
QingKeV2 Microprocessor Manual 
V1.0 

Overview 
QingKe V2 series microprocessor is a 32-bit general-purpose MCU microprocessor based on the standard 
RISC-V instruction set RV32I subset RV32E, with only 16 general-purpose registers, half of RV32I, and a 
more streamlined structure for deep embedded scenarios. V2 series supports standard RV32EC instruction 
extensions, in addition to custom XW extensions, Hardware Prologue/Epilogue (HPE), Vector Table Free 
(VTF), a more streamlined single-wire serial debug interface (SDI), and support for "WFE" instructions. 
 

Features 
Features Description 

Instruction Set Architecture (ISA) RV32EC 
Flow line Level 2  

Branch prediction Static branch prediction 

Interrupt Supports a total of 256 interrupts including exceptions, and 
supports VTF 

Hardware Prologue/Epilogue 
(HPE) Supports 2 levels of HPE 

Low-power consumption mode Supports Sleep and Deep sleep modes, and support WFI and 
WFE sleep methods 

Extended Instruction Set Supports half-word and byte operation compression instructions 
Debug Single-wire SDI, standard RISC-V debug 

 
  



QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 1  

Chapter 1 Overview 

QingKe V2 series microprocessors based on RISC-V architecture in line with the RV32EC subset of 32-bit 
MCU microprocessors, only 16 general-purpose registers, a more streamlined structure, suitable for area and 
power consumption requirements of deep embedded scenarios, its main features are shown in Table 1-1 below. 

Table 1-1 Overview of QingKe V2 microprocessor 

Feature 
 
Model 

ISA 
HPE number 

of levels 

Interruptions 
nesting 

number of 
levels 

VTF 
number of 
channels 

Flow 
line 

Vector 
table mode 

Extended 
Instruction 

(XW) 

Number of 
memory 

protection areas 

V2A RV32EC 2 2 2 2 
Address/ 

Instruction 
√ × 

Note: OS task switching generally uses stack push, which are not limited in number of levels. 
 

1.1 Instruction set 
QingKe V2 series microprocessors follow the standard RV32EC Instruction Set Architecture (ISA). Detailed 
documentation of the standard can be found in "The RISC-V Instruction Set Manual, Volume I: User-Level 
ISA, Document Version 2.2" on the RISC-V International website. The RISC-V instruction set has a simple 
architecture and supports a modular design, allowing for flexible combinations based on different needs. The 
following instruction set extensions are supported by QingKe V2 series microprocessors. 
l RV32: 32-bit architecture, general-purpose register bit width of 32 bits 
l E: RV32I subset, only 16 general-purpose registers supported 
l C: Supports 16-bit compression instruction 
l XW: 16-bit compression instruction for self-extending byte and half-word operations 
Note: To further improve code density, extend the XW subset by adding the following compression directives 
c.lbu/c.lhu/c.sb/c.sh/c.lbusp/ c.lhusp/c.sbsp/c.shsp, use based on the MRS compiler or the toolchain it provides. 
 

1.2 Register set 
RV32E is a subset of RV32I, which has only half of its registers. That is, there are 16 register sets from x0-
x15. Table 1-2 below lists the registers of RV32E and their descriptions. 

Table 1-2 RV32E registers 
Register ABI Name Description Storer 

x0 zero Hardcoded 0 - 
x1 ra Return address Caller 
x2 sp Stack pointer Callee 
x3 gp Global pointer - 
x4 tp Thread pointer - 

x5-7 t0-2 Temporary register  Caller 
x8 s0/fp Save register/frame pointer Callee 
x9 s1 Save register Callee 

x10-11 a0-1 Function parameters/return values Caller 
x12-15 a2-5 Function parameters Caller 

The Caller attribute in the above table means that the called procedure does not save the register value, and 
the Callee attribute means that the called procedure saves the register. 
 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 2  

1.3 Privilege mode 
The standard RISC-V architecture includes three privileged modes: Machine mode, Supervisor mode, and 
User mode, as shown in Table 1-3 below. The machine mode is a mandatory mode, and the other modes are 
optional modes. For details, you can refer to "The RISC-V Instruction Set Manual Volume II: Privileged 
Architecture", which is available for free download from the RISC-V International website. 

Table 1-3 RISC-V architecture privilege mode 
Code Name Abbreviations 
0b00 User Mode U 
0b01 Supervisor Model S 
0b10 Reserved Reserved 
0b11 Machine mode M 

The Machine mode has the highest privileges, and the program can access all Control and Status Registers 
(CSR) in this mode, and there is no Physical Memory Protection (PMP) unit designed inside QingKe V2. The 
MPP bit in the CSR register mstatus (Machine Mode Status Register) is 0b11 by default, i.e. it is always 
running in Machine mode. 
 

1.4 CSR Register 
A series of CSR registers are defined in the RISC-V architecture to control and record the operating state of 
the microprocessor. These CSRs can be extended by 4096 registers using an internal dedicated 12-bit address 
coding space. And use the high two CSR[11:10] to define the read/write permission of this register, 0b00, 0b01, 
0b10 for read/write allowed and 0b11 for read only. Use CSR[9:8] two bits to define the lowest privilege level 
that can access this register, and the value corresponds to the privilege mode defined in Table 1-3. In addition 
to the standard definition of the relevant CSR registers, QingKe V2 series microprocessors are extended with 
some custom CSR registers for control and status logging of enhanced functions. The CSR registers 
implemented by the microprocessor are detailed in Chapter 7. 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 3  

Chapter 2 Exception 

Exception mechanism, which is a mechanism to intercept and handle "unusual operation events". QingKe V2 
series microprocessors are equipped with an exception response system that can handle up to 256 exceptions 
including interrupts. When an exception or interruption occurs, the microprocessor can quickly respond and 
handle the exception and interruption events. 
 

2.1 Exception types 
The hardware behavior of the microprocessor is the same whether an exception or an interrupt occurs. The 
microprocessor suspends the current program, moves to the exception or interrupt handler, and returns to the 
previously suspended program when processing is complete. Broadly speaking, interrupts are also part of 
exceptions. Whether exactly the current occurrence is an interrupt or an exception can be viewed through the 
Machine mode exception cause register mcause. The mcause[31] is the interrupt field, which is used to indicate 
whether the cause of the exception is an interrupt or an exception. mcause[31]=1 means interrupt, 
mcause[31]=0 means exception. mcause[30:0] is the exception code, which is used to indicate the specific 
cause of the exception or the interrupt number, as shown in the following table. 
 

Table 2-1 V2 microprocessor exception codes 

Interrupt Exception 
codes 

Synchronous / 
Asynchronous Reason for exception 

1 0-1 - Reserved 
1 2 Precise asynchronous NMI interrupts 
1 3-11 - Reserved 
1 12 Precise asynchronous SysTick interrupts 
1 13 - Reserved 
1 14 Synchronous Software interrupts 
1 15 - Reserved 
1 16-255 Precise asynchronous External interrupt 16-255 
0 0 Synchronous Instruction address misalignment 
0 1 Synchronous Fetch command access error 
0 2 Synchronous Illegal instructions 
0 3 Synchronous Breakpoints 

0 4 Synchronous Load instruction access address 
misalignment 

0 5 Non- precision 
asynchronous Load command access error 

0 6 Synchronous Store/AMO instruction access address 
misalignment 

0 7 Non-precision 
asynchronous Store/AMO command access error 

0 8 Synchronous Environment call in User mode  
(not supported in V2) 

0 11 Synchronous Environment call in Machine mode 
 
"Synchronous" in the table means that an instruction can be located exactly where it is executed, such as an 
ebreak or ecall instruction, and each execution of that instruction will trigger an exception. "Asynchronous" 
means that it is not possible to pinpoint an instruction, and the instruction PC value may be different each time 
an exception occurs. " Precise asynchronous" means that an exception can be located exactly at the boundary 
of an instruction, i.e., the state after the execution of an instruction, such as an external interrupt. "Non- 
precision asynchronous" means that the boundary of an instruction cannot be precisely located, and may be 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 4  

the state after an instruction has been interrupted halfway through execution, such as a memory access error. 
Access to memory takes time, and the microprocessor usually does not wait for the end of the access when 
accessing memory, but continues to execute the instruction, when the access error exception occurs again, the 
microprocessor has already executed the subsequent instructions, and cannot be precisely located. 
 

