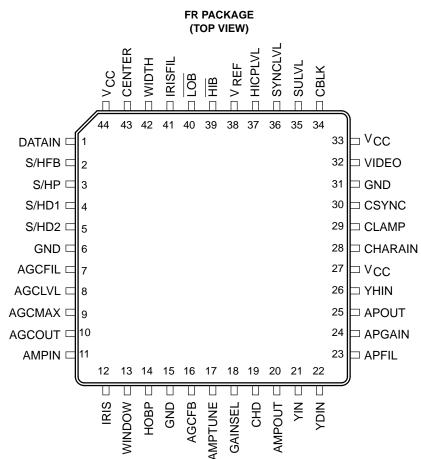
SOCS042 - JUNE 1994

- Solid-State Reliability
- Gain Control
- Gamma Correction
- White and Black Clip


- Iris Control
- Blank and Sync Insertion
- Correlated Double Sampling
- Video Windowing

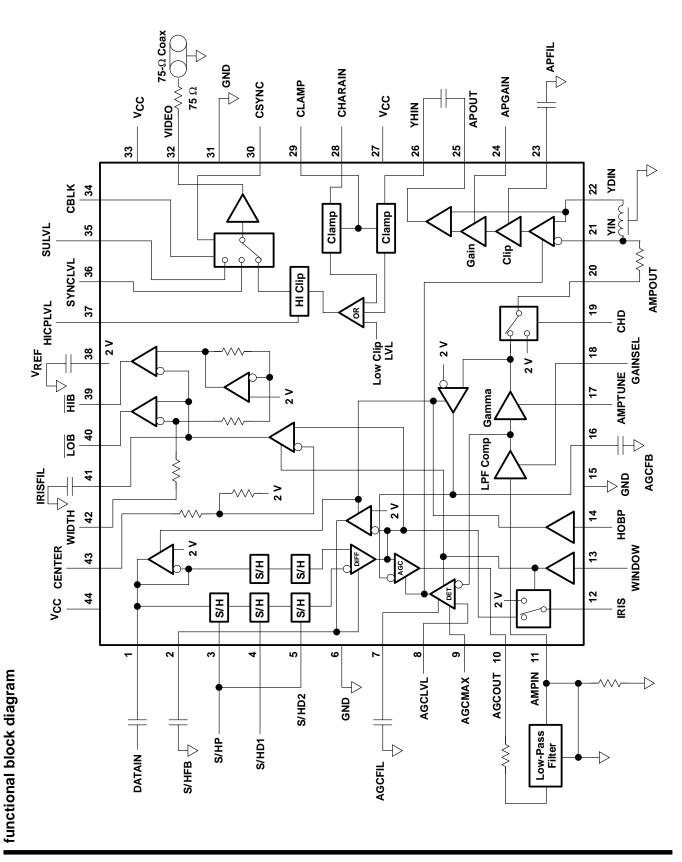
description

The SN761210 is a bipolar integrated circuit designed as a video processor for Texas Instruments CCD image sensors. Processing functions include sync and blank insertion, white and black clip, automatic gain control, gamma correct, auto-iris, correlated double sampling, edge enhancement, character insertion, and video windowing.

•

The SN761210 is supplied in a 44-pin surface-mount plastic package and is characterized for operation from -20° C to 45° C.

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should conductive form. In a circuit unused inputs should always be connected to an appropriated logic voltage level, preferably either Vaccord application of any storage or the device should conductive form.


beplaced in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either V_{CC} or ground. Specific guidelines for handling devices of this type are contained in the publication *Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies* available from Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1994, Texas Instruments Incorporated

