
Summary Linear Feedback Shift Registers (LFSRs) are commonly used in applications where pseudo-
random bit streams are required. LFSRs are the functional building blocks of circuits like the 
pseudo-random noise (PN) code generator (XAPP211) and Gold code generators (XAPP217) 
commonly used in Code Division Multiple Access (CDMA) systems. This application note 
describes two implementations of an LFSR using the SRL16 (Shift Register Look-Up Table) 
primitive for area-efficient designs. The first LFSR implementation describes the parallel output 
access and parity calculation; the second describes the multi-cycle output access and 
sequential parity calculation. This application note covers the Virtex™ series, the Virtex-II 
series and the Spartan™-II family of devices. 

Introduction LFSRs can be used for performance-critical binary counters used to generate sequences of 
random numbers. LFSRs will often satisfy this requirement, although the generated sequence 
is pseudo-random in nature. Pseudo-random patterns repeat over time; the longer the LFSR, 
however, the longer the sequence of random numbers before pattern repetition occurs.

When longer sequences are desired, the physical size of the hardware is increased. 
Conventionally, in the older FPGA architectures, flip-flops would be used. With two flip-flops in 
each of the older-architecture CLBs, an n-bit LFSR will take up at least n/2 CLBs. In the Virtex, 
Virtex-E, Virtex-EM, Virtex-II, and Spartan-II architectures, a four-input LUT can also function 
as a 16-bit shift register with a single output accessed by the LUT’s address lines. This 16-bit 
shift register function can be accessed using the SRL16 primitive. An LFSR implemented using 
these SRL16 primitives reduces FPGA resource utilization compared to implementations using 
flip-flops.

Linear 
Feedback Shift 
Registers

LFSRs sequence through 2N –1 states, where N is the number of flip-flops in the LFSR. At each 
clock edge, the contents of the flip-flops are shifted right by one position. There is a feedback 
path from predefined flip-flops to the leftmost flip-flop through an exclusive-NOR (XNOR) or an 
exclusive-OR (XOR) gate. A value of all "1’s" is illegal in the case of an XNOR feedback, and a 
value of all "0's" is illegal for XOR feedback. The illegal state causes the counter to remain in its 
present state, locking out any further new values from being registered. 

Because of the pseudo-random nature of LFSRs, they are used as basic functional blocks in 
Gold code generators (Figure 1). The feedback taps are predefined mathematically to assure 
that the LFSR shifts through the maximum number of possible values. The taps for up to 
168 bits are detailed in XAPP210 (Table 1). The following section discusses some of these 
basic concepts in detail. 
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Figure 1:  Gold Code Generator Using LFSRs

LFSR 1
Length N

LFSR 2
Length N

PN Code Out

X220_01_010101
XAPP220 (v1.1) January 11, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. 
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp210.pdf
http://www.xilinx.com/xapp/xapp211.pdf
http://www.xilinx.com/xapp/xapp217.pdf
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


LFSRs as Functional Blocks in Wireless Applications
R

LFSR 
Terminology

LFSRs sequence through (2N − 1) states, where N is the number of registers in the LFSR. The 
contents of the registers are shifted right by one position at each clock cycle. The feedback 
from predefined registers or taps to the leftmost register are XORed together.

LFSRs have several variables:

• The number of stages in the shift register

• The number of taps in the feedback path

• The position of each tap in the shift register stage

• The initial starting condition of the shift register, often referred to as the FILL state

NOTE: In the case of LFSRs with an XOR feedback, the FILL value must be non-zero to avoid the 
LFSR locking up in the next state.

Shift Register Length (N )
The shift register length is often referred to as the degree, and the longer the shift register, the 
longer the duration of the PN sequence before it repeats. For a shift register of fixed length N, 
the number and duration of the sequences it can generate are determined by the number and 
position of taps used to generate the parity feedback bit. 

Shift Register Taps
The combination of taps and their location is often referred to as a polynomial, and expressed 
as:

P(x) = X 7 + X 3 + 1 

Various conventions are used to map the polynomial terms to register stages in the shift 
register implementation. The convention used in this application note is consistent with the 
convention used in the CDMA UMTS specification.

In the polynomial P(x) = X 7 + X 3 + 1, the trailing "1" represents X 0, which is the output of the 
last stage of the shift register. X 3 is the output of register stage 3 and X 7 the output of the XOR.

A few points to note about LFSRs and the polynomial used to describe them:

• The last tap of the shift register is the leading "1" and is always used in the shift register 
feedback path. 

• The length of the shift register can be deduced from the exponent of the highest order 
term in the polynomial.

• The highest order term of the polynomial is the signal connecting the final XOR output to 
the shift register input. It does not feed back into the parity calculation along with the other 
taps identified in the polynomial.

