
Summary
Flexible CAMs (Content Addressable Memory) are implemented in Virtex™ family devices by taking advantage of the
reprogrammability of the basic LUT as a Shift Register (SRL16) or as a SelectRAM+ memory and the fast carry logic
chain. Although CAMs are also feasible in Spartan and XC4000X devices, this application note concentrates on Virtex™
and Virtex™-E devices. The flexibility of Virtex devices is a key advantage in designing a CAM, with the application
determining the best implementation. As an overview, this application note references XAPP202 “CAM Designs in ATM
Applications”, XAPP203 “Designing Flexible, Fast CAMs with Virtex Family FPGAs”, and XAPP204 “Using Virtex Block
SelectRAM+ for High Performance Read/Write CAMs”.

Xilinx Family
Virtex and Virtex-E FPGAs

Introduction
A Content Addressable Memory is a storage array
designed to quickly find the location of a particular stored
value. By comparing the input against the data in memory,
a CAM determines if an input value matches one or more
values stored in the array. If the comparison is done simul-
taneously, the CAM is said to be performing at maximum
efficiency. If a match exists, it is found in a single clock
cycle.

Similar to a RAM, a CAM stores words in an array. The
CAM write mode is comparable to a RAM, but the CAM
read mode is different. In a RAM, the word in a specific
location is read by the address. In a CAM, the data on the
input is looking for a match. When a match is found, the
output is the address in the array.

The number of address lines limits a RAMs data size. In a
typical example, a 10-bit bus addresses 1024 locations of
8-bit data. A CAM does not have this limitation because it
does not use an address bus to read a location. To find a
match of an 8-bit value in 1024 locations, an 8-bit bus on
the input is required. When the data is found in the CAM, a
match signal goes active. The output is the matching data
address. Because a CAM does not need address lines to
find data (read mode), the memory size can be easily
expanded. The width is determined by the storage and
comparator size. Figure 1 compares a RAM and a CAM in
read mode.

The basic core of a CAM has a storage location and a com-
parator between the storage location value and the input
data. This application note describes the different ways to
design a basic core optimized for either speed, density, or
both.

Typical CAM applications
CAMs are used in telecommunications, networking, Ether-
net, ATM switches, and diverse protocol applications. To
determine the correct CAM implementation for a particular
application, the following should be investigated.

• Word Size (width)
• Number of Words (depth)
• Match or Compare time (read)
• Significance of Write Speed
• Clock Frequency
• Masks and Outputs

Virtex family devices offer the advantage of flexible
approaches to designing an optimal CAM. There is not a
specific CAM type appropriate for all typical CAM applica-
tions. Flexible approaches can address an optimal trade-off
between speed and internal device area.

0

An Overview of Multiple CAM
Designs in Virtex Family Devices

XAPP 201, Septermber 23, 1999 (Version 1.1) 0 8* Application Note: Jean-Louis Brelet

R

Add[9:0] DOUT[7:0]
8 x 1024

RAM

Read Mode

8 x 1024

CAM

Read Modex201_01_081799

DIN[7:0]
Add[9:0]

Match

Figure 1: Simple RAM and CAM compared

APPLICATION NOTE
XAPP 201, Septermber 23, 1999 (Version 1.1) www.xilinx.com 1
1-800-255-7778

R

XAPP201: CAM Overview
CAM Overview
An AND gate with an optional inverter on each input is a
comparator. Each 4-input LUT is a 4-bit comparator. The
LUT and the dedicated carry chains can be used for
designing wide AND gates. An 8-input wide AND with an
optional inverter on each input is a comparator between
8-bit data and pre-encoded data. The output of the fast
carry chain is the result of the comparison (output of the
wide AND gate). An array of 16 AND gates represents a
CAM of 16 words (depth) by eight bits (width), see Figure 2.
Taking advantage of the high-performance routing capabil-
ities, the data bus distributes data to each AND gate and
the comparison is run concurrently in only one clock cycle.
By using reprogrammable LUTs to implement each 4-input
AND gate, the AND gate becomes a basic 4-bit storage ele-
ment or CAM. This concept is also applicable to the true
Dual Read/Write Port™ feature of Virtex 4K-bit Block
SelectRAM+ memory to pre-decode 16 words of eight bits
in each block. As with a LUT solution, Block SelectRAM+
memory is cascadable to implement larger CAMs.