2.2 Entering exception 
When the program is in the process of normal operation, if for some reason, triggered into an exception or 
interrupt. The hardware behavior of the microprocessor at this point can be summarized as follows. 
 
(1) Suspend the current program flow and move to the execution of exception or interrupt handling functions. 
The entry base address and addressing mode of the exception or interrupt function are defined by the exception 
entry base address register mtvec. mtvec[31:2] defines the base address of the exception or interrupt function. 
mtvec[1:0] defines the addressing mode of the handler function, where mtvec[0] defines the entry mode of the 
exception and interrupt. when mtvec[0]=0, all exceptions and interrupts use When mtvec[0]=0, all exceptions 
and interrupts use a unified entry, i.e., when an exception or interrupt occurs, it turns to the base address defined 
by mtvec[31:2] for execution. When mtvec[0]=1, exceptions and interrupts use vector table mode, i.e., each 
exception and interrupt is numbered, and the address is shifted according to interrupt number*4, and when an 
exception or interrupt occurs, it is shifted to the base address defined by mtvec[31:2] + interrupt number*4 for 
execution. The vector mode mtvec[1] defines the identification mode of the vector table. When mtvec[1]=0, 
the instruction stored at the vector table is an instruction to jump to the exception or interrupt handling function, 
or it can be another instruction; when mtvec[1]=1, the absolute address of the exception handling function is 
stored at the vector table. It should be noted that the vector table base address needs to be 1KB aligned in the 
QingKe V2 microprocessor. 
(2) Update CSR register 
When an exception or interrupt is entered, the microprocessor automatically updates the relevant CSR registers, 
including the Machine mode exception cause register mcause, the Machine mode exception pointer register 
mepc, and the Machine mode status register mstatus. 
l Update mcause 
As mentioned before, after entering an exception or interrupt, its value reflects the current exception type or 
interrupt number, and the software can read this register value to check the cause of the exception or determine 
the source of the interrupt, as detailed in Table 2-1. 
l Update mepc 
The standard definition of the return address of the microprocessor after exiting an exception or interrupt is 
stored in mepc. So when an exception or interrupt occurs, the hardware automatically updates the mepc value 
to the current instruction PC value when the exception is encountered, or the next pre-executed instruction PC 
value before the interrupt. After the exception or interrupt is processed, the microprocessor uses its saved value 
as the return address to return to the location of the interrupt to continue execution. 
However, it is worth noting that. 
1. mepc is a readable and writable register, and the software can also modify the value for the purpose of 

modifying the location of the PC pointer running after the return. 
2. When an interrupt occurs, i.e., when the exception cause register mcause[31]=1, the value of mepc is 

updated to the PC value of the next unexecuted instruction at the time of the interrupt. 
And when an exception occurs, that is, when the exception cause register mcause[31]=0, the value of mepc is 
updated to the instruction PC value of the current exception. So at this time when the exception returns, if we 
return directly using the value of mepc, we still continue to execute the instruction that generated the exception 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 5  

before, and at this time, we will continue to enter the exception. Usually, after we handle the exception, we 
can modify the value of mepc to the value of the next unexecuted instruction and then return. For example, we 
cause an exception due to ecall/ebreak, and after handling the exception, since ecall/ebreak (c.ebreak is 2 bytes) 
is a 4-byte instruction, we only need the software to modify the value of mepc to mepc+4 (c.ebreak is mepc+2) 
and then return. 
l Update mstatus 
Upon entering exceptions and interrupts, the hardware updates certain bits in mstatus. 
1. MPIE is updated to the MIE value before entering the exception or interrupt, and MPIE is used to restore 

the MIE after the exception and interrupt are over. 
2. MPP bit is used to save the privileged mode before entering the exception or interrupt, QingKe V2 only 

supports Machine mode, solid it keeps 0b11 unchanged. 
3. QingKe V2 microprocessor supports interrupt nesting in Machine mode, and the MIE will not be cleared 

before entering the last level of exceptions and interrupts. 
4. The out-stack flag MPOP is updated to the current exception or interrupt out stack flag, and MPPOP is 

updated to MPOP. 
 

2.3 Exception handling functions 
Upon entering an exception or interrupt, the microprocessor executes the program from the address and mode 
defined by the mtvec register. When using the unified entry, the microprocessor takes a jump instruction from 
the base address defined by mtvec[31:2] based on the value of mtvec[1], or gets the exception and interrupt 
handling function entry address and goes to execute it instead. At this time, the exception and interrupt 
handling function can determine whether the cause is an exception or interrupt based on the value of 
mcause[31], and the type and cause of the exception or the corresponding interrupt can be judged by the 
exception code and handled accordingly. 
When using the base address + interrupt number *4 for offset, the hardware automatically jumps to the vector 
table to get the entry address of the exception or interrupt function based on the interrupt number and jumps 
to execute it. 
 

2.4 Exception exit 
After the exception or interrupt handler is completed, it is necessary to exit from the service program. After 
entering exceptions and interrupts, the microprocessor enters Machine mode from User mode, and the 
processing of exceptions and interrupts is also completed in Machine mode. When it is necessary to exit 
exceptions and interrupts, it is necessary to use the mret instruction to return. At this time, the microprocessor 
hardware will automatically perform the following operations. 
l The PC pointer is restored to the value of CSR register mepc, i.e., execution starts at the instruction 

address saved by mepc. It is necessary to pay attention to the offset operation of mepc after the exception 
handling is completed. 

l Update the CSR register mstatus, MIE is restored to MPIE and MPOP is restored to MPPOP. 
 
The entire exception response process can be described by the following Figure 2-1. 

 
 
 
 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 6  

Figure 2-1 Exception response process diagram 

Main

Exception_ Handler

Update CSR

mepc

mcause

mstatus

mstatus

“mret” PC= mepc， Then running

Update CSR

Exception 

 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 7  

Chapter 3 PFIC and Interrupt Control 

QingKe V2 microprocessor is designed with a Programmable Fast Interrupt Controller (PFIC) that can manage 
up to 256 interrupts including exceptions. The first 16 of them are fixed as internal interrupts of the 
microprocessor, and the rest are external interrupts, i.e. the maximum number of external interrupts can be 
extended to 240. Its main features are as follows. 
l 240 external interrupts, each interrupt request has independent trigger and mask control bits, with 

dedicated status bits 
l Programmable interrupt priority, supports 2 levels of nesting 
l Special fast interrupt in/out mechanism, hardware automatic stacking and recovery, maximum HPE depth 

of 2 levels 
l Vector Table Free (VTF) interrupt response mechanism, 2-channel programmable direct access to 

interrupt vector addresses 
 
The vector table of interrupts and exceptions is shown in Table 3-1 below. 

