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 MSP430 

ABSTRACT 

The MSP430 USB API implements three USB device classes:  the Communications 
Device Class (CDC), the Human Interface Device (HID) class, .the Mass Storage class 
(MSC) and the Personal Healthcare Device Class.  It is designed for easy creation of USB 
devices on the MSP430.   
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1 Introduction 

The USB API (application programming interface) stack for the MSP430 is a turnkey API.  It 
makes it easy to implement a simple USB data connection  between an MSP430 and a USB 
host.  It includes support for these USB device classes: 

• Communications Device Class (CDC) 

• Human Interface Device class (HID) 

• Mass Storage Class (MSC) 

• Personal Healthcare Device class (PHDC) 

These APIs are designed to minimize the USB knowledge required to write an application: 

• All USB protocol is handled automatically by the API 

• The data interface port seen by the application is very simple to use 

• USB descriptors and stack configuration are automatically handled by the MSP430 USB 
Descriptor Tool 

The user shouldn’t need to modify the API source.  However, for experienced USB 
programmers, the source is made open and available for editing.  Accessing the API’s source 
can also be useful for system debug and gaining a deeper knowledge of the USB system.   

Application examples are included with the API.  

2 The MSP430 USB Developers’ Package 

This API is part of a suite of tools TI provides to make USB easy on the MSP430, including: 

• MSP430 USB Descriptor Tool:  a code generation tool that automatically generates reliable 
descriptors for use with this API, for any combination of USB interfaces.  It saves the 
developer’s time and reduces the chance for errors.  

• MSP430 USB API Stacks:  an API for implementing common USB device classes 
(CDC/HID/MSC) 

• Windows HID API:  a Windows API that complements the MSP430 HID API stack, 
simplifying creation of a general-purpose USB device using HID  

• MSP430 USB Field Firmware Updater:  a Windows Visual Studio project for an application 
that downloads firmware to the MSP430 over USB, just by double-clicking.  Simply insert 
the new firmware image file and compile.  
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3 Glossary 

3.1 USB Definitions 

• USB-IF:  The USB Implementers Forum.  This is the standards body the defines USB 
specifications, governs USB certification, runs compliance workshops, and owns the legal 
rights to the USB logo.   

• USB Host:  USB is hierarchial, with one (and only one) host that controls all communication.   

• USB Device:  Also called a USB “function”.  This is a logical or physical entity on the bus 
that contains one or more USB interfaces.  It possesses one upstream-capable USB 
connector.   

• USB Hub:  A device that provides communication between one upstream connector and 
multiple downstream connectors, allowing more USB devices to be attached to a host.  In 
any given bus configuration, a device is either a host, device, or hub.   

• Device Class:  A defined USB  protocol for a particular class of devices.  Common device 
classes include the Communications Device Class (CDC), Human Interface Device (HID) 
class, and Mass Storage Class (MSC).   

• USB Interface:  A logical USB entity that performs a particular function.  An interface is 
typically associated with a particular device class – for example, a “CDC interface”.   

• Composite USB Device:  a physical USB device (one USB connector) that contains more 
than one USB interface – for example, two CDC interfaces, or CDC+HID.  The host 
enumerates each interface as a separate logical entity.   

• USB Descriptors:  Data structures contained within a physical USB device that describe the 
device (including the interfaces it supports) and its capabilities.  The host reads these during 
enumeration.   

• Enumeration:  The process by which a host interrogates a physical USB device to 
determine what it is, and loads an appropriate driver so that the host application can 
interface with it.  Enumeration happens every time the device is attached.   

• Device Installation:  The first time a USB device is enumerated, the host may perform one-
time functions to “install” the device.  For example, Windows records information about the 
device in the system registry, using the device’s VID/PID as an index.  In subsequent 
enumerations, the host draws from the registry for much of its information about the device.  
Device installation may be “silent” (mostly invisible to the end user), or in the case of CDC on 
Windows, may require user action.   

• INF (*.inf) file:  A text-based file required during any USB device installation on Windows, 
allowing Windows to associate the device with a particular driver.  For some device classes, 
Windows contains the INF internally, allowing for a silent device installation.  For CDC, 
Windows prompts the end user for the INF file.   

• Vendor ID (VID):  A unique 16-bit value assigned by the USB Implementers Forum to a 
particular USB hardware vendor.   
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• Product ID (PID):  A unique 16-bit value assigned by a USB hardware vendor to one of its 
products.  A VID/PID pair uniquely identifies a product type.  (As a rule of thumb, if the USB 
descriptors of two products differ in any way, they should have different PIDs as well.)   

• USB Serial Number:  A unique string that allows a host to differentiate between devices 
attached to it that contain the same VID/PID values.   

• VBUS:  The host is required to make 5V power available to the device via the USB cable.  
The name of this power rail is VBUS.  In addition to sourcing power, the USB device uses 
VBUS to determine whether an active host is present.  Devices often respond to a VBUS-on 
event by asserting their presence to the host, by pulling up the D+ signal.   

• Pipe:  A single line of communication between host and device.  Pipes are either IN (into the 
host) or OUT (out of the host).  They are characterized by a particular transfer type (i.e., bulk 
or interrupt).   

