
W56940/64

 Middleware API

 Publication Release Date: March 2005

 - 1 - Revision A4

1. Introduction
This document describes the APIs provided by the W569 middleware. These APIs make it simpler to

control playback and to drive the LED and motor. While the middleware contains several files, this
document focuses on the APIs and how to use them. The playegn.h file includes the function definitions
for each of these APIs as well.

The APIs are divided into four sections: volume control, procedure control function, LED and motor
control, and other settings.

2. Volume Control
 The W569 middleware provides these APIs to control the volume of various outputs.

 Set Equalizer Volume
 Set Headphone Left Volume
 Set Headphone Right Volume
 Set Speaker Volume

All of these APIs use a volume index, which is defined in the following table, to control the volume.

Index Vol(dB) Index Vol(dB) Index Vol(dB) Index Vol(dB)

00H Mute 08H -23 10H -15 18H -7

01H -30 09H -22 11H -14 19H -6

02H -29 0AH -21 12H -13 1AH -5

03H -28 0BH -20 13H -12 1BH -4

04H -27 0CH -19 14H -11 1CH -3

05H -26 0DH -18 15H -10 1DH -2

06H -25 0EH -17 16H -9 1EH -1

07H -24 0FH -16 17H -8 1FH -0

 W569

 Middleware API

 - 2 -

2.1 Set Equalizer Volume
 This API changes the equalizer output volume any time.

2.2 Set Headphone Right & Left Volume
 This API only works when OP2 & OP3 are set to stereo mode.

Prototype short W569_SetHeadphoneLeftVolume(BYTE byVol)

short W569_SetHeadphoneRightVolume(BYTE byVol)

Description To set up the stereo right and left output volume

Argument byVol: The range is 00h to 1Fh.

Return value =0 Success

<0 Error

2.3 Set Speaker Volume
 This API controls the volume when the line-in function is in use.

Prototype short W569_SetEqualizerVolume(BYTE byVolume)

Description Set the equalizer output volume

Argument byVolume: The range is 00h to 1Fh

Return value =0 Success

<0 Error

Prototype short W569_SetSpeakerVolume(BYTE byVol)

Description Set the speaker output volume

Argument byVol: The range is 00h to 1Fh

Return value =0 Success

<0 Error

 W569

 Middleware API

 - 3 -

3. Special volume control
 We provide some special API functions to let user can make special sound effect. User can use those
functions to make your mobile voice changefully.

 Set Speech Pan
 Set Synthesize Volume
 Set Synthesize Speed
 Set Synthesize Pitch Shift

3.1 Set Speech Pan
 This function controls the left-right distribution of stereo output. this function is only for when play speech.
This distribution can range from 0 (hard left) to 127 (hard right). A value of 64 specifies sound that is centered
between left and right.

Prototype Short W569_SetSpeechPan(short nChannelID,

 BYTE byMode)

Description In stereo mode, this sets the right and left channel volume

Argument nChannelID: Choice channelID you want to setup

byMode: The value is 0 to 127 . The balance is 64.

Return value =0 Success

<0 Error

3.2 Set Synthesize Volume
 When you play two sounds, you can turn one of them volume down by this function. This function is
different to section2 volume control. The section2 volume control is for hardware setting. It will change the total
volume. But this is for firmware control, user can change volume which want channel. This is only Winbond
has.

Prototype Short W569_SetSynthesizeVolume(short nChannelID,

BYTE byVolume);

Description Setting sound volume

Argument nChannelID: Choice channelID you want to setup

byVolume: The value is 0(mute) to 1F(max)

Return value =0 Success

<0 Error

 W569

 Middleware API

 - 4 -

3.3 Set Synthesize Speed
 You can use this function to increase or decrease midi sound tempo which you want channel. This is only
effect to play midi.

Prototype short W569_SetSynthesizeSpeed (short nChannelID, BYTE bySpeed)

Description Setting midi tempo

Argument nChannelID: Choice channelID you want to setup

bySpeed: bySpeed = 1 ~ 100 ~ 255

 Slowest Normal Fastest

Return value =0 Success

<0 Error

3.4 Set Synthesize Pitch Shift
 You can use this function to increase or decrease midi sound pitch which you want channel. This is only

effect to play midi.