Table 3-1 Exception and interrupt vector table 
Number Priority Type Name Description 

0 - - - - 
1 - - - - 
2 -2 Fixed NMI Non-maskable interrupt 
3 -1 Fixed EXC Exception interrupt 

4-11 - - - - 
12 0 Programmable SysTick System timer interrupt 
13 - - - - 
14 1 Programmable SWI Software interrupt 
15 - - - - 

16-255 2-241 Programmable External interrupt External interrupt 16-255 
 

3.1 PFIC register set 
Table 3-2 PFIC Registers 

Name Access address Access Description Reset value 

PFIC_ISRx 
0xE000E000 
-0xE000E01C 

RO Interrupt enable status register x 0x00000000 

PFIC_IPRx 
0xE000E020 
-0xE000E03C 

RO 
Interrupt pending status register 
x 

0x00000000 

PFIC_ITHRESDR 0xE000E040 RW 
Interrupt priority threshold 
configuration register 

0x00000000 

PFIC_CFGR 0xE000E048 RW Interrupt configuration register 0x00000000 
PFIC_GISR 0xE000E04C RO Interrupt global status register 0x00000000 
PFIC_VTFIDR 0xE000E050 RW VTF ID configuration register 0x00000000 

PFIC_VTFADDRRx 
0xE000E060 
-0xE000E06C 

RW VTF x offset address register 0x00000000 

PFIC_IENRx 
0xE000E100 
-0xE000E11C 

WO Interrupt enable setting register x 0x00000000 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 8  

PFIC_IRERx 
0xE000E180 
-0xE000E19C 

WO Interrupt enable clear register x 0x00000000 

PFIC_IPSRx 
0xE000E200 
-0xE000E21C 

WO 
Interrupt pending setting register 
x 

0x00000000 

PFIC_IPRRx 
0xE000E280 
-0xE000E29C 

WO Interrupt pending clear register x 0x00000000 

PFIC_IACTRx 
0xE000E300 
-0xE000E31C 

RO 
Interrupt activation status 
register x 

0x00000000 

PFIC_IPRIORx 
0xE000E400 
-0xE000E43C 

RW 
Interrupt priority configuration 
register 

0x00000000 

PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000 
Note: 1. The default value of PFIC_ISR0 register is 0xC, which means that NMI and exception are always 
enabled by default. 

2. NMI and EXC support interrupt pending clear and setting operation, but not interrupt enable clear 
and setting operation. 
 
Each register is described as follows. 
 
Interrupt enable status and interrupt pending status registers (PFIC_ISR<0-7>/PFIC_IPR<0-7>) 

Name Access address Access Description Reset value 

PFIC_ISR0 0xE000E000 RO 

Interrupt 0-31 enable status 
register, a total of 32 status bits 
[n], indicating #n interrupt 
enable status 
Note: NMI and EXC are enabled 
by default 

0x0000000C 

PFIC_ISR1 0xE000E004 RO 
Interrupt 32-63 enable status 
register, total 32 status bits 

0x00000000 

… … … … … 

PFIC_ISR7 0xE000E01C RO 
Interrupt 224-255 enable status 
register, total 32 status bits 

0x00000000 

PFIC_IPR0 0xE000E020 RO 

Interrupt 0-31 pending status 
register, a total of 32 status bits 
[n], indicating the pending status 
of interrupt #n 

0x00000000 

PFIC_IPR1 0xE000E024 RO 
Interrupt 32-63 pending status 
registers, 32 status bits in total 

0x00000000 

… … … … … 

PFIC_IPR7 0xE000E03C RO 
Interrupt 244-255 pending status 
register, 32 status bits in total 

0x00000000 

Two sets of registers are used to enable and de-enable the corresponding interrupts. 
 
 
 
 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 9  

Interrupt enable setting and clear registers (PFIC_IENR<0-7>/PFIC_IRER<0-7>) 
Name Access address Access Description Reset value 

PFIC_IENR0 0xE000E100 WO 

Interrupt 0-31 enable setting 
register, a total of 32 setting bits 
[n], for interrupt #n enable 
setting 
Note: NMI and EXC are enabled 
by default 

0x00000000 

PFIC_IENR1 0xE000E104 WO 
Interrupt 32-63 enable setting 
register, total 32 setting bits 

0x00000000 

… … … … … 

PFIC_IENR7 0xE000E11C WO 
Interrupt 224-255 enable setting 
register, total 32 setting bits 

0x00000000 

- - - - - 

PFIC_IRER0 0xE000E180 WO 

Interrupt 0-31 enable clear 
register, a total of 32 clear bits 
[n], for interrupt #n enable clear 
Note: NMI and EXC cannot be 
operated 

0x00000000 

PFIC_IRER1 0xE000E184 WO 
Interrupt 32-63 enable clear 
register, total 32 clear bits 

0x00000000 

… … … … … 

PFIC_IRER7 0xE000E19C WO 
Interrupt 244-255 enable clear 
register, total 32 clear bits 

0x00000000 

Two sets of registers are used to enable and de-enable the corresponding interrupts. 
 
Interrupt pending setting and clear registers (PFIC_IPSR<0-7>/PFIC_IPRR<0-7>) 

Name Access address Access Description Reset value 

PFIC_IPSR0 0xE000E200 WO 
Interrupt 0-31 pending setting register, 32 
setting bits [n], for interrupt #n pending 
setting 

0x00000000 

PFIC_IPSR1 0xE000E204 WO 
Interrupt 32-63 pending setup register, 
total 32 setup bits 

0x00000000 

… … … … … 

PFIC_IPSR7 0xE000E21C WO 
Interrupt 224-255 pending setting 
register, 32 setting bits in total 

0x00000000 

- - - - - 

PFIC_IPRR0 0xE000E280 WO 
Interrupt 0-31 pending clear register, a 
total of 32 clear bits [n], for interrupt #n 
pending clear 

0x00000000 

PFIC_IPRR1 0xE000E284 WO 
Interrupt 32-63 pending clear register, 
total 32 clear bits 

0x00000000 

… … … … … 

PFIC_IPRR7 0xE000E29C WO 
Interrupt 244-255 pending clear register, 
total 32 clear bits 

0x00000000 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 10  

When the microprocessor enables an interrupt, it can be set directly through the interrupt pending register to 
trigger into the interrupt. Use the interrupt pending clear register to clear the pending trigger. 
 
Interrupt activation status register (PFIC_IACTR<0-7>) 

Name Access address Access Description Reset value 

PFIC_IACTR0 0xE000E300 RO 

Interrupt 0-31 activates the 
status register with 32 status 
bits [n], indicating that 
interrupt #n is being executed 

0x00000000 

PFIC_IACTR1 0xE000E304 RO 
Interrupt 32-63 activation 
status registers, 32 status bits in 
total 

0x00000000 

… … … … … 

PFIC_IACTR7 0xE000E31C RO 
Interrupt 224-255 activation 
status register, total 32 status 
bits 

0x00000000 

Each interrupt has an active status bit that is set up when the interrupt is entered and cleared by hardware when 
mret returns. 
 
Interrupt priority and priority threshold registers (PFIC_IPRIOR<0-7>/PFIC_ITHRESDR) 

Name Access address Access Description Reset value 

PFIC_IPRIOR0 0xE000E400 RW 

Interrupt 0 priority configuration. 
[7:4]: Priority control bits 
If the configuration is not nested, 
no preemption bit 
If nesting is configured, bit7 is the 
preempted bit. [3:0]: Reserved, 
fixed to 0 
Note: The smaller the priority 
value, the higher the priority. If 
the same preemption priority 
interrupt hangs at the same time, 
the interrupt with the higher 
priority will be executed first. 

0x00 

PFIC_IPRIOR1 0xE000E401 RW 
Interrupt 1 priority setting, same 
function as PFIC_IPRIOR0 

0x00 

PFIC_IPRIOR2 0xE000E402 RW 
Interrupt 2 priority setting, same 
function as PFIC_IPRIOR0 

 

… … … … … 

PFIC_IPRIOR254 0xE000E4FE RW 
Interrupt 254 priority setting, 
same function as PFIC_IPRIOR0 

0x00 

PFIC_IPRIOR255 0xE000E4FF RW 
Interrupt 255 priority setting, 
same function as PFIC_IPRIOR0 

0x00 

- - - - - 
PFIC_ITHRESDR 0xE000E040 RW Interrupt priority threshold 0x00 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 11  

setting 
[31:8]: Reserved, fixed to 0 
[7:4]: Priority threshold 
[3:0]: Reserved, fixed to 0 
Note: For interrupts with priority 
value ≥ threshold, the interrupt 
service function is not executed 
when a hang occurs, and when 
this register is 0, it means the 
threshold register is invalid. 

 
Interrupt configuration register (PFIC_CFGR) 

Name Access address Access Description Reset value 
PFIC_CFGR 0xE000E048 RW Interrupt configuration register 0x00000000 

 
Its folks are defined as. 

Bit Name Access Description Reset value 

[31:16] KEYCODE WO 

Corresponding to different target control bits, the 
corresponding security access identification data 
needs to be written simultaneously in order to be 
modified, and the readout data is fixed to 0. 
KEY1 = 0xFA05； 
KEY2 = 0xBCAF； 
KEY3 = 0xBEEF。 

0 

[15:8] Reserved RO Reserved 0 

7 SYSRESET WO 

System reset (simultaneous writing to KEY3). 
Auto clear 0. 
Writing 1 is valid, writing 0 is invalid. 
Note: Same function as the PFIC_SCTLR register 
SYSRESET bit. 

0 

[6:0] Reserved RO Reserved 0 
V2 series microprocessor This register is mainly used for compatible 
 
Interrupt global status register (PFIC_GISR) 

Name Access address Access Description Reset value 
PFIC_CFGR 0xE000E04C RO Interrupt global status register 0x00000000 

 
Its folks are defined as. 
 

Bit Name Access Description Reset value 
[31:10] Reserved RO Reserved 0 

9 GPENDSTA RO 
Whether an interrupt is currently pending. 
1: Yes;     0: No. 

0 

8 GACTSTA RO 
Whether an interrupt is currently being executed. 
1: Yes;     0: No. 

0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 12  

[7:0] NESTSTA RO 

Current interrupt nesting status. 
0x03: in level 2 interrupt. 
0x01: in level 1 interrupt. 
0x00: no interrupts occur. 
Other: Impossible situation. 

0 

 
VTF ID and address registers (PFIC_VTFIDR/PFIC_VTFADDRR<0-1>) 

Name Access address Access Description Reset value 

PFIC_VTFIDR 0xE000E050 RW 
[15:8]: number of VTF 1 
[7:0]: number of VTF 0 

0x00000000 

- - - - - 

PFIC_VTFADDRR0 0xE000E060 RW 

[31:1]: VTF 0 address, two-byte 
alignment  
[0]: 
1: Enable VTF 0 channel 
0: Close 

0x00000000 

PFIC_VTFADDRR1 0xE000E064 RW 

[31:1]: VTF 1 address, two-byte 
alignment 
[0]: 
1: Enable VTF 1 channel 
0: Close 

0x00000000 

 
System control register (PFIC_SCTLR) 

Name Access address Access Description Reset value 
PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000 

Each of them is defined as follows. 
Bit Name Access Description Reset value 

31 SYSRESET WO 
System reset, clear 0 automatically. 
write 1 valid, write 0 invalid, same 
effect as PFIC_CFGR register 

0 

[30:6] Reserved RO Reserved 0 

5 SETEVENT WO 
Set the event to wake up the WFE 
case. 

0 

4 SEVONPEND RW 

When an event occurs or interrupts a 
pending state, the system can be 
woken up from after the WFE 
instruction, or if the WFE instruction 
is not executed, the system will be 
woken up immediately after the next 
execution of the instruction. 
1: Enabled events and all interrupts 
(including unenabled interrupts) can 
wake up the system. 
0: Only enabled events and enabled 
interrupts can wake up the system. 

0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 13  

3 WFITOWFE RW 

Execute the WFI command as if it 
were a WFE. 
1: treat the subsequent WFI 
instruction as a WFE instruction. 
0: No effect. 

0 

2 SLEEPDEEP RW 
Low power mode of the control 
system. 
1: deepsleep 0: sleep 

0 

1 
SLEEPONEXI

T 
RW 

System status after control leaves the 
interrupt service program. 
1: The system enters low-power 
mode. 
0: The system enters the main 
program. 

0 

0 Reserved RO Reserved 0 
 

3.2 Interrupt-related CSR registers 
In addition, the following CSR registers also have a significant impact on the processing of interrupts. 
 
Interrupt system control register (INTSYSCR) 

Name CSR Address Access Description Reset value 
INTSYSCR 0x804 MRW Interrupt system control register 0x00000000 

 
Its folks are defined as. 

Bit Name Access Description Reset value 
[31:3] Reserved MRO Reserved 0 

2 EABIEN MRW 
EABI enable. 
0: EABI off. 
1: EABI enabled. 

0 

1 INESTEN MRW 
Interrupt nesting enable. 
0: Interrupt nesting function off. 
1: Interrupt nesting function enabled. 

0 

0 HWSTKEN MRW 
HPE enable. 
0: HPE function off. 
1: HPE function enabled. 

0 

 
Machine mode exception base address register (mtvec) 

Name CSR Address Access Description Reset value 
mtvec 0x305 MRW Exception base address register 0x00000000 

 
Its folks are defined as. 

Bit Name Access Description Reset value 

[31:2] BASEADDR[31:2] MRW 
The interrupt vector table base address, 
which needs to be 1KB aligned. 

0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 14  

1 MODE1 MRW 

Interrupt vector table identifies patterns. 
0: Identification by jump instruction, 
limited range, support for non-jump 
instructions. 
1: Identify by absolute address, support 
full range, but must jump. 

0 

0 MODE0 MRW 

Interrupt or exception entry address mode 
selection. 
0: Use of the uniform entry address. 
1: Address offset based on interrupt 
number *4.  

0 

For MCU of V2 series microprocessors, MODE[1:0]=11 is configured in the startup file by default, i.e. the 
vector table uses the absolute address of the interrupt function and the entry of the exception or interrupt is 
offset according to the interrupt number *4. 
 

3.3 Interrupt nesting 
In conjunction with the interrupt system control register INTSYSCR (CSR address: 0x804) and the interrupt 
priority register PFIC_IPRIOR, nesting of interrupts can be allowed to occur. Enable nesting in the Interrupt 
System Control Register (configured in the startup file for V2 series MCUs) and configure the priority of the 
corresponding interrupt. The smaller the priority value, the higher the priority. The smaller the value of the 
preemption bit, the higher the preemption priority. If there are interrupts hanging at the same time under the 
same preemption priority, the microprocessor responds to the interrupt with the lower priority value (higher 
priority) first. 
 

3.4 Hardware Prologue/Epilogue (HPE) 
When an exception or interrupt occurs, the microprocessor stops the current program flow and shifts to the 
execution of the exception or interrupt handling function, the site of the current program flow needs to be 
saved. After the exception or interrupt returns, it is necessary to restore the site and continue the execution of 
the stopped program flow. For V2 series microprocessors, the "site" here refers to all the Caller Saved registers 
in Table 1-2. 
V2 series microprocessors, support hardware to automatically save 10 of the shaped Caller Saved registers to 
the user stack area, and when an exception or interrupt returns, the hardware automatically restores data from 
the user stack area to the 10 shaped registers. HPE supports nesting, and the maximum nesting depth is 2 levels. 
Suppose the value of SP at the beginning of the stack is N. When the stack is inserted, the SP value is 
automatically offset by 48 bytes and the SP value is updated to N-48. The changes inside the stack after the 
stack is inserted are shown in the table below. 

Table 3-3 V2 processor stack entry order 
SP Address Register Description 

Old SP value(N-0) - The contents of the stack already pressed in 
N-4 x1 Automatic saving of x1 values 
N-8 x5 Automatic saving of x5 values 
N-12 x6 Automatic saving of x6 values 
N-16 x7 Automatic saving of x7 values 
N-20 x10 Automatic saving of x10 values 
N-24 x11 Automatic saving of x11 values 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 15  

N-28 x12 Automatic saving of x12 values 
N-32 x13 Automatic saving of x13 values 
N-36 x14 Automatic saving of x14 values 
N-40 x15 Automatic saving of x15 values 
… … … 

New SP value(N-48) - SP value after entering the stack 
Note: 1. Interrupt functions using the HPE need to be compiled using MRS or its provided toolchain and the 
interrupt function needs to be declared with __attribute__((interrupt("WCH-Interrupt-fast"))). 

2. The interrupt function using stack push is declared by __attribute__((interrupt())). 
 

3.5 Vector Table Free (VTF) 
The Programmable Fast Interrupt Controller (PFIC) provides two VTF channels, i.e., direct access to the 
interrupt function entry without going through the interrupt vector table lookup process. 
While configuring an interrupt function normally, write its interrupt number to one of the channels x of the 
VTF ID register PFIC_VTFIDR, and write its entry address to the corresponding VTF address register 
VTFADDRRx, and enable the VTF for that channel. 
The PFIC responds to fast interrupts and VTF as shown in Figure 3-2 below. 

Figure 3-2 Schematic diagram of programmable fast interrupt controller 

...

BLE
ETH
USB

...

Other

Peripherals

EXC

PFIC

id_0

id_1

id_2

...

id_n-1

id_n

RISC-V CORE

     VTF(IRQn,addr)
IRQ

...
...

Handler_addr

Code

(VTF: Vector table free)

“j”o    r“Handler_addr”

...
...

Vector Table

     Fast(id_num)

 

 

3.6 Tail-chaining and Late Arrivals 
QingKe V2 series HPE saves registers to the user stack area and supports priority configuration and interrupt 
nesting. When the tail-chaining phenomenon occurs, i.e., when responding to a high-priority interrupt, there 
is a low-priority interrupt hanging at the same time. When the high-priority interrupt is executed, the stack out 
of the high-priority middle end is omitted and the stack in operation before executing the pending interrupt is 
performed to reduce the interrupt latency.  
Similarly, when the processor is processing the stacking operation of a low-priority interrupt and receives a 
late request for a high-priority interrupt, the high-priority interrupt does not repeat the stacking operation and 
directly follows the previous operation. 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 16  

Chapter 4 System Timer (SysTick) 

QingKe V2 series microprocessor is designed with a 32-bit plus counter (SysTick) inside, and its clock source 
can be the system clock or 8 divisions of the system clock. It can provide time base for real time operating 
system, provide timing, measure time, etc. The timer involves four registers and maps to the peripheral address 
space for controlling the SysTick, as shown in Table 4-1 below. 

Table 4-1 SysTick register list 
Name Access address Description Reset value 

STK_CTLR 0xE000F000 System count control register 0x00000000 
STK_SR 0xE000F004 System count status register 0x00000000 

STK_CNTR 0xE000F008 System counter register 0x00000000 
STK_CMPR 0xE000F010 System count comparison value register 0x00000000 

 
Each register is described in detail as follows. 
 
System count control register (STK_CTLR) 

Table 4-2 SysTick Control Registers 
Bit Name Access Description Reset value 

31 SWIE RW 

Software interrupt trigger enable (SWI).  
1: Triggering software interrupts.  
0: Turn off the trigger.  
After entering software interrupt, software clear 0 
is required, otherwise it is continuously triggered. 

0 

[30:4] Reserved RO Reserved 0 

3 STRE RW 

Auto-reload Count enable bit. 
1: Count up to the comparison value and start 
counting from 0 again 
0: Continue counting up. 

0 

2 STCLK RW 
Counter clock source selection bit. 
1: HCLK for time base. 
0: HCLK/8 for time base. 

0 

1 STIE RW 
Counter interrupt enable control bit.  
1: Enabling counter interrupts. 
0: Turn off the counter interrupt. 

0 

0 STE RW 

System counter enable control bit.  
1: Start the system counter STK. 
0: Turn off the system counter STK and the 
counter stops counting. 

0 

 
System count status register (STK_SR) 

 
Table 4-3 SysTick Status Register 

Bit Name Access Description Reset value 
[31:1] Reserved RO Reserved 0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 17  

0 CNTIF RW0 

Counting value comparison flag, write 0 clear, 
write 1 invalid:  
1: upward counting to reach the comparison value. 
0: The comparison value is not reached. 

0 

 
System counter value register (STK_CNTR) 

Bit Name Access Description Reset value 
[31:0] CNTR RW Current counter count value. 0 

 
System Count comparison value register (STK_CMPR) 

Bit Name Access Description Reset value 
[31:0] CMPR RW Set counter comparison value 0 

 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 18  

Chapter 5 Processor Low-power Settings 

QingKe V2 series microprocessors support sleep state via WFI (Wait For Interrupt) instruction to achieve low 
static power consumption. Combined with PFIC's system control register (PFIC_SCTLR), it can implement 
various Sleep modes and WFE commands 
 

5.1 Enter sleep 
QingKe V2 series microprocessors can go to sleep in two ways, Wait for Interrupt (WFI) and Wait For Event 
(WFE).The WFI method means that the microprocessor goes to sleep, waits for an interrupt to wake up, and 
then wakes up to the corresponding interrupt to execute. The WFE method means that the microprocessor goes 
to sleep, waits for an event to wake up, and wakes up to continue executing the previously stopped program 
flow.  
The standard RISC-V supports WFI instruction, and the WFI command can be executed directly to enter sleep 
by WFI method. For the WFE method, the WFITOWFE bit in the system control register PFIC_SCTLR is 
used to control the subsequent WFI commands as WFE processing to achieve the WFE method to enter sleep. 
 
The depth of sleep is controlled according to the SLEEPDEEP bit in PFIC_SCTLR. 
l If the SLEEPDEEP in PFIC_SCTLR register is cleared to zero, the microprocessor enters Sleep mode 

and the internal unit clock is allowed to be turned off except for SysTick and part of the wake-up logic. 
l If SLEEPDEEP in the PFIC_SCTLR register is set, the microprocessor enters Deep sleep mode and all 

cell clocks are allowed to be turned off. 
When the microprocessor is in Debug mode, it is not possible to enter any kind of Sleep mode. 
 

5.2 Sleep Wakeup 
QingKe V2 series microprocessors can be woken up after sleep due to WFI and WFE in the following ways. 
l After the WFI method goes to sleep, it can be awakened by 
(1) The microprocessor can be woken up by the interrupt source responded by the interrupt controller. After 

waking up, the microprocessor executes the interrupt function first. 
(2) Enter Sleep mode, debug request can make the microprocessor wake up and enter deep sleep, debug 

request cannot wake up the microprocessor. 
 
l After the WFE method goes to sleep, the microprocessor can be woken up by the following. 
(1) Internal or external events, when there is no need to configure the interrupt controller, wake up and 

continue to execute the program. 
(2) If an interrupt source is enabled, the microprocessor is woken up when an interrupt is generated, and after 

waking up, the microprocessor executes the interrupt function first. 
(3) If the SEVONPEND bit in PFIC_SCTLR is configured, the interrupt controller does not enable the 

interrupt under, but when a new interrupt pending signal is generated (the previously generated pending 
signal does not take effect), it can also make the microprocessor wake up, and the corresponding interrupt 
pending flag needs to be cleared manually after waking up. 

(4) Enter Sleep mode debug request can make the microprocessor wake up and enter deep sleep, debug request 
cannot wake up the microprocessor. 

 
In addition, the state of the microprocessor after wake-up can be controlled by configuring the SLEEPONEXIT 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 19  

bit in PFIC_SCTLR. 
l SLEEPONEXIT is set and the last level interrupt return instruction (mret) will trigger the WFI mode 

sleep. 
 
l SLEEPONEXIT is cleared with no effect. 
Various MCU products equipped with V2 series microprocessors can adopt different sleep modes, turn off 
different peripherals and clocks, implement different power management policies and wake-up methods 
according to different configurations of PFIC_SCTLR, and realize various low-power modes. 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 20  

Chapter 6 Debug Support 

QingKe V2 series microprocessors include a hardware debug module that supports complex debugging 
operations. When the microprocessor is suspended, the debug module can access the microprocessor's GPRs, 
CSRs, Memory, external devices, etc. through abstract commands, program buffer deployment instructions, 
etc. The debug module can suspend and resume the microprocessor's operation.  
The debug module follows the RISC-V External Debug Support Version0.13.2 specification, detailed 
documentation can be downloaded from RISC-V International website. 
 

6.1 Debug Module 
The debug module inside the microprocessor, capable of performing debug operations issued by the debug 
host, includes. 
l Access to registers through the debug interface 
l Reset, suspend and resume the microprocessor through the debug interface 
l Read and write memory, instruction registers and external devices through the debug interface 
l Deploy multiple arbitrary instructions through the debug interface  
l Set software breakpoints through the debug interface 
l Support single-step debugging 
 
The internal registers of the debugging module use a 7-bit address code, and the following registers are 
implemented inside QingKe V2 series microprocessors. 

Table 6-1 Debug module register List 
Name Access address Description 
data0 0x04 Data register 0, can be used for temporary storage of data 
data1 0x05 Data register 1, can be used for temporary storage of data 

dmcontrol 0x10 Debug module control register 
dmstatus 0x11 Debug module status register 
hartinfo 0x12 Microprocessor status register 

abstractcs 0x16 Abstract command status register 
command 0x17 Abstract command register 

progbuf0-7 0x20-0x27 Instruction cache registers 0-7 
haltsum0 0x40 Pause status register 

 
The debug host can control the microprocessor's suspend, resume, reset, etc. by configuring the dmcontrol 
register. The RISC-V standard defines three types of abstract commands: access registers, fast access, and 
access memory. QingKe V2 microprocessor supports register (GPRs, CSRs, FPRs) access through abstract 
commands.  
The debug module implements eight instruction cache registers progbuf0-7, and the debug host can cache 
multiple instructions (which can be compressed instructions) to the buffer, and can choose to continue to 
execute the instructions in the instruction cache registers after executing the abstract command or execute the 
cached instructions directly. It should be noted that if the instruction in progbufs is less than 32 bytes, the last 
instruction needs to be an "ebreak" or "c.ebreak" instruction, and if the instruction fills 32 bytes, the debug 
module automatically adds an "ebreak" instruction. The debug host can access the abstract command and the 
instructions cached in the progbufs, and also the storage, peripherals, etc. 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 21  

Each register is described in detail as follows. 
Data register 0 (data0) 

Table 6-2 data0 register definition 
Bit Name Access Description Reset Value 

[31:0] data0 RW Data register 0, used for temporary storage of data 0 
 
Data register 1 (data1) 

Table 6-3 data1 register definition 
Bit Name Access Description Reset Value 

[31:0] data1 RW Data register 1, used for temporary storage of data 0 
 
Debug module control register (dmcontrol) 
This register controls the pause, reset, and resume of the microprocessor. Debug host write data to the 
corresponding field to achieve pause (haltreq), reset (ndmreset), resume (resumereq). You describe into the 
following. 

Table 6-4 dmcontrol register definition 
Bit Name Access Description Reset Value 

31 haltreq WO 
0: Clear the pause request  
1: Send a pause request 

0 

30 resumereq W1 

0: Invalid  
1: Restore the current microprocessor 
Note: Write 1 is valid and the hardware is cleared 
after the microprocessor is recovered 

0 

29 Reserved RO Reserved 0 

28 ackhavereset W1 
0: Invalid  
1: Clear the haverest status bit of the 
microprocessor 

0 

[27:2] Reserved RO Reserved 0 

1 ndmreset RW 
0: Clear reset  
1: Reset the entire system other than the debug 
module 

0 

0 dmactive RW 
0: Reset debug module  
1: Debug module works properly 

0 

 
Debug module status register (dmstatus) 
This register is used to indicate the status of the debug module and is a read-only register with the following 
description of each bit. 
 

Table 6-5 dmstatus register definition 
Bit Name Access Description Reset Value 

[31:20] Reserved RO Reserved 0 

19 allhavereset RO 
0: Invalid  
1: Microprocessor reset 

0 

18 anyhavereset RO 
0: Invalid  
1: Microprocessor reset 

0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 22  

17 allresumeack RO 
0: Invalid  
1: Microprocessor reset 

0 

16 anyresumeack RO 
0: Invalid  
1: Microprocessor reset 

0 

[15:14] Reserved RO Reserved 0 

13 allavail RO 
0: Invalid  
1: Microprocessor is not available 

0 

12 anyavail RO 
0: Invalid  
1: Microprocessor is not available 

0 

11 allrunning RO 
0: Invalid 
1: Microprocessor is running 

0 

10 anyrunning RO 
0: Invalid 
1: Microprocessor is running 

0 

9 allhalted RO 
0: Invalid  
1: Microprocessor is in suspension 

0 

8 anyhalted RO 
0: Invalid  
1: Microprocessor out of suspension 

0 

7 authenticated RO 
0: Authentication is required before using the 
debug module  
1: The debugging module has been certified 

0x1 

[6:4] Reserved RO Reserved 0 

[3:0] version RO 
Debugging system support architecture version  
0010: V0.13 

0x2 

 
Microprocessor status register (hartinfo) 
This register is used to provide information about the microprocessor to the debug host and is a read-only 
register with each bit described as follows. 

Table 6-6 hartinfo register definition 
Bit Name Access Description Reset Value 

[31:24] Reserved RO Reserved 0 
[23:20] nscratch RO Number of dscratch registers supported 0x2 
[19:17] Reserved RO Reserved 0 

16 dataaccess RO 
0: Data register is mapped to CSR address 
1: Data register is mapped to memory address 

0x1 

[15:12] datasize RO Number of data registers 0x2 

[11:0] dataaddr RO 
Data register data0 offset address, the base address 
is 0xe0000000 

0x0f4 

 
Abstract command control and status registers (abstractcs) 
This register is used to indicate the execution of the abstract command. The debug host can read this register 
to know whether the last abstract command is executed or not, and can check whether an error is generated 
during the execution of the abstract command and the type of the error, which is described in detail as follows.  

Table 6-7 abstractcs register definitions 
Bit Name Access Description Reset Value 

[31:29] Reserved RO Reserved 0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 23  

[28:24] progbufsize RO 
Indicates the number of program buffer program cache 
registers 

0x8 

[23:13] Reserved RO Reserved 0 

12 busy RO 
0: No abstract command is executing 
1: There are abstract commands being executed 
Note: After execution, the hardware is cleared. 

0 

11 Reserved RO Reserved 0 

[10:8] cmder RW 

Abstract command error type  
000: No error  
001: abstract command execution to write to 
command, abstractcs, abstractauto registers or read 
and write to data and progbuf registers  
010: Does not support current abstract command  
011: Execution of abstract command with exception  
100: The microprocessor is not suspended or 
unavailable and cannot execute abstract commands  
101: Bus error  
110: Parity bit error during communication  
111: Other errors  
Note: For bit writing 1 is used to clear the zero. 

0 

[7:4] Reserved RO Reserved 0 
[3:0] datacount RO Number of data registers 0x2 

 
Abstract command register(command) 
The debug host can access the GPRs, FPRs, and CSRs registers inside the microprocessor by writing different 
configuration values in the abstract command registers.  
When accessing the registers, the command register bits are defined as follows. 

Table 6-8 Definition of command register when accessing registers 
Bit Name Access Description Reset Value 

[31:24] cmdtype WO 

Abstract command type  
0: Access register  
1: Quick access (not supported)  
2: Access to memory (not supported) 

0 

23 Reserved WO Reserved 0 

[22:20] aarsize WO 

Access register data bit width  
000: 8-bit  
001: 16-bit  
010: 32-bit  
011: 64-bit (not supported)  
100: 128-bit (not supported)  
Note: When accessing floating-point registers 
FPRs, only 32-bit access is supported. 

0 

19 aarpostincrement WO 
0: No effect  
1: Automatically increase the value of regno after 
accessing the register 

0 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 24  

18 postexec WO 
0: No effect  
1：Execute the abstract command and then execute 
the command in progbuf 

0 

17 transfer WO 
0: Do not execute the operation specified by write 
1: Execute the manipulation specified by write 

0 

16 write WO 
0: Copy data from the specified register to data0 
1: Copy data from data0 register to the specified 
register 

0 

[15:0] regno WO 

Specify access registers 
0x0000-0x0fff are CSRs 
0x1000-0x101f are GPRs 
0x1020-0x103f are FPRs 

0 

 
Instruction cache register (progbufx) 
This register is used to store any instruction, deploy the corresponding operation, including 8, need to pay 
attention to the last execution needs to be "ebreak" or "c.ebreak". 
 

Table 6-9 progbuf register definition 
Bit Name Access Description Reset Value 

[31:0] progbuf RW 
Instruction encoding for cache operations, which 
may include compression instructions 

0 

 
Pause status register (haltsum0) 
This register is used to indicate whether the microprocessor is suspended or not. Each bit indicates the 
suspended status of a microprocessor, and when there is only one core, only the lowest bit of this register is 
used to indicate it.  
 

Table 6-10 haltsum0 register definition 
Bit Name Access Description Reset Value 

[31:1] Reserved RO Reserved 0 

0 haltsum0 RO 
0: Microprocessor operates normally  
1: Microprocessor stop 

0 

 
In addition to the above-mentioned registers of the debug module, the debug function also involves some CSR 
registers, mainly the debug control and status register dcsr and the debug instruction pointer dpc, which are 
described in detail as follows. 
 
Debug control and status register (dcsr) 

Table 6-11 dcsr register definition 
Bit Name Access Description Reset Value 

[31:28] xdebugver DRO 

0000: External debugging is not supported  
0100: Support standard external debugging  
1111: External debugging is supported, but does not meet 
the specification 

0x4 

[27:16] Reserved DRO Reserved  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 25  

15 ebreakm DRW 

0: The ebreak command in machine mode behaves as 
described in the privilege file  
1: The ebreak command in machine mode can enter debug 
mode 

0 

[14:13] Reserved DRO Reserved 0 

12 ebreaku DRW 

0: The ebreak command in user mode behaves as 
described in the privilege file  
1: The ebreak command in user mode can enter debug 
mode 

0 

11 stepie DRW 
0: Interrupts are disabled under single-step debugging 
1: Enable interrupts under single-step debugging 

0 

10 Reserved DRO Reserved 0 

9 stoptime DRW 
0: System timer running in Debug mode 
1: System timer stop in Debug mode 

0 

[8:6] cause DRO 

Reasons for entering debugging  
001: Entering debugging in the form of ebreak command 
(priority 3) 
010: Entering debugging in the form of trigger module 
(priority 4, the highest) 
011: Entering debugging in the form of pause request 
(priority 1) 
100: debugging in the form of single-step debugging 
(priority 0, the lowest) 
101: enter debug mode directly after microprocessor reset 
(priority 2) 
Others: Reserved 

0 

[5:3] Reserved DRO Reserved 0 

2 step DRW 
0: Turn off single-step debugging 
1: Enable single-step debugging 

0 

[1:0] prv DRW 

Privilege mode 
00: User mode  
01: Supervisor mode (not supported)  
10: Reserved  
11: Machine mode  
Note: Record the privileged mode when entering debug 
mode, the debugger can modify this value to modify the 
privileged mode when exiting debug 

0 

 
Debug mode program pointer (dpc) 
This register is used to store the address of the next instruction to be executed after the microprocessor enters 
debug mode, and its value is updated with different rules depending on the reason for entering debug. dpc 
register is described in detail as follows. 

Table 6-12 dpc register definitions 
Bit Name Access Description Reset Value 

[31:0] dpc DRW Command Address 0 
 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 26  

The rules for updating the registers are shown in the following table. 
Table 6-13 dpc update rules 

Enter the debugging 
method 

dpc Update rules 

ebreak Address of the Ebreak instruction 
single step Instruction address of the next instruction of the current instruction 

trigger module Temporarily not supported 
halt request Address of the next instruction to be executed when entering Debug 

 

6.2 Debug interface 
Different from the standard JTAG interface defined by RISC-V, QingKe V2 series microprocessor adopts 
single-wire serial debug interface and follows WCH debug interface protocol. The debug interface is 
responsible for the communication between the debug host and the debug module, and realizes the read/write 
operation of the debug host to the debug module registers. WCH designed WCH_Link and open source its 
schematic and program binary files, which can be used for debugging all microprocessors of RISC-V 
architecture. 
Refer to WCH Debug Protocol Manual for specific debug interface protocols. 
  

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 27  

Chapter 7 CSR Register List 

The RISC-V architecture defines a number of Control and Status Registers (CSRs) for controlling and 
recording the operating status of the microprocessor. Some of the CSRs have been introduced in the previous 
section, and this chapter will detail the CSR registers implemented in the QingKe V2 series microprocessors. 
 

7.1 CSR Register List 
 

Table 7-1 List of Microprocessor CSR Registers 
Type Name CSR Address Access Description 

RISC-V 
Standard CSR 

marchid 0xF12 MRO Architecture number register 
mimpid 0xF13 MRO Hardware implementation numbering register 
mstatus 0x300 MRW Status register 

misa 0x301 MRW Hardware instruction set register 
mtvec 0x305 MRW Exception base address register 

mscratch 0x340 MRW Machine mode staging register 
mepc 0x341 MRW Exception program pointer register 

mcause 0x342 MRW Exception cause register 
dcsr 0x7B0 DRW Debug control and status registers 
dpc 0x7B1 DRW Debug mode program pointer register 

dscratch0 0x7B2 DRW Debug mode staging register 0 
dscratch1 0x7B3 DRW Debug mode staging register 1 

Vendor-
defined CSRs intsyscr 0x804 URW Interrupt system control register 

 

7.2 RISC-V standard CSR registers 
Architecture number register (marchid) 
This register is a read-only register to indicate the current microprocessor hardware architecture number, which 
is mainly composed of vendor code, architecture code, series code, and version code. Each of them is defined 
as follows. 
 

Table 7-2 marchid register definition 
Bit Name Access Description Reset Value 
31 Reserved MRO Reserved 1 

[30:26] Vender0 MRO 
Manufacturer code 0  
Fixed to the letter "W" code 

0x17 

[25:21] Vender1 MRO 
Manufacturer code1  
Fixed to the letter "C" code 

0x03 

[20:16] Vender2 MRO 
Manufacturer code 2  
Fixed to the letter "H" code 

0x08 

15 Reserved MRO Reserved 1 

[14:10] Arch MRO 
Architecture Code 
RISC-V architecture is fixed to the letter "V" code 

0x16 

[9:5] Serial MRO 
Series Code  
QingKe V2 series, fixed to the number "4" 

0x04 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 28  

[4:0] Verision MRO 
Version Code  
Can be the version "A", "B", "C", "F" and other 
letters of the code 

x 

The manufacturer number and version number are alphabetic, and the series number is numeric. The coding 
table of letters is shown in the following table.  

Table 7-3 Alphabetic Mapping Table 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

For example, QingKe V2A microprocessor, read the value of this register as: 0xDC68D841, which corresponds 
to WCH-V2A. 
 
Hardware implementation numbering register (mimpid) 
This register is mainly composed of vendor codes, each of which is defined as follows. 

Table 7-4 mimpid register definition 
Bit Name Access Description Reset Value 
31 Reserved MRO Reserved 1 

[30:26] Vender0 MRO 
Manufacturer code 0  
Fixed to the letter "W" code 

0x17 

[25:21] Vender1 MRO 
Manufacturer code1  
Fixed to the letter "C" code 

0x03 

[20:16] Vender2 MRO 
Manufacturer code 2  
Fixed to the letter "H" code 

0x08 

15 Reserved MRO Reserved 1 
[14:1] Reserved MRO Reserved 0 

0 Reserved MRO Reserved 1 
 
Machine mode status register (mstatus) 
This register has been partially described in the previous section, and its folks are positioned as follows.  

Table 7-5 mstatus register definition 
Bit Name Access Description Reset Value 

[31:25] Reserved MRO Reserved 0 

24 MPPOP MRW 
Whether the current subactive interrupt needs to 
come out of the stack 

0 

23 MPOP MRW 
Whether the current active interrupt needs to come 
out of the stack 

0 

[22:13] Reserved MRO Reserved 0 
[12:11] MPP MRW Privileged mode before entering break 0 
[10:8] Reserved MRO Reserved 0 

7 MPIE MRW Interrupt enable state before entering interrupt 0 
[6:4] Reserved MRO Reserved 0 

3 MIE MRW Machine mode interrupt enable 0 
[2:0] Reserved MRO Reserved 0 

 
The MPOP field is used to control and indicate that the currently active interrupt needs to be out of the stack 
when it is 1, and does not need to be out of the stack when it is 0. The MPPOP field is used to control and 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 29  

indicate that the next active interrupt needs to be out of the stack when it is 1, and does not need to be out of 
the stack when it is 0. Normally, when nesting occurs, MPPOP is updated to MPOP and MPOP is updated to 
the current interrupt out stack flag. When nesting returns, MPOP is restored to MPPOP. 
The MPP field is used to save the privileged mode before entering an exception or interrupt, and to restore the 
privileged mode after exiting an exception or interrupt, QingKe V2 microprocessor only supports Machine 
mode, although the MPP update mechanism is like the above process, but the value in V2 may only be 0b11. 
MIE is the global interrupt enable bit, when entering an exception or interrupt, the value of MPIE is updated 
to MIE value, it should be noted that it should be noted that in the QingKe V2 series microprocessors, MIE is 
not updated to 0 at this time before entering the last level of interrupt to ensure that the interrupt nesting in 
Machine mode continues to be executed. After exiting the exception or interrupt, the microprocessor reverts 
to the Machine mode saved by the MPP and the MPIE reverts to the value of MIE. 
 
Hardware instruction set register (misa) 
This register is used to indicate the architecture of the microprocessor and the supported instruction set 
extensions, each of which is described as follows.  

Table 7-6 misa register definition 
Bit Name Access Description Reset Value 

[31:30] MXL MRO 

Machine word length 
1:32 
2:64 
3:128 

1 

[29:26] Reserved MRO Reserved 0 
[25:0] Extensions MRO Instruction set extensions x 

 
The MXL is used to indicate the word length of the microprocessor, QingKe V2 are 32-bit microprocessors, 
the domain is fixed to 1. Extensions are used to indicate that the microprocessor supports extended instruction 
set details, each indicates a class of extensions, its detailed description is shown in the following table.  

Table 7-7 Instruction Set Extension Details 
Bit Name Description 
0 A Atomic extension 
1 B Tentatively reserved for Bit-Manipulation extension 
2 C Compressed extension 
3 D Double-precision floating-point extension 
4 E RV32E base ISA 
5 F Single-precision floating-point extension 
6 G Additional standard extensions present 
7 H Hypervisor extension 
8 I RV32I/64I/128I base ISA 
9 J Tentatively reserved for Dynamically Translated Languages extension 
10 K Reserved 
11 L Tentatively reserved for Decimal Floating-Point extension 
12 M Integer Multiply/Divide extension 
13 N User-level interrupts supported 
14 O Reserved 
15 P Tentatively reserved for Packed-SIMD extension 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 30  

16 Q Quad-precision floating-point extension 
17 R Reserved 
18 S Supervisor mode implemented 
19 T Tentatively reserved for Transactional Memory extension 
20 U User mode implemented 
21 V Tentatively reserved for Vector extension 
22 W Reserved 
23 X Non-standard extensions present 
24 Y Reserved 
25 Z Reserved 

For example, for QingKe V2A microprocessor, the register value is 0x40800014, which means that the 
supported instruction set architecture is RV32EC, as well as the non-standard extension X, and there is no User 
mode implementation. 
 
Machine mode exception base address register (mtvec) 
This register is used to store the base address of the exception or interrupt handler and the lower two bits are 
used to configure the mode and identification method of the vector table as described in Section 3.2. 
 
Machine mode staging register (mscratch) 

Table 7-8 mscratch register definitions 
Bit Name Access Description Reset Value 

[31:0] mscratch MRW Data storage 0 
This register is a 32-bit readable and writable register in Machine mode for temporary data storage. For 
example, when entering an exception or interrupt handler, the user stack pointer SP is stored in this register 
and the interrupt stack pointer is assigned to the SP register. After exiting the exception or interrupt, restore 
the value of user stack pointer SP from mscratch. That is, the interrupt stack and user stack can be isolated. 
 
Machine mode exception program pointer register (mepc) 

Table 7-9 mepc register definitions 
Bit Name Access Description Reset Value 

[31:0] mepc MRW Exception procedure pointer 0 
This register is used to save the program pointer when entering an exception or interrupt. It is used to save the 
instruction PC pointer before entering an exception when an exception or interrupt is generated, and mepc is 
used as the return address when the exception or interrupt is handled and used for exception or interrupt return. 
However, it is important to note that. 
l When an exception occurs, mepc is updated to the PC value of the instruction currently generating the 

exception. 
l When an interrupt occurs, mepc is updated to the PC value of the next instruction. 
When you need to return an exception after processing the exception, you should pay attention to modifying 
the value of the MEPC, and more details can be found in Chapter 2, Exception. 
 
 
 
 
 

http://wch.cn


QingKeV2 Microprocessor Manual  http://wch.cn 

V1.0 31  

Machine mode exception cause register (mcause) 
Table 7-10 mcause register definition 

Bit Name Access Description Reset Value 

31 Interrupt MRW 
Interrupt indication field 
0: Exception  
1: Interruption 

0 

[30:0] Exception Code MRW Exception codes, see Table 2-1 for details 0 
This register is mainly used to store the cause of the exception or the interrupt number of the interrupt. Its 
highest bit is the Interrupt field, which is used to indicate whether the current occurrence is an exception or an 
interrupt. The lower bit is the exception code, which is used to indicate the specific cause. Its details can be 
found in Chapter 2, Exception. 
 
Debug control and status register (dcsr) 
This register is used to control and record the operation status of Debug mode, refer to section 6.1 for detailed 
description.  
 
Debug mode program pointer register (dpc) 
This register is used to store the address of the next instruction to be executed after the microprocessor enters 
debug mode, and its value is updated with different rules depending on the reason for entering debug. Refer to 
Section 6.1 for detailed description. 
 
Debug mode staging register (dscratch0-1) 
This group of registers is used for temporary storage of data in Debug mode. 

Table 7-11 dscratch0-1 register definitions 
Bit Name Access Description Reset Value 

[31:0] dscratch DRW Debug mode data staging value 0 
 

7.3 User-defined CSR registers 
Interrupt system control register (intsyscr) 
This register is mainly used to configure the interrupt nesting depth, HPE, EABI enable and other related 
functions, see the relevant description in section 3.2. 

http://wch.cn

	Overview
	Features
	Chapter 1 Overview
	1.1 Instruction set
	1.2 Register set
	1.3 Privilege mode
	1.4 CSR Register

	Chapter 2 Exception
	2.1 Exception types
	2.2 Entering exception
	2.3 Exception handling functions
	2.4 Exception exit

	Chapter 3 PFIC and Interrupt Control
	3.1 PFIC register set
	3.2 Interrupt-related CSR registers
	3.3 Interrupt nesting
	3.4 Hardware Prologue/Epilogue (HPE)
	3.5 Vector Table Free (VTF)
	3.6 Tail-chaining and Late Arrivals

	Chapter 4 System Timer (SysTick)
	Chapter 5 Processor Low-power Settings
	5.1 Enter sleep
	5.2 Sleep Wakeup

	Chapter 6 Debug Support
	6.1 Debug Module
	6.2 Debug interface

	Chapter 7 CSR Register List
	7.1 CSR Register List
	7.2 RISC-V standard CSR registers
	7.3 User-defined CSR registers