• Endpoint:  The end of a pipe.  It acts as a “mailbox” on the USB device for that pipe.  A 
device usually has more than one active endpoint.  When the host communicates on the bus, 
it first identifies the physical USB device, then the endpoint number within that device that it 
wishes to speak to.  Endpoints are assigned specific functions according to the USB 
interfaces that were created.  HID/MSC each use one IN and one OUT endpoint, while CDC 
uses two IN and one OUT endpoint.  In the MSP430 API stacks, endpoint management is 
fully automated by the Descriptor Tool.   

• Bulk Transfers:  One of four data transfer types on the USB bus.  Bulk transfers are 
designed for moving high volumes of data.  They’re capable of using any free bandwidth on 
the bus (that is, bandwidth not already used by the other transfer types).  This allows them to 
achieve the highest data rates; but they’re given no reserved bandwidth, so on a busy bus, 
bulk transfers might receive small bandwidth or experience high latency.  Transfer types are 
fully determined by interface selection.  For example, CDC and MSC interfaces use bulk 
transfers.   

• Interrupt Transfers:  Another of the four USB data transfer types.  Interrupt transfers are 
designed for guaranteed latency and bandwidth.  However, the bandwidth is limited to only a 
single USB packet (64 bytes for full-speed USB) per frame (1ms).  This leads to a maximum 
bandwidth of 64KB/sec.  Transfer types are fully determined by interface selection.  For 
example, HID interfaces use interrupt transfers.   

• USB speeds:  A USB connection is characterized by one of four speeds:  low-speed 
(1.5Mbps), full-speed (12Mbps), high-speed (480Mbps), or super-speed (4.8Gbps).  MSP430 
is a USB 3.0 full-speed device.   

3.2 API Stack Definitions 

• API Stack:  The name assigned to the USB API that is provided by TI for MSP430.   

• API Space:  The actual API source files.  These files are generally meant to be left unedited, 
although advanced users are free to change it, as needed.   

• Application Space:  A functioning stack based on this API requires an application that 
makes calls to it.  This application exists in the application space.  It is owned by the software 
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developer using the API to develop an application.  Technically speaking, the application 
space includes the event handlers, since these must be written by the software developer.   

• Events.  The API keeps the handling of USB interrupts internal.  Instead, the API generates 
events.  The software engineer can write handlers for events.  Events function similarly to 
callbacks, with the main difference being that event handler names/parameter lists are pre-
defined.   

• HID-Datapipe Interface:  HID interfaces in this API can either be datapipe or traditional.  
Datapipe eases the creation of general-purpose applications over HID.  A defining feature is 
its usage of the API’s default report descriptor, which defines a report with a “size/data” field 
format.  The distinction between datapipe and traditional is made only by which function calls 
the application uses to access the HID interface.   

• HID-Traditional Interface:  This is a traditional HID interface.  A defining feature, compared 
with datapipe, is a report descriptor that is customized by the software engineer, instead of 
the default one generated by the Descriptor Tool.   

• User Buffer:  All data transfer with the API stack involves a user buffer as a point of mutual 
exchange.  It is defined by address and size parameters.  It can be any contiguous block in 
the MSP430 memory map, and it can be of any size.   

• USB Endpoint Buffer:  The actual USB endpoint, limited in size to 64 bytes.  The 
application does not access it directly, but rather the API stack exchanges data between the 
endpoint buffer and the user buffer.  It automatically packetizes/de-packetizes data in the 
background, as the buffer is filled/emptied by the host.   

• Send/Receive Operation:  When using a CDC interface or HID-Datapipe interface to move 
data, all sending/receiving takes place in the context of an operation of a specific size.  
Operations may be handled in the background while the application performs other tasks.  
The operation is complete when all data has been moved between the endpoint buffer and 
user buffer.   
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4 System Overview and Architecture 

This section describes the overall USB system, the USB API stacks for the MSP430, and details 
on the CDC/HID interfaces.   

4.1 MSP430 USB API Stacks:  Overview 

4.1.1 Devices Classes Supported by the MSP430 API Stacks 

USB device classes define a USB protocol to support a given type of device.  MSP430 provides 
API stacks for these USB device classes: 

• Communications Device Class (CDC) 

• Human Interface Device class (HID) 

• Mass Storage Class (MSC) 

• Personal Healthcare Device class (PHDC) 

For a full discussion of the tradeoffs between these, see the application note Starting a USB 
Design with MSP430 MCUs.   

These three API stacks are distributed together as a single project, sharing a common USB 
layer.     

4.1.2 Development Environments Supported by the API 

The USB API stacks compile and run on both the IAR and CCS environments for MSP430, 
including the size-limited free versions available for download from TI.  (See 
http://www.ti.com/msp430 to obtain these.)  It may also run with other environments for 
MSP430, but it has not been tested on them.   

Note that MSC does not run on the size-limited IAR Kickstart, which is limited to 8K of object 
code.  Instead, use the free version of CCS (limited to 16K), or licensed versions of either 
environment.   

4.1.3 Hardware Requirements 

The same API stack distribution runs on all three USB-equipped families from MSP430: 

• F552x/551x 

• F550x (including the F5510) 

• F663x/563x 

(Note that the F5510 is a member of the F550x family, and not the F551x family.)   
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The API stack is designed to automatically adapt to whatever device derivative is chosen in the 
IAR/CCS project settings.  The only required action is to select the proper device.  The code 
within the API remains unchanged no matter which device is selected.  However, at the 
application level, the examples distributed with the API need to change certain aspects of 
operation depending on which device is chosen, in the areas of clocks and port register 
initialization.  In these areas of the code, compiler directives are evaluated, whose settings are 
based on the device selected in the project settings.   