CAM designs in Virtex devices
Three CAM designs are briefly compared in this application
note. These designs are described in detaill in separate
application notes with accompanying HDL reference
designs. The designs are based on Virtex-specific device
features including fast dedicated carry chains, distributed
RAM, built-in shift registers (SRL16E) and Virtex Block
SelectRAM+ memory.

Basically, there are three different ways to implement a
CAM in Virtex devices.

• A design with single cycle read but with slow write
access (16 clock cycles) - XAPP203

• A design optimized for large width and depth but with
slow read access (16 clock cycles) - XAPP202

• A design with a single clock read and write but limited to
an 8- bit data width per Block SelectRAM+ memory -
XAPP 204

Basic CAM design
A read-only CAM is equivalent to a decoder (an AND gate
with inverted or non-inverted inputs) for each word to com-
pare. Figure 2 is a basic read-only CAM. The carry logic is
used to implement the wide OR gates or AND gates in the
Virtex CLBs.

Because the Virtex family devices are SRAM based and
the Virtex LUT is programmable as distributed SelectRAM+
or Shift Register SRL16E, the decoder can be re-config-
ured. The re-configuration is the CAM write operation. One
Virtex LUT stores four bits and is a 4-bit comparator at the
same time. Figure 3 is a comparator in a Virtex slice.

The word width is expandable with a minor timing penalty
(each four bits add a one MUXCY delay). The depth is also
expandable, since the number of simultaneous compari-
sons is flexible in Virtex devices. Figure 4 details a CAM
with 8-bit words matched. A LUT configured as a Shift Reg-
ister SRL16E is used in Virtex designs to store and com-
pare each CAM word. A LUT configured as a SelectRAM+
memory is used in either Virtex, XC4000X, or Spartan fam-
ilies.

x201_02_081699

D Q

CLK

FF

MATCH_SIGNAL

2 x LUTs

1 CAM Word
or "DECODER"

Compare 8-bit Word

VALUE =
"1010 0101"

DATA_IN

1 CAM Word

0

16 simultaneous Comparisons

CAM 16-word x 8-bit

DATA_IN

Depth =
16 Words

8

16

6

16

16

5

4

3

2

1

D Q

CLK

FF

MATCH_SIGNAL

Binary Address if Matched

1

2

3

4

5

6

8

8

8

8

8

88

Figure 2: Basic READ only 8-bit word CAM
2 www.xilinx.com XAPP 201, Septermber 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP201: CAM Overview
CAM implementations

Definitions

The CAM basic unit is a storage element (x-bits wide) and
an input value comparator.

Read efficiency is measured as the number of bits per LUT
per cycle. The largest value is the most efficient in terms of
performance. The fastest CAM detects a match or absence
of a match in one clock cycle.

A CAM “nb_word” x “nb_bit” represents a “nb_bit” bits width
and a “nb_word” words depth.

Design Examples
Table 1 lists design examples of various CAM sizes and
performance specifications. Some of the largest CAM
examples are a useful indicator of the breadth of the Virtex
architecture. The following descriptions of each reference
design help determine the best solution for specific CAM
requirements. Implementation results can be optimized
when the CAM is instantiated in the user design, showing
the percentage of slices used in a Virtex device.

A[0:3]

A[0:3]

Q

LUT

Q

LUT

SRL16

SRL16

4

4

8DATA_IN

 D Q

"1"

Muxcy

Muxcy

CLK

Wide AND

MATCH_SIGNAL

1 VIRTEX Slice

Reconfigurable 8-bit Word Comparator

x201_03_081099

Figure 3: Comparator from a Virtex Slice

8 8-bit WORD 0
"1011 0011"

8-bit WORD 1
"0000 0000"

8-bit WORD 2
"1010 0101"

8-bit WORD 3
"0000 0000"

0

0

1

0

MATCH_BUS

(Bit 0)

(Bit 3)

(Bit 2)

(Bit 1)

CAM Depth

8

8

8

8DATA_IN
"1010 0101"

DATA_IN is found in the WORD 2

x201_04_080599

Figure 4: 8-bit CAM words matched
XAPP 201, Septermber 23, 1999 (Version 1.1) www.xilinx.com 3
1-800-255-7778

R

XAPP201: CAM Overview
Table 1: Virtex Family Reference Design Comparison

SRL16 design

Fast match CAM in SRL16 primitives (one read per clock
cycle) - Application Note XAPP203. A typical application is
a protocol selection.

• Implementation = four bits per LUT (SRL16E or
distributed SelectRAM memory + MUXCY)

• Speed = 115 MHz for read and write and over 133 MHz
access time (Match)

• Read = one clock cycle
• Write = 16 clock cycles
• Efficiency = four bits/LUT/cycle (Read)

Application examples include address decoders/encoders
and control logic.

- XCV50 implementation = CAM 32 x 16, (26% of the
slices), 86 LUTs, 128 shift registers (or LUTs), and
43 slice registers

- XCV300 implementation = CAM 128 x 40, (49% of
the slices), 313 LUTs, 1,280 shift registers (or
LUTs), and 141 slice registers

- XCV400 implementation = CAM 256 x 24 (42% of
the slices), 585 LUTs, 1,536 shift registers (or
LUTs), and 270 slice registers

The basic element is a LUT. It stores four encoded bits,
allowing direct comparison to the input data. All LUT out-
puts for each bit of the word are AND-wired in the Virtex
carry logic chain. Extra control logic and counters are used
to write to the LUT.

This design is described in Application Note XAPP203 and
an HDL reference design is available.

Note: If a dynamic mask is required, the implementation is
two bits per LUT. A pre-defined mask at write time main-
tains four bits per LUT.

CAM for ATM

Optimized CAM (16 reads per clock cycle) - Application
Note XAPP202. ATM applications require large CAM and
may be able to compromise on several clock cycles to find
a match.

• Implementation = 10 bits per LUT
(Distributed RAM + LUT + MUXCY)

• Speed = 80 MHz
• Read = 16 clock cycles
• Write = one clock cycle
• Efficiency = 0.63 Bits/LUT/cycle (Read)

Application examples:

- XCV50 implementation = CAM 256 x16 (33% of the
slices), 224 LUTs, 256 RAM16x1 (or LUTs), and 46
slice registers.

- XCV400 implementation = CAM 4096 x 16 (83% of
the slices), 3,298 LUTs, 4096 RAM 16 x 1 (or LUTs),
and 261 slice registers.

A SelectRAM+ memory cell (RAM16x1s) is the basic ele-
ment used to store data. The write operation is similar to
any classic write operation in SelectRAM+ memory. The
comparator is built in the LUT and wired-AND in the carry
chain to generate the match signal.

A key element of this design is the Virtex distributed
SelectRAM+ memory and the fast carry chain.

This design is described in Application Note XAPP202 and
an HDL reference design is available.

Reference
Design

Depth
(number
of words)

Width
(number
of bits)

CAM
Block
(bits)

Read
Write

number of
SRL16E or
RAM16x1

number of
BlockRAM

number of
TBUFMatch Encode

XAPP 204 32 8 256 4.5 ns 11.5 ns 2 x 11.5 ns 16 2
XAPP 204 128 8 1K 5.5 ns 15 ns 2 x 15 ns 64 8 32
XAPP 204 256 8 2K 8.5 ns 19 ns 2 x 19 ns 128 16 64
XAPP 203 16 16 256 7.5 ns 7.5 ns 16 x 8.5 ns 64
XAPP 203 32 16 512 8 ns 8 ns 16 x 10 ns 128
XAPP 203 128 40 5K 12 ns 12 ns 16 x 14 ns 1280 32
XAPP 203 256 24 6K 12.5 ns 12.8 ns 16 x 15 ns 1536 64
XAPP 202 256 16 4K 16 x 12 ns 12 ns 12 ns 256
XAPP 202 4096 16 64K 16 x 20 ns 20 ns 20 ns 4096
4 www.xilinx.com XAPP 201, Septermber 23, 1999 (Version 1.1)
1-800-255-7778

R

XAPP201: CAM Overview
CAM using BlockRAM memory

Fast Block SelectRAM+ CAM: CAM16x8 - Application Note
XAPP204. This solution is optimal for applications requiring
one or two clock cycles for both read and write.

• Implementation = Block SelectRAM+ memory
(CAM16x8 in each Block SelectRAM+ memory)

• Speed = 90 MHz for read and write and over 200 MHz
access time (Match)

• Read = one clock cycle
• Write = one clock cycle after one erase cycle
• Efficiency = 128 bits/SelectRAM+/cycle (Read)

Applications examples:

- XCV50 implementation = CAM32x8
32 LUTs, 16 RAM16x1 (or LUTs), two SelectRAM+
blocks and eight slice registers.

- XCV50 = CAM 64 x 8 in one column (SelectRAM+
blocks and adjacent CLB), 57 LUTs, 32 RAM16x1
(or LUTs), 16 TBUFs, four BlockRAMs, and nine
slice registers.

- XCV300 implementation = CAM 128 x 8 in one
column (SelectRAM+ block and adjacent CLB), 111
LUTs, 64 RAM16x1 (or LUTs), 32 TBUFs, eight
SelectRAM+ blocks, and ten slice registers.

- XCV1000 implementation = CAM 256 x 8 in one
column (SelectRAM+ block and adjacent CLB), 226
LUTs, 128 RAM16x1 (or LUTs), 64 TBUFs, 16
SelectRAM+ blocks, and 11 slice registers.

The Virtex library has an equivalent to a CAM16x8 primi-
tive. (CAM 16 words by eight bits Synchronous.)

A Virtex Block SelectRAM+ primitive, RAMB4_S1_S16,
also represents a 1-cycle read, 1-cycle write CAM16x8
(width = 8 bits and depth = 16 words).

The Virtex Block SelectRAM+ primitive can be a simulta-
neous 16-output decoder of 8-bit words because it has the
unique capability of having each port independently config-
ured to a specific data width.

This design is described in Application Note XAPP204 and
an HDL reference design is available.

Conclusion
Unique Virtex device features have key advantages in
providing broad system level solutions. These features also
offer flexibility in the approach to CAM designs. CAM
solutions are similar to the different RAM solutions. A small
RAM can be implemented by using the distributed
SelectRAM+ features. A medium-size RAM is addressed
with the Virtex Block SelectRAM+ feature. CAM
requirements can be addressed by the following methods.

• SRL16E-based implementations offering large word
widths and high performance. A reference design is in
application note XAPP203.

• Distributed SelectRAM-based implementations offering
large word width and depth adapted specifically for ATM
applications. A reference design is in application note
XAPP202.

• Block SelectRAM+ memory-based implementations
offering read and write, high performance, and 8-bit
width. A reference design is in application note
XAPP204.

These application notes will assist the designer in deter-
mining the best Virtex device solution to their CAM system
needs.
XAPP 201, Septermber 23, 1999 (Version 1.1) www.xilinx.com 5
1-800-255-7778

R

XAPP201: CAM Overview
Revision History

Date Revision Activity
8/19/99 1.0 Initial Release
9/23/99 1.1 Initial Virtex-E update

The Programmable Logic CompanySM

© 1999 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are
trademarks, and the Programmable Logic Company is a service mark of Xilinx, Inc. Other Xilinx registered and non-registered trademarks
are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective own-
ers.

Xilinx products are manufactured under one or more of the patents listed at http://www.xilinx.com/legal.htm. Xilinx, Inc. does not assume
any liability arising out of the application or use of any product described herein; nor does it convey any license under its patents, copy-
rights, or maskwork rights or any rights of others. Xilinx., Inc. reserves the right to make changes, at any time, in order to improve reliability,
function, or design and to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described
other than circuitry entirely embodied in its products. No other circuit patent licenses are implied. Xilinx, Inc. will not assume responsibility
for any circuits shown nor represent that they are free from patent infringement or of any other third-party right. Xilinx,. Inc. assumes no
obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not be
liable for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778

Fax: 1 (408) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
Tel: (949) 727-0780

Englewood, Colorado
Tel: (303) 220-7541

Sunnyvale, California
Tel: (408) 245-9850

Schaumburg, Illinois
Tel: (847) 605-1972

Nashua, New Hampshire
Tel: (603) 891-1098

Raleigh, North Carolina
Tel: (919) 846-3922

West Chester, Pennsylvania
Tel: (610) 430-3300

Dallas, Texas
Tel: (972) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
München, Germany
Tel: (49) 89-93088-0
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Weybridge, United Kingdom
Tel: (44) 870-7350-603
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (81) 3-5321-7711
Net: jhotline@xilinx.com

http://www.xilinx.com/sup-
port/techsup/japan.htm

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com

6 www.xilinx.com XAPP 201, Septermber 23, 1999 (Version 1.1)
1-800-255-7778

http:www.xilinx.com/legal.htm
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
/legal.htm
/legal.htm
/legal.htm
/legal.htm
/legal.htm

	An Overview of Multiple CAM Designs in Virtex Family Devices
	Summary
	Xilinx Family
	Introduction
	Typical CAM applications

	CAM Overview
	CAM designs in Virtex devices
	Basic CAM design
	CAM implementations
	Definitions

	Design Examples
	SRL16 design
	CAM for ATM
	CAM using BlockRAM memory

	Conclusion
	Revision History

