
Summary The Spartan™-3 architecture includes dedicated multiplexers within the Configurable Logic
Blocks (CLBs). These specialized multiplexers improve the performance and density of not just
wide multiplexers but almost any wide-input function. Using these resources, a 32:1 multiplexer
fits in just one level of logic, as do some Boolean logic functions of up to 79 inputs.

Introduction A multiplexer, or mux, is a common building block of almost every logic design, selecting one of
several possible input signals. Spartan-3 FPGAs are very efficient at implementing
multiplexers: small ones in the look-up tables and larger ones using dedicated multiplexer
resources. Any Spartan-3 slice easily implements a 4:1 mux, any CLB implements up to a 16:1
mux, and two CLBs implement up to a 32:1 mux. The same logic resources also can be used
for wide, general-purpose logic functions. For applications like comparators, encoder-
decoders, or case statements, these resources provide an optimal solution. These resources
are used automatically by the Xilinx development system.

This document describes the dedicated multiplexer resources in the Spartan-3 architecture.
The signals and parameters associated with the multiplexers are defined. The many methods
to include multiplexers in a design are described along with recommendations and guidelines
for their use.

Advantages of Dedicated Multiplexers
Spartan-3 FPGAs are based on four-input Look-Up Tables (LUTs) that can provide any
possible function of the four inputs. The largest mux that a single LUT supports is a 2:1 mux,
with the fourth input available as a possible enable. One method to construct larger muxes
would be to cascade multiple LUTs. For example, a 4:1 mux could be built by combining the
outputs of two LUTs into a third LUT. However, this method adds two full levels of logic delays
plus an additional routing delay between the LUTs. Without special resources, an 8:1 mux
would consume seven LUTs as well as add three levels of logic delays plus two levels of routing
delays, as shown in Figure 1.

Application Note: Spartan-3

XAPP466 (v1.0) April 10, 2003

Using Dedicated Multiplexers
in Spartan-3 Devices

R

Figure 1: 8:1 Mux, 7 LUTs, 3 Levels of Logic

LUT

LUT

LUT

LUT
net
net

net
net

LUT

LUT

LUT
net
net

X466_01_040303
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Using Dedicated Multiplexers in Spartan-3 Devices
R

To increase multiplexer speed and density, Spartan-3 FPGAs provide a dedicated 2:1 mux
following every LUT, which replaces additional levels of LUT-based logic. One of these, called
the F5MUX, combines adjacent LUTs to create a 4:1 mux. The other mux, following every pair
of LUTs, combines muxes into even wider functions, with different capabilities depending on its
location in the CLB. This mux is called the FiMUX, where the index "i" equals 6, 7, or 8. For
example, the F6MUX combines the results of two F5MUX elements to create an 8:1 mux as
shown in Figure 2. The connections from the LUTs to the muxes and between the muxes are
dedicated and have zero connection delay. The combination of LUTs and dedicated
multiplexers allows very efficient implementation of even large multiplexers.

Spartan-3 CLB
Multiplexer
Resources

The Spartan-3 architecture consists of an array of identical Configurable Logic Blocks, or CLBs.
Each CLB is made up of four slices: two SLICEMs with memory capability and two SLICELs
with logic-only capability. Each slice is identical with respect to logic and mux resources. Each
slice has two LUTs, an F5MUX, and a second expansion mux (see Figure 3).

Figure 2: 8:1 Mux, 4 LUTs, 1 Level of Logic

LUT

LUT

LUT

LUT

X466_02_030603

F5MUX

F5MUX

F6MUX

Figure 3: LUTs and F5MUX in a Slice

LUT

LUT

Reg

Reg

FiMUX

Any Slice

F5MUX

4

4

X466_03_030603
2 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

F5MUX
The F5MUX always combines the two LUTs in a slice. If those two LUTs contain 2:1 muxes with
the same control input, then the overall result is a 4:1 mux (see Figure 4).