Prototype short W569_SetSynthesizePitchShift (short nChannelID,

signed char chPitchShift)

Description Setting midi pitch

Argument nChannelID: Choice channelID you want to setup

chPitchShift: chPitchShift = -24 ~ 0 ~ 24

 -2 octaves Normal +2 octaves

Return value =0 Success

<0 Error

 W569

 Middleware API

 - 5 -

4. Procedure control function
 Winbond W569 ringtone chips can play 2 MIDI, 1 MIDI and 1 speech, or 2 speech files at the same time.
These APIs control playback.

 Play
 Stop
 Pause
 Resume
 Is playing
 Initialize
 Interrupt Handler
 Set Polyphony Mode
 Set FIFO Size
 Call Back Function
 Auto power down

4.1 Play
 This API plays MIDI and speech. It performs the following tasks:

1. Decode the midi format.

2. Power up microprocessor and amplifier.

3. Set the LED and Motor mode.

4. Play MIDI or speech sound.

Prototype short W569_Play(const BYTE* pbyData ,

DWORD dwDataSize ,

BYTE byRepeatNum)

Description Sound Play

Argument pbyData: pointer to sound data

dwDataSize: size of sound MIDI file in bytes

byRepeatNum: number of times to repeat playback.

Return value 0 or 1. The return value is the ChannelID used in other APIs. The W569
supports playback on two channels at the same time, so this value
is required to control playback.

4.2 Stop
 This API function stops playing MIDI or speech sound. It performs the following tasks:

 W569

 Middleware API

 - 6 -

1. Stop MIDI and speech playback

2. Stop LED and Motor .

3. Power down the ringtone chip.

Prototype Short W569_Stop(short nChannelID)

Description Stop playing MIDI or speech

Argument nChannelID: Set what channel ID sound you want to stop

Return value =0 Success

<0 Error

4.3 Pause
 This function pauses playback. It does not power down the ringtone chip or clear any registers or memory
in the ringtone chip. It just pauses playback.

Prototype short W569_ Pause(short nChannelID)

Description Pause playback.

Argument nChannelID: Set what channelID sound you want to pause.

Return value =0 Success

<0 Error

4.4 Resume
 This function resumes playback that has been paused.

Prototype short W569_Resume(short nChannelID)

Description Resume playback after pausing.

Argument nChannelID: Set what channelID sound you want to resume.

Return value =0 Success

<0 Error

4.5 IsPlaying
 This function checks whether or not the W569 chip is playing sound on one of its channels.

 W569

 Middleware API

 - 7 -

Prototype Short W569_IsPlaying(short nChannelID)

Description Check whether or not the chip is playing sound on nChannelID.

Argument nChannelID: Set what sound you want to check it state.

Return value =0 not playing

=1 playing

4.6 Initialize
 This API must be called before other APIs can be used. This function initializes the middleware and
W569 hardware.

Prototype short W569_Initialize(void)

Description Initial the W569 ringtone chip

Argument

Return value =0 Success

<0 Error

4.7 Interrupt Handler
 This API handles all W569 interrupts—for example, when the FIFO is empty, timer interrupt, etc.

Prototype short W569_ InterruptHandler (void)

Description Handle W569 interrupts

Argument

Return value =0 Success

<0 Error

4.8 Set Polyphony Mode
 This API controls the number of polyphones used to play sound. The W56964 is a 64- polyphony sound
player, and it can use 32 or 64 polyphones to play sound. The W56940 can use 40 or 32 polyphones. The
default value in both the W56940 and the W56964 is 32 polyphones.

Prototype short W569_SetPolyphonyMode(BYTE byPolyphonyMode)

 W569

 Middleware API

 - 8 -

Description Set up the polyphone mode to play sound.

Argument byPolyphoneMode: 32 ,40 or 64

Return value =0 Success

<0 Error

4.9 Set FiFo size
User can change the fifo size by this API function. But this FiFo size setting must in power down mode.

When you play two sounds, our chip will use two FiFo to play sound. If you only want to play one sound, user
can use this function to enlarge the FiFo size. By use this the frequency of interrupt will became small.

Prototype Short W569_SetFIFOSize(WORD wS_FIFOSize, WORD wP_FIFOSize,
WORD wS_FIFOThreshold,

WORD wP_FIFOThreshold);

Description Set up the FIFO size

Argument * wS_FIFOSize = 256 or 512

* wP_FIFOSize = 256 or 384

Return value =0 Success

<0 Error

The FiFo size setting can be below table. If the FIFO threshold setting is too small, the interrupt signal will
frequent. If the FiFo threshold setting is bigger, the baseband CPU transfer data to FiFo will take more time.
General we always set the FiFo threshold half of FIFo size. User must to pay attention if FiFo size setting is
(512 ,0), it just can play only one midi or one speech sound at same time.