LFSR Implementation
There are two implementation styles of LFSRs, Galois implementation and Fibonacci 
implementation.

Galois Implementation

As shown in Figure 2, the data flow is from left to right and the feedback path is from right to left. 
The polynomial increments from left to right with X 0 term (the "1" in the polynomial) as the first 
term. This is referred to as a Tap polynomial, as it indicates which taps are to be fed back from 
the shift register. Since the XOR gate is in the shift register path, the Galois implementation is 
also known as an in-line or modular type (M-type) LFSR.
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Fibonacci Implementation

In Figure 3, the data flow is from left to right and the feedback path is from right to left, similar 
to the Galois implementation. However, the Fibonacci implementation polynomial decrements 
from left to right with X 0 as the last term in the polynomial. This polynomial is referred to as a 
Reciprocal Tap polynomial and the feedback taps are incrementally annotated from right to left 
along the shift register. Since the XOR gate is in the feedback path, the Fibonacci 
implementation is also known as an out-of-line or simple type (S-type) LFSR.

Maximal Length Sequences (L)
A maximal length sequence for a shift register of length N is referred to as an m-sequence, and 
is defined as: 

L = 2N − 1

An eight-stage LFSR, for example, will have a set of m-sequences of length 255.

Shift Register 
LUT Mode for 
Area-Efficient 
LFSRs 

With the SRL16 primitive, it is possible to implement an n-bit LFSR in a fraction of the space 
used by a flip-flop design. A 16-bit LFSR would take up at least eight slices using flip-flops, 
since there are just two flip-flops per slice. The same 16-bit LFSR can be implemented in just 
four slices when using the SRL16s. Virtex-II devices have a new macro, SRLC16 in addition to 
the SRL16/E. Two outputs of the SRLC16 can be accessed simultaneously. One output is 
determined by the value of the 4-bit address line (i.e., A[3] − A[0]) and the other output is the 
cascadable output (the 16th bit of the shift register.) 

Figure 2:  Galois Implementation
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In Virtex devices, only a single tap or output of the SRL16s can be accessed at a time. The 
SRL16 output to be accessed is determined by the value of the 4-bit address line A[3] – A[0]. 
The SRL16 primitive will shift data on every clock cycle. A second primitive (SRL16E) provides 
the same shift register functionality, but adds a shift register Clock Enable.

Both the SRL16 and SRL16E implement area-efficient shift registers in one LUT. It is worth 
noting, however, that parallel access to multiple taps is not possible, as the primitives have only 
one data output pin. Thus, for every single output that must be accessed, another SRL16 must 
be created if that output is in the same 16-bit set as the other. Because the number of taps 
rarely exceeds four, creating multiple instances of the SRL16 primitive is not a concern.

It should be noted that because flip-flop based LFSRs will only consume as many flip-flops as 
there are stages in the shift register, the size at which it becomes more area efficient to use flip-
flops is less than or equal to eight.

To overcome the loss of parallel access, the following two approaches are reviewed.

Multiple Shift Registers with Parallel Tap Access and Parity Calculation
Figure 4 demonstrates a 16-stage LFSR with four selectable tap points designed with four 
SRL16 primitives. An additional 4-input LUT is used to implement a parallel XOR parity 
calculation (Figure 5) that is fed back into the shift register as the new bit in the sequence. 
Tap D is the last stage in the shift register and so represents the LFSR output. This circuit is 
clocked at a frequency known as the chip rate.  

Figure 4:  Parity Calculation
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Single Shift Register with Multicycle Tap Access and Sequential Parity 
Calculation
Figure 6 demonstrates how a single SRL16E primitive, with some additional logic, implements 
a 16-stage shift register that is clocked at a frequency called the chip rate. The SRL16 primitive 
address lines are multiplexed at four times the chip rate allowing four of the 16 shift register taps 
to be accessed during one chip rate period.

The status of each accessed tap is input to a single XOR gate whose output is registered by a 
flip-flop also clocked at four times the chip rate. During one chip rate period, four taps are read 
and sequentially XORed to create the parity calculation. The final XOR state is available to the 
input of the shift register at the chip rate. This circuit enables any four of the sixteen shift 
register taps to be read, XORed together, and presented to the input of the shift register at the 
chip rate. 

Accessing the shift register taps over multiple cycles enables parallel access to four of the shift 
register taps at the chip rate. The multicycle clock rate should be twice the chip rate if only two 
taps are required. 

To access an odd number of taps during one chip rate period, the multicycle clock can be a 
binary-power-of-two multiple of the chip rate. 

Multi-cycle clock frequency = chip rate × 2N (where N is an integer)

Figure 5:  Four Tap Parallel LFSR
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The FDRE flip-flop can be clock enabled for only as many clock cycles as there are taps to be 
accessed during the chip rate period. For example, to implement a polynomial with three 
feedback taps, the FDRE could be clocked with a 4× chip rate clock, and only clock enabled for 
three of the cycles.

• One SRL16 implements 16-stage shift register 

• Selected taps are multiplexed to the output at 4× shift register clock rate 

• LUT-based XOR implements a time-shared parity generator  

Fill State
The fill state is defined as that point in a maximal length sequence at which the LFSR will start 
generating the subsequent states of that sequence. The fill is required to be completed in one 
cycle of the chip rate. With a parallel shift register, this requirement is easy to satisfy. It requires 
that each flip-flop in the chain be preceded by a multiplexer that can select between loading 
parallel FILL data or the shift-out data from the previous flip-flop. To implement an LFSR with 
this capability using flip-flops requires a 2:1 multiplexer at the input of every flip-flop. This 
means every shift register stage requires a LUT and flip-flop pair. 

The SRL16 primitive is not a parallel-load shift register, but a solution to the parallel load 
problem comes through observing exactly what is happening during the last N chip periods of 
an N-stage LFSR prior to the FILL transition. 

Consider an eight-stage LFSR that has just reached a condition where it is eight chip rate clock 
cycles away from a FILL transition. During these last eight clock cycles, the contents of the shift 
register are shifted out as the last eight states of the sequence prior to the FILL signal. Also 
during this eight-cycle period, the XOR feedback path will be generating eight new bits to inject 
into the shift register as the next eight bits of the sequence. 

Figure 6:  Multicycle Tap Access and Sequential Parity Calculation
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However, the eight feedback bits calculated during the last eight cycles of the current sequence 
will not be shifted out as part of the sequence because they will be overwritten by the FILL bits. 
So rather than shift these eight feedback bits into the shift register, the eight clock cycles 
preceding the FILL command can be used to serially shift in the eight bits of new FILL data. 

This enables the SRL16 primitive to be used in LFSR applications where the LFSR has to be 
parallel loaded in one cycle of the chip rate clock. Note that this implementation is only 
applicable to instances where an occurrence of the FILL command can be predicted. 

Implementing the serial load is achieved with a 2:1 multiplexer that routes either feedback data 
or new FILL data into the shift register at the chip rate. The multiplexer select line should be 
pulled high N chip rate clock cycles before the last sequence. This multiplexer arrangement is 
shown in Figure 7.

HDL Code 
Implementation 
of LFSRs

LFSRs with Parallel Tap Access and Parity Calculation 
One method of creating an LFSR is creating multiple parallel SRL16s for each tap. The different 
outputs are then XNORed simultaneously using a single LUT and the output is then fedback 
into each SRL16. Examples of a 16-bit LFSR implemented using the SRL16 primitives in both 
VHDL and Verilog are available (xapp220.zip). It is important to note that this code infers the 
SRL16 primitives, and thus is portable to any architecture. Because these SRL16s are inferred, 
they cannot be initialized to a known state on power-up (other than all zeros), nor can the shift 
registers be dynamically changed to a different length by altering the address lines. In this 
design, a single bit 2:1 multiplexer is inserted in order to enable the user to shift in the initial 
sequence.

This implementation can be cascaded in order to implement larger designs. It is important to 
note that a LFSR which is more than twice as long will not necessarily use twice as many 
SRL16s. For example, a 32-bit LFSR which has bus taps on bits 32, 22, 2, and 1 will not use 

Figure 7:  16-bit, 4-tap Parallel LFSR

SRLE16

DIN

Addr QOUT

SRLE16

0

1

SRLE16

SRLE16

Fill

Fill_En

clock

X220_07_091100
XAPP220 (v1.1) January 11, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp220.zip


LFSRs as Functional Blocks in Wireless Applications
R

eight SRL16s even though the 16-bit implementation uses four as shown in Figure 7. In the 32-
bit LFSR it will only use five SRL16s (Figure 8). Likewise a 64-bit LFSR will not use ten 
SRL16s, it will only use seven. Thus the marginal cost of using SRL16s to implement LFSRs 
decreases with the size of the LFSR and the location of the taps.  

The code has been tested on the following synthesis tools:

• FPGA Express 3.4

• Synplicity 6.0

• Leonardo Spectrum 2000a2.7s

FPGA Express

FPGA Express may not infer an SRL16 when the length of the shift register is two or less. Thus 
a tap on the first or second bit will be implemented using two flip-flops. When a tap on a shift 
register follows immediately after another tap, the tool will use a flip-flop instead of creating 
another SRL16 unless the Preserve Hierarchy option is checked.

Synplicity

As in FPGA Express, Synplicity may not infer an SRL16 when the length of the shift register is 
two or less.

Leonardo Spectrum

Leonardo Spectrum by default will not merge two SRL16s into a single slice, even if they share 
a common input and clock. In order to get this feature disabled, set the following environment 
variable to false:

set virtex_map_srl_pack FALSE

When a tap on a shift register follows immediately after another tap, the tool will use a flip-flop 
instead of creating another SRL16 unless the Preserve Hierarchy option is checked.

Figure 8:  32-bit, 4-tap Parallel LFSR
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LFSRs with Multi-cycle Tap Access and Sequential Parity Calculation
A second method of creating an LFSR uses a single SRL16E, gaining access to the different 
taps by changing the address lines on the LUT that implements the SRL16E. An example of a 
16-bit LFSR implemented in VHDL and Verilog is available (xapp220.zip). In this case, the 
output will be delayed by the number of taps needed to implement it. As shown in Figure 9, the 
output is produced on every rising edge of the chip rate clock, but the SRL16 and the output flip-
flop are actually clocked at an increased clock rate—four times the chip rate for 4-tap LFSRs, 
and twice the chip rate for 2-tap LFSRs. The individual taps are then XNORed serially using the 
single output flip-flop. Note that during the last increased chip rate clock cycle, this flip-flop is 
synchronously reset to prepare it for the next increased clock cycle parity calculation.

This method of implementation may use fewer resources in certain extremely long LFSRs; 
however, for shorter length LFSRs, the parallel LFSR implementation requires fewer resources. 
In the multicycle implementation, the SRL16E primitives have to be instantiated, since the 
synthesis tools cannot infer a dynamically changing output on the SRL16E.  

HDL Code
The reference design was written in both VHDL and Verilog HDL. The files are available on the 
Xilinx web site at xapp220.zip or xapp220.tar.gz. The code was tested to work with current 
versions of Express, Exemplar, and Synplify. For both VHDL and Verilog code, the design is in 
two hierarchical levels. This makes the code readable and produces more efficient debugging 
and verification. 

In the reference design, SRL16/E components were inferred to achieve the most efficient 
implementation results. The XCV50E-8 was the targeted device. The SRL16 is a shift register 
LUT with four inputs to select the length of the output signal. The SRL16 component can be 
instantiated in code, but doing so limits the ability to quickly modify the functionality. 

To ensure that the SRL component is inferred, follow the required syntax. Synthesis tools 
recognize this syntax and infer the SRL16 component for Virtex series FPGAs. If for any reason 
the code is written differently, the output netlist (written by the Synthesis tool) should be 
checked to verify the presence of the SRL16 components. An example of the syntax that will 
correctly infer the SRL16 component is available on the Xilinx website at 
http://www.xilinx.com/techdocs/7822.htm. For readability, each LFSR implementation is in a 
separate block. If there are any problems after following the syntax in the above-listed solution, 
contact Xilinx Technical Support at http://support.xilinx.com.

Figure 9:  Multicycle Tap Access LFSR
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The code was simulated on MTI’s Modelsim simulator using the TCL interface; therefore, no 
testbench was used. On a simulator supporting stimulus using HDL code only, create the 
testbench (HDL) file to verify functionality.

The code has been tested on the following synthesis tools:

• FPGA Express 3.4

• Synplicity 6.0

• Leonardo Spectrum 2001a2.75

This implementation can also be cascaded to implement longer shift register sequences. 
Table 1 summarizes the utilization for each synthesis tool. 

Conclusion Efficient LFSRs can be designed using the Virtex, Virtex-E, Virtex-EM, Virtex-II, and Spartan-
II device architectural features like the Shift Register LUTs (SRL16). The FPGA resource 
saving becomes evident in applications like pseudo-random noise (PN) code generators and 
Gold code generators used in Code Division Multiple Access (CDMA) systems. The LFSRs are 
the basic functional blocks in these generators. For example, a 41-stage, two-tap Gold code 
generator can be implemented in just 5.5 Virtex slices.

The example given in this document creates a 41-stage Gold code generator. Each LFSR is a 
41-stage, two-tap LFSR implemented using SRL16s. 

Revision 
History

The following table shows the revision history for this document.  

Table  1:  Utilization Summary (Appendix A Code 16 bit length LFSR)

Tool
Synopsys 

FPGA Express v3.4
Synplicity 

Synplify 6.0
Exemplar Leonardo 
Spectrum 2001a2.75

Slices 4 4 3

LUTs 2 2 2

SRL16s 3 3 4

Flip-flops 2 2 0

Date Version Revision

12/11/00 1.0 Initial Xilinx release.

01/11/01 1.1 Added Virtex-II information.
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