SOCS042 - JUNE 1994

SOCS042 - JUNE 1994

Terminal Functions

TERM	INAL		
NAME	NO.	1/0	DESCRIPTION
AGCFB	16	0	AGC feedback
AGCFIL	7	0	AGC filter
AGCLVL	8	I	AGC level
AGCMAX	9	I	AGC maximum gain
AGCOUT	10	0	AGC out
AMPIN	11	I	Gamma amplifier in
AMPOUT	20	0	Gamma amplifier out
AMPTUNE	17	I	Gamma amplifier tune
APFIL	23	I	Aperture filter
APGAIN	24	I	Aperture gain
APOUT	25	0	Aperture out
CBLK	34	I	Composite blank pulse
CENTER	43	I	Iris center control
CHARAIN	28	I	Character in
CHD	19	I	Character/Dark level
CLAMP	29	I	Clamp
CSYNC	30	I	Composite sync pulse
DATAIN	1	I	Data in
GAINSEL	18	I	Gain select for low-pass filter compensation
GND	6, 15, 31		Ground
HIB	39	0	Iris high bit
HICPLVL	37	I	High clip level
HOBP	14	I	Horizontal optical black pulse
IRIS	12	0	Iris out
IRISFIL	41	0	Iris filter
LOB	40	0	Iris low bit
S/HFB	2	0	Sample-and-hold feedback
S/HD1	4	I	Sample and hold delay 1
S/HD2	5	I	Sample and hold delay 2
S/HP	3	I	Sample and hold pulse
SULVL	35	I	Setup level
SYNCLVL	36	I	Sync level
VCC	27, 33, 44		DC power supply voltage
VIDEO	32	0	Video out
VREF	38	0	Voltage reference
WIDTH	42	Ι	Iris width control
WINDOW	13	I	Window pulse
YDIN	22	I	Y delayed in
YHIN	26	Ι	Y high frequency in with aperture correction/edge enhancement
YIN	21	I	Y in

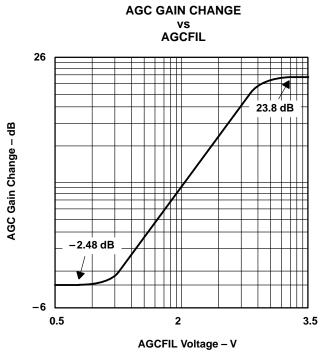
SOCS042 - JUNE 1994

detailed description

data in

Video data should be capacitively coupled into DATA IN.

sample and hold

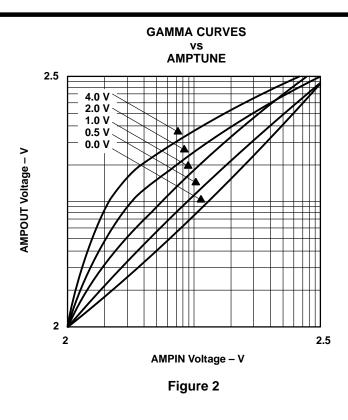

A sample-and-hold pulse aligned to the video data should be applied to S/HD1.

correlated double sampling

The correlated double sampling pulse aligned to the output midlevel data should be applied to S/HP and S/HD2.

AGC section

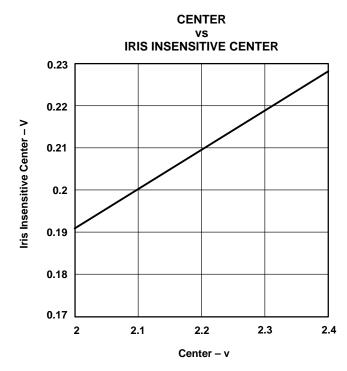
For AGC with a maximum gain of 24 dB, AGCFIL should be set to 3 V and AGCMAX should be open (see Figure 1). For AGC with a maximum gain of 11 dB, AGCMAX should be set to 0 V. A low-pass filter should be placed between AGCOUT and AMPIN. A 0.1 μ F capacitor should be placed from AGCFB to ground. A line clamp pulse should be applied to HOBP.



gamma amplifier section

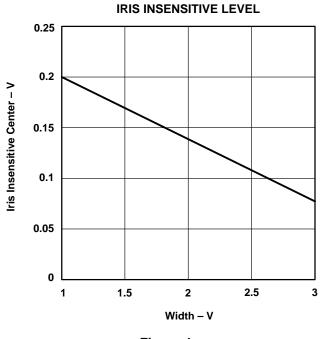
AGC and low-pass filtered video should be brought into AMPIN. A voltage of 5 V on GAINSEL results in the filter compensation amplifier having a gain of 6 dB; a voltage of 0 V on GAINSEL results in the filter compensation amplifier having a gain of 0 dB. A dc voltage that is applied to AMPTUNE determines the gamma curve (see Figure 2). A high control voltage on CHD allows the low-pass filtered and gamma corrected video signal to pass through to AMPOUT. A low control voltage on CHD causes the 2-V dc level used for dark reference to be output. This dark level output can be used either to improve the last dark-reference clamp performance or provide a black-level reference for inserting text characters. The accuracy of the charge stored across the last coupling capacitor is improved since the random noise present on the CCD output during the optical black level has been eliminated.