The F5MUX is so named because it generates any possible Boolean logic function of five
inputs (see Figure 5). If the two LUTs contain independent functions of the same four inputs,
the mux select line becomes the fifth input. The F5MUX becomes a function expander that is
just as efficient as another 3-input LUT for implementing any 5-input function. This is a
significant advantage over other FPGA architectures.

As shown in Figure 6, the F5MUX also produces some functions of up to nine inputs, if they can
be partitioned into two 4-input LUTs and a mux.

Consequently, the F5MUX generates any 5-input function, the 4:1 mux 6-input function, or
some 9-input functions.

Figure 4: 4:1 Mux Implemented Using F5MUX

Figure 5: Any 5-input Function Can Be Implemented Using F5MUX

Figure 6: Some 9-input Functions Can Be Implemented Using F5MUX

LUT

LUT

F5MUX
4:1 MUX

X466_04_030603

LUT

LUT

F5MUX
Any 5-input Function

4

X466_05_030603

LUT

LUT

F5MUX
Some 9-input Functions

4

4

X466_06_030603
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

FiMUX
The second mux, called the FiMUX, functions as either a F6MUX, F7MUX, or F8MUX,
depending on its location and connections to the other muxes.

Each FiMUX receives inputs from muxes of the next lower number; for example, the two
F6MUX results drive the F7MUX. Like the F5MUX, the FiMUX has the flexibility to implement
other types of functions besides just multiplexers. The F6MUX is so named because it creates
any function of six inputs. Similarly, the F7MUX generates any function of seven inputs, and the
F8MUX generates any function of eight inputs.

Naming Conventions

In this document and in the Spartan-3 data sheet, the mux that serves as either F6MUX,
F7MUX, or F8MUX generically is called an FiMUX (i = 6, 7, or 8). This name avoids confusion
with the static CLB mux that generates the X output, which the FPGA Editor refers to as the
FXMUX. The FiMUX is always referred to as the F6MUX in the FPGA Editor. The timing
analyzer also refers to the path through the FiMUX to the CLB pin as TIF6Y, although it may be
used as an F7MUX or F8MUX.

The library components are called MUXF5, MUXF6, MUXF7, and MUXF8. MUXF6, MUXF7,
and MUXF8 use the FiMUX and restrict the placement to a specific relative location in the CLB.

Dedicated Local Routing
A significant benefit of the dedicated multiplexers is the dedicated routing that connects
between levels. Although each mux is implemented as one pass through the CLB, the outputs
connect back to the CLB inputs through local interconnect with zero routing delay. The result is
the same as if the muxes were in series within the CLB.

The F5MUX feeds the F5 CLB output pin, which only connects back to an FiMUX input on the
same CLB (called FXINA and FXINB). The FiMUX feeds the FX CLB output pin, which also

Figure 7: Mux Positions in a CLB

Table 1: Mux Capabilities

Mux Usage Input Source

Total Number of Inputs per Function

For Any
Function For Mux

For Limited
Functions

F5MUX F5MUX LUTs 5 6 (4:1 mux) 9

FiMUX

F6MUX F5MUX 6 11 (8:1 mux) 19

F7MUX F6MUX 7 20 (16:1 mux) 39

F8MUX F7MUX 8 37 (32:1 mux) 79

F8MUX

SLICEL S3

F6MUX

SLICEL S2

F7MUX

SLICEM S1

F6MUX

SLICEM S0
CLB

X466_07_040303
4 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

feeds back to an FiMUX input on the same CLB, or in the case of the F7MUX, also to the CLB
below. If the mux result is needed elsewhere, it connects to a general-purpose CLB output (X
for the F5MUX, Y for the FiMUX).

Figure 8: Muxes and Dedicated Feedback in a Spartan-3 CLB

X466_08_030603

F5

F8

F5

F6

F5

F7

F5

F6

F5

FX

F5

FX

F5

X
FXINA

FXINB

FXINA

FXINB

FXINA

FXINB

FXINA

FXINB

F5

FX
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Mux Select Inputs
The select inputs for the multiplexers come from general-purpose routing. The select input for
the F5MUX is the BX input on the CLB, and the select input for the FiMUX is the BY input on the
CLB.