Note that the application examples initialize the port I/O registers.  The exact set of port registers 
tends to vary by device, so the examples configure themselves for the largest device within each 
family.  If compilation fails because of individual lines of code that configure the ports, the 
offending lines can be commented out without affecting USB operation.  If power is being 
measured, however, it’s important to ensure that the port I/O registers are configured to 
completely eliminate any floating input pins, as these can increase current consumption.   

4.1.4 USB Certification 

The API stacks have passed USB certification testing for all three device classes 
(CDC/HID/MSC).   

4.1.5 Stack Organization 

A software stack using this API is shown in the figure below.   

 

Figure 1. MSP430 API Stack Diagram 

All  API stacks (CDC/HID/MSC) share a common USB layer.  The application makes calls to 
these APIs, and also directly to the USB layer.   

The stack is divided into API space and application space.  In most cases TI recommends to 
only modify application space, not the API itself.  This helps preserve USB compliance, 
increasing the chance of passing USB certification and avoiding complications.  The 
send/receive constructions and event handlers are constructs that are provided with the API, but 
they are considered to be in application space.   

The files are as shown in the table below.   
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Table 1. MSP430 USB API Stack Files 

 User-
Modify? 

Filename Description 

main.c/h User application  

usbConstructs.c/h Contains example constructs for send/receive operations.  The 
functions here reflect the approaches described in Sec. 11 

Application 
space 

Yes 

usbEventHandling.c/h Event-handling placeholder functions.     

descriptors.c/h  Descriptors.c contains data structures that define the USB 
descriptors the device will report to the host.  A default descriptor 
set is provided, which can be customized with the MSP430 USB 
Descriptor Tool.   

Descriptors.hcontains the configuration constants and additional 
descriptor information, as described in Appendix A.   

USB API 
space 
(config) 

Generate 
from the 
Descriptor 
Tool 

UsbIsr.c USB interrupt service routine handler, and related functionality 

Usbcdc.c/h CDC-related functionality 

UsbHid.c/h 

UsbHidReportHandler.c/h 

UsbHidReq.c/h 

HID-related functionality 

UsbMscScsi.c/h 

UsbMscStateMachine.c/h 

UsbMscReq.c/h 

MSC-related functionality 

usb.c/h 

UsbIsr.h 

Functionality common to all USB applications.   

USB API 
space 

(core) 

 

No 

 

dma.c/h Functions related to DMA transfers 

F5xx/6xx 
Core Library 

No hal_pmm.c/h 

hal_ucs.c/h 

hal_tlv.c/h 

MSP430’s standard library for the F5xx architecture.  The USB 
API uses it to handle the PMM (power) and UCS (clocking) 
modules, and for reading the TLV structure (Tag-Length-Value) 
in MSP430 flash to obtain the device’s unique die ID number.  
This library is available outside this API from 
http://www.ti.com/msp430, as literature number slaa448.   

device.h Controls the device derivative for which the stack is configured.  
In IAR/CCS, it receives its direction from the IDE’s project 
settings.   

defMSP430USB.h Definitions related to the MSP430 USB module   

types.h Data type definitions  

Header files No 

msp430fxxxx.h Standard header file for the MSP430 device derivative being 
used.  This is included in the software development environment, 
outside this API.  Selection is automatically controlled by 
device.h.   
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The directory structure for the API is shown in the figure below.   

 

 

Figure 2. Directory Structure 

The directories are roughly similar to the categories in Table 1.   

USB_config is where output from the Descriptor Tool should be placed (see Sec. 5).  Files in the 
root directory are considered to be application space, and thus are editable – keeping in mind 
that the structure of the event handler functions should not be edited.   

4.1.6 Usage of MCU Peripheral Resources 

Within the API, two resources are used without restriction -- the USB module (with its associated 
physical device pins), and one DMA channel.  The application should avoid directly writing to 
either the USB module or to the DMA registers that control the selected channel.   

The pins associated with the USB module can be used as special I/O pins when not used for 
USB.  The application has permission to manipulate these pins directly only when the USB 
module has been disabled using the USB_disable() call.  Once the USB module is enabled 
using USB_enable(), only the API has the right to control these pins.   

A DMA channel can be assigned to the API.  This is controlled with the Descriptor Tool.  All USB 
interfaces share the same DMA channel, for both transmit and receive.   

These are the only peripherals used by the API.     

4.1.7 Memory Requirements 

Code and data memory requirements are shown below, for various configurations.   
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Table 2. Memory Usage 

Interface Configuration Code (flash) Data (RAM) 

CDC 5.1K 268 bytes 

HID 5.2K 260 bytes 

MSC 8.3K 698 bytes 

CDC+CDC 5.4K 294 bytes 

HID+HID 5.4K 284 bytes 

CDC+HID 6.9K 293 bytes 

The estimates are from the IAR environment, with the compiler set with the “high” optimization 
setting (with priority on ‘balanced’).  Similar results are obtainable with CCS.   

These estimates also assume a “minimal” application – one that only consists of calling every 
USB function, with no actual application functionality.  No RAM user buffers are allocated.  
Although not practical, this is a baseline benchmark that can be cleanly applied to any 
application, with the numbers reflecting only the API itself.  

Because of the shared USB layer, adding more interfaces only has incremental effects on 
memory requirements.   

The API’s RAM usage is static; no heap space is required.   

In IAR, the environment gives a choice of using the DLIB standard library, or the legacy CLIB.  
To compile the API stacks, DLIB must be selected.   

4.1.8 Using an RTOS 

The MSP430 USB API stacks were designed to not require an RTOS.  However, the API stacks 
are intended to be straightforward to port to an RTOS.   

4.1.9 Support for Composite USB Devices 

A composite USB device is a single physical device containing multiple USB interfaces.  A USB 
interface is defined by the USB device class it supports – for example, CDC, HID, or MSC.  
Thus, given these three classes, a USB device might be: 

• a CDC device only 

• an HID device only 

• an MSC device only 

• CDC+HID in composite 

• HID+MSC in composite 

• CDC+CDC in composite 

• HID+HID+HID+HID+MSC in composite 

and so on.   
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A software engineer may wish to create composite devices for a variety of reasons.  If two COM 
ports are desired, this would be accomplished with two CDC interfaces in composite.  MSC 
doesn’t lend itself well to generic command/status information, so creating a composite device 
with MSC and either CDC or HID can enable a device that has both storage capability and 
general communication.   

The MSP430 USB API stacks can be very easily configured to create any combination of 
composite interfaces, using the MSP430 USB Descriptor Tool.  All that remains is to write the 
application.   (See Sec. 5 for more information about the Descriptor Tool.)   

The number of composite interfaces is limited only by the number of endpoints in the MSP430 
USB module.  As examples of what is possible, MSP430 has enough endpoints to create: 

• Three CDC interfaces 

• Two CDC interfaces and two HID interfaces 

• Two MSC interface, three HID interfaces, and one CDC interface 

This is more than enough for most applications.   

Note that only one MSC interface can be implemented.  If more than one storage volume is 
desired, use multiple logical units (LUNs).   

4.1.10 Release Notes, and Migration from Previous Versions 

For those migrating from previous versions of this API, release notes have been included within 
the software distribution.  They include all changes from the previous versions, and instructions 
for migration.   
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4.2 The Communications Device Class (CDC) API  

4.2.1 CDC Overview 

An MSP430 running this API and attached to a USB host via USB will establish a virtual COM 
port on that host.   

Note:  The term COM port is specific to the Windows group of operating systems, but the MacOS, Linux, 
and other operating systems provide similar mechanisms.  “COM port” will be used in this document to 
refer to all of them, and the term “PC” may be used to refer to any USB host.   

COM ports are a popular, simple software mechanism through which a host can communicate 
with a peripheral.  Originally designed for RS232 serial ports, it’s often today used with other 
protocols, such as USB and Bluetooth.  Since the physical RS232 port no longer exists, these 
COM ports are often called “virtual COM ports”.   

The Communications Device Class (CDC) is one of the standard USB device class protocols.  It 
is supported natively by most host operating systems.  This has great advantages, discussed in 
Sec. 0 below.   

This API supports only a subset of the CDC specification.  This is because CDC has a scope 
that goes far beyond virtual COM ports, encompassing a wide range of telecommunications 
equipment.  This API supports the Abstract Communication Model (ACM) of the PSTN subclass 
of the CDC.  The ACM provides for a control mechanism using common V.250 AT commands.  
This configuration establishes a fully-functional virtual COM port interface.   

This API supports up to three CDC interfaces in composite.   

4.2.2 Host Considerations 

The CDC API Stack has been tested with Windows; MacOS, and Linux.   

4.2.2.1 Advantages of Native Host OS Driver Support 

Like HID and MSC, the CDC protocol is supported natively by the major operating systems.  
This has great advantages: 

• Less hassle for the OEM (no need to prepare a kernel-mode driver installation) 

• Less hassle for the end user (doesn’t have to perform one) 

• Problems are less likely to occur; leading to greater stability and lower support costs 

4.2.2.2 Microsoft Windows 

The CDC class is supported by Windows 2000, XP, Vista, and 7.   

Although Windows natively contains the driver binaries, it doesn’t contain an INF file.  (The INF 
file is needed to help Windows associate the USB device with the CDC driver.)  Therefore, the 
OEM must provide an INF file to the end user, and the end user must walk Windows through a 
device installation process.  In this process, Windows is guided to the INF file.   



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 19 

If the device is composite, then the INF file needs to be tailored to the chosen set of USB 
interfaces.  The Descriptor Tool outputs a tailored INF file, so there is no need to create one 
manually.   

In addition to a CDC driver, the host needs an application to interface with the device.  Any 
“terminal” application (that is, one designed for communication with COM ports) can be used to 
communicate with an MSP430 equipped with the CDC API stack.   

Windows XP Service Pack 3, Vista, and 7 all support a USB descriptor type called an Interface 
Association Descriptor (IAD).  Because of this support, they’re able to support multiple CDC 
interfaces in a composite USB device.  However, earlier versions of Windows do not support the 
IAD, and therefore they do not support composite CDC devices with properly-formatted 
descriptors; they only support single-interface CDC devices.  The Descriptor Tool will alert the 
user of this, if attempting to create a multiple-interface CDC device.  (Windows XP SP2 and 
earlier do support a particular descriptor format that allows composite CDC devices to be 
enumerated; however, the format violates the CDC specification.  Microsoft now supports 
composite CDC using the IAD, and the Descriptor Tool does not support this illegal format.)   

The CDC API stack has been tested on Windows XP Service Pack 2, Windows XP Service Pack 
3, and Windows Vista.   

4.2.2.3 MacOS 

The CDC class is supported on any recent version of the MacOS.  The CDC API stack has been 
tested with version 10.5.6.   

The MacOS does not support the IAD.  It is not possible for a Mac to enumerate a composite 
device that contains a CDC interface; only single-interface CDC devices are supported.   

4.2.2.4 Linux 

The CDC class is supported on any recent, common Linux distribution.  Enumeration of the CDC 
API stack has been tested with Ubuntu version 9.04, but data transfer has not been fully tested.   

This version of Linux supports the IAD, and therefore can work with composite CDC devices.   

4.2.3 Transmission Speeds 

Full-speed USB is rated 12Mbps.  This is a theoretical maximum, and it includes protocol 
overhead – so it isn’t possible for a practical application to achieve this rate for data payload.  
Further, USB is a system involving many components.  Any of these components is capable of 
reducing the bandwidth.   

The following factors can all affect bandwidth: 

• Host application.  USB is very host-driven, which means the host initiates all data transfers, 
whether sending or receiving.  If the host application doesn’t initiate transfers often enough, 
data will be slower.   

• Bus loading.  CDC uses bulk transfers, which have the potential to reach the highest data 
rates by using any spare bandwidth.  However, the tradeoff to this is that bandwidth scarcity 
will cause slowed transfers.   
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• Software on the USB device.  If the bus is fast (that is, if the factors mentioned above aren’t 
limiting), the device’s application will become the bottleneck in the system.  This is because it 
must take time to process data received and prepare data for sending.   

As a benchmark, the CDC API stack can achieve 788KB/sec (6.3Mbps) under the following 
conditions: 

• 8MHz CPU master clock (MCLK) 

• Send data from the host to the device 

• The MSP430 application calls USBCDC_rejectData() for any data it receives.   

The purpose of the last item is to nearly eliminate the device application from being a factor.  If 
the application rejects the data, it doesn’t use any time to move the data.  In contrast, any real 
application must handle the data, and thus will get considerably less than 788KB/sec – probably 
closer to the 200-500KB/sec range.   

If bandwidth is a priority, DMA should be used.  (This can be enabled using the Descriptor Tool.)   

For an application in which bandwidth is primarily limited by MCU data handling, bandwidth is 
roughly linear to MCLK.  Therefore, running at the maximum MCLK can often get bandwidth 
closer to the 788KB/sec “ideal”.   
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4.3 The Personal Healthcare Device Class (PHDC) API  

4.3.1 PHDC Overview 

This device class provides the "USB PHDC device driver" layer for a personal Healthcare device 
application.  See Figure 4.3.1 below.  

 

 

 

For PHDC devices, the data follows the data/messaging standards ISO/IEEE 11073-20601 + 
ISO/IEEE  11073-10407. Note that these IEEE layers are NOT provided with this software 
package. Texas Instruments offers a complete Continua-certified PHDC solution. Please refer to 
the following website for more information. 

http://www.ti.com/ww/en/embedded/medical_usb_stack/index.shtml 

NOTE: More than one PHDC interface in not supported in a composite device. Also note the 
PHDC examples are not provided with this software package. Please refer to above link for 
complete PHDC applications. 
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4.4 The Human Interface Device (HID) API  

4.4.1 HID Overview 

The Human Interface Device class is perhaps the oldest and most established USB device 
class, in that it was originally created for mice and keyboards.  It also supports a wide variety of 
other “PC peripherals” that consist primarily of various “controls” (buttons, joysticks, volume 
knobs, etc.).   

Like CDC and MSC, HID is supported natively in any common host operating system.  This has 
great advantages, discussed below.  But whereas CDC/MSC generate interfaces on the host 
that are extremely common and popular (virtual COM port or storage volume, respectively), the 
manifestation of an HID interface on the host is more specialized.  For many host programmers, 
then, it represents a small learning curve.  To help with this, TI makes available the Windows 
HID API, which is designed to pair with the MSP430 HID API stack.   

A unique aspect of host interaction with HID devices is that often the OS itself is the application 
interfacing with the device, as in the case of mice and keyboards.  In other cases – usually in 
more general-purpose applications – regular applications interface with the device, just as with 
CDC.   

Some legacy HID implementations request the host to send data via control endpoint zero.  
Usually, the host only uses this endpoint only for management functions.  This feature isn’t 
supported in this API, because the MSP430 USB module has plenty of other endpoints 
available, and also because its endpoint zero is only eight bytes wide (compared to 64 for the 
others).   

There is a sub-protocol in HID called the boot protocol.  A host PC can run this protocol from its 
BIOS program, prior to the full operating system loading its HID drivers, allowing mice and 
keyboards to operate more quickly when booting a PC.  This protocol is not supported by this 
API.   

The HID API stack supports two kinds of devices.  One is for creating “traditional” HID devices.  
The other is for creating “datapipe” HID devices – a way of adapting HID for general purpose 
use.  It eliminates complexities associated with HID, making it as easy to use as CDC.  The next 
section discusses this in more detail.   

4.4.2 HID-Datapipe Approach 

The HID protocol is built around a data element called a report.  Reports can be defined for both 
the IN and OUT directions (in and out of the host).  There are also multiple kind of reports 

Report formats are extremely customizable, using a USB descriptor called a report descriptor.  
Report descriptors essentially have their own scripting language, capable of creating an 
amazing variety of formats.  The organization is not flat; it is filled with concepts such as 
collections and usages, which can be placed inside each other to several levels.   
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HID report formats are complex and require a learning curve.  They’re useful when interfacing 
with the host OS, since it has no other way of knowing the device’s data format.  But when the 
same organization creates both the device and host software, this is not a problem; they are free 
to assign whatever format they want, and don’t need complex HID report formatting to 
accomplish it.  A simple unformatted datastream, like a COM port, becomes sufficient, and the 
application can implement its own protocol and format.   

The HID datapipe function calls implement an unformatted datastream, just like the CDC calls.  
It defines a very simple report, consisting of a size byte and a large data field.  At the level of the 
MSP430 application, there’s essentially no difference in how the CDC and HID-Datapipe calls 
operate.  The call sets are identical, except for their prefix (USBCDC_ vs. USBHID_).  Programs 
written for one can be quickly migrated to the other.  The engineer who learns one of these APIs 
already knows the other.   

The datapipe calls are not an industry standard protocol, but rather something created by TI.  
However, this type of approach is commonly used among USB engineers.   

The HID-Datapipe function calls are those described in Sec. 9.9.   

4.4.3 HID-Traditional Approach 

For engineers that need to create a traditional HID device – that is, one with a customized report 
descriptor – there is complete freedom and flexibility to do so.  Some engineers need this in 
order to use existing host HID applications, or need to allow the host OS to serve as the HID 
“application”, requiring a particular report format.   

Sec. 9 discusses how to implement a traditional HID device using this API.     

4.4.4 Host Considerations 

The HID API Stack has been tested with Windows; MacOS, and Linux.   

4.4.4.1 Advantages of Native Host OS Driver Support 

Like CDC and MSC, the HID protocol is supported natively by the major operating systems.  
This has great advantages: 

• Less hassle for the OEM (no need to prepare a kernel-mode driver installation) 

• Less hassle for the end user (doesn’t have to perform one) 

• Problems are less likely to occur; leading to greater stability and lower support costs 

4.4.4.2 Microsoft Windows 

The HID class is supported by Windows 2000, XP, Vista, and 7.   

Unlike CDC (but like MSC), HID devices always load silently onto Windows hosts.  They also 
load silently on Mac/Linux, without the help of an INF file.  This is much simpler and troublefree 
for the end user.   
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A host application is required.  Unlike CDC, which can be used with ordinary “terminal” 
applications, a HID device generally requires a custom application (unless it’s of a type 
recognized by the host OS).  TI provides the Windows HID API to assist with this.  This API is 
specifically designed to support the HID-Datapipe model; it uses the same report format, and its 
calls are designed for moving an unformatted datastream.  However, it could be adapted for 
customized reports (traditional HID) as well.   

The demo application provided with the Windows HID API is HID Demo App.exe.  This 
executable is provided with the HID application examples accompanying the API source.   

The HID API stack has been tested on Windows XP Service Pack 2, Windows XP Service Pack 
3, and Windows Vista.   

4.4.4.3 MacOS 

The HID class is supported on any version of the MacOS.  The HID API stack has been tested 
with version 10.5.6.   

4.4.4.4 Linux 

The HID class is supported on any recent, common Linux distribution.  Enumeration of the HID 
API stack has been tested with Ubuntu version 9.04, but data transfer has not been fully tested 
yet.   

4.4.5 Transmission Speeds 

HID interfaces use USB interrupt transfers, compared to CDC’s bulk transfers.  From this they 
receive guaranteed bandwidth, even on a busy bus; but they’re limited in bandwidth to 
64KB/sec.   

To achieve maximum bandwidth, it’s important for the polling interval to be configured as 1ms.  
This can be done with the Descriptor Tool (see Sec. 5).  This is interval at which the host will 
exchange data between itself and this interface.   

If 64KB/sec isn’t quite fast enough, one possibility is to create multiple HID interfaces in 
composite.  The Descriptor Tool can easily create a device with several HID interfaces.  The 
MSP430 and host applications could then both be written to interleave their data across them.   

Although the bandwidth isn’t large, it’s immune to bus loading effects.  A heavy bus isn’t capable 
of changing it.   

4.5 The Mass Storage Class (MSC) API  

4.5.1 MSC Overview 

An MSP430 running this API will be seen by the USB host as a storage volume.  Storage 
volumes are supported natively by practically any host operating system.  Native support has 
significant advantages, discussed in Sec. 4.5.3 below.   

MSC devices are sometimes called “MSD” (Mass Storage Device).  They refer to the same USB 
device class.   
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This API implements the Mass Storage Class, as specified by the USB Implementers Forum.  It 
specifically implements the bulk-only transport (BOT) protocol, rather than the 
control/bulk/interrupt (CBI) protocol.  The latter is only intended for legacy applications.   

A primary purpose of the MSC protocol is to receive and execute SCSI commands from the 
host.  SCSI (Small Computer System Interface, pronounced “scuzzy”) is a set of specifications 
covering various levels of protocol, including a physical cable interface.  One of the SCSI 
command sets – the SCSI transparent command set – has been adopted for use with the MSC 
protocol.  This is the command set supported by this API.   

The actual commands supported are shown in Appendex B.  Basically speaking, the commands 
include the ability to determine the device’s identity (like USB descriptors, except on a storage-
device level); read/write capability; and error detection and handling.   

All handling of SCSI commands is performed automatically by the API, with some support by the 
application.   

The API implements what is known as a direct-block access device.  This means it uses the 
subset of SCSI commands called the SCSI Block Commands (SBC).  Most USB flash-based 
storage applications use this set, including standard “thumb” flash drives and removable-media 
flash formats like SD card, and MultiMedia Card (MMC).    

This version of the API does support the MultiMedia Command set (MMC).  (This is not to be 
confused with MultiMedia Cards, which are a completely separate concept.)  The MultiMedia 
Commands are used to implement CD-ROM and DVD players.   

Unlike CDC/HID, the MSC API can only create one MSC interface within a physical device.  (It 
can still contain multiple CDC/HID interfaces in composite with that MSC interface.)  If multiple 
storage volumes are desired, this can be accomplished with multiple logical units (LUNs).  The 
API supports any number of LUNs.   

4.5.2 File Systems 

In a standard implementation of an MSC device, file system software is required so that the 
MCU application can access its own local storage volume.  (This is discussed in more detail in 
Sec. 8).  This API doesn’t integrate a file system; choosing a file system is the responsibility of 
the software developer using this API.  The API is designed to be usable with any file system the 
developer chooses.  Many third party and open source options are available.   

However, the application examples accompanying this API include a port of a popular open-
source file system, which the developer is free to use.  Also, one of the examples shows a form 
of “file system emulation”, which allows host access to the volume without a file system, at the 
expense of restricting it to a single file.   

When file system software is written, it is designed to support a particular file system format.  
The storage volume (stored in internal flash or an external medium) must be of a file format 
comprehensible by both the host OS and the MCU’s file system software.  There are several of 
these standards available, but one that is nearly universal is the FAT file system.  FAT has been 
around since MS-DOS days and is fully supported by Windows, MacOS, Linux, and most other 
OSes.  The MSC API is primarily designed for use with FAT file systems.   
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The MSP430 Developer's Kit also has support for the CD File System (CDFS). This is supported 
by the implementation of the SCSI Multimedia Commands (MMC). This support is enabled by 
including the corresponding define macro in the USB descriptor. For more information, please 
see M5_Example. 

4.5.3 Host Considerations 

The MSC API Stack has been tested with Windows; MacOS, and Linux.   

4.5.3.1 Advantages of Native Host OS Driver Support 

Like CDC and HID, the MSC protocol is supported natively by the major operating systems.  
This has great advantages: 

• Less hassle for the OEM (no need to prepare a kernel-mode driver installation) 

• Less hassle for the end user (doesn’t have to perform one) 

• Problems are less likely to occur; leading to greater stability and lower support costs 

4.5.3.2 Microsoft Windows 

The MSC class is supported by Windows 2000, XP, Vista, and 7.   

Unlike CDC (but like HID), MSC devices always load silently onto Windows hosts, without the 
help of an INF file.  They also load silently on Mac/Linux.  This is simple and troublefree for the 
end user.   

A host application is required.  Any existing application designed to interface with storage 
volumes can communicate with an MSC interface.  If instead a new host application is to be 
developed, it’s relatively simple, because file access is one of the most common functions 
performed in software.  This means it’s very well-understood by programmers, and there’s a 
large amount of sample code available in the public domain.   

The MSC API stack has been functionally stress-tested with a storage volume benchmarking 
program, on Windows XP Service Pack 2, Windows XP Service Pack 3, and Windows Vista.   

4.5.3.3 MacOS 

The MSC class is supported on any modern version of the MacOS.  The MSC API stack has 
been functionally tested with version 10.5.6.   

4.5.3.4 Linux 

The MSC class is supported on any common Linux distribution.  The MSC API stack has been 
functionally tested with Ubuntu version 9.04.   
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4.5.4 Transmission Speeds 

Full-speed USB is rated 12Mbps.  This is a theoretical maximum, and it includes protocol 
overhead – so it isn’t possible for a practical application to achieve this rate for data payload.  
Further, USB is a system involving many components.  Any of these components is capable of 
reducing the bandwidth.   

The following factors can affect bandwidth: 

• Host application.  USB is very host-driven, which means the host initiates all data transfers, 
whether sending or receiving.  If the host application doesn’t initiate transfers often enough, 
data will be slower.   

• Bus loading.  MSC uses bulk transfers, which have the potential to reach the highest data 
rates by using spare bandwidth on the bus.  However, the tradeoff to this is that bandwidth 
scarcity can cause transfers to slow.   