SOCS042 - JUNE 1994

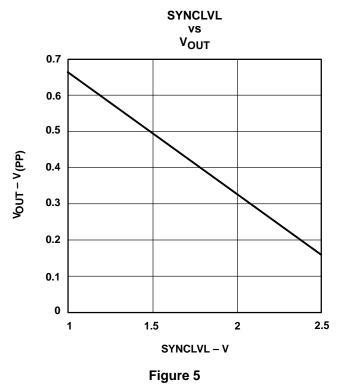


iris section

The iris function is implemented by forming a negative-feedback system between the SN761210 video processor and a timing generator such as the TMC57751. IRIS is connected to the differential amplifier's output when WINDOW is high. A window pulse from the TMC57751 or user-defined timing generator can provide additional gating of the video signal. See Table 4 of the TMC57751 Timing Generator data sheet for the WINDOW modes. The black level of IRIS is 2 V which represents the device's dc operating point for the zeroinput data level. The differential amplifier's output is connected to the iris amplifier's positive input with the negative input connected to an internal voltage divider network between the 2 V dc operating point and CENTER control input. The default value (no connection to CENTER) on the iris amplifier's negative input is 2.21 V dc. The transfer function of the iris amplifier is given by $[A_V * (V_{POS} - V_{NEG})] + 2$ with $A_V = 2.5$ V/V. Its output drives IRISFIL; an external capacitor should be connected from IRISFIL to ground. IRISFIL also connects to two internal comparators with a built-in hysteresis of 0.16 V when WIDTH is left unconnected. Varying the dc voltage of WIDTH allows the hysteresis to increase or decrease by 0.08 V. See Figure 3 and Figure 4 for the relationship between CENTER and Iris Center and Width and Iris Insensitive Level. If the average value of the video on IRIS drops below [2.21 – (0.16/2)]V, then LOB becomes active by going low and sinking current. If the average value of the video on IRIS rises above [2.21 + (0.16/2)]V, then HIB becomes active by going low and sinking current. HIB and LOB should be connected to TMC57751 EU and ED inputs respectively. An active low input on EU causes the integration time to increase resulting in an increase in the average video level. The default operating points for the center and width characteristics of the iris comparator can be modified. By applying control voltages to these terminals, the iris function can be optimized for different imaging applications.

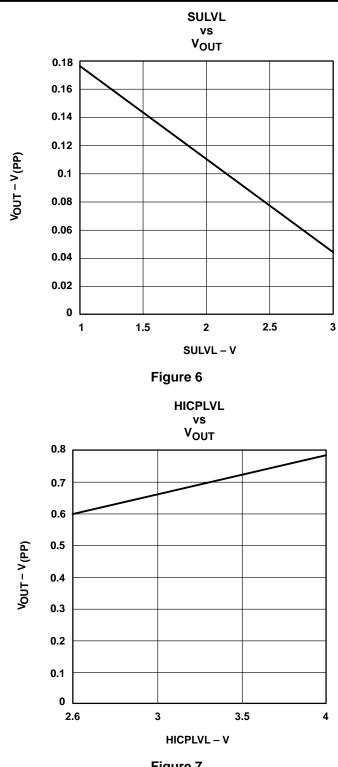


SOCS042 - JUNE 1994



aperture amplifier section

If the aperture function (i.e., edge enhancement) is used, the video signal is connected from AMPOUT through a resistor to YIN and through a delay line to YDIN. The aperture gain is selected by applying a dc voltage to APGAIN. The edge-enhanced video signal then is available for further processing at APOUT.


output amplifier section

If edge enhancement is not used, video should be capacitvely coupled from AMPOUT to YHIN. If edge enhancement is used, video is capacitively coupled from APOUT to YHIN. Text may be inserted on CHARAIN. A dark-reference clamp pulse should be applied to CLAMP in order to dc restore the video signal. Composite sync is inserted on CSYNC while composite blank is inserted on CBLK. The black level is determined by applying a dc voltage to SULVL. The sync level is determined by applying a dc voltage to SYNCLVL. The white clip level is determined by applying a dc voltage to HICLPLVL. Composite video is available at VIDEO. See Figure 5 through Figure 7 for the relation between the dc control voltages SYNCLVL, SULVL, HICPLVL, and VIDEO.