FiFO size setting

mode wS_FIFOSize wP_FIFOSize

1 512 0

2 256 256

3 256 384

FiFo threshold setting

If wS_FIFOSize=256 If wS_FIFOSize=512 If wP_FIFOSize=256 If wP_FIFOSize=384

32 64 32 64

64 128 64 128

96 192 96 192

 W569

 Middleware API

 - 9 -

128 256 128 256

160 320 160 320

192 384 192 Reserved

224 448 224 Reserved

4.10 Call back Function
 When sound played and want to know end or not, general we will use the API function W569_IsPlaying()
to check. Or user can use the call back function to check the sound playing end or not. You can set up what to do
at what channel when sound end or sound repead. User can add the call back function in your program like
follow.

void CPUHost_W569PlaybackCallback(short nChannel, BYTE byStatus)
{

 switch(byStatus)
 {
 case MW_PLAYBACK_CALLBACK_REPEAT:
 printf("Channel %d Repeat\n", nChannel);
 break;
 case MW_PLAYBACK_CALLBACK_END:
 printf("Channel %d Played End\n", nChannel);
 break;
 }
}

4.11 Auto power down
 General when we get W569_Stop API or midi sound play end, the ringtone chip will stop and get into
power down mode. If you just want to stop sound and not get ringtone chip into power down mode, user can use
the API to setup. The default is true to auto power down.

Prototype void W569_AutoPowerDown(BOOL bAuto)

Description when sound play end to set power down or not

Argument bAuto : True

 False

5. LED and Motor Control

 W569

 Middleware API

 - 10 -

 The W569 provides API functions to control the LED and Motor. In addition, the W569 middleware
provides API functions compatible with the Yamaha chip so that it is not necessary to rewrite baseband
programs to drive Winbond’s polyphone chip instead. Please note that programs should not mix
Yamaha-compatible APIs and Winbond APIs. Programs should use only one set of APIs.

A. These functions are compatible with the Yamaha chip.
 LED Control Source
 Set LED Blinking
 Set LED RGB
 Set LED Pattern
 Motor Control Source
 Set Motor Blinking
 Set Motor Level
 Set Motor Pattern

B. These functions are provided by Winbond
 Set LED On Off
 Set Motor On Off
 Set LED Mode
 Set Motor Mode

5.1 LED Control Source
 This API selects how the LED is controlled (forced control, sequence synchronization, MIDI event, or
pattern) and also turns off the LED.

Prototype short W569_LEDControlSource(BYTE bySource)

Description Set the LED control source

Argument

bySource

0 Off

1 Forced control

2 Sequence synchronization

3 MIDI Event

4 Pattern

Return value =0 Success

<0 Error

5.2 Set LED Blinking

 W569

 Middleware API

 - 11 -

 This API sets the frequency at which the LED blinks.

Prototype short W569_SetLEDBlinking(BYTE byFreqIndex)

Description Set frequency for blinking LED

Argument

byFreqIndex

0 No blinking

1 14.75Hz

2 9.83Hz

3 7.37Hz

4 4.92Hz

5 3.28Hz

Return value =0 Success

<0 Error

5.3 Set LED RGB
This function can only be used when the LED Control Source is “2” (sequence synchronization). This API

sets the R, G, and B colors to get the desired color.

Prototype short W569_SetLEDRGB(BYTE byRed ,

BYTE byGreen ,

BYTE byBlue)

Description Set R, G, and B levels of brightness

Argument byRed, : Set red LED brightness (0 to 255)

byGreen: Set green LED brightness(0 to 255)

byBlue : Set blue LED brightness (0 to 255)

Return value =0 Success

<0 Error

5.4 SetLEDPattern

 W569

 Middleware API

 - 12 -

 This function can only be used when the LED Control Source is “4” (pattern). This API sets the pattern the
LED will follow.

Prototype void W569_SetLEDPattern(BYTE* pbyPattern,

BYTE byMorphDeltaTime)

Description Set the LED bright pattern

Argument pbyPattern : point to LED pattern

byMorphDeltaTime : Morphing color time in msec

Return value

The LED pattern (pointed to by pbyPattern) must follow the format below.

LED pattern format:

((LED phase)+) 0x00 0x00

LED phase includes the timing and R, G and B value.

Byte No Description

#1 Low byte of delta time

#2 High byte of delta time

#3 R value

#4 G value

#5 B value

The timing setting (delta time) has two vectors: the first is low-byte, the second high-byte. The unit of
measure for delta time is milliseconds. The R/G/B LED brightness has a maximum value of 255, and 0 turns off
the LED.

For example, the LED pattern is red for 500 ms, green for 500 ms, and blue for 500 ms. The turn on time, 500
ms, is 0x01F4 in hex. The brightnesses are set to 255, and the (R,G,B) value for red is (0xFF, 0x00, 0x00); for
green (0x00, 0xFF, 0x00); and for blue (0x00, 0x00, 0xFF). At the end of the pattern, the two bytes (0x00, 0x00)
are added to indicate the end of the pattern. As a result, the pattern is stored as follows:

BYTE abyLEDPlayPattern [] =

 {

 W569

 Middleware API

 - 13 -

 0xF4, 0x01, /* 500 ms */

 0xFF, 0x00, 0x00, /* (R,G,B) = (255, 0, 0) */

 0xF4, 0x01, /* 500 ms */

 0x00, 0xFF, 0x00, /* (R,G,B) = (0, 255, 0) */

 0xF4, 0x01, /* 500 ms */

 0x00, 0x00, 0xFF, /* (R,G,B) = (0, 0, 255) */

 0x00, 0x00

 };

5.5 Motor Control Source
 This API selects how the motor is controlled (forced control, sequence synchronization, MIDI event, or
pattern) and also turns off the motor.

Prototype Short W569_MotorControlSource(BYTE bySource)

Description Set the Motor control source

Argument

bySource

0 Off

1 Forced control

2 Sequence synchronization

3 MIDI Event

4 Pattern

Return value =0 Success

<0 Error

5.6 Set Motor Blinking
 This API sets the frequency at which the motor blinks.

Prototype short W569_SetMotorBlinking(BYTE byFreqIndex)

Description Set frequency index for motor

Argument

byFreqIndex 0 No blinking

1 2.27Hz

2 1.97Hz

 W569

 Middleware API

 - 14 -

3 1.48Hz

4 0.98Hz

5 0.48Hz

Return value =0 Success

<0 Error

5.7 Set Motor Level
This function can only be used when the Motor Control Source is “2” (sequence synchronization). When

sound is played in sequence mode, this API sets the motor level and turns the motor on and off with the channel
notes.

Prototype short W569_SetMotorLevel (BYTE byLevel)

Description Set PWM level of motor

Argument byLevel : Level of vibration(0~255). If equal to 0, the motor is turned off.

Return value =0 Success

<0 Error

5.8 Set Motor Pattern
 This API sets the pattern the motor will follow.

Prototype void W569_SetMotorPattern(BYTE* pbyPattern ,

BYTE byMorphDeltaTime)

Description Setting the motor bright pattern

Argument pbyPattern : point to motor pattern

byMorphDeltaTime : Morphing motor time in msec

Return value

The Motor pattern (pointed to by pbyPattern) must follow the format below.

Motor pattern format:

((Motor phase)+) 0x00 0x00

Motor phase includes the timing and the vibration level.

 W569

 Middleware API

 - 15 -

Byte No Description

#1 Low byte of delta time

#2 High byte of delta time

#3 Vibration level

The timing setting (delta time) has two vectors:, the first is low-byte, the second high-byte. The unit of measure
for delta time is milliseconds. The Motor level has a maximum value of 255, and 0 turn off the motor.

For example, the motor pattern is on for 500 ms, off for 500 ms, and on for 500 ms. The turn on time, 500 ms, is
0x01F4 in hex.. The motor level is the maximum 255 (0xFF). At the end of the pattern, the two byptes (0x00,
0x00) are added. As a result, the pattern is stored as follows:

BYTE abyMotorPlayPattern[] =

 {

 0xF4, 0x01, /* 500 ms */

 0xFF, /* (Motor) = (255) */

 0xF4, 0x01, /* 500 ms */

 0x00, /* (Motor) = (0) */

 0xF4, 0x01, /* 500 ms */

 0xFF, /* (Motor) = (255) */

 0x00, 0x00

 };

5.9 Set LED On Off
 This function can only be used when the LED mode is 1, and it controls the LED even when the ringtone
chip is in power down mode. This API controls the LED to get the desired color (R,G,B).