Implementation
Examples

Wide-Input Multiplexers
Each LUT optionally implements a 2:1 multiplexer. In each slice, the F5MUX and two LUTs can
implement a 4:1 multiplexer. As shown in Figure 10, the F6MUX and two slices implement an
8:1 multiplexer. The F7MUX and the four slices of any CLB implement a 16:1 multiplexer, and
the F8MUX and two CLBs implement a 32:1 multiplexer.

Figure 9: Dedicated Multiplexers in Spartan-3 CLB

FiMUX

FX (Local Feedback to FXIN)

Y (General Interconnect)

YQ

FXINA

FXINB

F[4:1]

G[4:1]

D Q

F5MUX

BY

BX

F5 (Local Feedback to FXIN)

X (General Interconnect)

XQD Q

LUT

LUT

x466_13_040303
6 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Figure 10: 8:1 and 16:1 Multiplexers

LUT

DATA[0]

DATA[1]

DATA[7:0]

DATA[15:8]

16:1 output

SELECT[2:0]

SELECT[3]

LUT

DATA[2]

DATA[3]

LUT

8:1
(S2 & S3)

8:1
(S0 & S1)

DATA[4] 8:1 Output

DATA[5]

LUT

F5

F6

F7

DATA[6]

DATA[7]

SELECT[0]

SELECT[1]

SELECT[2]

F5

8:1 MUX 16:1 MUX

S0 CLB

S1

X466_09_030603
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Wide-Input Functions
Slices S0 and S2 have an F6MUX, designed to combine the outputs of two F5MUX resources.
Figure 11 illustrates a combinatorial function up to 19 inputs in the slices S0 and S1, or in the
slices S2 and S3.

Figure 11: 19-input Function Using F6MUX in Two Slices

LUT

LUT

Reg

Reg

F6MUX

SLICEL OR SLICEM

SLICEL OR SLICEM

F5MUX

4

4

S_F5

S_F6

S_F5

OUT_F6

LUT

LUT

Reg

Reg

FiMUX

F5MUX

4

4

X466_10_030603
8 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

The slice S1 has an F7MUX, designed to combine the outputs of two F6MUXs. Figure 12
illustrates a combinatorial function up to 39 inputs in a Spartan-3 CLB.

Figure 12: 39-input Function Using F7MUX in One CLB

LUT

LUT

Reg

Reg

F6MUX

SLICEL S2

SLICEL S3

F5MUX

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

FiMUX

F5MUX

4

4

X466_11_030603

LUT

LUT

Reg

Reg

F6MUX

SLICEM S0

SLICEM S1

F6MUX

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

F7MUX OUT_F

F5MUX

4

4

S_F7
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

The slice S3 of each CLB has an F8MUX. Combinatorial functions of up to 79 inputs fit in two
CLBs as shown in Figure 13. The outputs of two F7MUXs are combined through dedicated
routing resources between two adjacent CLBs in a column.

Figure 13: 79-input Function Using F8MUX in Two Adjacent CLBs

F8MUX OUT_F8

Slice S3

F6MUX

Slice S2

F7MUX

Slice S1

F6MUX

Slice S0 CLB

FiMUX

Slice S3

F6MUX

Slice S2

F7MUX

Slice S1

F6MUX

Slice S0
CLB

X466_12_030603
10 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Timing
Parameters

There are several possible paths through the CLB multiplexers. The two types of multiplexers
are considered separately (F5MUX and FiMUX). Each multiplexer type has two types of inputs:
data inputs and select lines. The output of the mux drives the local interconnect through the F5
and FX CLB pins, the general interconnect through the X and Y CLB pins, or the D input on the
flip-flop. See Figure 9, page 6 for a block diagram showing dedicated multiplexers in a Spartan-
3 CLB. Note that although the mux functionality is identical between the slices with memory and
those without, the timing values are independent and may vary slightly.

Although the multiplexers are connected in series inside the CLB, each mux actually feeds a
CLB output pin, which feeds back to an input pin through zero-delay local interconnect. Thus
each reported block delay element will have only one mux from input to output. The Spartan-3
architecture improves on the Virtex™-II architecture by providing a direct path from the F5MUX
or FiMUX to the flip-flop in the CLB.