SOCS042 - JUNE 1994

SOCS042 - JUNE 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	$\dots -0.4$ V to 7 V
Operating free-air temperature range, T _A	. −20°C to 45°C
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Continuous power dissipation, $T_A = 25^{\circ}C$	892 mW

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: This voltage value is with respect to the ground terminal.

recommended operating conditions

	PARAMETE	ER		MIN	TYP	MAX	UNIT
VCC	Supply voltage			4.75	5	5.25	V
VREF	Reference voltage			1.930	2	2.7	V
VIH	High-level input voltage		S/HP, S/HD1, S/HD2	4.5			V
VIL	Low-level input voltage		S/HP, S/HD1, S/HD2			0.5	V
ЮН	High-level output current		HIB	10			μA
IOL	Low-level output current		LOB	10			μA
		Iris amplifier	S/HFB to IRIS	5			MHz
		AGC amplifier	IRIS to AGCOUT	8			MHz
в	Bandwidth	Gamma amplifier	AMPIN to AMPOUT	8		5 5.25 2 2.7	MHz
		Aperture amplifier	YIN to APOUT	8			MHz
		Output amplifier	YHIN to VIDEO	8	1.930 2 2. 4.5 0. 10 10 5 8 8 8 8 15 15 1		MHz
fclock	Clock frequency		S/HP, S/HD1, S/HD2	15			MHz
tw	Pulse duration		S/HP, S/HD1, S/HD2			11	ns
TA	Operating free-air temperature			-20		45	°C

all sections

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
I _{CC} Supply current	V _{CC} = 5.25 V	20	41	mA

sample-and-hold section

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VI	Input voltage	DATAIN	HOBP = 5 V	2.5	2.6	2.7	V	
lj	Input current	DATAIN	$V_{CC} = 5.25 \text{ V}, V_{I} = 2.5 \text{ V},$ HOBP = 0 V	-0.2	0.05	0.2	μΑ	
IIН	High-level input current	S/HP, S/HD1, S/HD2	$V_{CC} = 5.25 \text{ V}, V_{I} = 5 \text{ V}$	-1		1	μA	
1	Low-level input current	S/HP	V _{CC} = 5.25 V, V _I = 0 V		-90		μA	
۱Ľ	Low-level input current	S/HD1, S/HD2	VCC = 5.25 V, V = 0 V		-200		μΑ	
VI	Input voltage	S/HFB	HOBP = 5 V		2.7		V	
GP	Gain	DATAIN to IRIS	S/HP, S/HD1, S/HD2, and WINDOW = 5 V		1			
V _{I(PP)}	Input signal voltage	DATAIN			0.5		V	
IOZ	Clamp output impedance	DATAIN		3.5	5	6.5	kΩ	
lj –	Input current	S/HFB		-200		200	nA	

SOCS042 - JUNE 1994

gamma amplifier section

	PARAMETER		TEST CONDITIONS	MIN TY	P MAX	UNIT	
M	lan, structure and	AMPIN	GAINSEL = 5 V		1	V	
VI	Input voltage	AMPIN	GAINSEL = 0 V		2	v	
VO	Output voltage	AMPOUT			2	V	
VO	Output low clip voltage	AMPOUT		1.6 1.	7 1.8	V	
V _{O(PP)}	Output signal voltage			0.	5	V	
VIT	Gain control input threshold voltage	GAINSEL		1.9	2 2.1	V	
	CHD input threshold voltage	CHD		1.9	2 2.1		
V _{I(PP)}		AMPIN	GAINSEL = 0 V	0.2	5	V	
	Input signal voltage	AMPIN	GAINSEL = 5 V	0.	5	v	
	High-level input current	GAINSEL		-1	1		
Iн		CHD	$V_{CC} = 5.25 V, V_{I} = 5 V$	-1	1	μA	
		AMPTUNE		8	0		
		GAINSEL		-16	2		
۱ _{IL}	Low-level input current	CHD	$V_{CC} = 5.25 V, V_{I} = 0$	7	0	μA	
		AMPTUNE		-5	-50		
γ1	Gamma	AMPIN to AMPOUT	AMPTUNE = 2 V	0.4	5		
γ2	Gamma	AMPIN to AMPOUT	AMPTUNE = 0 V		1		
	Crosstalk	AMPIN to AMPOUT	CHD = 5 V	70		dB	