Prototype short W569_SetLEDOnOff(BYTE byRed ,

BYTE byGreen ,

 BYTE byBlue)

Description Set R, G, and B levels of brightness

Argument byRed, : Set red LED brightness (0 to 255)

byGreen: Set green LED brightness(0 to 255)

byBlue : Set blue LED brightness (0 to 255)

Return value =0 Success

<0 Error

 W569

 Middleware API

 - 16 -

5.10 Set Motor On Off
This function can only be used when the Motor mode is 1, and it controls the motor even when the

ringtone chip is in power down mode. This API controls the motor PWM level.

Prototype short W569_SetMotorOnOff(BYTE byLevel)

Description Set PWM level of motor

Argument byLevel : Level of vibration(0~255). If equal to 0, motor is turned off.

Return value =0 Success

<0 Error

5.11 Set LED Mode
 This API controls the mode in which the LED operates.

Prototype

short W569_SetLEDMode(BYTE byMode,

BYTE byType,

 BYTE byChannel,

BYTE byFreqIndex,

BYTE* pbyParam)

Description Set LED Mode

Argument

byMode: LED mode

bytype: Type setting for each mode

byChannel: Synchronize midi channel

byFreqIndex: Frequency index for blinking LED

pbyParam: Pointer to additional parameter

Return value =0 Success

<0 Error

The values of LED mode, type, and channel are described in the following table:

byMode byTyp
e

byChannel pbyPara
m

Description

 W569

 Middleware API

 - 17 -

0 NA NA NA Turn off LED

1 NA NA NA Directly control LED

0 White color

1 Brightness of white color is
synchronized with note velocity

2 Automatically change LED colors

2

3

0 ~ 15 NA

Synchroni
ze with
“Note
On/Off”
and “LED
On/Off”
events.
The
default is
LED On.

Automatically change LED color
and the brightness is synchronized
with velocity

0 White color

1 Brightness of white color is
synchronized with note velocity

2 Automatically change LED colors

3

3

0 ~ 15 NA Synchroni
ze with
only
“LED
On/Off”
events Automatically change LED color

and the brightness is synchronized
with velocity

0 LED is controlled according to
LED pattern

4

>0

 Pointer
to LED
pattern

LED is controlled according to
LED pattern and the color
transition is morphing. byType is
the delta time for each transition.

The LED pattern (pointed to by pbyParam) follows the same format described in W569_SetLEDPattern above.

The frequency index for LED blinking is the same as described in W569_SetLEDBlinking above and is copied
into the table below.

byFreqIndex Description

 W569

 Middleware API

 - 18 -

0 No blinking

1 Blinking: 14.75 Hz

2 Blinking: 9.83Hz

3 Blinking: 7.37Hz

4 Blinking: 4.92Hz

5 Blinking: 3.28Hz

5.12 Set Motor Mode
 This API controls the mode in which the motor operates.

Prototype

short W569_SetMotorMode(BYTE byMode ,

BYTE byType ,

 BYTE byChannel ,

BYTE byFreqIndex ,

BYTE* pbyParam)

Description Set Motor Mode

Argument byMode: Motor mode

bytype: Type setting for each mode

byChannel: Synchronize midi channel

byFreqIndex: Frequency index for blinking motor

pbyParam: Pointer to additional parameter

Return value =0 Success

<0 Error

The values of Motor mode, tyhp, and channel are described in the following table:

byMo
de

byTyp
e

byChannel pbyPara
m

Description

0 NA NA NA Turn off Motor

1 NA NA NA Directly control Motor

2 0 0 ~ 15 NA

Synchroni
ze with

Maximum vibration level

 W569

 Middleware API

 - 19 -

1

“Note
On/Off”
and
“Motor
On/Off”
events.
The
default is
Motor On.

Vibration level is
synchronized with note
velocity

0 Maximum vibration level 3

1

0 ~ 15 NA Synchroni
ze with
only
“Motor
On/Off”
events

Vibration level is
synchronized with note
velocity

0 Vibration level is controlled
according to Motor pattern

4

>0

 Pointer
to Motor
pattern

Vibration level is controlled
according to Motor pattern
and the level transition is
morphing. byType is the
delta time for each transition.

The Motor pattern (pointed to by pbyParam) follows the same format described in W569_SetMotorPattern
above.

