
Summary Verification is an integral part of any FPGA design project. Many older verification models are 
no longer appropriate to the new multimillion-gate FPGAs, and more modern methods must be 
brought to bear if verification is to positively affect product time to market. The methodologies 
used for designing and implementing a good verification plan are discussed in detail, in the 
context of a real-world verification case study.

Introduction FPGA verification is essential for successful time-to-market product delivery. But how do you 
know if your current verification techniques are the best choices for today’s high-density 
FPGAs? Million-gate FPGAs require designers to rethink their verification strategies. The most 
effective way to alter the validation procedure to meet today’s high gate-count requirements 
depends on the designer’s background and experience.

Traditionally, engineers who have been using FPGAs since technology’s migration from 
schematics to HDLs continue to use simulator-specific approaches to verification. The 
simulation tools are primarily used for module testing, while the lab is used for “in-system” test. 
This approach often requires the engineer to manually stimulate signals by toggling them and 
viewing the waveform responses. Since this process is time consuming, error prone, and 
difficult to repeat, designers will often spend minimal time in simulation, moving quickly to the 
lab where they can debug and modify until release. The functions implemented in million-gate 
FPGAs are far too complex to permit continued reliance on this ad hoc method.

Designers are choosing million-gate FPGAs because they are fast enough and large enough to 
handle complex designs that were previously only achievable with an ASIC. When engineers 
experienced in ASIC design move to high-density FPGAs, they take their verification 
approaches with them. Those who use a validation process featuring robust tools and a 
complete self-checking testbench environment find that hanging on to their familiar testing 
approaches now causes them to lose valuable design cycle time. ASIC designers can benefit 
from a carefully defined and executed verification plan that takes into consideration the ability to 
reprogram the FPGA. Time that was once beneficially spent in exhaustive verification of an 
ASIC at the RTL level now becomes less advantageous, and is actually costly in time-to-market 
terms for a high-density FPGA.

Throughout this paper, the term ASIC is defined as a traditional gate-array or standard-cell 
ASIC. FPGA is defined as a Field Programmable Gate Array such as a member of the Xilinx 
Virtex™ Family. Although the terms ASIC and FPGA can sometimes be used interchangeably, 
in the context of this paper they are not.

What Is 
Verification?

Verification is not synonymous with simulation. Verification is a strategy to make sure all 
aspects of the system meet the specification document, while simulation is a tool used in the 
verification effort. The basic components of verification are shown in Figure 1, page 2.
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Specification
The specification document is the foundation of the test plan. Typically, specifications for a new 
product will be introduced as "the same thing we did last time, only faster and with some added 
features." The details of what was done last time are in someone’s head and not written down 
anywhere. The specification describes the features to be implemented, under what conditions 
they occur, and what their expected output should be. This documentation should stop short of 
dictating implementation; that is left for the experience of the RTL designers. Nevertheless, a 
complete, detailed written specification is essential to meeting time to market.

Verification Plan
From the specification, the Verification Plan is developed. As the design goes through its 
various stages of evolution, the verification strategy insures Design Correctness (Functionality) 
and Design Performance (Timing). 

Designers familiar with ASIC verification approaches will realize that design size and power 
consumption are not issues with FPGAs. With an ASIC, the NRE is dependent upon the area 
of the design; with an FPGA, the designer often has the ability to increase to the next size part 
with only a minimum increase in unit cost. With an ASIC, power dissipation is often a problem 
in larger designs; with an FPGA, the FPGA vendor has already determined the maximum 
operating conditions, including power. The designers using FPGAs have fewer manufacturing-
specific details to worry about.  

Both the design and verification teams need to be working from the same thorough 
specification. RTL engineers and verification engineers share the responsibility for 
implementing the test plan. The level of test granularity (detail) is outlined at the transaction, 
protocol, interface, and timing levels. Essential functions are identified. The conditions under 
which key features come into play, and their expected responses, are described. A 
determination is made as to the number of testbenches needed, their complexity, and test 
module dependencies. 