agc amplifier section

	PARAMETER		TEST CO	MIN	TYP	MAX	UNIT	
VI	Input voltage	AGCFB	HOBP = 5 V			2.7		V
VOH	High-level output voltage	AGCFIL	V _{CC} = 4.75 V		3.2			V
VOL	Low-level output voltage	AGCFIL	V _{CC} = 4.75 V				0.8	V
VO(PP)	Output signal voltage	AGCOUT				0.5		V
VI(PP)	AGC voltage level	AGCLVL				2.2		V
	Input current	10055		VI = 2.5 V	-200		200	nA
		AGCFB		V _I = 4.2 V	-1		1	μΑ
ь.		AGCFIL		V _I = 0	-200		200	nA
l			V _{CC} = 5.25 V,	V _I = 2 V	-7		0	
		AMPIN		VI = 4 V	-1		1	1 μA Ο
				VI = 0.5 V	-8		0	
I	I Pak Ison Construction	AGCLVL		V _I = 5 V		100		
lΗ	High-level input current	AGCMAX	V _{CC} = 5.25 V,	v] = 5 v		38		μA
1	Low-level input current	AGCLVL		$V_{I} = 0$		-80		μA
۱Ľ	Low-level input current	AGCMAX	V _{CC} = 5.25 V,	V] = 0		-76		μA
	Output current	AGCFB	HOBP = 5 V		60		100	μA
10	Output current	AGCFIL			50			μA
GP	Gain	AMPIN to AGCFIL	GAINSEL is high			45		dB
G _{P(min)}	Minimum gain	DATAIN to AGCOUT	AGFIL = 1 V		-4	-2	2	
	Maximum gain			AGCMAX is open	21	24	26	dB
GP(max) `	waxiillulli yalli	DATAIN to AGCOUT	AGCMAX = 0		9	11	13	

NOTE 2: AGC gain depends upon AGCFIL.

SOCS042 - JUNE 1994

logic input buffer section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VIT	Window input threshold voltage	WINDOW		1.9	2	2.1	V
VIT	HOBP input threshold voltage	HOBP		1.9	2	2.1	V
۱ _{IL}	Low-level input current	WINDOW, HOBP	$V_{CC} = 5.25 V, V_{I} = 0$	-15		0	μA
Iн	High-level input current	WINDOW, HOBP	$V_{CC} = 5.25 \text{ V}, V_{I} = 4.5 \text{ V}$	-1		1	μA

lens iris section

	PARAMETER			MIN	TYP	MAX	UNIT
VO	Output voltage	IRIS			2		V
V _O (PP)	Output signal voltage	IRIS			0.5		V
	Crosstalk	S/HFB – IRIS	WINDOW = 5 V	70			dB