The frequency index for Motor blinking is the same as described in W569_SetMotorBlinking above and is
copied into the table below.

byFreqIndex Description

0 No blinking

1 Blinking: 2.27Hz

2 Blinking: 1.97Hz

3 Blinking: 1.48Hz

4 Blinking: 0.98Hz

5 Blinking: 0.48Hz

 W569

 Middleware API

 - 20 -

6. Other settings
 Users must setup some parameters based on their system environment. These parameters must be set
correctly to play sound accurately. Unless stated otherwise, these parameters are maintained in the MWDefine.h
file in the middleware.

The parameters are described in the following sub-sections:
 PLL
 Input Clock
 Clock Type
 Center Voltage
 Headphone Mode Settings
 Enable Louder Speech
 Disable Louder Speech
 Memory locate
 LED & Motor high or low active setting

6.1 PLL
 The input clock may be different in each system, so the PLL value must be set to get the correct pitch
when sound is played. If the PLL value is not set properly, the sound pitch and speed will be lost. Winbond
provides the PLLOUT tool to compute the correct PLL_M and PLL_N value. After computing these values
(N,M) ,the following parameters should be set in the MWDefine.h file.

40&64
polyphony

#define W5692_PLL_ADJUST_N N_value

 #define W5692_PLL_ADJUST_M M_value

6.2 Input Clock
 The input clock may be different in each system. This parameter is the input clock frequency, which is
required to play sound with the correct tempo.

Prototype #define W56964_CLKI value

Description This setup is required for correct tempo when sound is played.

Value This value depends on your clock input. If you clock input is 15MHz , you
must modify 15000000.

 W569

 Middleware API

 - 21 -

6.3 Clock Type
 The output voltage level is different for different kinds of clock generators. This parameter indicates the
clock input type in VDCK.

Prototype #define VDCK value (default 0)

Description Input mode selection for CLKI pin

Value 0: CMOS input

1: Oscillator mode.

6.4 Center Voltage
 This value sets the center voltage in the amplifier to avoid signal distortion. This value is set in the
MWConfig.h file.

Prototype #define SPK_VOL_REG_VDS value (default 0)

Description Set the center voltage of speaker amplifier when it is on

Value Center voltage(v) VDD SPVDD

0 0.6xVDD 3.0V 3.6V

1 0.5xVDD 3.0V 3.0V

2 0.67xVDD 2.7V 3.6V

Argument

3 0.72xVDD 2.5V 3.6V

 W569

 Middleware API

 - 22 -

6.5 Headphone Mode Settings
 In the W56940 and W56964, the headphones use the same two output pins as LED2/3. The parameter
DOUT_LED indicates whether these pins support headphones or these pins support LEDs.

Prototype #define DOUT_LED value (default 1)

Description select digital output port or headphone output for pins 10 and 11

Value 0: headphone output

 1: digital_output_port (LED)

If these pins support headphones, the following parameter selects stereo or mono mode.

Prototype #define HEADPHONE_MONO value (default 0)

Description set headphone to be mono or stereo

Value 0: stereo

1: mono

6.6 Louder speech
 In W56940 and W56964, user can use API function to increase speech volume. But when you use this
function, our chip only can play one speech at same time. User can set the parameter of MWDefine.h.

Prototype #define SUPPORT_LOUDER_SPEECH value (default 0)

Description To open the louder speech function.

Value 0: close louder speech

 1: open louder speech

By fallow example will show how to use the louder speech function.

W569_EnableLouderSpeech();
 ID=W569_Play(sound5,sizeof(100000),1);

 while(W569_IsPlaying(ID))

 …………………………….

W569_Stop(ID);
 W569_DisableLouderSpeech();

 W569

 Middleware API

 - 23 -

6.7 Memory locate
 If your system doesn’t support the MALLOC command to distribution the memory, you can change the
setting in MWDefine.h of middleware.

Prototype #define NO_MALLOC_FREE value (default is 0)

Description To setting the malloc

Value 0: use malloc

 1: not use malloc

6.8 LED & Motor high or low active setting
 This is for different application. User can set the LED and motor high or low active output. you can change
the setting in MWStd.h. The detail you can refer to Application Note 002 for vibrator and Application Note 003
for LED. The default is high active.

Prototype #define LED_LOW_ACTIVE value (default is 0)

#define MOTOR_LOW_ACTIVE value (default is 0)

Description To set high or low active

Value 0: high active

 1: low active

7. Revision History
Revision Date Modifications

A0 May 2005 • Initial release.

Important Notice

Winbond products are not designed, intended, authorized or warranted for use as components in systems or
equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other
applications intended to support or sustain life. Further more, Winbond products are not intended for applications
wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe
property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