Programmable Polarity
As with most resources in the Spartan-3 FPGA, inverters are free in large multiplexers. The
functions in the LUT can have inverters added to inputs or outputs with no effect on
performance or utilization. The control inputs to the F5MUX (BX) and FiMUX (BY) have
programmable polarity inside the CLB.

Related Uses of
Multiplexers

Multiplexers and Three-State Buffers
The LUT and MUX resources multiplex one of several inputs signals onto an internal routing
resource, using the routing like an internal bus. This is equivalent to the BUFT-based
multiplexers found in other FPGA architectures. In most modern FPGA families, these three-
state buffers actually are implemented as dedicated logic gates to avoid possible contention
when more than one is enabled at a time. The Spartan-3 family reduces die size and cost by
eliminating the overhead of these internal three-state buffer gates. Instead, internal functions
defined as a three-state buffer in the Spartan-3 family must be implemented in the LUTs and
dedicated muxes.

The CLB multiplexers providing binary encoding of the select lines, requiring fewer signals than
the one-hot encoding of the BUFT-based multiplexers. CLB-based multiplexers have no limit on
width as BUFT-based multiplexers did, nor nay special placement considerations.

The BUFT component, representing a three-state buffer, is not available in the Spartan-3
library, except for the output function in the IOBs. The CORE Generator™ functions of the
BUFT-based Multiplexer (and the equivalent BUFE-based Multiplexer) will be implemented as
multiplexers in the CLBs.

Table 2: Multiplexer Timing Paths

Symbol CLB Input Through CLB Output

tIF5 F/G LUT Inputs LUT and F5MUX Inputs F5

tIF5X F/G LUT Inputs LUT and F5MUX Inputs X

tIF5CK F/G LUT Inputs LUT and F5MUX Inputs D input on flip-flop

tBXF5 BX F5MUX Select F5

tBXX BX F5MUX Select X

tINAFX FXINA FiMUX Inputs FX

tINBFX FXINB FiMUX Inputs FX

tIF6Y FXINA or FXINB FiMUX Inputs Y

tBYFX BY FiMUX Select FX

tBYY BY FiMUX Select Y
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Multiplexers and Memory Functions
The F5MUX and FiMUX are used also to expand the distributed memory and shift register
capability in the CLB. Those functions are not included in this document.

Other CLB Multiplexers
The CLB also contains several other multiplexers for routing signals through the logic
resources. The CYMUX for propagating carry signals is the only other dynamic mux. Several
other muxes are used for selecting one of multiple paths. One is called the FXMUX in the FPGA
Editor, since it routes the F LUT signal to the X CLB output. Do not confuse this static mux with
the FXMUX name that is sometimes used for the FiMUX described here.

Designing with
Multiplexers

There are several ways multiplexers can be used in a design. The most common is to simply
have them inferred by synthesis tools when appropriate for a design. Library primitives can be
used to instantiate specific multiplexers. This document provides HDL submodules that
combine the library primitives into larger muxes. The CORE Generator system includes the Bus
Multiplexer and Bit Multiplexer functions, and many other CORE solutions take advantage of
the dedicated multiplexers.

Inference
Multiplexers are typically inferred by a conditional statement, most commonly the CASE or IF-
THEN-ELSE statement. The IF statement generally produces priority-encoded logic. The
CASE statement is more likely to generate an optimized multiplexer.

Synthesis options may determine whether multiplexers are inferred and how they are
implemented. For XST, the MUX_EXTRACT constraint specifies whether multiplexers are
inferred, and the MUX_STYLE constraint specifies whether they are implemented in the
dedicated logic multiplexers or the carry multiplexers (CY_MUX). The default is to infer
automatically the best resource.

CASE statements should be full (all branches defined) to avoid creating a latch. They also
should be parallel (branch conditions all mutually exclusive) to avoid a priority encoder. Some
synthesis tools, such as XST, have options to assume full and parallel CASE statements even
if not written that way.

Make sure you do not write the code such that your synthesis tool will infer BUFT-based
multiplexers. A BUFT-based multiplexer usually requires a statement with a "Z" value. Some
synthesis tools might automatically or optionally convert BUFT logic to multiplexers.

A decoder is a special case of a multiplexer where the inputs are fixed as one-hot values.
Decoders of up to 4:16 in size are easily implemented in individual LUTs for each output and do
not need to use the dedicated multiplexers, or they can even use the Carry muxes for high
performance.

The following subsections provide examples of 2:1 muxes described using the CASE statement
in Verilog and VHDL code.

Verilog Inference

module MUX_2_1 (DATA_I, SELECT_I, DATA_O);

input [1:0]DATA_I;
input SELECT_I;

output DATA_O;
reg DATA_O;

always @ (DATA_I or SELECT_I)

case (SELECT_I)
12 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

1'b0 : DATA_O <= DATA_I[0];
1'b1 : DATA_O <= DATA_I[1];
default : DATA_O <= 1'bx;

endcase

endmodule

VHDL Inference

entity MUX_2_1 is
 port (
 DATA_I: in std_logic_vector (1 downto 0);
 SELECT_I: in std_logic;
 DATA_O: out std_logic
);

end MUX_2_1;

architecture MUX_2_1_arch of MUX_2_1 is
--
begin
--
SELECT_PROCESS: process (SELECT_I, DATA_I)
begin
case SELECT_I is
when '0' => DATA_O <= DATA_I (0);
when '1' => DATA_O <= DATA_I (1);
when others => DATA_O <= 'X';

end case;
end process SELECT_PROCESS;
--
end MUX_2_1_arch;

Library Primitives
Four library primitives are available that offer access to the dedicated multiplexers in each slice:
MUXF5, MUXF6, MUXF7, and MUXF8. Each of the multiplexer primitives looks identical (see
Figure 14). The actual selection simply determines where in the CLB the multiplexer can be
located, as shown in Table 3.

Note that the generic multiplexer components also can take advantage of the dedicated
multiplexers. The M2_1 component is implemented in a look-up table, while the larger
multiplexers in the library use the F5MUX and FiMUX components.

Figure 14: MUXF5 Primitive

Table 3: Multiplexer Resources

Primitive Slice Control Input Output

MUXF5 S0, S1, S2, S3 S I0, I1 O

MUXF6 S0, S2 S I0, I1 O

MUXF7 S1 S I0, I1 O

MUXF8 S3 S I0, I1 O

O
I0

I1

S
x466_14_040303
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Enable Signals in Multiplexers

An enable signal on a multiplexer can be used to keep the multiplexer output Low when
disabled. Note that although the dedicated multiplexers do not have enable signals, the enable
can be implemented on the preceding 2:1 mux that will be implemented in a look-up table. The
M4_1E and M8_1E library components are built this way, using the F5MUX and F6MUX for the
final result, respectively, while the M16_1E library component keeps the enable on the final
mux, forcing it into a LUT instead of the F7MUX. Figure 15 shows the M4_1E library
component logic.

Modeling Local Output Timing

There are also two alternative versions of each library component that are functionally identical
but can be used for more accurate timing estimation before implementation. As mentioned
previously, the multiplexers can drive one or both CLB outputs. The first output is the special
CLB output that feeds directly back through local interconnect to the next multiplexer in series,
known as the local output. The second output is the general-purpose CLB output, which can be
routed to any other logic. For better pre-implementation timing estimation, the user can
substitute special primitives that specify whether to use the local output timing or the general-
purpose output timing. The MUXF5_L primitive models the local output, while the MUXF5_D
primitive models both output paths (see Figure 16). The functionality is identical to that for the
MUXF5 primitive.

Submodules
In addition to the primitives, five submodules that implement multiplexers from 2:1 to 32:1 are
provided in VHDL and Verilog code. Synthesis tools can automatically infer the above primitives
(MUXF5, MUXF6, MUXF7, and MUXF8); however, the submodules described in this section
use instantiation of the multiplexers to guarantee an optimized result. Table 4 lists available
submodules.

Figure 15: M4_1E Library Component Logic

Figure 16: MUXF5_L and MUX5F_D Primitives to Model Local Output Timing

O

O

O

0

O
E M01

M23

MUXF5

M2_1E

M2_1E

S0

S1
x466_15_040303

D0

D1

S0

D0

D1

S

I0

I1

M01

M23

S0

EE

D0

D1

D2

D3

LO
I0

I1

S

LOI0

I1

S

O

x466_16_040303
14 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Port Signals

Data In — DATA_I

The data input provides the data to be selected by the SELECT_I signal(s).

Control In — SELECT_I

The select input signal or bus determines the DATA_I signal to be connected to the output
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a 4-bit
DATA_I bus. Table 5 shows the DATA_I selected for each SELECT_I value.

Data Out — DATA_O

The data output O provides the data value (1 bit) selected by the control inputs.

Applications
Multiplexers are used in various applications. These are often inferred by synthesis tools when
a “case” statement is used (see the example below). Comparators, encoder-decoders and
wide-input combinatorial functions are optimized when they are based on one level of LUTs
and dedicated MUXFX resources of the Spartan-3 CLBs.

VHDL and Verilog Instantiation
The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog code, to
design wide-input functions.

The submodules (MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in
VHDL or Verilog code to implement multiplexers. However the corresponding submodule must
be added to the design directory as hierarchical submodule. For example, if a module is using
the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file (VHDL code) or MUX_16_1_SUBM.v
file (Verilog code) must be compiled with the design source code. The submodule code can
also be “cut and pasted” into the designer source code.

VHDL and Verilog Submodules

VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They
illustrate how to design with the MUX resources. When synthesis infers the corresponding MUX
resource(s), the VHDL or Verilog code is behavioral code (“case” statement). Otherwise, the
equivalent “case” statement is provided in comments and the correct MUX are instantiated.

Table 4: Available Submodules

Submodule Multiplexer Control Input Output

MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O

MUX_4_1_SUBM 4:1 SELECT_I[1:0] DATA_I[3:0] DATA_O

MUX_8_1_SUBM 8:1 SELECT_I[2:0] DATA_I[8:0] DATA_O

MUX_16_1_SUBM 16:1 SELECT_I[3:0] DATA_I[15:0] DATA_O

MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O

Table 5: Selected Inputs

SELECT_I[1:0] DATA_O

0 0 DATA_I[0]

0 1 DATA_I[1]

1 0 DATA_I[2]

1 1 DATA_I[3]
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

However, most synthesis tools support the inference of all of the MUXs. The following examples
can be used as guidelines for designing other wide-input functions.

The following submodules are available:

• MUX_2_1_SUBM (behavioral code)

• MUX_4_1_SUBM

• MUX_8_1_SUBM

• MUX_16_1_SUBM

• MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design

The submodule MUX_16_1_SUBM in VHDL and Verilog are provided as example.

VHDL Template

-- Module: MUX_16_1_SUBM
-- Description: Multiplexer 16:1
--
-- Device: Spartan-3 Family

library IEEE;
use IEEE.std_logic_1164.all;

-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on

entity MUX_16_1_SUBM is
 port (
 DATA_I: in std_logic_vector (15 downto 0);
 SELECT_I: in std_logic_vector (3 downto 0);
 DATA_O: out std_logic
);

end MUX_16_1_SUBM;

architecture MUX_16_1_SUBM_arch of MUX_16_1_SUBM is
-- Component Declarations:
component MUXF7
 port (
 I0: in std_logic;
 I1: in std_logic;
 S: in std_logic;
 O: out std_logic
);
end component;
--
-- Signal Declarations:
signal DATA_MSB : std_logic;
signal DATA_LSB : std_logic;
--
begin
--
-- If synthesis tools support MUXF7 :
--SELECT_PROCESS: process (SELECT_I, DATA_I)
--begin
--case SELECT_I is
-- when "0000" => DATA_O <= DATA_I (0);
-- when "0001" => DATA_O <= DATA_I (1);
-- when "0010" => DATA_O <= DATA_I (2);
16 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

-- when "0011" => DATA_O <= DATA_I (3);
-- when "0100" => DATA_O <= DATA_I (4);
-- when "0101" => DATA_O <= DATA_I (5);
-- when "0110" => DATA_O <= DATA_I (6);
-- when "0111" => DATA_O <= DATA_I (7);
-- when "1000" => DATA_O <= DATA_I (8);
-- when "1001" => DATA_O <= DATA_I (9);
-- when "1010" => DATA_O <= DATA_I (10);
-- when "1011" => DATA_O <= DATA_I (11);
-- when "1100" => DATA_O <= DATA_I (12);
-- when "1101" => DATA_O <= DATA_I (13);
-- when "1110" => DATA_O <= DATA_I (14);
-- when "1111" => DATA_O <= DATA_I (15);
-- when others => DATA_O <= 'X';
--end case;
--end process SELECT_PROCESS;
--
-- If synthesis tools DO NOT support MUXF7 :
SELECT_PROCESS_LSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_LSB <= DATA_I (0);
when "001" => DATA_LSB <= DATA_I (1);
when "010" => DATA_LSB <= DATA_I (2);
when "011" => DATA_LSB <= DATA_I (3);
when "100" => DATA_LSB <= DATA_I (4);
when "101" => DATA_LSB <= DATA_I (5);
when "110" => DATA_LSB <= DATA_I (6);
when "111" => DATA_LSB <= DATA_I (7);
when others => DATA_LSB <= 'X';

end case;
end process SELECT_PROCESS_LSB;
--
SELECT_PROCESS_MSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_MSB <= DATA_I (8);
when "001" => DATA_MSB <= DATA_I (9);
when "010" => DATA_MSB <= DATA_I (10);
when "011" => DATA_MSB <= DATA_I (11);
when "100" => DATA_MSB <= DATA_I (12);
when "101" => DATA_MSB <= DATA_I (13);
when "110" => DATA_MSB <= DATA_I (14);
when "111" => DATA_MSB <= DATA_I (15);
when others => DATA_MSB <= 'X';

end case;
end process SELECT_PROCESS_MSB;
--
-- MUXF7 instantiation
U_MUXF7: MUXF7
 port map (
 I0 => DATA_LSB,
 I1 => DATA_MSB,
 S => SELECT_I (3),
 O => DATA_O
);
--
end MUX_16_1_SUBM_arch;
--
XAPP466 (v1.0) April 10, 2003 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

Verilog Template

// Module: MUX_16_1_SUBM
//
// Description: Multiplexer 16:1
// Device: Spartan-3 Family
//---
//
module MUX_16_1_SUBM (DATA_I, SELECT_I, DATA_O);

input [15:0]DATA_I;
input [3:0]SELECT_I;

output DATA_O;

wire [2:0]SELECT;

reg DATA_LSB;
reg DATA_MSB;

assign SELECT[2:0] = SELECT_I[2:0];

/*
//If synthesis tools support MUXF7 :
always @ (DATA_I or SELECT_I)

 case (SELECT_I)
4'b0000 : DATA_O <= DATA_I[0];
4'b0001 : DATA_O <= DATA_I[1];
4'b0010 : DATA_O <= DATA_I[2];
4'b0011 : DATA_O <= DATA_I[3];
4'b0100 : DATA_O <= DATA_I[4];
4'b0101 : DATA_O <= DATA_I[5];
4'b0110 : DATA_O <= DATA_I[6];
4'b0111 : DATA_O <= DATA_I[7];
4'b1000 : DATA_O <= DATA_I[8];
4'b1001 : DATA_O <= DATA_I[9];
4'b1010 : DATA_O <= DATA_I[10];
4'b1011 : DATA_O <= DATA_I[11];
4'b1100 : DATA_O <= DATA_I[12];
4'b1101 : DATA_O <= DATA_I[13];
4'b1110 : DATA_O <= DATA_I[14];
4'b1111 : DATA_O <= DATA_I[15];
default : DATA_O <= 1'bx;

