This section describes several example submodules that can be used in a Spartan-3 design.
Table 4 lists multipliers and two’s-complement return functions that utilize one MULT18X18
primitive and are not registered.

Figure 10 and Figure 11 represent 4-bit by 4-bit signed multiplier and 4-bit by 4-bit unsigned
multiplier implementations, respectively.

Table 4: Embedded Multiplier Submodules — Single MULT18X18

Submodule A Width B Width P Width Signed/Unsigned

MULT17X17_U 17 17 34 Unsigned

MULT8X8_S 8 8 16 Signed

MULT8X8_U 8 8 16 Unsigned

MULT4X4_S 4 4 8 Signed

MULT4X4_U 4 4 8 Unsigned

TWOS_CMP18 18 - 18 -

TWOS_CMP9 9 - 9 -

MAGNTD_18 18 - 17 -

Figure 10: MULT4X4_S Submodule

170

0
A3
A3
A3
A3

A[3:0]

P[7:0][7:0]

•••
•••

8
7
6
5
4
[3:0] NC[35:8]

A

P

170

0
B3
B3
B3
B3

B[3:0]

•••
•••

8
7
6
5
4
[3:0]

B

MULT18X18

X467_08_032503
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Submodule MAGNTD_18 performs a magnitude return (i.e., absolute value) of a two’s-
complement number. An incoming negative number returns with a positive number, while an
incoming positive number remains unchanged. Submodules TWOS_CMP18 and
TWOS_CMP9 perform a two’s-complement return function. Additional slice logic can be used
with these submodules to efficiently convert sign-magnitude to two’s-complement or vice-
versa.

Figure 12 shows the connections to a MULT18X18 to create the submodule TWOS_CMP9.

VHDL and
Verilog
Instantiation

VHDL and Verilog instantiation templates are available as examples of primitives and
submodules (see VHDL and Verilog Templates, page 13).

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of the
architecture section should include the design signal names.

Figure 11: MULT4X4_U Submodule

Figure 12: TWOS_CMP9 Submodule

170

0

A[3:0] [3:0]

P[7:0][7:0]

•••
•••

4

NC[35:8]

A

170

0

B[3:0] [3:0]

•••
•••

4

B

P

MULT18X18

X467_09_032503

x000

MULT18X18
X467_10_032503

x000
P [8:0]

[17:9]

[8:0]

[35:9]

[8:0]
[17:9]

[8:0]

A [8:0]

x111

P

B

A

NC
12 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Port Signals

Data In — A

The data input A provides new data (up to 18 bits) to be used as one of the multiplication
operands.

Data In — B

The data input B provides new data (up to 18 bits) to be used as one of the multiplication
operands.

Data Out — P

The data output bus P provides the data value (up to 36 bits) of two’s-complement multiplication
for operands A and B.

Location Constraints
MULT18X18 embedded multiplier instances can have LOC properties attached to them to
constrain placement. MULT18X18 placement locations differ from the convention used for
naming CLB locations, allowing LOC properties to transfer easily from array to array.

The LOC properties use the following form:

LOC = MULT18X18_X#Y#

For example, MULT18X18_X0Y0 is the bottom-left MULT18X18 location on the device.

VHDL and
Verilog
Templates

VHDL and Verilog templates are available for the primitive and submodules.

The following is a template for the primitive:

• SIGNED_MULT_18X18 (primitive: MULT18X18)

The following are templates for submodules:

• UNSIGNED_MULT_17X17 (submodule: MULT17X17_U)

• SIGNED_MULT_8X8 (submodule: MULT8X8_S)

• UNSIGNED_MULT_8X8 (submodule: MULT8X8_U)

• SIGNED_MULT_4X4 (submodule: MULT4X4_S)

• UNSIGNED_MULT_4X4 (submodule: MULT4X4_U)

• TWOS_COMPLEMENTER_18BIT (submodule: TWOS_CMP18)

• TWOS_COMPLEMENTER_9BIT (submodule: TWOS_CMP9)

• MAGNITUDE_18BIT (submodule: MAGNTD_18)

The corresponding submodules have to be synthesized with the design.

Templates for the SIGNED_MULT_18X18 module are provided in VHDL and Verilog code as
an example.
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

VHDL Template
-- Module: SIGNED_MULT_18X18
-- Description: VHDL instantiation template
-- 18-bit X 18-bit embedded signed multiplier (asynchronous)
--
-- Device: Spartan-3 Family

-- Components Declarations
component MULT18X18
 port(
 A : in std_logic_vector (17 downto 0);
 B : in std_logic_vector (17 downto 0);
 P : out std_logic_vector (35 downto 0)
);
end component;
--
-- Architecture Section
--
U_MULT18X18 : MULT18X18
 port map (
 A => , -- insert input signal #1
 B => , -- insert input signal #2
 P => -- insert output signal
);

Verilog Template
// Module: SIGNED_MULT_18X18
// Description: Verilog instantiation template
// 18-bit X 18-bit embedded signed multiplier (asynchronous)
//
// Device: Spartan-3 Family
//---
// Instantiation Section
//
MULT18X18 U_MULT18X18
 (
 .A () , // insert input signal #1
 .B () , // insert input signal #2
 .P () // insert output signal
);

Alternative
Applications to
Multiplication

Since binary multiplication by 2n is the same as shifting the value n places, a multiplier can be
used as a shifter or other general-purpose resource. These can be considered in applications
that otherwise would not need the large number of available multipliers.

Shifter
A multiplier can be used as a shifter. One operand is routed to the output, shifted by n positions,
if the other operand is a power of two (2n). Since the sign-bit (MSB) cannot be used to control
the shift, the 18x18 two’s-complement multiplier can shift by 0 to 16 positions.

Of the 36 output lines, those less significant than the shifted data lines are automatically filled
with zeros; those more significant than the shifted data are filled with zeros or ones, depending
on the state of the MSB input. This is the natural result of the two’s-complement multiplication.

The user can either perform a logic shift of 17 input bits by holding the MSB input Low, or
perform an arithmetic shift of an 18-bit two’s-complement number, effectively sign-extending
the MSB.
14 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

A conventional CLB-based shifter would use an array of n multiplexers, each with n inputs, and
require a large amount of routing resources. Multiplier-based shifters larger than 18 bits, and
barrel shifters of any length, require external OR gating of the outputs, but use far fewer CLB
resources.

Magnitude Return
To generate the absolute value of a number by using multiplication, multiply by 1 if it is positive
(MSB is zero), and multiply by -1 if it is negative (MSB is one). In two’s-complement notation,
1 is all zeros ending in a one as the LSB, and -1 is all ones, including the LSB. Therefore, a
magnitude return or absolute value generator can be implemented by multiplying by a value
with a one as the LSB and the MSB of the input value in all the other bit positions. Figure 13
shows a magnitude return generator.

Two’s-Complement Return
Generating the two’s complement of a number typically requires only one LUT per bit with the
carry logic used for larger numbers. However, if LUTs are heavily used, the multiplier can be
used to return the two’s complement of the input. Multiplying an input number by an equivalent
length number of all ones generates the two’s complement of the number over the same length
of the output bits. Any extraneous higher-order bits are ignored. Figure 14 shows a two’s
complement return generator.

Figure 13: Magnitude Return

Figure 14: Two’s-Complement Return

•

•
•

•••

16

0

•••

17
16

0
1

•••

17
16

0
1

1

A

B

P

X467_12_032503

•••

10

0

•••

10

0

1

1

A

B

•••

10

11

0

P

NC
•••

35

P

X467_13_032503
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs
R

Complex Multiplication
Complex multiplication is multiplication of complex numbers, which contain real and imaginary
components with the imaginary unit i equal to the square root of -1. Complex multiplication can
be carried out using only three real multiplications: ac, bd, and (a + b)(c + d). The real part of
(a + ib)(c + id) is ac - bd, and the imaginary part is (a + b)(c + d) - ac - bd. The large number of
multipliers in the Spartan-3 architecture makes it convenient to do even complex multiplication.

Time Sharing in Matrix Multiplication
Many pipelined functions in the computer graphics and video fields are expressed in matrix
mathematics. A 3 x 3 matrix multiplication would require 27 multiplies and 18 adds to generate
the 3 x 3 matrix result. Color conversion can be described as a 3 x 3 matrix multiplication by a
constant, which requires nine multiplies and six adds to generate the three results.

The high-speed capability of a Spartan-3 device allows the user to "time share" the multipliers.
Instead of nine multipliers, the design feeds nine sets of inputs resulting in nine sets of results
at nine times the clock rate of the system, reducing the multiplier count to one. The adder logic
is implemented in CLB resources, and at every third clock, the adder output is stored in output
registers to capture the three results. See XAPP284 for more information.

Floating-Point Multiplication
Floating-point values add an exponent to the number and sign bit used in binary multiplication.
A 32-bit floating-point multiplier can be implemented using four of the dedicated multiplier
blocks and CLB resources. Such multipliers are available from Xilinx AllianceCORE™ partners.

Related
Materials and
References

• Spartan-3 Family Data Sheet
Architectural description and timing parameters.
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)
DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)
DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)
DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

• DSP Central (http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Xilinx+DSP)
Information that will enable you to achieve the maximum benefit from our DSP solutions.

• IP Center (http://www.xilinx.com/ipcenter)
Xilinx and Alliance partner core solutions.

• Xilinx Software Documentation
(http://www.xilinx.com/support/sw_manuals/xilinx5/download/)
Libraries Guide MULT18X18/S descriptions, Synthesis and Simulation Design Guide
instantiation examples for HDL.

• XAPP284 Matrix Math, Graphics, and Video
Uses one multiplier running at 9x the clock rate to provide the nine results for a 3x3 matrix
multiplication in one system clock cycle.

• XAPP636 Optimal Pipelining of the I/O Ports of Virtex-II Multipliers
Describes a high-speed, optimized implementation of the dedicated multiplier resulting
from pipelined inputs and outputs and effective placement and routing constraints.

• TechXclusives (http://www.xilinx.com/support/techxclusives/techX-home.htm)
See "Using Leftover Multipliers and Block RAM" by Peter Alfke and "Expanding Virtex-II
Multipliers" by Ken Chapman.
16 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Xilinx+DSP
http://www.xilinx.com/ipcenter
http://www.xilinx.com/support/sw_manuals/xilinx5/download/
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com/xapp/xapp284.pdf
http://www.xilinx.com/xapp/xapp636.pdf
http://www.xilinx.com/support/techxclusives/techX-home.htm

Using Embedded Multipliers in Spartan-3 FPGAs
R

Conclusion FPGAs have a significant advantage over general-purpose DSP chips because their logic can
be customized for the specific application. Some functions can run over 100 times faster and
require much less expense in an FPGA. A key feature to take advantage of is the dedicated
multiplier block. Take advantage of the automatic optimization of multiplication logic, and the
user controls when necessary to get the exact results desired. The CORE Generator system
can create simple multipliers or combine them into more complex functions such as MACs.

Appendix A:
Two's-
Complement
Multiplication

Two’s-complement representation allows the use of binary arithmetic operations on signed
integers, yielding the correct two’s-complement results. Positive two’s-complement numbers
are represented as simple binary. Negative two’s-complement numbers are represented as the
binary number that when added to a positive number of the same magnitude equals zero. To
calculate the two's complement of an integer, invert the binary equivalent of the number by
changing all of the ones to zeros and all of the zeros to ones (also called one’s complement),
and then add one. The MSB (left-most) bit indicates the sign of the integer; therefore it is
sometimes called the sign bit. If the sign bit is zero, the number is positive. If the sign bit is one,
the number is negative. To extend a signed integer to a larger width, duplicate the MSB on the
left side of the number.

Two’s-complement multiplication follows the same rules as binary multiplication, which are the
same as the truths of the AND gate:

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1, and no carry or borrow bits

For example,

1111 1100 = -4

× 0000 0100 = +4

1111 0000 = -16

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/06/03 1.0 Initial Xilinx release.

05/13/03 1.1 Updated multiplier information for the XC3S50 device in the
Multipliers in the Spartan-3 Architecture section.

Added new section entitled Expanding Multipliers.

Added TechXclusives reference to Related Materials and
References section.

Made minor edits for clarification.
XAPP467 (v1.1) May 13, 2003 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Two’s-Complement Signed Multiplier
	Data Flow
	Timing Specification

	Library Primitives
	VHDL Instantiation Template
	Verilog Instantiation Template
	MULT_STYLE Constraint
	Multipliers in the Spartan-3 Architecture

	Expanding Multipliers
	Two Multipliers in a Single Primitive
	Design Entry
	Using the CORE Generator System
	System Generator
	MAC Cores

	Multiplier Submodules
	VHDL and Verilog Instantiation
	Port Signals
	Data In — A
	Data In — B
	Data Out — P

	Location Constraints

	VHDL and Verilog Templates
	VHDL Template
	Verilog Template

	Alternative Applications to Multiplication
	Shifter
	Magnitude Return
	Two’s-Complement Return
	Complex Multiplication
	Time Sharing in Matrix Multiplication
	Floating-Point Multiplication

	Related Materials and References
	Conclusion
	Appendix A: Two's-Complement Multiplication
	Revision History