Figure 1:  The Verification Pyramid

Verification Plan

Execution

Simulation & 
In-System Test

Overview:

Static:
Signal Integrity
Static Timing

Transaction
Protocol
Interfaces
Timing
Correct by Construction

XAPP408_01_112500

Behavorial RTL

Dynamic:

Specification
2 www.xilinx.com XAPP408 (v1.2) February 15, 2002
1-800-255-7778

http://www.xilinx.com


Rethinking Your Verification Strategies for Multimillion-Gate FPGAs
R

Testbenches are written to validate the specification, not to verify the design implementation. 
This is an important point. Any discrepancies in design implementation versus testbench 
results should be referred back to the specification for clarification. This is not a new concept, 
but it is often overlooked in the rush to produce a product. When all elements described within 
the test plan are checked off, the verification effort has been completed to the required level of 
confidence. 

To optimize the verification effort, the following list offers examples of the type of information 
you need to identify:

• External interfaces

- Stimulus and response

- Transaction level — e.g., Read versus Write operations

- Timing requirements

• HDL models available to assist in testbench development

- Packaged with proposed intellectual property (IP)

- Bus functional models

- Vendor supplied — e.g., memories

• Tools available to the project

- Simulators

- Static analysis

- Testbench tools

- Lab-based tools

- Scripting and makefiles for data management

- Computer resources adequate to do the job

• Functional interaction 

- Which internal interfaces interact, and is the interaction observable via the outside 
interfaces?

• Performance requirements — e.g., need 32-block data write @ 66 MHz with a latency of 
less than 300 as.

• Tradeoff: simulation versus in-system

Execution
As part of developing a verification strategy that best suits your design, try to break out those 
functions that are essential to simulate from those that can be tested during in-system test. The 
execution of the verification plan requires simulation and in-system test on the target PCB—the 
final stages of the pyramid.

Dynamic simulation describes what most designers visualize when they think of simulation: 
Behavioral HDL, RTL, and Gates.

• Behavioral HDL: non-synthesizeable constructs that are used as executable 
specifications and also for testbenches

• RTL: the functional logic of the design using synthesizeable constructs

• Gates: result of the synthesis and P&R process

Behavioral HDL is implemented more quickly than RTL, is easier to understand, and can be 
simulated faster. Behavioral simulation makes sure your HDL code is valid, and detects 
functional problems before synthesis. Million-gate FPGAs take a long time to simulate at the 
gate level and, depending upon the complexity of function, even at the RTL design level. 
Working out issues in pre-synthesis using a behavioral model saves project time. "What-if" 
scenarios are easily created at the behavioral level, and execution tradeoffs are more quickly 
evaluated. Testbenches should be written in behavioral-based HDL.
XAPP408 (v1.2) February 15, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com


Rethinking Your Verification Strategies for Multimillion-Gate FPGAs
R

RTL is the code that is synthesized to produce gates. The level of detail can extend down to the 
bits in registers and combinatorial gate relationships. A behavioral testbench allows the 
designer to dynamically simulate the RTL until it meets the functionality specified in the test 
plan. Once validated, the RTL is ready for synthesis.

Gates are the lowest level of abstraction, and contain the highest level of detail. The same 
behavioral testbench is used to simulate gates after synthesis and Place and Route. The 
results of the gate simulation are compared to the RTL simulation output to ensure that the 
design still meets the criteria specified in the test plan. The design team may pick a subset of 
the test cases to run at the gate level; the equivalency of the RTL and gates can only be 
guaranteed if the entire suite is run or formal verification is employed. Simulations at this level 
run much slower than at pre-synthesis; therefore, it may not be time-feasible to run the entire 
testbench suite. 

Static Analysis includes: Static Timing Analysis (STA), Formal Verification and Signal Integrity 
Analysis.

• Static Timing Analysis: at the PCB Level and the output of P&R for the FPGA only

• Formal Verification: quickly validating the design functionality at the transformation 
points, Synthesis, and P&R

• Signal Integrity Analysis: at the PCB Level

All of these techniques use mathematical approaches (i.e., no test vectors) to validate the 
functionality and timing of the finished design. 

For PCB-level Signal Integrity and Timing Analysis, Xilinx provides IBIS models that define I/O 
characteristics used by signal integrity applications, as well as STAMP models for specifying 
setup/hold times, output delay times, and timing relationships.

Static Timing analysis is used to validate the timing of the design. Each P&R of the design will 
result in its own “timing environment” which needs to be validated to ensure that the design will 
work in the system. It is imperative that the designer develop good timing constraints that 
represent the actual environment in which the FPGA will operate. These timing constraints will 
drive both the synthesis process and timing-driven P&R (if used), and will validate the FPGA 
timing using STA. The post P&R STA is often the downfall of many designs. Engineers tend to 
look only at the maximum operating frequency, but ignore the I/O timing. A functional design will 
not work if it does not meet the system-level timing constraints.

The implementation of the timing constraints is driven by the tools available. Timing constraints 
can be specified, however, independently of the tools available. An example of a written timing 
constraint specification is:

Address will be stable 4 ns before the rising edge of clock133 (setup) and 1 ns after the rising edge 
of clock133 (hold).

Clock133 is a 133 MHz clock with a 50% duty cycle.

Formal verification is considered an emerging technology and beyond the scope of this article.

In-System Test How do you decide what to simulate and what to validate at in-system test? ASIC design teams 
use the rule “If it isn’t tested, it’s broken” to guide the simulation approach of testing every 
register bit. Using HDL approaches for FPGAs allows a design team the flexibility of dividing the 
function verification tasks into traditional simulation and in-system testing. This approach will 
save valuable time by eliminating the extensive gate-level simulation of the complete regression 
suite. It is not necessary that every gate is toggled; we will explore a test case later that 
highlights a way to look at the verification problem where in-system testing is a valuable 
component. Manufacturing (ATPG) or JTAG vectors are not an issue for FPGAs because the 
silicon is already verified by the vendor. 

We are expecting to utilize the reprogrammability feature of the FGPA in the target system 
during this verification phase. At this point, it is expected that module-level partitions have been 
tested for functionality, and that module interfaces are stable and well defined. The focus of the 
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verification effort here is the transaction and protocol of the interfaces. The exhaustive external 
interface testing is done using in-system testing.

During in-system testing, designers have a distinct advantage when using FPGAs over ASICs. 
An obvious benefit is the ability to reprogram the FPGA until the desired functionality is 
achieved. Xilinx FPGAs provide an additional advantage: With ChipScope ILA, the user can 
observe internal nodes of the chip, on the PCB, while running at system speeds. For ASIC-
targeted designs, additional test structures are needed to provide this level of observability, 
often combined with scan chains for silicon validation. In addition to increased design 
complexity, the test-specific circuitry must be simulated.

Interaction of 
Verification 
Components 

Once the design’s executable specification and the testbench (both written in behavioral HDL) 
meet requirements, the design is replaced with RTL code. The RTL is then verified with the 
system-level testbenches to make sure it meets the written specification conditions. After the 
RTL is validated, it is synthesized and processed by the P&R tools. The resulting gates are 
plugged into the system verification testbenches, or into formal verification if it is available. This 
insures the tools have correctly implemented the design. In addition, generated gates are run 
through static timing analysis. This step verifies that the system-level timing is met. (Figure 2)

System integration is typically referred to as power on. This is the time when project teams 
come up with creative answers to the question, “Is it working yet?” Projects are ready for in-
system test when they have validated RTL code, have been successfully placed and routed, 
and can create a bitstream to program the FPGA on the physical PCB. At this point, it is 
expected that module-level partitions have been tested for functionality, and that module 
interfaces are stable and well defined. The design has been simulated as a chip at both RTL 
and gate levels, with the minimum functionality necessary for power on. 

Figure 2:  Interaction of the Verification Components
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Simulation of the chip is frequently not achieved by FPGA design teams when simulator-
specific approaches are used. The case study will outline why this step is important to meeting 
time to market.

Verification 
Case Study

Telecom Header Processor
To explore available verification techniques in a real situation, we developed a case study. This 
example FPGA will highlight successful approaches for verification. 

The design is an ATM statistics-gathering processor. The ATM front end captures a portion of 
the header. Once the header is captured, it is placed in a FIFO to be stored in the SDRAM data 
space via a DMA or burst function. The memory controller arbitrates between the SPARC, the 
PCI bus, and the FIFO for memory access. The PCI bus is provided to preload the type of data 
that will be accessed as well as the actual SPARC code. The PCI bus will interface to a set of 
registers targeted at the SPARC. These registers provide communication between the SPARC 
and the PCI host controller.

Although there is a defined process and order to putting together a verification strategy, there 
are design-dependent decisions to be made that may reduce the verification time and effort 
without compromising functionality. The goal is to allow insight into the verification methodology 
by creating a strategy and applying it to the test case (Figure 3).

The intended design meets the challenges facing today’s engineers. The design contains 
several pieces of IP: a SPARC, the PCI bus, and CoreGen memories. The Utopia interface and 
the SDRAM controller are original designs.  

Specification
A system-level specification (see references) was developed for the test case project. The 
specification was reviewed by the architects, design team, and verification members. Our 
philosophy is to always have an engineer other than the RTL designer write the verification 
testbench. The specification guides both the design and the verification effort. By applying two 
different teams to the task, we increase the likelihood that the design will be completed as 
specified. Once the specification has gone through a review process, we are ready for the 
verification plan.

Figure 3:  Block Diagram of Testcase
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Verification Plan

Using the specification as the baseline, a verification plan is developed (see references). The 
verification plan includes what will be tested and how. For this project, our decision process 
consists of “thinking out loud” about how to split the verification plan into simulation and PCB 
verification efforts.

Verification 
Decisions

The case study will provide insight into the verification discovery process. This section includes 
the tradeoffs made on the project while developing the verification plan. Furthermore, several 
interesting aspects of simulating and integrating the project are included.

External Interfaces
The FPGA has several external interfaces (see Figure 4): a PCI bus running at 33 MHz, an 
SDRAM interface running at 125 MHz, and the Utopia interface running at 8 MHz. The timing 
can easily be described by the devices that communicate over these interfaces to the FPGA, so 
the development of the timing constraints is straightforward. 

The transactions are identified as burst read/write, single read/write, and retry/failure modes on 
the PCI bus, as well as the handshaking signals that control the data flow on the synchronous 
Utopia interface. The SDRAM interface is synchronous, and the command is already built as a 
transaction.  

Identify HDL Models Available
IP most often arrives with its own prepackaged, HDL-based testbench, allowing the user to get 
a feel for how it works. The IP-specific testbench can be used to develop the system-level 
testbench.

Each external functional interface—PCI bus, SDRAM and Utopia interface—will have to be 
verified. We will explore several approaches to verifying individual and system-level interaction 
of these interfaces.

The incorporation of already-designed intellectual property (IP) is extremely useful in speeding 
up the development of large systems. The IP may function as a module, but the user still needs 

Figure 4:  Simulation Testbench
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to integrate it into the targeted system and validate its interfaces. IP in general reduces the 
overall verification effort, but the designer must have a trustworthy source and be careful to 
ensure that the interfaces to the IP are thoroughly validated.

Each piece of IP should be simulated, synthesized, and P&R’ed as a module. From this effort 
the design engineer will gain further insight into how the IP works, and whether the module 
testbench can be used in the system-level validation. Modifications to the design can be easily 
verified against the IP-based testbench. The post-P&R evaluation answers the question of 
whether the IP small enough and fast enough for us to consider.

One problem with IP designs, specifically free ones, is that the design often is not delivered with 
an extensive testbench. This does not mean the IP is not usable, only that the user must spend 
more time validating the IP. The SPARC IP is an example of a design provided with a weak 
testbench. 

The SPARC IP was delivered with a testbench that validated the processor’s ability to fetch and 
operate on instructions. The testbench was by no means exhaustive, but the base functionality 
was provided. The PCI bus was delivered with a complete compliance-checking testbench. The 
testbench was extensive in that it covered all operational modes of the PCI bus.

Another IP which was considered for this project was the SDRAM reference design provided by 
Xilinx. The base testbench provided stimulus only, with the data never changing. The testbench 
was designed to show the base functionality, but assumed the designer was reviewing the 
resulting waveforms to understand the design.

Tools Available to Project
This project was written in VHDL and functionally simulated in the Model Technology ModelSim 
Simulator. For static timing analysis we used TRCE, the built-in timing analyzer for Xilinx 
FPGAs. The ILA ChipScope tool was available for this project, and we will show in a later 
section how we used this tool. The design flow was managed with a combination of makefiles 
and batch scripts.

Identifying Functional Interaction and Choosing What to Simulate
Major interfaces should be tested during simulation, but to what extent? Here we outline some 
key interfaces and our decision process that derived them.

How do you choose what functions to simulate now, and what portions to validate during 
in-system testing? Simulation is essential when preparing for in-system testing; without 
validated functional interfaces, in-system testing cannot proceed. During in-system test with a 
PCB, tests can be run at speed, but basic system interfaces must be working prior to power on. 
Trade-off decisions concerning how much time to spend in simulation, and when to progress to 
in-system test, are design dependent.

Our thought process starts with these two questions: What functions and interfaces do we need 
to have up and running before in-system test can start? What are the function and interface 
dependencies? 

To debug our testcase PCB, we must be able to execute instructions on the SPARC. Before 
running code on the SPARC, we need to load instructions from the PCI bus into the SDRAM 
memory. Correct and timely operation of these functions are key to our ability to debug the 
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design at the PCB level. These interfaces must be simulated as modules and then as part of the 
system. An outline which lists test order dependencies is shown in Figure 5.  

Within the outline, the third-level indented items (numbers) are unit testbench requirements, 
whereas the top-level items (Roman numerals) are functions that must be validated to have an 
operational system.

A second part of the verification plan, described in Figure 6, lists the functions that can be 
checked at the PCB level.  

While developing the outline shown in Figure 6, we discovered an item not covered in the 
simulation outline. The SPARC needs to communicate with the PCI bus, but we didn’t identify 
that interface to be simulated. When we arrive at the PCB level, we would not be able to 
determine if the system is running, because we would have no feedback regarding its 
operation.

To remedy this problem, we add the following test to Figure 5.

Thinking through the verification plan in terms of where to put the simulation effort, and when to 
transition to in-system test, enabled us to identify an important interface before we started the 
testbench development. Identifying key interfaces is required to achieve timely validation of this 
design, both in simulation and in system.

Figure 5:  Essential Simulated Items

Figure 6:  In-System Testing

Figure 7:  Additional Simulated Items
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In-System Test Issues
No amount of simulation can make testing the physical PCB unnecessary. Each PCB design 
has it own timing variants and electrical environment. 

Power on means different things to the ASIC and FPGA design efforts. The ASIC verification 
effort doesn’t usually include in-system test of the device on the PCB, as such testing often 
occurs months after the ASIC design has been validated with simulation. For ASICs, there is a 
significant schedule lag from design to in-system test, and oftentimes the majority of the design 
team has already moved on to another project. Power-on integration for an ASIC, therefore, is 
typically started after the part is manufactured. For an FPGA, on the other hand, in-system test 
with the PCB is a critical part of the verification effort.

Several approaches can be applied to make this critical phase a success. An FPGA can (and 
will) be reprogrammed on the target PCB design. Reprogrammability is one feature of FPGAs 
that gives them an advantage over ASICs, allowing for a reduced simulation effort. A key way 
to use the target PCB is to think of it as a simulation accelerator. The effective simulation rate 
equates to about 10 Hz using a simulator, whereas a PCB system will run at the design’s 
system frequency. It is possible to run many more effective clock cycles on the PCB then in 
simulation. This fact has led to the ad hoc simulation approaches used by FPGA designers in 
the past, but this does not work well with today’s multimillion-gate designs. Simulation is 
necessary before the design is moved into the PCB phase.

Embedded processors provide the designer with increased functionality and product growth, 
but present unique problems when embedded into an FPGA. When designing with a chip-level 
embedded processor, the design team will often have an ICE-based debug environment which 
often requires access to the chip’s pins or JTAG port. With a processor core embedded into an 
FPGA, the design team may not have the observability or the accessibility necessary for an ICE 
debugging tool, and new approaches will have to be explored. 

Xilinx ChipScope ILA
In the past, FPGA engineers often pinned out critical internal signals so they could be viewed 
on a logic analyzer. This approach was workable until FPGA densities went over 100,000 
gates. Now, with FPGAs exceeding 1 million gates, such specially pinned-out signals are 
simply not enough. 

Xilinx has added a new tool, ChipScope ILA, to assist engineers working at the PCB level. It is 
a module that is compiled into the design, then hooked up to an HP Logic Analyzer. ChipScope 
gives you visibility into the design with up to 2048 signals. It has a very intelligent triggering 
mechanism, which will allow engineers the ability to fine-tune the signal and time of interest.

Summary
The key to developing the verification plan is to be complete and straightforward. The timeframe 
in which to develop the verification plan is after the specification is finished but before real 
design work has started. The verification plan will provide insight into the effort involved in 
simulating and validating the design. The verification plan often will have impact on the system 
specification. There may be cases where changing the system will make verification easier, and 
that will often result in a more timely delivery of the product.

Testbench 
Development

Creating a Valuable System-Level Testbench
Every design has performance goals. One of the criteria of a good system-level testbench is 
whether it assists the design team in assessing attainment of the design’s performance goals. 
Not only should the system-level testbench exercise each interface; it should also operate the 
device as it was intended to be used. Performance goals are stated in terms of operating 
frequency, throughput, and latency. A good verification plan will allow the design team to 
explore these issues with a variety of tools. The system approach often presents a problem to 
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design teams who are accustomed to doing only module-level and rudimentary system 
validation.

Verification is the most active component of EDA today. Emerging technologies include formal 
verification and new testbench-specific languages like Vera and Specman "e". Many tools have 
been developed to aid the designer in module-level testbenches such as ILE Testbencher. We 
will not discuss emerging technologies in this paper, but instead focus on what engineers can 
do today with the tools they currently own.

This project was expected to leverage many pieces of IP. Each piece of IP had a testbench 
which may have some value at the system level. We evaluated each IP and its testbench in 
terms of its usability at the system level.

Testbench Evaluations
The SPARC testbench, as indicated previously, is rudimentary. Given that none of the SPARC 
process pins were going to be accessible in this FPGA, the testbench was not a good candidate 
as the basis for the system level testbench. Furthermore, processor code is always difficult to 
write when targeting a simulation environment. The code needs to be compact and quick-
running. If an RTOS is being used in the real system, this code cannot be expected to be run 
during simulation, and an approximation needs to be developed. The problem is that whenever 
an approximation is made, resolution to the real system is lost. In this project, the code only 
needed to execute an infinite loop testing a register bit. When the bit changed, the SPARC 
jumped to the value provided by a register. With the code used for hardware validation so 
simple, we chose to rely on the IP-developed testbench for any modification we made to the 
SPARC.

A reference design provided by Xilinx for the SDRAM controller was reviewed by the team. This 
design provided a working SDRAM controller, but was unsuitable for our design. The Micron 
SDRAM memory models were used from this reference design for our system level testbench. 

The PCI testbench was provided with the PCI core. Since the PCI bus testbench bolted onto 
the external interface of the FPGA design, it was used as the basis for the system-level 
testbench. The PCI testbench is used for compliance checking, but further review indicated that 
it could easily be extended to support functional testing. Because of the clean and extensible 
design, we based our system-level testbench on the PCI framework. The PCI interface 
controlled the operation of the FPGA and therefore was the logical choice as the central point 
of control.

The Utopia I testbench and interface is an original design. This interface had to follow the 
specification for Utopia I (available at http://www.atmforum.com).