aperture amplifier section

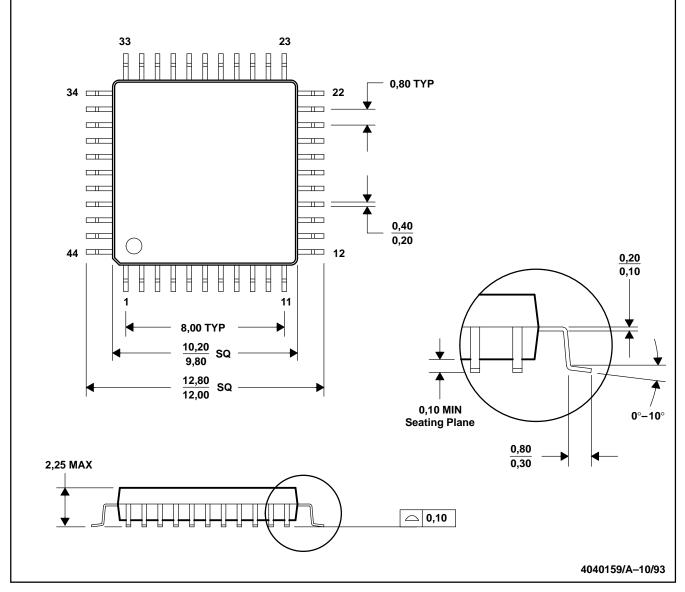
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		YIN, YDIN			2			
VI	Input voltage	APFIL		1.65		1.95	V	
		APGAIN		1.9		2.1		
VI(PP)	Input signal voltage	YIN, YDIN			0.5		V	
VO	Output voltage	APOUT			2		V	
V _{O(PP)}	Output signal voltage	APOUT			0.5		V	
	Unbalanced voltage	YIN to APOUT				0.005	V	
V _{O(PP)}	Base clip width peak-to-peak voltage	YIN to APOUT			0.1		V	
		YIN		-1		7		
1.	Input ourrent	YDIN		-7 1		1	μA	
I	Input current	APGAIN	AGC MIN/GAIN/MAX	-95		-45	μΑ	
lı		AFGAIN	AGC MIN/GAIN/MIN	51		100		
G _{P(max)}	Maximum gain	YIN to APOUT	AGCFIL = 5 V	10		14		
G _{P(min)}	Minimum gain	YIN to APOUT	AGCFIL = 0			-20	dB	
G _{P(max)}	Maximum gain	YDIN to APOUT	AGCFIL = 5 V	12		16	uв	
G _{P(min)}	Minimum gain	YDIN to APOUT	AGCFIL = 0			-20		
G _{P(max)}	Maximum amplifier gain	YIN to APOUT	YIN = 0.5 V _{P-P}		12		dB	
G _{P(min)}	Minimum amplifier gain	YIN to APOUT	YIN = 0.05 V _{P-P}		2		dB	

SOCS042 - JUNE 1994

auto-iris section

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Threshold peak-to-peak voltage	IRIS to IRISFIL	CENTER is open		0.21		V
VIT	Adjustable threshold voltage	CENTER		0.1			V
	No sensitivity width of comparator (peak-to-peak voltage)	IRIS to IRISFIL	WIDTH is open	0.16			V
	No sensitivity width adjustment of comparator	WIDTH	V _{WID} = 0.5	0.08			V
		WIDTH	$V_{WID} = 2$			0.24	v
VOH	High-level output voltage	HIB, LOB	V _{CC} = 4.75 V	4.7	4.9		V
VOL	Low-level output voltage	HIB, LOB	V _{CC} = 4.75 V			0.1	V

output amplifier section


	PARAMETER		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
M	la nuturalita na	YHIN	CLAMP = 5 V		1.94	2	2.06	V
VI	Input voltage	CHARAIN	CLAIMP = 5 V		1.85	1.9	1.97	v
VI(PP)	Input signal voltage	YHIN, CHARAIN				0.5		V
Vo	Output voltage	VIDEO				2		V
V _{O(PP)}	Output signal voltage	VIDEO				2.1		V
	Sync output voltage	VIDEO	SYNCLVL is op	ben		0.594		V
VIT	Clamp voltage threshold	CLAMP			1.9	2	2.1	V
VIT	Sync voltage threshold	CSYNC			1.9	2	2.1	V
VIT	Blank voltage threshold	CBLK			1.9	2	2.1	V
	High-clip peak-to-peak voltage	YHIN to VIDEO	HICPLVL is ope	en		0.6		V
	Low-clip peak-to-peak voltage	YHIN to VIDEO				-0.05		V
V _{O(PP)}	Setup voltage	VIDEO	CSYNC is oper	า		0.1		V
Ιį	Input current	YHIN, CHARAIN	CLAMP = 0,	V _{CC} = 5.25 V	-0.2	0.05	0.02	μA
		CLAMP			-1		1	
Iн	High-level input current	CSYNC	$V_{CC} = 5.25 V,$	V, V _I = 5 V	0		7	μA
		CBLK	1		-1		1	
		CLAMP			-7		0	
۱ _{IL}	Low-level input current	CSYNC	$V_{CC} = 5.25 V,$	V I = 0	-1		1	μA
		CBLK			-7		0	
lo	Output current	VIDEO			30		60	mA
<u> </u>	Gain	YHIN to VIDEO			9	9.5	10	dB
GP	Gain	CHARIN to VIDEO			9	9.5	10	uВ
	Crosstalk	SULVL to VIDEO			70			dB
	Orossiain	SYNCLVL to VIDEO			70			uВ

SOCS042 - JUNE 1994

MECHANICAL DATA

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice.

FR/S-PDFP-G44

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated