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Summary For applications requiring large, on-chip memories, Spartan™-3 FPGAs provides plentiful, 
efficient SelectRAM™ memory blocks. Using various configuration options, SelectRAM blocks 
create RAM, ROM, FIFOs, large look-up tables, data width converters, circular buffers, and shift 
registers, each supporting various data widths and depths. This application note describes the 
features and capabilities of block SelectRAM and illustrates how to specify the various options 
using the Xilinx CORE Generator™ system or via VHDL or Verilog instantiation. Various non-
obvious block RAM applications are discussed with references to additional tools, application 
notes, and documentation.

Introduction All Spartan-3 devices feature multiple block RAM memories, organized in columns. The total 
amount of block RAM memory depends on the size of the Spartan-3 device, as shown in 
Table 1.

Each block RAM contains 18,432 bits of fast static RAM, 16K bits of which is allocated to data 
storage and, in some memory configurations, an additional 2K bits allocated to parity or 
additional "plus" data bits. Physically, the block RAM memory has two completely independent 
access ports, labeled Port A and Port B. The structure is fully symmetrical, and both ports are 
interchangeable and both ports support data read and write operations. Each memory port is 
synchronous, with its own clock, clock enable, and write enable. Read operations are also 
synchronous and require a clock edge and clock enable.

Though physically a dual-port memory, block RAM simulates single-port memory in an 
application, as shown in Figure 1. Furthermore, each block memory supports multiple 
configurations or aspect ratios. Table 2 summarizes the essential SelectRAM features.
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Table  1:  Block RAM Available in Spartan-3 Devices

Spartan-3 
Device

RAM 
Columns

RAM Blocks 
Per Column

Total RAM 
Blocks

Total RAM
Bits

Total RAM 
Kbits

XC3S50 1 4 4 73,728 72K

XC3S200 2 6 12 221,184 216K

XC3S400 2 8 16 294,912 288K

XC3S1000 2 12 24 442,368 432K

XC3S1500 2 16 32 589,824 576K

XC3S2000 2 20 40 737,280 720K

XC3S4000 4 24 96 1,769,472 1,728K

XC3S5000 4 26 104 1,916,928 1,872K

Notes: 
1. 1Kbit = 1,024 bits, per memory conventions.
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Cascade multiple block RAMs to create deeper and wider memory organizations, with a 
minimal timing penalty incurred through specialized routing resources. 

Figure 1:  SelectRAM 18K Blocks Perform as Dual-Port (a) and Single-Port (b) Memory
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Notes: 
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.
3. rA and rB are integers representing the address bus width at ports A and B, respectively.
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Table  2:  SelectRAM 18K Block Memory Features and Applications

Total RAM bits, including parity 18,432 (16K data + 2K parity)

Memory Organizations 16Kx1

8Kx2

4Kx4

2Kx8 (no parity)

2Kx9 (x8 + parity)

1Kx16 (no parity)

1Kx18 (x16 + 2 parity)

512x32 (no parity)

512x36 (x32 + 4 parity)

256x72 (single-port only)

Parity Available and optional only for organizations greater than 
byte-wide. Parity bits optionally available as extra data 
bits.

Performance 200 MHz (estimated)
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The Xilinx CORE Generator system supports various modules containing block RAM for 
Spartan-3 devices including:

• Embedded dual- or single-port RAM modules

• ROM modules

• Synchronous and asynchronous FIFO modules

• Content-Addressable Memory (CAM) modules

Furthermore, block RAM can be instantiated in any synthesis-based design using the 
appropriate “RAMB16” module from the Xilinx design library.

This application note describes the signals and attributes of the Spartan-3 block RAM feature, 
including details on the various attributes and applications for block RAM.

Block RAM 
Location and 
Surrounding 
Neighborhood

As mentioned previously, block RAM is organized in columns. Figure 2 shows the Block RAM 
column arrangement for the XC3S200. The XC3S50 has a single column of block RAM, located 
two CLB columns from the left edge of the device. Spartan-3 devices larger than the XC3S50 
have two columns of block RAM, adjacent to the left and right edges of the die, located two 
columns of CLBs from the I/Os at the edge. In addition to the block RAM columns at the edge, 
the XC3S4000 and XC3S5000 have two additional columns—a total of four columns—nearly 
equally distributed between the two edge columns. Table 1 describes the number of columns 
and the total amount of block RAM on a specific device. The edge columns make block RAM 
particularly useful in buffering or resynchronizing buses entering or leaving the Spartan-3 
device.

Timing Interface Simple synchronous interface. Similar to reading and 
writing from a register with a setup time for write 
operations and clock-to-output delay for read operations.

Single-Port Yes

True Dual-Port Yes

ROM, Initial RAM Contents Yes

Mixed Data Port Widths Yes

Power-Up Condition User-defined data, defaults to zero

Potential Applications Local data storage, FIFOs, elastic stores, register files, 
buffers, stacks, circular buffers, shift registers, delay 
lines, waveform storage and generation, direct digital 
synthesis, CAMs, associative memories, function tables, 
function generators, wide logic functions, code 
converters, encoders, decoders, counters, state 
machines, microsequencers, program storage for 
embedded processor(s) 

Table  2:  SelectRAM 18K Block Memory Features and Applications (Continued)
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Immediately adjacent to each block RAM is an embedded 18x18 hardware multiplier. Co-
locating block RAM and the embedded multipliers improves the performance of some digital 
signal processing functions.

Special interconnect surrounding the block RAM provides efficient signal distribution for 
address and data. Furthermore, special provisions allow multiple block RAMs to be cascaded 
to create wider or deeper memories.

Data Flows Spartan-3 block RAM is constructed of true dual-port memory and simultaneously supports all 
the data flows and operations shown in Figure 3. Both ports access the same set of memory 
bits but with two potentially different address schemes depending on the port’s data width.

1. Port A behaves as an independent single-port RAM supporting simultaneous read and 
write operations using a single set of address lines.

2. Port B behaves as an independent single-port RAM supporting simultaneous read and 
write operations using a single set of address lines.

3. Port A is the write port with a separate write address and Port B is the read port with a 
separate read address. The data widths for Port A and Port B can be different also.

4. Port B is the write port with a separate write address and Port A is the read port with a 
separate read address. The data widths for Port B and Port A can be different also.

Figure 2:  Block RAMs Arranged in Columns with Detailed Floorplan of XC3S200
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Signals The signals connected to a block RAM primitive divide into four categories, as listed below. 
Table 3 lists the block RAM interface signals, the signals names for both single-port and dual-
port memories, and signal direction.

1. Data Inputs and Outputs

2. Parity Inputs and Outputs, available when a data port is byte-wide or wider

3. Address inputs to select a specific memory location

4. Various control signals that manage read, write, or set/reset operations.

Data Inputs and Outputs
The total width of a port’s data port includes both the data bus and the parity bus, when 
applicable, as shown in Figure 4. In the 512x36 organization, for example, the 36-bit data port 
width includes four parity bits as the more significant bits followed by the 32 data bits as the less 
significant bits.

The data and parity input and output signals are always buses; that is, in a 1-bit width 
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Figure 3:  Block RAM Support Single- and Dual-Port Data Transfers
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Table  3:  Block RAM Interface Signals

Signal Description Single Port

Dual Port

DirectionPort A Port B

Data Input Bus DI DIA DIB Input

Parity Data Input Bus (available only for 
byte-wide and wider organizations)

DIP DIPA DIPB Input

Data Output Bus DO DOA DOB Output

Parity Data Output (available only for 
byte-wide and wider organizations)

DOP DOPA DOPB Output

Address Bus ADDR ADDRA ADDRB Input

Write Enable WE WEA WEB Input

Clock Enable EN ENA ENB Input

Synchronous Set/Reset SSR SSRA SSRB Input

Clock CLK CLKA CLKB Input

http://www.xilinx.com
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Data Input Bus — DI[#:0] (DIA[#:0], DIB[#:0])

The Data Input bus is the source of data to be written into RAM. 

Data at the DI input bus is written to the RAM location specified by the address input bus, 
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and write 
enable WE inputs are High.

Figure 4:  Data Organization and Mapping Between Modes
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Data Output Bus — DO[#:0] (DOA[#:0], DOB[#:0])

The data output bus, DO, presents the contents of memory cells referenced by the address 
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write 
operation, the behavior of the data output latches is controlled by the WRITE_MODE attribute 
(see Read Behavior During Simultaneous Write — WRITE_MODE, page 14).

Parity Inputs and Outputs
Parity is only supported for data paths byte wide and wider.

Although referred to herein as “parity” bits, the parity inputs and outputs have no special 
functionality and can be used as additional data bits. For example, the parity bits could be used 
to hold additional information about a data word, tagging the data as code or data, positive or 
negative values, old or new data, etc.

Block RAM does not contain any special circuitry for generating or checking parity. These 
functions, if required by the application, are created using CLB logic resources.

Data Input Parity Bus — DIP[#:0] (DIPA[#:0], DIPB[#:0])

Data at the DIP input bus is written to the RAM location specified by the address input bus, 
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and write 
enable WE inputs are High.

Data Output Parity Bus — DOP[#:0] (DOPA[#:0], DOPB[#:0])

The data output bus, DOP, presents the contents of memory cells referenced by the address 
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write 
operation, the behavior of the data output latches is controlled by the WRITE_MODE attribute 
(see Read Behavior During Simultaneous Write — WRITE_MODE, page 14).

Address Input
As dual-port RAM, both ports operate independently while accessing the same set of 18K-bit 
memory cells.

Address Bus — ADDR[#:0] (ADDRA[#:0], ADDRB[#:0])

The address bus selects the memory cells for read or write operations. The width of the 
address bus input determines the required address bus width, as shown in Table 5.