 endcase
*/
//If synthesis tools do not support MUXF7 :
always @ (SELECT or DATA_I)

 case (SELECT)
3'b000 : DATA_LSB <= DATA_I[0];
3'b001 : DATA_LSB <= DATA_I[1];
3'b010 : DATA_LSB <= DATA_I[2];
3'b011 : DATA_LSB <= DATA_I[3];
3'b100 : DATA_LSB <= DATA_I[4];
3'b101 : DATA_LSB <= DATA_I[5];
3'b110 : DATA_LSB <= DATA_I[6];
3'b111 : DATA_LSB <= DATA_I[7];
default : DATA_LSB <= 1'bx;

 endcase

always @ (SELECT or DATA_I)
18 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

 case (SELECT)
 3'b000 : DATA_MSB <= DATA_I[8];
3'b001 : DATA_MSB <= DATA_I[9];
3'b010 : DATA_MSB <= DATA_I[10];
3'b011 : DATA_MSB <= DATA_I[11];
3'b100 : DATA_MSB <= DATA_I[12];
3'b101 : DATA_MSB <= DATA_I[13];
3'b110 : DATA_MSB <= DATA_I[14];
3'b111 : DATA_MSB <= DATA_I[15];
default : DATA_MSB <= 1'bx;

 endcase

// MUXF7 instantiation

MUXF7 U_MUXF7 (.I0(DATA_LSB),
.I1(DATA_MSB),
.S(SELECT_I[3]),

 .O(DATA_O)
);

endmodule

CORE Generator System
The CORE Generator system offers the BaseBLOX functions of the Bit Multiplexer and the Bus
Multiplexer. The Bit Multiplexer, shown in Figure 17, supports sizes up to 256 inputs; the Bus
Multiplexer, shown in Figure 18, supports muxes of up to 32 inputs for buses of up to 256 bits
each. These core solutions have a parameter Mux Type to select a BUFT or LUT based
multiplexer. Select the appropriate radio button in the CORE Generator system for the
construction of the multiplexer. The default setting is LUT Based, which is required for Spartan-
3 multiplexers. The CORE Generator system also offers options for registering the output of the
multiplexer.

Figure 17: Bit Multiplexer CORE Symbol

D

ASET SSET

ACLR SCLR

CE

CLK

QOM[N:0]

S[M:0]

x465_17_041003

•

XAPP466 (v1.0) April 10, 2003 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 Devices
R

The CORE Generator system also offers the specific functions of the BUFT-based Multiplexer
(and the equivalent BUFE-based Multiplexer). As with the generic Bit and Bus Multiplexers,
they are implemented in LUTs and/or muxes.

Revision
History

The following table shows the revision history for this document.

Figure 18: Bus Multiplexer CORE Symbol

D[N:0]

ASET SSET

ACLR SCLR AINIT SINIT

CE

CLK

Q[N:0]O[N:0]

MCH[N:0]

MA[N:0]

S[M:0]

x465_18_040203

•••

Date Version Revision

04/10/03 1.0 Initial Xilinx release.
20 www.xilinx.com XAPP466 (v1.0) April 10, 2003
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Advantages of Dedicated Multiplexers

	Spartan�3 CLB Multiplexer Resources
	F5MUX
	FiMUX
	Naming Conventions

	Dedicated Local Routing
	Mux Select Inputs

	Implementation Examples
	Wide-Input Multiplexers
	Wide-Input Functions

	Timing Parameters
	Programmable Polarity

	Related Uses of Multiplexers
	Multiplexers and Three-State Buffers
	Multiplexers and Memory Functions
	Other CLB Multiplexers

	Designing with Multiplexers
	Inference
	Verilog Inference
	VHDL Inference

	Library Primitives
	Enable Signals in Multiplexers
	Modeling Local Output Timing

	Submodules
	Port Signals
	Data In — DATA_I
	Control In — SELECT_I
	Data Out — DATA_O

	Applications
	VHDL and Verilog Instantiation
	VHDL and Verilog Submodules
	VHDL Template
	Verilog Template

	CORE Generator System

	Revision History