A wrapper was developed which instantiated the PCI testbench, the Micron SDRAM memory 
models, the Utopia I testbench, and the FPGA. The Utopia I and the PCI testbench 
communicate with each other to synchronize events. The PCI bus reads the SDRAM to validate 
(self-check) that the expected data has arrived at its destination.

PCB In-System Testing Using ChipScope
The FPGA design depends upon Utopia headers being stripped off and placed into a FIFO. 
The FIFO signals the SDRAM controller to place the data into the SDRAM. The SPARC 
processor sets up a register with the starting point of the data location. Once the data has been 
moved, it is the responsibility of the SPARC processor to process all the data or move the 
pointer to a new location. During simulation, the system was never validated at the full data 
rate, as this would have taken many thousands of simulation cycles. 

It was discovered that the design was not processing all the headers. Using the ChipScope 
package, we could set up trap points on the pointer register being updated, and review the 
SDRAM controller-processed data from the Utopia FIFO. With this information, it could be 
easily shown that the SPARC was not moving the pointer quickly enough to support the 
maximum data rate. Either the SPARC code needed modification or the hardware needed to be 
XAPP408 (v1.2) February 15, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://www.atmforum.com


Rethinking Your Verification Strategies for Multimillion-Gate FPGAs
R

changed to support automatic address incrementing. Without ChipScope, it would have taken 
much more time to discover a workable solution.

Reaching the 
Top of the 
Pyramid

A verification strategy combining simulation, static analysis, and in-system testing is key to 
success with high-density FPGAs. The engineer is bombarded with many different choices for 
verification of a design. To meet time-to-market pressures, designers need to leverage multiple 
approaches.

The productivity gained with a good verification strategy for FPGAs includes:

• Buy-in of team members that ensures they are working from the same set of requirements 
and understand the interaction at the various levels of abstraction

• Misinterpretations of the specification are caught early on in the verification planning 
phase

• Confidence that RTL and gate-level simulation is catching design flaws

• Working more efficiently at the RTL level by focusing on the "must-simulate" features of 
the design necessary for in-system test, instead on trying to toggle every register bit

• Validating interface timing and functionality with the post-P&R gates so that the designer 
only needs to simulate a subset of the full RTL test suite

• A reduction of the simulation scope at each detailed level of abstraction, meaning gates 
(lowest level of detail) are simulated less then RTL

• Applying the simulation environment to aid in the debug during in-system testing

• Designers are prepared for in-system test instead of reacting to it

• Using the reprogrammability of the FPGA instead of exploiting it—minimizing the 
thrashing: e.g., Change RTL → Synthesis → P&R → In-System Test

References For more information, or for assistance in fulfilling your multimillion-gate FPGA design needs, 
contact Thomas Tessier, directly via e-mail: tomt@hdl-design.com. The full application note 
can be found on our website http://www.hdl-design.com, and on the Xilinx website at 
http://www.xilinx.com.

See Xilinx Design Guide to FPGAs at:

http://support.xilinx.com/support/sw_manuals/3_li/download/gensim.zip

Xcell Articles:

Xilinx: Using IBIS Specifications (Xcell Journal 27 article, Q1 98) available at: 
http://www.xilinx.com/xcell/xl27/xl27_10b.pdf

Xilinx: FPGA-on-Board Timing Verification Using Tau (Xcell Issue 33 Quarterly Journal, 
Q3 99) available at: http://www.xilinx.com/xcell/xl33/xl33_54.pdf

Xilinx: On-Chip, Real-Time Logic Analysis with ChipScope ILA (Xcell Journal 36, Q2 00) 
available at: http://www.xilinx.com/xcell/xl36/xl36_19.pdf

Xilinx: Special section on verification (Xcell Journal 29, Q3 98) available at: 
http://www.xilinx.com/xcell/xcell29.htm#verify

Books:

Janick Bergeron, Writing Testbenches: Functional Verification of HDL Models. Kluwer 
Academic Publishers
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Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

10/15/00 1.0 Initial Xilinx release.

11/22/00 1.1 Updated and edited to current format standards

02/15/02 1.2 Updated to include disclaimer.
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