Control Inputs

Clock — CLK (CLKA, CLKB)

Each port is fully synchronous with independent clock pins. All port input pins have setup time 
referenced to the port CLK pin. The data bus has a clock-to-out time referenced to the CLK pin. 
Clock polarity is configurable and is rising edge triggered by default.

With default polarity, a Low-to-High transition on the clock (CLK) input controls read, write, and 
reset operations.

Enable — EN (ENA, ENB)

The enable input, EN, controls read, write, and set/reset operations. When EN is Low, no data 
is written and the outputs DO and DOP retain the last state. The polarity of EN is configurable 
and is active High by default.

When EN is asserted, minus an active synchronous set/reset input or write enable input, block 
RAM always reads the memory location specified by the address bus, ADDR, at the rising clock 
edge.

http://www.xilinx.com
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Write Enable — WE (WEA, WEB)

The write enable input, WE, controls when data is written to RAM. When both EN and WE are 
asserted at the rising clock edge, the value on the data and parity input buses is written to 
memory location selected by the address bus. 

The data output latches are loaded or not loaded according to the WRITE_MODE attribute.

The polarity of WE is configurable and is active High by default.

Synchronous Set/Reset — SSR (SSRA, SSRB)

The synchronous set/reset input, SSR, forces the data output latches to value specified by the 
SRVAL attribute. When SSR and the enable signal, EN, are High, the data output latches for 
the DO and DOP outputs are synchronously set to a ‘0’ or ‘1’ according to the SRVAL 
parameter.

A Synchronous Set/Reset operation does not affect RAM memory cells and does not disturb 
write operations on the other port.

The polarity of SSR is configurable and is active High by default.

Global Set/Reset — GSR

The global set/reset signal, GSR, is asserted automatically and momentarily at the end of 
device configuration. By instantiating the STARTUP primitive, the logic application can also 
assert GSR to restore the initial Spartan-3 state at any time. The GSR signal initializes the 
output latches to the INIT value. A GSR signal has no impact on internal memory contents.

Because GSR is a global signal and automatically connected throughout the device, the block 
RAM primitive does not have a GSR input pin.

Inverting Control Pins

For each port, the four control pins—CLK, EN, WE, and SSR—each have an individual 
inversion option. Any control signal can be configured as active High or Low, and the clock can 
be active on a rising or falling edge without consuming additional logic resources.

Unused Inputs

Tie any unused data or address inputs to logic ‘1’. Connecting the unused inputs High saves 
logic and routing resources compared to connecting the inputs Low.

Attributes A block RAM has a number of attributes that control its behavior as shown in Table 4 for VHDL 
and Verilog. The CORE Generator system uses slightly different values, as described below.

Table  4:  Block RAM Attributes and VHDL/Verilog Attribute Names

Function VHDL or Verilog Attribute Default Value

Number of Ports Defined by instantiating the 
appropriate RAMB16 primitive

N/A

Memory Organization Defined by instantiating the 
appropriate RAMB16 primitive

N/A

Initial Content for Data Memory, 
Loaded during Configuration

INIT_xx Initialized to zero

Initial Content for Parity Memory, 
Loaded during Configuration

INITP_xx Initialized to zero

Data Output Latch Initialization INIT (single-port)

INIT_A, INIT_B (dual-port)

Initialized to zero

http://www.xilinx.com
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Number of Ports
Although physically dual-port memory, each block RAM performs as either single-port or dual-
port memory. The method to specify the number of ports depends on the design entry tool.

CORE Generator System

As shown in Figure 5, the Xilinx CORE Generator system provides module generators for 
various types of memory blocks. Choose single- or dual-port block memories, or use the 
higher-level functions to create FIFOs, content-addressable memories (CAMs), and so forth.

VHDL or Verilog Instantiation

The Xilinx design libraries contain single- and dual-port memory primitives similar to those 
shown in Figure 1. Select among the various primitives to choose single- or dual-port memory, 
as well as the memory organization or aspect ratio of the memory. See Table 5 and Table 6 for 
single-port and dual-port block RAM primitives, respectively.

Memory Organization/Aspect Ratio
The data organization or aspect ratio of a RAM block is configurable, as shown in Table 5. If the 
data path is byte-wide or wider, then the block RAM also provides additional bits to support 
parity for each byte. Consequently, a 1Kx18 memory organization is 18 bits wide with 16 bits 
(two bytes) allocated to data plus two parity bits, one for each byte. Also, the physical amount 
of memory accessible from a port depends on the memory organization. For memories byte-
wide and wider, there are 18K memory bits accessible. For narrower memories, only 16K bits 
are accessible due to the lack of parity bits in these organizations. Essentially, 16K bits are 
allocated to data, 2K bits to parity on the 18K-bit block RAM. See Figure 4 for details on data 
mapping for and between each memory organization.

Data Output Latch Synchronous 
Set/Reset Value

SRVAL (single-port)

SRVAL_A, SRVAL_B (dual-port)

Reset to zero

Data Output Latch Behavior during 
Write

WRITE_MODE WRITE_FIRST

Block RAM Location LOC N/A

Table  4:  Block RAM Attributes and VHDL/Verilog Attribute Names (Continued)

Function VHDL or Verilog Attribute Default Value

Figure 5:  Selecting a Block RAM Function in CORE Generator System
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CORE Generator System — Memory Size

The CORE Generator system creates a wide variety of memories with very flexible aspect 
ratios. Unlike the actual block RAM primitive, the CORE generator system does not differentiate 
between data and parity bits and considers all bits data bits. For dual-port memories, each port 
can have different organizations or aspect ratios.

Within the CORE Generator system, locate the Memory Size group and enter the desired 
memory organization, as shown in Figure 6.

VHDL or Verilog Instantiation

The aspect ratio is defined at design time by specifying or instantiating the appropriate 
SelectRAM component. Table 5 indicates the SelectRAM component for single-port RAM. For 
single-port RAM, the proper component name is RAMB16_Sn, where n is the data path width 
including both the data bits plus parity bits. For example, a 1Kx18 single-port RAM uses 
component RAMB16_S18. In this example, n=18 because there are 16 data bits plus 2 parity 
bits.

Selecting a dual-port memory is slightly more complex because the two memory ports may 
have different aspect ratios. For dual-port RAM, the proper component name is 
RAMB16_Sm_Sm, where m is the data path width for Port A and n is the width for Port B. For 
example, using the suffix shown in Table 6, if Port A is organized a 2Kx9 and Port B is 
organized as 1Kx18, then the proper dual-port RAM component is RAMB16_S9_S18. In this 
example, m=9 and n=18.

Table  5:  Block RAM Data Organizations/Aspect Ratios

Organization
Memory 
Depth

Data 
Width

Parity
Width DI/DO DIP/DOP ADDR

Single-Port 
Primitive

Total RAM 
Kbits

512x36 512 32 4 (31:0) (3:0)  (8:0) RAMB16_S36 18K

1Kx18 1024 16 2 (15:0) (1:0)  (9:0) RAMB16_S18 18K

2Kx9 2048 8 1  (7:0) (0:0) (10:0) RAMB16_S9 18K

4Kx4 4096 4 -  (3:0) - (11:0) RAMB16_S4 16K

8Kx2 8192 2 -  (1:0) - (12:0) RAMB16_S2 16K

16Kx1 16384 1 -  (0:0) - (13:0) RAMB16_S1 16K

Figure 6:  Selecting Memory Width and Depth in CORE Generator System

Table  6:  Dual-Port RAM Component Suffix Appended to “RAMB16”

Port A

16Kx1 8Kx2 4Kx4 2Kx9 1Kx18 512x36

P
o

rt
 B

16Kx1 _S1_S1

8Kx2 _S1_S2 _S2_S2

4Kx4 _S1_S4 _S2_S4 _S4_S4

2Kx9 _S1_S9 _S2_S9 _S4_S9 _S9_S9

1Kx18 _S1_S18 _S2_S18 _S4_S18 _S9_S18 _S18_S18

512x36 _S1_S36 _S2_S36 _S4_S36 _S9_S36 _S18_S36 _S36_S36

Memory Size

Width 16

Depth 256

Valid Range 1..256

Valid Range 2..16384
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Address and Data Mapping Between Two Ports

In dual-port mode, both ports access the same set of memory cells. However, both ports may 
have the same or different memory organization or aspect ratio. Figure 4 shows how the same 
data set may appear with different aspect ratios.

There are extra bits available to store parity for memory organizations that are byte-wide or 
wider. The extra parity bits are designed to be associated with a particular byte and these parity 
bits appear as the more-significant bits on the data port. For example, if a x36 data word (32 
data, 4 parity) is addressed as two x18 halfwords (16 data, 2 parity), the parity bits associated 
with each data byte are mapped within the block RAM to appropriate parity bits. The same 
effect happens when the x36 data word is mapped as four x9 words. The extra parity bits are 
not available if the data port is configured as x4, x2, or x1.

The following formulas provide the starting and ending address for data when the two ports 
have different memory organizations. Find the starting and ending address for Port X given the 
address and port width of Port Y and the port width of Port X.

If, due the memory organization, one port includes parity bits and the other does not, then the 
above equations are invalid and the values for width should only include the data bits. The 
parity bits are not available on any port that is less than 8 bits wide.

Content Initialization
By default, block RAM memory is initialized with all zeros during the device configuration 
sequence. However, the contents can also be initialized with user-defined data. Furthermore, 
the RAM contents are protected against spurious writes during configuration.

CORE Generator System — Load Init File

To specify the initial RAM contents for a CORE Generator block RAM function, create a 
coefficients (.coe) file. A simple example of a coefficients file appears in Figure 7. At a 
minimum, define the radix for the initialization data—i.e., base 2, 10, or 16—and then specify 
the RAM contents starting with the data at location 0, followed by data at subsequent locations.

To include the coefficients file, locate the appropriate section in the CORE Generator wizard 
and check Load Init File, as shown in Figure 8. Then, click Load File and select the 
coefficients file.

Figure 7:   A Simple Coefficients File (.coe) Example

Figure 8:  Specifying Initial RAM Contents in CORE Generator System

START_ADDRESSX INTEGER
ADDRESSY WIDTHY•

WIDTHX
--------------------------------------------------⎝ ⎠
⎛ ⎞=

END_ADDRESSX INTEGER
ADDRESSY 1+( ) WIDTHY•( ) 1–

WIDTHX
------------------------------------------------------------------------------⎝ ⎠
⎛ ⎞=

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81;

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)
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VHDL or Verilog Instantiation — INIT_xx, INITP_xx

For VHDL and Verilog instantiation, there are two different types of initialization attributes. The 
INIT_xx attributes define the initial contents of the data memory locations. The INITP_xx 
attributes define the initial contents of the parity memory locations.

The INIT_xx attributes on the instantiated primitive define the initial memory contents. There 
are 64 initialization attributes, named INIT_00 through INIT_3F. Each INIT_xx attribute is a 
64-digit (256-bit) hex-encoded bit vector. The memory contents can be partially initialized and 
any unspecified locations are automatically completed with zeros.

The following formula defines the bit positions for each INIT_xx attribute.

Given yy = convert_hex_to_decimal(xx), INIT_xx corresponds to the following memory cells.

• Starting Location: [(yy + 1) * 256] –1

• End Location: (yy) * 256

For example, for the attribute INIT_1F, the conversion is as follows:

• yy = convert_hex_to_decimal(0x1F) = 31

• Starting Location: [(31+1) * 256] –1 = 8191

• End Location: 31 * 256 = 7936

The INITP_xx attributes define the initial contents of the memory cells corresponding to parity 
bits, i.e., those bits that connect to the DIP/DOP buses. By default these memory cells are also 
initialized to all zeros.

The eight initialization attributes from INITP_00 through INITP_07 represent the memory 
contents of parity bits. Each INITP_xx is a 64-digit (256-bit) hex-encoded bit vector and 
behaves like an INIT_xx attribute. The same formula calculates the bit positions initialized by 
a particular INITP_xx attribute.

Data Output Latch Initialization
The block RAM output latches can be initialized to a user-specified value immediately after 
configuration or whenever the global set/reset signal, GSR, is asserted. For dual-port 
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is initialized to zero.

Table  7:  VHDL/Verilog RAM Initialization Attributes for Block RAM

Attribute From To

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

… … …

INIT_3F 16383 16128
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CORE Generator System — Global Init Value

Figure 9 describes how to specify the initial value for data output latches in the CORE 
Generator system. The value, specified in hexadecimal, should include one bit per the specified 
data width. For dual-port memories, there is a separate initialization value for each port.

VHDL or Verilog Instantiation — INIT (INIT_A and INIT_B)

For VHDL or Verilog, the INIT attribute (or INIT_A and INIT_B for dual-port memories) defines 
the output latch value after configuration. The INIT (or INIT_A and INIT_B) attribute specifies 
the initial value for the data and, if applicable, the parity bits. Figure 4 shows the expected bit 
format for each memory organization with parity bits—if applicable—as the more significant bits 
followed by the data bits.   For example, the initialization value for a 2Kx9 memory would be 
nine bits wide and would include one parity bit followed by eight data bits. These attributes are 
hex-encoded bit vectors and the default value is 0.

Data Output Latch Synchronous Set/Reset Value
When the synchronous set/reset input, SSR, is asserted, the data output latches are set or 
reset according to the set/reset value attribute. For dual-port memories, there is a separate 
initialization value for each port.

If no value is specified, the output latch is reset to zero during a valid Synchronous Set/Reset 
operation.

CORE Generator System — Init Value (SINIT)

Figure 10 describes how to specify the synchronous set/reset value for data output latches in 
the CORE Generator system. Check the SINIT pin and then specify the synchronous set/reset 
value in hexadecimal, with one bit per the specified data width. For dual-port memories, there 
is a separate value for each port.

VHDL or Verilog Instantiation — SRVAL (SRVAL_A and SRVAL_B)

For VHDL or Verilog, the SRVAL attribute (or SRVAL_A and SRVAL_B for dual-port memories) 
defines the output latch value after configuration. The SRVAL (or SRVAL_A and SRVAL_B) 
attribute specifies the initial value for the data and, if applicable, the parity bits. Figure 4 shows 
the expected bit format for each memory organization with parity bits—if applicable—as the 
more significant bits followed by the data bits.   These attributes are hex-encoded bit vectors 
and the default value is 0.

Figure 9:  Specifying Initial Value for Block RAM Data Output Latches

Figure 10:  Specifying the Output Data Latch Set/Reset Value

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)

Output Register Options

0Additional Output Pipe Stages

SINIT pin (sync. reset of output registers)

a5a50fInit Value (Hex)
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Read Behavior During Simultaneous Write — WRITE_MODE
To maximize data throughput and utilization of the dual-port memory at each clock edge, block 
RAM memory supports one of three write modes for each memory port. These different modes 
determine which data is available on the output latches after a valid write clock edge to the 
same port. The default mode, WRITE_FIRST, provides backwards compatibility with the older 
Virtex™/E and Spartan-IIE FPGA architectures and is also the default behavior for Virtex-II/Pro 
devices. However, READ_FIRST mode is the most useful as it increases the efficiency of block 
RAM memory at each clock cycle, allowing designs to use maximum bandwidth. In 
READ_FIRST mode, a memory port supports simultaneous read and write operations to the 
same address on the same clock edge, free of any timing complications.

Table 8 outlines how the WRITE_MODE setting affects the output data latches on the same 
port, and how it affects the output latches on the opposite port during a simultaneous access to 
the same address.

Mode selection is set by configuration. One of these three modes is set individually for each 
port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

The WRITE_FIRST mode is the default operating mode for backward compatibility reasons. 
For new designs, READ_FIRST mode is recommended.

In this mode, the input data is written into the addressed RAM location memory and 
simultaneously stored in the data output latches, resulting in a transparent write operation, as 
shown in Figure 11. The WRITE_FIRST mode provides backwards compatibility with the 4K-bit 
blocks RAMs on Virtex/E and Spartan-II/E FPGAs and is also the default mode for Virtex-II/Pro 
block RAMs.

Table  8:  WRITE_MODE Affects Data Output Latches During Write Operations

Write Mode Effect on Same Port
Effect on Opposite Port 

(dual-port mode only, same address)

WRITE_FIRST
Read After Write 
(Default)

Data on DI, DIP inputs written into specified 
RAM location and simultaneously appears on 
DO, DOP outputs.

Invalidates data on DO, DOP outputs.

READ_FIRST
Read Before Write 
(Recommended)

Data from specified RAM location appears on 
DO, DOP outputs.

Data on DI, DIP inputs written into specified 
location.

Data from specified RAM location appears on 
DO, DOP outputs.

NO_CHANGE
No Read on Write

Data on DO, DOP outputs remains unchanged.

Data on DI, DIP inputs written into specified 
location.

Invalidates data on DO, DOP outputs.

Figure 11:  Data Flow during a WRITE_FIRST Write Operation

RAM Location

Data_in Data_out

WRITE_MODE = WRITE_FIRST

Address

WE

EN

CLK

X463_11_062503
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Figure 12 demonstrates that a valid write operation during a valid read operation results in the 
write data appearing on the data output.

READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the output 
latches, while the new input data is stored in memory, resulting in a read-before-write operation 
shown in Figure 13. The older RAM data appears on the data output while the new RAM data 
is stored in the specified RAM location. READ_FIRST mode is the recommended operating 
mode.

Figure 12:  WRITE_FIRST Mode Waveforms

Figure 13:  Data Flow during a READ_FIRST Write Operation

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) 1111 2222 MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_12_020503

Data_in Data_out

WRITE_MODE = READ_FIRST

Address

WE

EN

CLK

RAM Location

X463_13_062503
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Figure 14 demonstrates that the older RAM data always appears on the data output, regardless 
of a simultaneous write operation.

This mode is particularly useful for building circular buffers and large, block-RAM-based shift 
registers. Similarly, this mode is useful when storing FIR filter taps in digital signal processing 
applications. Old data is copied out from RAM while new data is written into RAM.

NO_CHANGE Mode

In NO_CHANGE mode, the output latches are disabled and remain unchanged during a 
simultaneous write operation, as shown in Figure 15. This behavior mimics that of simple 
synchronous memory where a memory location is either read or written during a clock cycle, 
but not both.

The NO_CHANGE mode is useful in a variety of applications, including those where the block 
RAM contains waveforms, function tables, coefficients, and so forth. The memory can be 
updated without affecting the memory output.

Figure 14:  READ_FIRST Mode Waveforms

Figure 15:  Data Flow during a NO_CHANGE Write Operation

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) old MEM(bb) old MEM(cc) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_14_020503

RAM Location

Data_in Data_out

WRITE_MODE = NO_CHANGE

Address

WE

EN

CLK

X463_15_062503

http://www.xilinx.com


Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.2) July 23, 2003 www.xilinx.com 17
1-800-255-7778

R

Figure 16 shows that the data output retains the last read data if there is a simultaneous write 
operation on the same port.

CORE Generator System — Write Mode

To specify the WRITE_MODE in the CORE Generator system, locate the settings for Write 
Mode as shown in Figure 17. Select between Read After Write (WRITE_FIRST), Read Before 
Write (READ_FIRST) or No Read On Write (NO_CHANGE).

VHDL or Verilog Instantiation — WRITE_MODE

When instantiating block RAM, specify the write mode via the WRITE_MODE attribute. 
Acceptable values include WRITE_FIRST, READ_FIRST, and NO_CHANGE, as demonstrated 
in the examples in the appendices.

Location Constraints (LOC)
In general, it is best to allow the Xilinx ISE software to assign a block RAM location. However, 
block RAMs can be constrained to specific locations on a Spartan-3 device using an attached 
LOC property. Block RAM placement locations are device specific and differ from the 
convention used for naming CLB locations, allowing LOC properties to transfer easily from 
array to array.

The LOC properties use the following form:

LOC = RAMB16_X#Y#

The RAMB16_X0Y0 is the lower-left block RAM location on the device, as shown in Figure 18. 
The upper-right block RAM location depends on n, the number of block RAM columns, and m, 
the number of block RAM rows, as provided in Table 1.

Figure 16:  NO_CHANGE Mode Waveforms

Figure 17:  Selecting the Write Mode in CORE Generator System

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_16_020503

Write Mode

Read After Write Read Before Write No Read On Write
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Location attributes cannot be specified directly in the CORE Generator system. However, 
location constraints can be added to VHDL or Verilog instantiations.

Block RAM 
Operation

Table 9 describes the behavior of block RAM and assumes that all control signals use their 
default, active-High behavior. However, the control signals can be inverted in the design if 
necessary. The table and following text describes the behavior for a single memory port. In 
dual-port mode, both ports perform as independent single-port memories.

All read and write operations to block RAM are synchronous. All inputs have a set-up time 
relative to clock and all outputs have a clock-to-output time.

Figure 18:  Block RAM LOC Coordinates

Lower
Left

Lower
Right

Upper
Right

Upper
Left

RAMB16_X0Y0

RAMB16_X0Y(m-1) RAMB16_X(n-1)Y(m-1)

XC3S200
XC3S400
XC3S1000
XC3S1500
XC3S2000

XC3S4000
XC3S5000

RAMB16_X(n-1)Y(m-1)

n = total columns
m = total rows

XC3S50

X463_18_062503

Table  9:  Block RAM Function Table

Input Signals Output Signals RAM Contents

GSR EN SSR WE CLK ADDR DIP DI DOP DO Parity Data

Immediately After Configuration

Loaded During Configuration X X INITP_xx2 INIT_xx2

Global Set/Reset Immediately after Configuration

1 X X X X X X X INIT3 INIT No Chg No Chg

RAM Disabled

0 0 X X X X X X No Chg No Chg No Chg No Chg

Synchronous Set/Reset

0 1 1 0 X X X SRVAL4 SRVAL No Chg No Chg

Synchronous Set/Reset during Write RAM

0 1 1 1 addr pdata Data SRVAL SRVAL RAM(addr) 
pdata

RAM(addr) 
 data
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RAM Contents Initialized During Configuration
The initial RAM contents, if specified, are loaded during the Spartan-3 configuration process. If 
no contents are specified, the RAM cells are loaded with zero. The RAM contents are protected 
against spurious writes during configuration.

Global Set/Reset Initializes Data Output Latches Immediately After 
Configuration or Global Reset
Immediately following configuration, the Spartan-3 device begins its start-up procedure and 
asserts the global set/reset signal, GSR, to initialize the state of all flip-flops and registers. The 
initial contents of the block RAM output latches, INIT, are asynchronously loaded at this time. 
The GSR signal does not change or re-initialize the RAM contents.

Enable Input Activates or Disables RAM
If the block RAM is disabled—i.e., EN is Low—then the block RAM retains its present state. The 
enable input must be High for any other operations to proceed.

Synchronous Set/Reset Initializes Data Output Latches
If the block RAM is enabled (EN is High) and the Synchronous Set/Reset signal is asserted 
High, then the data output latches are initialized at the next rising clock edge. The SRVAL 
attribute defines the synchronous set/reset state for the data output latches. This operation is 
different the operation caused by the global set/reset signal, GSR, immediately after 
configuration. The synchronous set/reset input affects the specific RAM block whereas the 
GSR signal affects the entire device.

Read RAM, no Write Operation

0 1 0 0 addr X X RAM(pdata) RAM(data) No Chg No Chg

Write RAM, Simultaneous Read Operation

0 1 0 1 addr pdata Data WRITE_MODE = WRITE_FIRST5 (default)

pdata data RAM(addr) 
pdata

RAM(addr) 
 data

WRITE_MODE = READ_FIRST6 (recommended)

RAM(data) RAM(data) RAM(addr) 
pdata

RAM(addr) 
pdata

WRITE_MODE = NO_CHANGE7

No Chg No Chg RAM(addr) 
pdata

RAM(addr) 
pdata

Notes: 
1. No Chg = No Change, addr = address to RAM, data = RAM data, pdata = RAM parity data.
2. Refer to Content Initialization, page 11.
3. Refer to Data Output Latch Initialization, page 12.
4. Refer to Data Output Latch Synchronous Set/Reset Value, page 13.
5. Refer to WRITE_FIRST or Transparent Mode (Default), page 14.
6. Refer to READ_FIRST or Read-Before-Write Mode, page 15.
7. Refer to NO_CHANGE Mode, page 16.

Table  9:  Block RAM Function Table (Continued)

Input Signals Output Signals RAM Contents

GSR EN SSR WE CLK ADDR DIP DI DOP DO Parity Data
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Simultaneous Write and Synchronous Set/Reset Operations
If a simultaneous write operation occurs during the synchronous set/reset operation, then the 
data on the DI and DIP inputs is stored at the RAM location specified by the ADDR input. 
However, the data output latches are initialized to the SRVAL attribute value as described 
immediately above.

Read Operations Occur on Every Clock Edge When Enable is Asserted
Read operations are synchronous and require a clock edge and an asserted clock enable. The 
data output behavior depends on whether or not a simultaneous write operation occurs during 
the read cycle.

If no simultaneous write cycle occurs during a valid read cycle, then the read address is 
registered on the read port and the data stored in RAM at that address is simply loaded into the 
output latches after the RAM access interval passes.

However, if there is a simultaneous write cycle during the read cycle, then the output behavior 
depends on which of the three write modes is selected, as described immediately below.

Write Operations Always Have Simultaneous Read Operation, Data 
Output Latches Affected
During a Write operation, a simultaneous Read operation occurs. The WRITE_MODE attribute 
determines the behavior of the data output latches during the Write operation (refer to Read 
Behavior During Simultaneous Write — WRITE_MODE, page 14). By default, 
WRITE_MODE is WRITE_FIRST and the data output latches and the addressed RAM 
locations are updated with the input data during a simultaneous Write operation. When 
WRITE_MODE is READ_FIRST, the output latches are updated with the data previously stored 
in the addressed RAM location and the new data on the DI and DIP inputs is stored at the 
address RAM location. When WRITE_MODE is NO_CHANGE, the data output latches are 
unaffected by a simultaneous Write operation and retain their present state.

General Characteristics
• A write operation requires only one clock edge.

• A read operation requires only one clock edge.

• All inputs are registered with the port clock and have a setup-to-clock timing specification.

• All outputs have a read-through function or one of three read-during-write functions, 
depending on the state of the WE pin. The outputs relative to the port clock are available 
after the clock-to-out timing interval.

• Block RAM cells are true synchronous RAM memories and do not have a combinatorial 
path from the address to the output.

• The ports are completely independent of each other without arbitration. Each port has its 
own clocking, control, address, read/write functions, initialization, and data width.

• Output ports are latched with a self-timed circuit, guaranteeing glitch-free read operations. 
The state of the output port does not change until the port executes another read or write 
operation.

Functional Compatibility with Other Xilinx FPGA Families
The block RAM on Spartan-3 FPGAs is functionally identical to block RAM on the Xilinx Virtex-
II/Pro FPGA families. Consequently, design tools that support Virtex-II and Virtex-II Pro block 
RAM also support with Spartan-3 FPGAs.
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Dual-Port RAM 
Conflicts and 
Resolution

As a dual-port RAM, the block RAM allows both ports to simultaneously access the same 
memory cell. Potentially, conflicts arise under the following conditions.

1. If the clock inputs to the two ports are asynchronous, then conflicts occur if clock-to-clock 
setup time requirements are violated.

2. Both memory ports write different data to the same RAM location during a valid write cycle.

3. If a port uses WRITE_MODE=NO_CHANGE or WRITE_FIRST, a write to the port 
invalidates the read data output latches on the opposite port.

If Port A and Port B different memory organizations and consequently different widths, only the 
overlapping bits are invalid when conflicts occur.

Timing Violation Conflicts
When one port writes to a given memory cell, the other port must not address that memory 
cell—either for a write or a read operation—within the clock-to-clock setup window specified in 
the Spartan-3 data sheet. Figure 19 describes this situation where both ports operate from 
asynchronous clock inputs.

The first rising edge on CLK_A violates the clock-to-clock setup parameter, because it occurs 
too soon after the last CLK_B clock edge. The write operation on port B is valid because 
Data_in_B, Address_B, and WE_B all had sufficient set-up time before the rising edge on 
CLK_B. Unfortunately, the read operation on port A is invalid because it depends on the RAM 
contents being written to Address_B and the read clock, CLK_A, happened too soon after the 
write clock, CLK_B.

On the second rising edge of CLK_B, there is another valid write operation to port B. The 
memory location at address (bb) contains 4444. Data on the Data_out_A port is still invalid 
because there has not been another rising clock edge on CLK_A. The second rising edge of 
CLK_A reads the new data at the in location (bb), which now contains 4444. This time, the read 
operating is valid because there has been sufficient setup time between CLK_B and CLK_A.

Figure 19:  Clock-to-Clock Timing Conflicts
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Simultaneous Writes to Both Ports with Different Data Conflicts
If both ports write simultaneously into the same memory cell with different data, then the data 
stored in that cell becomes invalid, as outlined in Table 10.

Write Mode Conflicts on Output Latches
Potential conflicts occur when one port writes to memory and the opposite port reads from 
memory. Write operations always succeed and the write port’s output data latches behave as 
described by the port’s WRITE_MODE attribute. If the write port is configured with 
WRITE_MODE set to NO_CHANGE or WRITE_FIRST, then a write operation to the port 
invalidates the data output latches on the opposite port, as shown in Table 11.

Using the READ_FIRST mode does not cause conflicts on the opposite port.

Conflict Resolution
There is no dedicated monitor to arbitrate the result of identical addresses on both ports. The 
application must time the two clocks appropriately. However, conflicting simultaneous writes to 
the same location never cause any physical damage.

Table  10:  RAM Conflicts During Simultaneous Writes to Same Address

Input Signals

RAM ContentsPort A Port B

WEA CLKB DIPA DIA WEB CLKA DIPB DIB Parity Data

1 DIPA DIA 1 DIPB DIB ? ?

Notes: 
1. ADDRA=ADDRB, ENA=1,ENB=1, DIPA ≠ DIPB, DIA ≠ DIB, ?=Unknown or invalid 

data.

Table  11:  Conflicts to Output Latches Based on WRITE_MODE

Input Signals Output Signals

Port A Port B Port A Port B

WEA CLKB DIPA DIA WEB CLKA DIPB DIB DOPA DOA DOPB DOB

WRITE_MODE_A=NO_CHANGE

1 DIPA DIA 0 DIPB DIB No Chg No Chg ? ?

WRITE_MODE_B=NO_CHANGE

0 DIPA DIA 1 DIPB DIB ? ? No Chg No Chg

WRITE_MODE_A=WRITE_FIRST

1 DIPA DIA 0 DIPB DIB DIPA DOA ? ?

WRITE_MODE_B=WRITE_FIRST

0 DIPA DIA 1 DIPB DIB ? ? DIPB DIB

WRITE_MODE_A=WRITE_FIRST, WRITE_MODE_B=WRITE_FIRST

0 DIPA DIA 1 DIPB DIB ? ? ? ?

Notes: 
1. ADDRA=ADDRB, ENA=1, ENB=1, ?=Unknown or invalid data
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Block RAM 
Design Entry

Various tools help create Spartan-3 block RAM designs, two of which are the Xilinx CORE 
Generator system and VHDL or Verilog instantiation of the appropriate Xilinx library primitives.

Xilinx CORE Generator System
The Xilinx CORE Generator system provides both a Single Port Block Memory and a Dual Port 
Block Memory module generator, as shown in Figure 5. Both module generators support RAM, 
ROM, and Write Only functions, according to the control signals that are selected. Any size 
memory that can be created in the architecture is supported.

Both modules are parameterizable as with most CORE Generator modules. To create a 
module, specify the component name and choose to include or exclude control inputs, and 
choose the active polarity for the control inputs. For the Dual-Port Block Memory, once the 
organization or aspect ratio for Port A is selected, only the valid options for Port B are displayed.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory 
location initializes to zero. Enter user-specified initial values via a Memory Initialization File, 
consisting of one line of binary data for every memory location. A default file is generated by the 
CORE Generator system. Alternatively, create a coefficients file (.coe), which not only defines 
the initial contents in a radix of 2, 10, or 16, but also defines all the other control parameters for 
the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and the 
device resources required. If a very deep memory is generated, some external multiplexing 
may be required, and these resources are reported as the number of logic slices required. In 
addition, the software reports the number of bits available in block RAM that are less than 100% 
utilized. For simulation purposes, the CORE Generator system creates VHDL or Verilog 
behavioral models. 

• CORE Generator: Single-Port Block Memory module (RAM or ROM)

• CORE Generator: Dual-Port Block Memory module (RAM or ROM)

VHDL and Verilog Instantiation
VHDL and Verilog synthesis-based designs can either infer or directly instantiate block RAM, 
depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and 
Synplicity Synplify both infer block RAM based on the hardware described. The Xilinx ISE 
Project Navigator includes templates for inferring block RAM in your design. To use the 
templates within Project Navigator, select Edit  Language Templates from the menu, and 
then select VHDL or Verilog, followed by Synthesis Templates  RAM from the selection 
tree. Finally, select the preferred block RAM template.

It is still possible to directly instantiate block RAM, even if portions of the design infer block 
RAM. 

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to speed 
development. Within the Xilinx ISE Project Navigator, select Edit  Language Templates 
from the menu, and then select VHDL or Verilog, followed by Component Instantiation  
Block RAM from the selection tree.

The appendices include example code showing how to instantiate block RAM in both VHDL 
and Verilog.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template must be inserted within the VHDL design file. The port map of the 
architecture section must include the signal names used in the application.

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sp_block_mem.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dp_block_mem.pdf
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The SelectRAM_Ax templates (with x = 1, 2, 4, 9, 18, or 36) are single-port modules and 
instantiate the corresponding RAMB16_Sx module.

SelectRAM_Ax_By templates (with x = 1, 2, 4, 9, 18, or 36 and y = 1, 2, 4, 9, 18, or 36) are dual-
port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Initialization in VHDL or Verilog Codes

Block RAM memory structures can be initialized in VHDL or Verilog code for both synthesis and 
simulation. For synthesis, the attributes are attached to the block RAM instantiation and are 
copied within the EDIF output file compiled by Xilinx Alliance Series™ tools. The VHDL code 
simulation uses a generic parameter to pass the attributes. The Verilog code simulation uses 
a defparam parameter to pass the attributes.

The VHDL and Verilog examples in the appendices illustrate these techniques.

Block RAM 
Applications

Typically, block RAM is used for a variety of local storage applications. However, the following 
section describes additional, perhaps less obvious block RAM capabilities, illustrating some 
powerful capabilities to spur the imagination. 

Creating Larger RAM Structures
Block SelectRAM columns have specialized routing to allow cascading blocks with minimal 
routing delays. Wider or deeper RAM structures incur a small delay penalty.

Block RAM as Read-Only Memory (ROM)
By tying the write enable input Low, block RAM optionally functions as registered block ROM. 
The ROM outputs are synchronous and require a clock input and perform exactly like a block 
RAM read operation. The ROM contents are defined by the initial contents at design time.

After design compilation, the ROM contents can also be updated using the Data2BRAM utility 
described below.

FIFOs
First-In, First-Out (FIFO) memories, also known as elastic stores, are perhaps the most 
common application of block RAM, other than for random data storage. FIFOs typically 
resynchronize data, either between two different clock domains, or between two parts of a 
system that have different data rates, even though they operate from a single clock. The Xilinx 
CORE Generator system provides two parameterizable FIFO modules, one a synchronous 
FIFO where both the read and write clocks are synchronous to one another and the other an 
asynchronous FIFO where the read and write clocks are different.

Application note XAPP261 demonstrates that the FIFO read and write ports can be different 
data widths, integrating the data width converter into the FIFO.

Application note XAPP291 describes a self-addressing FIFO that is useful for throttling data in 
a continuous data stream. 

• CORE Generator: Synchronous FIFO module

• CORE Generator: Asynchronous FIFO module

• XAPP258: FIFOs Using Block RAM, includes reference design

• XAPP261: Data-Width Conversion FIFOs Using Block RAM Memory, includes reference 
design

• XAPP291: Self-Addressing FIFO

Storage for Embedded Processors
Block RAM also enables efficient embedded processor applications. RAM performs a variety 
functions in an embedded processor such as those listed below.

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf
http://www.xilinx.com/xapp/xapp258.pdf
http://www.xilinx.com/xapp/xapp261.pdf
http://www.xilinx.com/xapp/xapp291.pdf
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• Register file for processor register set, although for some processors, distributed RAM 
may be a preferred solution.

• Stack or LIFO for stack-based architectures and for call stacks.

• Fast, local code storage. The fast access time to internal block RAM significantly boosts 
the performance of embedded processors. However, on-chip storage is limited by the 
number of available block RAMs.

• Large dual-ported mailbox memory shared with external processor or DSP device.

• Temporary trace buffers (see Circular Buffers, Shift Registers, and Delay Lines) to 
ease and enhance application debugging.

Updating Block RAM/ROM Content by Directly Modifying Device 
Bitstream
In a typical design flow, the initial contents of block RAM/ROM is defined at design time and 
compiled into the device bitstream that is downloaded to and configures a Spartan-3 FPGA.

However, for some applications, the actual memory contents may not be known when the 
bitstream is created or may change later. One example is if a processor embedded with the 
Spartan-3 FPGA uses block RAM to store program code. To avoid re-compiling the FPGA 
design just to incorporate a code change, Xilinx provides a utility called Data2BRAM that 
updates an existing FPGA bitstream with new block RAM/ROM contents.

As shown in Figure 20, the inputs to Data2BRAM include the new RAM contents—typically the 
output from the embedded processor compiler/linker, the present FPGA bitstream, and a file 
that describes both the mapping between the system address space and the addressing used 
on the individual block RAMs and the physical location of each block RAM.

Two Independent Single-port RAMs Using One Block RAM
Some applications may require more single-port RAMs than there are RAM blocks on the 
device. However, a simple trick allows a single block RAM to behave as if it were two, 
completely independent single-port memories, effectively doubling the number of RAM blocks 
on the device. The penalty is that each RAM block is only half the size of the original block, up 
to 9K bits total.

Figure 20:  The Data2BRAM Utility Updates Block RAM Contents in a Bitstream
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Figure 21 shows how to create two independent single-port RAMs from one block RAM. Tie the 
most-significant address bit of one port High and the most-significant address bit of the other 
port Low. Both ports evenly split the available RAM between them.

Both ports are independent, each with its own memory organization, data inputs and outputs, 
clock input and control signals. For example, Port A could be 256x36 while Port B is 2Kx4.

Figure 21 splits the available memory evenly between the two ports. With additional logic on 
the upper address lines, the memory can be split into other ratios.

A 256x72 Single-Port RAM Using One Block RAM
Figure 22 illustrates how to create a 256-deep by 72-bit wide single-port RAM using a single 
block RAM. As in the previous example, the memory array is split into halves. One half contains 
the lower 36 bits and the upper half stores the upper 36 bits, effectively creating a 72-bit wide 
memory.

Figure 21:  One Block RAM Becomes Two Independent Single-Port RAMs
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The most-significant address line, ADDR[8] is tied High on one port and Low on the other. Both 
ports share the same the address inputs, control inputs, and clock input.

Circular Buffers, Shift Registers, and Delay Lines
Circular buffers are used in a variety of digital signal processing applications, such as finite 
impulse response (FIR) filters, multi-channel filtering, plus correlation and cross-correlation 
functions. Circular buffers are also useful simply for delaying data to resynchronize it with other 
parts of a data path.

Figure 23 conceptually describes how a circular buffer operates. Data is written into the buffer. 
After n clock cycles, that same data is clocked out of the buffer while new data is written to the 
same location. 

Figure 24 describes the hardware implementation to create a circular buffer using block RAM. 
A modulo-n counter drives the address inputs to a single-port block RAM. For simple data delay 
lines, the block RAM writes new data on every clock cycle.

The circular buffer also reads the delayed data value on every clock edge. Using block RAM’s 
READ_FIRST write mode, both the incoming write data and the outgoing read data use the 
same clock input and the same clock edge, both simplifying the design and improving overall 
performance. The actual write and read behavior is described in Figure 17.

Figure 22:  A 256x72 Single-Port RAM Using a Single Block RAM

Figure 23:  Circular Buffer
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In Figure 24, the width of the IN and OUT data ports is identical, although they do not need be. 
Using dual-port mode, the ports can be different widths. Figure 25 shows an example where 
byte-wide data enters the block RAM and a 32-bit word exits the block RAM. Furthermore, the 
data can be delayed up to 2,048 byte-clock cycles.

A single block RAM is configured as dual-port memory. The incoming byte-wide data feeds Port 
B, which is configured as a 2Kx9 memory. The outgoing 32-bit data appears on Port A and 
consequently, Port A is configured as a 512x36 memory.

Figure 24:  Circular Buffer Implementation Using Block RAM and Counter

Figure 25:  Merge Circular Buffer and Port-Width Converter into a Single Block RAM
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Manipulating the addresses that feeds both ports creates the 4n-byte clock delay. Every 32-bit 
output word requires four incoming bytes. Consequently, a divide-by-4 counter feeds the two 
lower address bits, ADDRB[1:0]. After four bytes are stored, a terminal count, TC, from the 
lower counter enables Port A plus a separate divide-by-n counter. The enable signal latches the 
32-bit output data on Port B and increments the upper counter. The combination of the divide-
by-4 counter and the divide-by-n counter effectively create a divide-by-4n counter. The output 
from the divide-by-n counter forms the more-significant address bits to Port B, ADDRB[11:2] 
and the entire address to Port A, ADDRA[9:0]. 

Fast Complex State Machines and Microsequencers
Because block RAMs can be configured with any set of initial values, they also make excellent 
dual-ported registered ROMs that can be used as state machines. For example, a 128-state, 8-
way branch finite state machine with 38 total state outputs, fits in a single block RAM, as shown 
in Figure 27. 

Figure 26:  Incoming Byte-Wide Data is Delayed 4n Clock Cycles, Converted to 32-Bit Data
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A dual-port block RAM memory is divided into two completely independent half-size, single-
port memories by tying the most-significant address bit of one port High and the other one Low, 
similar to Figure 21. Port A is configured as 2Kx9 but used as a 1K x 9 single-port ROM. Seven 
outputs feed back as address inputs, stepping through the 128 states. The 1Kx9 ROM has ten 
total address lines, seven of which are the current-state inputs and the remaining three address 
inputs determine the eight-way branch. Any of the 128 states can conditionally branch to any 
set of eight new states, under the control of these three address inputs. 

Port B is configured as 512 x 36 and used as a 256 x 36 single-port ROM. It receives the same 
7-bit current-state value from Port A, and drives 36 outputs that can be arbitrarily defined for 
each state. However, due to the synchronous nature of block ROM, the 36 outputs from the 
256x36 ROM are delayed by one clock cycle. The eighth address input can invoke an alternate 
definition of the 36 outputs. Two additional state bits are available from the 1Kx9 block, but are 
not delayed by one clock.

This same basic architecture can be modified to form a 256-state finite state machine with four-
way branch, or a 64-state state machine with 16-way branch. 

If additional branch-control inputs are needed, they can be combined using an input 
multiplexer. The advantages of this design are its low cost (a single block RAM), its high 
performance (125+ MHz), the absence of lay-out or routing issues, and complete design 
freedom. 

Fast, Long Counters Using RAM
A counter is an example of a simple state machine, where the next state depends only on the 
current state. A binary up counter, for example, simply increments the current state to create 
the next state. Figure 28 shows a 20-bit binary up counter, with clock enable and synchronous 
reset, implemented in a single block RAM.

Figure 27:  128-State Finite State Machine with 38 Outputs in a Single Block RAM
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A 20-bit binary counter can be constructed from two identical 10-bit binary counters, with the 
lower 10-bit counter enabling the upper 10-bit counter every 1024 clock cycles. In this example, 
Port B is a 1Kx18 ROM (WEB is Low) that forms the lower 10-bit counter. The ten less-
significant data outputs, representing the current state, connect directly to the ten address 
inputs, ADDRB[9:0]. The next state is looked up in the ROM using the current state applied to 
the address pins. The eleventh data bit, D[10], forms the terminal-count output from the 
counter. In this example, the upper seven data bits, DOB[17:11] are unused.

The next-state logic for a binary counter appears in Table 12. The counter starts at state 0—or 
the value specified by the INIT or SRVAL attributes—and counts through to 0x3FF (1023 
decimal) at which time the terminal count, D[10], is active and the counter rolls over back to 0.

Port A is configured nearly identically to Port B, except that Port A is enabled by the terminal 
count output from Port B. The 10-bit counter in Port A has the identical counting pattern as Port 
B, except that it increments at 1/1024th the rate of Port B.

Figure 28:  Two 10-Bit Counters Create a 20-Bit Binary Counter Using a Single Block RAM
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Table  12:  Next-State Logic for Binary Up Counter

Current State State Outputs Next State

TC COUNT

ADDR[9:0]
(Hex) D[10]

D[9:0]
(Hex)

0 0 1

1 0 2

2 0 3

… … …

3FFF 1 0
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With a simple modification, the 20-bit up counter becomes an 18-bit up/down counter. Using 
the most-significant address input as a direction control, the same basic counter architecture 
either increments or decrements its count, as shown in Table 13. In this example, the counter 
increments when the Up/Down control is Low and decrements when High. The ROM memory 
is split between the incrementing and decrementing next-state logic.

Various other counter implementations are possible including the following.

• Binary up and up/down counters of various modulos determined by the combinations of 
the modulos of the counters implemented in Port A and Port B.

• Counters with other incrementing and decrementing patterns including fast gray-code 
counters.

• A six-digit BCD counter in one block ROM, configured as 512x36, plus one CLB.

Four-Port Memory
Each block RAM is physically a dual-port memory. However, due to the block RAM’s fast access 
performance, it is possible to create multi-port memories by time-division multiplexing the 
signals in and out of the memory. A block RAM with some additional logic easily supports up to 
four ports but at the cost of additional access latency for each port. The following application 
note provides additional details and a reference design.

• XAPP228: Quad-Port Memories in Virtex Devices, includes reference design

Content-Addressable Memory (CAM)
Content-Addressable Memory (CAM), sometimes known as associative memory, is used in a 
variety of networking and data processing applications. In most memory applications, content 
is referenced by an address. In CAM applications, the content is the driving input and the output 
indicates whether or not the content exists in memory and, if so, provides a reference to its 
location.

An easy way to envision how a CAM operates is to think of an index to a book. Looking up an 
item, i.e., the content, first determines whether the item exists in the index and if it does, 
provides a reference to its location, i.e., the page number of where the item can be found.

Table  13:  Next-State Logic for Binary Up/Down Counter

Up/Down 
Control Present State State Outputs Next State

TC COUNT

ADDR[9]
ADDR[8:0]

(Hex) D[10]
D[9:0]
(Hex)

0
(Up)

0 0 1

1 0 2

2 0 3

… … …

1FFF 1 0

1
(Down)

1FFF 0 1FFE

1FFE 0 1FFD

1FFD 0 1FFC

… … …

0 1 1FFF
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• CORE Generator: Content-Addressable Memory module 

• XAPP260: Using Block RAM for High-Performance Read/Write CAMs

• XAPP201: An Overview of Multiple CAM Designs, written for Virtex/E and Spartan-II/E 
architectures but provides a useful overview to the techniques involved

Implementing Logic Functions Using Block RAM
Inside every Spartan-3 logic cell, there is a four-input RAM/ROM called a look-up table or LUT. 
The LUT performs any possible logic function of its four inputs and forms the basis of the 
Spartan-3 logic architecture.

Another possible application for block RAM is as a much larger look-up table. In one of its 
organizations, a block RAM—used as ROM in this case—has 14 inputs and a single output. 
Consequently, block RAM is capable of implementing any possible arbitrary logic function of up 
to 14 inputs, regardless of the complexity and regardless of inversions. There are a few 
restrictions, however.

• There cannot be any asynchronous feedback paths in the logic, such as those that create 
latches.

• The logic output must be synchronized to a clock input. Block RAM does not support 
asynchronous read outputs.

If the logic function meets these requirements, then a single block RAM implements the 
following functions.

• Any possible Boolean logic function of up to 14 inputs

• Nine separate arbitrary Boolean logic functions of 11 inputs, as long as the inputs are 
shared.

• Various other combinations are possible, but may have restrictions to the number of 
inputs, the number of shared inputs, or the complexity of the logic function.

Due to the flexibility and speed of CLB logic, block RAM may not be faster or more efficient for 
simple wide functions like an address decoder, where multiple inputs are ANDed together. 
Block RAM will be faster and more efficient for complex logic functions, such as majority 
decoders, pattern matching, correlators.

Fuzzy Pattern Matching Circuit Example

For example, Figure 29 illustrates a fuzzy pattern matching circuit that detects both exact 
matches and those patterns that are close enough. Each incoming bit is matched against the 
required MATCH pattern. Then, any “don’t care” bits are masked off, indicating that the specific 
bit should always match. Then, the number of matching bits is counted and compared against 
an activation threshold. If the number of matching bits is greater than the activation threshold, 
then the input data mostly matches the required pattern and the MATCH output goes High.

Figure 29:  A 14-Input Fuzzy Pattern Matching Circuit Implemented in a Single Block RAM
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If the application requires a new matching pattern or different logic function, it could be loaded 
via the second memory port.

Implemented in CLB logic, this function would require numerous logic cells and multiple layers 
of logic. However, because the MATCH, MASK, and Threshold values are known in advance, 
the function can be pre-computed and then stored in block RAM. For each input condition, i.e., 
starting at address 0 and incremented through the entire memory, the output condition can be 
pre-computed. A 14-input fuzzy pattern matching circuit requires a single block RAM and 
performs the operation in a single clock cycle.

Mapping Logic into Block RAM Using MAP –bp Option

The Xilinx ISE software does not automatically attempt to map logic functions into block RAM. 
However, there is a mapping option to aid the process.

The block RAM mapping option is enabled when using the MAP –bp option. If so enabled, the 
Xilinx ISE logic mapping software attempts to place LUTs and attached flip-flops into an 
unused single-output, single-port block RAM. The final flip-flop output is required as block 
RAMs have a synchronous, registered output. The mapping software packs the flip-flop with 
whatever LUT logic is driving it. No register will be packed into block RAM without LUT logic, 
and vice versa.

To specify which register outputs will be converted to block RAM outputs, create a file 
containing a list of the net names connected to the register output(s).   Set the environment 
variable XIL_MAP_BRAM_FILE to the file name, which instructs the mapping software to use 
this file. The MAP program looks for this environment variable whenever the –bp option is 
specified. Only those output nets listed in the file are converted into block RAM outputs. 

• PCs: 
set XIL_MAP_BRAM_FILE=file_name 

• Workstations:
setenv XIL_MAP_BRAM_FILE file_name 

Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using 
Block RAM
Another powerful block RAM application is waveform storage, including function tables such as 
trigonometric functions like sine and cosine. Sine and cosine form the backbone of other 
functions such as direct digital synthesis (DDS) to generate output waveforms. The Xilinx 
CORE Generator system provides parameterizable modules for both:

• CORE Generator: Sine/Cosine Look-Up Table module

• CORE Generator: Direct Digital Synthesizer (DDS) module 

Another potential application of waveform storage is in various signal companders 
(compressors/expanders) and normalization circuits used to boost important parts of a signal 
within the available bandwidth. Examples include converters between linear data, u-Law 
encoded data, and A-Law encoded data commonly used in telecommunications.

The dual-port nature of block RAM not only facilitates waveform storage, it also enables an 
application to update the waveform, either with a completely new waveform or with corrected or 
normalized waveform data. In the example shown in Figure 30, Port A initially contains the 
currently active waveform. The application can load a new waveform on Port B.

http://www.xilinx.com
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As in real-world engineering, sometimes it is faster to look up an answer than deriving it. The 
same is true in digital designs. Block RAM is also useful for storing pre-computed function 
tables where the output, y, is a function of the input, x, or y=f(x).

For example, instead of creating the CLB logic that implements the following polynomial 
equation, the function can be pre-computed and stored in a block RAM.

Y = Ax3 – Bx2 + Cx + D

The values A, B, C, and D are all constants. The output, y, depends only on the input, x. The 
output value can be pre-computed for each input value of x and stored in memory. There are 
obvious limitations as the function may not fit in a single logic block either because of the range 
of values for x, or the magnitude of the output, y. For example, a 512x36 block ROM 
implements the above equation for input values between 0 and 511. The range of x is limited by 
its exponential effect on y. With x at its maximum value for this specific example, y requires at 
least 28 output bits.

Some other look-up functions possible in a single block RAM/ROM include the following.

• Various complex arithmetic functions of a single input, including mixtures of functions such 
as log(x), square-root(x). Multipliers of two values are possible but are typically limited by 
the number of block RAM inputs. The Spartan-3 embedded 18x18 multipliers are a better 
solution for pure multiplication functions.

• Two independent 11-bit binary to 4-digit BCD converters, with the block ROM configured 
as 1Kx18. The least-significant bit (LSB) of each converter bypasses the ROM as the 
converted result is the same as the original value, i.e. the LSB indicates whether the value 
is odd or even. 

• Two independent 3-digit BCD to 10-bit binary converters, with the block ROM configured 
as 2Kx9 and the LSBs bypass the converters. 

• Sine-cosine look-up tables using one port for sine, the other one for cosine, with 90 
degree-shifted addresses, 18-bit amplitude, 10-bit angular resolution. 

• Two independent 10-bit binary to three-digit, seven-segment LED output converter with 
the block ROM configured as 1Kx18. Leading zeros are displayed as blanks. Because 
input values are limited to 1023, the LED digits display from “0” to “3FF”. Consequently, 
the logic for the most-significant digit requires only four inputs (segment a=d=g, segment f 
is always High). 

Figure 30:  Dual-Port Block RAM Facilitates Waveform Storage and Updates
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Related 
Materials and 
References

• “Using Leftover Multipliers and Block RAM in Your Design” by Peter Alfke, Xilinx, Inc.
http://www.xilinx.com/support/techxclusives/leftover-techX11.htm

• “The Myriad Uses of Block RAM” by Jan Gray, Gray Research, LLC.
http://www.fpgacpu.org/usenet/bb.html

• Libraries Guide, for Xilinx ISE 5.2i by Xilinx, Inc.

- Adobe Acrobat [PDF]
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf, pp. 1593–1640.

If ISE 5.2i is installed in the default directory, this document is also located in the 
following path or within Project Navigator by selecting Help Online Documentation. 
When the Acrobat document appears, click Libraries Guide from the table of 
contents on the left.
C:\Xilinx\doc\usenglish\docs\lib\lib.pdf

- RAMB16_Sn Primitive [HTML]
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0371_355.html

- RAMB16_Sm_Sn Primitive [HTML]
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0372_356.html

Conclusion The Spartan-3 FPGA’s abundant, fast, and flexible block RAMs provide invaluable on-chip local 
storage for scratchpad memories, FIFOs, buffers, look-up tables, and much more. Using unique 
capabilities, block RAM implements such functions as shift registers, delay lines, counters, and 
wide, complex logic functions.

Block RAM is supported in applications using the broad spectrum of Xilinx ISE development 
software, including the CORE Generator system and can be inferred or directly instantiated in 
VHDL or Verilog synthesis designs.

Appendix A: 
VHDL 
Instantiation 
Example

The following VHDL instantiation example is for the Synopsys FPGA Express system. The 
example XC3S_RAMB_1_PORT module uses the SelectRAM_A36.vhd VHDL template. This 
and other templates are available for download from the following Web link. The following 
example is a VHDL code snippet and will not compile as is.

• ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_vhdl.zip

-- Module: XC3S_RAMB_1_PORT
-- Description: 18Kb Block SelectRAM example
-- Single Port 512 x 36 bits
-- Use template “SelectRAM_A36.vhd"
--
-- Device: Spartan-3 Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity XC3S_RAMB_1_PORT is
port (

DATA_IN : in std_logic_vector (35 downto 0);
ADDRESS : in std_logic_vector (8 downto 0);
ENABLE : in std_logic;
WRITE_EN : in std_logic;
SET_RESET : in std_logic;
CLK : in std_logic;
DATA_OUT : out std_logic_vector (35 downto 0)

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/leftover-techX11.htm
http://www.fpgacpu.org/usenet/bb.html
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0371_355.html
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0372_356.html
ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_vhdl.zip
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);
end XC3S_RAMB_1_PORT;
--
architecture XC3S_RAMB_1_PORT_arch of XC3S_RAMB_1_PORT is
--
-- Components Declarations:
--
component BUFG
port (

I : in std_logic;
O : out std_logic

);
end component;
--
-- Syntax for Synopsys FPGA Express
component RAMB16_S36
-- pragma translate_off
generic (
-- "Read during Write" attribute for functional simulation
WRITE_MODE : string := "READ_FIRST" ; -- WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
-- Output value after configuration
INIT : bit_vector(35 downto 0) := X"000000000";
-- Output value if SSR active
SRVAL : bit_vector(35 downto 0) := X"012345678";
-- Initialize parity memory content
INITP_00 : bit_vector(255 downto 0) :=
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
INITP_01 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
INITP_07 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
-- Initialize data memory content
INIT_00 : bit_vector(255 downto 0) :=
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
INIT_01 : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
INIT_3F : bit_vector(255 downto 0) :=
X"0000000000000000000000000000000000000000000000000000000000000000"
);
-- pragma translate_on
port (

DI : in std_logic_vector (31 downto 0);
DIP : in std_logic_vector (3 downto 0);
ADDR : in std_logic_vector (8 downto 0);
EN : in STD_LOGIC;
WE : in STD_LOGIC;
SSR : in STD_LOGIC;
CLK : in STD_LOGIC;
DO : out std_logic_vector (31 downto 0);
DOP : out std_logic_vector (3 downto 0)

);
end component;
--
-- Attribute Declarations:
attribute WRITE_MODE : string;
attribute INIT: string;
attribute SRVAL: string;
-- Parity memory initialization attributes
attribute INITP_00: string;
attribute INITP_01: string;
... (snip)
attribute INITP_07: string;
-- Data memory initialization attributes
attribute INIT_00: string;
attribute INIT_01: string;

http://www.xilinx.com
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... (snip)
attribute INIT_3F: string;
--
-- Attribute "Read during Write mode" = WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
attribute WRITE_MODE of U_RAMB16_S36: label is "READ_FIRST";
attribute INIT of U_RAMB16_S36: label is "000000000";
attribute SRVAL of U_RAMB16_S36: label is "012345678";
--
-- RAMB16 memory initialization for Alliance
-- Default value is "0" / Partial initialization strings are padded
-- with zeros to the left
attribute INITP_00 of U_RAMB16_S36: label is
"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INITP_01 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
attribute INITP_07 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
--
attribute INIT_00 of U_RAMB16_S36: label is
"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INIT_01 of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
... (snip)
attribute INIT_3F of U_RAMB16_S36: label is
"0000000000000000000000000000000000000000000000000000000000000000";
--
-- Signal Declarations:
--
-- signal VCC : std_logic;
-- signal GND : std_logic;
signal CLK_BUFG: std_logic;
signal INV_SET_RESET : std_logic;
--
begin
-- VCC <= ’1’;
-- GND <= ’0’;
--
-- Instantiate the clock Buffer
U_BUFG: BUFG
port map (

I => CLK,
O => CLK_BUFG

);
--
-- Use of the free inverter on SSR pin
INV_SET_RESET <= NOT SET_RESET;
-- Block SelectRAM Instantiation
U_RAMB16_S36: RAMB16_S36
port map (

DI => DATA_IN (31 downto 0), -- insert 32 bits data-in bus (<31 downto 0>)
DIP => DATA_IN (35 downto 32), -- insert 4 bits parity data-in bus (or <35

-- downto 32>)
ADDR => ADDRESS (8 downto 0), -- insert 9 bits address bus
EN => ENABLE, -- insert enable signal
WE => WRITE_EN, -- insert write enable signal
SSR => INV_SET_RESET, -- insert set/reset signal
CLK => CLK_BUFG, -- insert clock signal
DO => DATA_OUT (31 downto 0), -- insert 32 bits data-out bus (<31 downto 0>)
DOP => DATA_OUT (35 downto 32) -- insert 4 bits parity data-out bus (or <35 

-- downto 32>)
);
--

end XC3S_RAMB_1_PORT_arch;

http://www.xilinx.com
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Appendix B: 
Verilog 
Instantiation 
Example

The following Verilog instantiation example is for the Synopsys FPGA Express system. The 
example XC3S_RAMB_1_PORT module uses the SelectRAM_A36.v Verilog template. This 
and other templates are available for download from the following Web link. The following 
example is a Verilog code snippet and will not compile as is.

• ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_verilog.zip

// Module: XC3S_RAMB_1_PORT
// Description: 18Kb Block SelectRAM-II example
// Single Port 512 x 36 bits
// Use template "SelectRAM_A36.v"
//
// Device: Spartan-3 Family
//-------------------------------------------------------------------
module XC3S_RAMB_1_PORT (CLK, SET_RESET, ENABLE, WRITE_EN, ADDRESS, DATA_IN, 
DATA_OUT);

input CLK, SET_RESET, ENABLE, WRITE_EN;
input [35:0] DATA_IN;
input [8:0] ADDRESS;
output [35:0] DATA_OUT;
wire CLK_BUFG, INV_SET_RESET;

//Use of the free inverter on SSR pin
assign INV_SET_RESET = ~SET_RESET;
// initialize block ram for simulation
// synopsys translate_off
defparam
//”Read during Write” attribute for functional simulation
U_RAMB16_S36.WRITE_MODE = “READ_FIRST”, //WRITE_FIRST(default)/ READ_FIRST/ NO_CHANGE
//Output value after configuration
U_RAMB16_S36.INIT = 36'h000000000,
//Output value if SSR active
U_RAMB16_S36.SRVAL = 36'h012345678,
//Initialize parity memory content
U_RAMB16_S36.INITP_00 =
256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_01 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
... (snip)
U_RAMB16_S36.INITP_07 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
//Initialize data memory content
U_RAMB16_S36.INIT_00 =
256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INIT_01 =
256'h0000000000000000000000000000000000000000000000000000000000000000,
... (snip)
U_RAMB16_S36.INIT_3F =
256'h0000000000000000000000000000000000000000000000000000000000000000;
// synopsys translate_on
//Instantiate the clock Buffer
BUFG U_BUFG ( .I(CLK), .O(CLK_BUFG));
//Block SelectRAM Instantiation
RAMB16_S36 U_RAMB16_S36 ( 

.DI(DATA_IN[31:0]),

.DIP(DATA_IN-PARITY[35:32]),

.ADDR(ADDRESS),

.EN(ENABLE),

.WE(WRITE_EN),

.SSR(INV_SET_RESET),

.CLK(CLK_BUFG),

.DO(DATA_OUT[31:0]),

.DOP(DATA_OUT-PARITY[35:32]));
// synthesis attribute declarations
/* synopsys attribute
WRITE_MODE "READ_FIRST"
INIT "000000000"
SRVAL "012345678"

http://www.xilinx.com
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INITP_00
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INITP_01
"0000000000000000000000000000000000000000000000000000000000000000"
... (snip)
INITP_07
"0000000000000000000000000000000000000000000000000000000000000000"
INIT_00
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INIT_01
"0000000000000000000000000000000000000000000000000000000000000000"
... (snip)
INIT_3F
"0000000000000000000000000000000000000000000000000000000000000000"
*/
endmodule

Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

04/05/03 1.0 Initial Xilinx release.

05/12/03 1.1 Updated block RAM information for the XC3S50 device. 

Updated Table 1, Figure 2, Figure 18, Figure 26, and the text 
associated with the Introduction and Block RAM Location and 
Surrounding Neighborhood sections.

Added 256x72 single-port mode to Table 2.

Updated hypertext links in Related Materials and References, 
Appendix A: VHDL Instantiation Example, and Appendix B: 
Verilog Instantiation Example.

Corrected Figure 22. DIB and ADDRB connections were swapped.

06/25/03 1.1.1 Minor editing changes.

07/23/03 1.1.2 Improved display quality for Figure 5.

http://www.xilinx.com

	Summary
	Introduction
	Block RAM Location and Surrounding Neighborhood
	Data Flows
	Signals
	Data Inputs and Outputs
	Parity Inputs and Outputs
	Address Input
	Control Inputs

	Attributes
	Number of Ports
	Memory Organization/Aspect Ratio
	Content Initialization
	Data Output Latch Initialization
	Data Output Latch Synchronous Set/Reset Value
	Read Behavior During Simultaneous Write — WRITE_MODE
	Location Constraints (LOC)

	Block RAM Operation
	RAM Contents Initialized During Configuration
	Global Set/Reset Initializes Data Output Latches Immediately After Configuration or Global Reset
	Enable Input Activates or Disables RAM
	Synchronous Set/Reset Initializes Data Output Latches
	Simultaneous Write and Synchronous Set/Reset Operations
	Read Operations Occur on Every Clock Edge When Enable is Asserted
	Write Operations Always Have Simultaneous Read Operation, Data Output Latches Affected
	General Characteristics
	Functional Compatibility with Other Xilinx FPGA Families

	Dual-Port RAM Conflicts and Resolution
	Timing Violation Conflicts
	Simultaneous Writes to Both Ports with Different Data Conflicts
	Write Mode Conflicts on Output Latches
	Conflict Resolution

	Block RAM Design Entry
	Xilinx CORE Generator System
	VHDL and Verilog Instantiation

	Block RAM Applications
	Creating Larger RAM Structures
	Block RAM as Read-Only Memory (ROM)
	FIFOs
	Storage for Embedded Processors
	Updating Block RAM/ROM Content by Directly Modifying Device Bitstream
	Two Independent Single-port RAMs Using One Block RAM
	A 256x72 Single-Port RAM Using One Block RAM
	Circular Buffers, Shift Registers, and Delay Lines
	Fast Complex State Machines and Microsequencers
	Fast, Long Counters Using RAM
	Four-Port Memory
	Content-Addressable Memory (CAM)
	Implementing Logic Functions Using Block RAM
	Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using Block RAM

	Related Materials and References
	Conclusion
	Appendix A: VHDL Instantiation Example
	Appendix B: Verilog Instantiation Example
	Revision History