• Software on the USB device.  If the bus is fast (that is, if the factors mentioned above aren’t 
limiting), the device’s application will become the bottleneck in the system.  The application 
requires CPU capacity in order to process data received and to prepare data for sending.   

If bandwidth is a priority, DMA should be used.  (This can be enabled using the Descriptor Tool.)  

The MSP430 Developer’s Kit also has support for the CD File System (CDFS). This is supported 
by the implementation of the SCSI Multimedia Commands (MMC). This support is enabled by 
including the corresponding define macro in the USB descriptor. For more information, please 
see M5_Example.  
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5 MSP430 USB Descriptor Tool 

The discussion in this section applies to any implementation with the MSP430 USB API stacks 
(CDC, HID, and MSC).   

5.1 What is the Tool? 

The Descriptor Tool generates a set of USB descriptors and configures the API stack’s 
operation.  Simply speaking, it serves three functions: 

1. Builds the USB interfaces the vendor wishes to support.   

2. Configure application-specific MCU settings (clock speed, DMA channel selection, etc.)   

3. Customizes the USB descriptors with identification data (vendor- and product-specific), 
which should be done for every new USB device 

5.2 What is an “Interface”? 

A USB interface, in simplified terms, is a stream of data between the USB device and the host.  
An interface is defined to be of a particular device class, like CDC or HID.  It’s associated with a 
specific kind of coding interface on the host – for example, CDC is associated with a virtual COM 
port.   

The USB descriptors declare to the host what interface(s) it supports.  Most devices contain only 
a single interface, but some contain more; these are called composite USB devices.  The Tool 
can quickly build any set of interfaces that fit the application.   

5.3 What are USB Descriptors? 

Every USB device contains descriptors, which communicate the device’s “identity” to the host.  
This includes which USB interfaces are supported, as well as other capabilities.  They’re defined 
in the files descriptors.c/h.   

Another set of important information in the descriptors is vendor-specific identification 
information, including the vendor ID and product ID (VID/PID), and also several strings that may 
be displayed by the host in connection with this device.  The VID/PID combination serves as a 
identifier for a given product, and therefore it’s important that it be unique to this particular 
product.  (When developing a USB device, it’s recommended to change the PID any time the 
USB descriptors change in any way, since most hosts keep archived information about a device, 
indexed by the VID/PID.)   

For more information about descriptors, VIDs, and PIDs, please see the application note Starting 
a USB Design with MSP430 MCUs.   

5.4 When to Use the Tool? 

The Descriptor Tool should be run once before beginning development, to accomplish  #1 and 
#2 above.  #3 can also be done at the same time, if the values are known; or the Descriptor Tool 
can be re-run at any time later in the development process.   
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Figure 3. Development Flow Using the Descriptor Tool 

5.5 Using the Tool 

The Tool can generate descriptors for any combination of USB interfaces – whether single-
interface or composite.  Unlike creating them manually, it does so reliably and on the first try – 
saving valuable development time.   
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Figure 4. The MSP430 USB Descriptor Tool 

In the navigation view, the interface structure can be configured.  (The one in the figure shows a 
single-interface CDC device, sufficient to generate a single COM port on the host.)  Clicking the 
CDC/HID buttons creates additional interfaces to this device, while the “X” button deletes them.   

As discussed in Sec. 4.2, a CDC interface results in a COM port being generated on the host, 
and an MSC interface (if coupled with application code that accesses media) results in a storage 
volume being generated on the host.   

The HID interface implemented by the Tool is for HID-Datapipe, rather than HID-Traditional.  
HID-Traditional, by definition, requires the engineer to write a custom HID report descriptor.  It’s 
recommended to use the Tool to generate a HID-Datapipe interface, then modify the 
descriptors.c/h output files.  (See Sec. 9 for more information.)   

In the tabbed views, information necessary to build the descriptors can be entered.   

The “cheat sheet” is a help pane that provides real-time support for each field in the tabbed 
views.  They explain the tradeoffs and impacts of each decision.   

When all the information is input, pressing the “gear” button generates new code files, as 
described in the next section.  After generating the files, it is recommended to also save a *.dat 
file, so that the same output can easily be generated again at a later time.   
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5.6 The Tool’s Generated Output 

The Tool outputs four files: 

• descriptors.c 

• descriptors.h 

• usbisr.c 

• If one of the interfaces is CDC, an INF file (*.inf) is generated, for device installation on 
Windows hosts 

Descriptors.c/h contain the actual descriptor code, as well as structures that help the API know 
what kind of data interfaces it should make available to the MSP430 application.   

usbisr.c is also generated, because the Tool needs to re-arrange the usage of USB endpoints 
according to what interfaces were created.  The USB ISR has a handler for each endpoint, and 
modifying the ISR ensures that the right endpoint is associated with the right interface.   

 

 

Figure 5. The Descriptor Tool’s Output 

The INF file requirements can change with the chosen USB interface configuration.  For 
example, the INF file for a device with a single CDC interface is different from one for a 
CDC+HID device.  The Tool generates the correct one for the chosen interfaces, drawing from 
the same string and VID/PID information that was used to form the USB descriptors.   

descriptors.c/h and usbisr.c need to be placed into the API stack, replacing the defaults.  The 
API stack provides a directory especially for these files:  \USB_config.   
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It is recommended to use the “Rebuild all” option the first time compiling after replacing the 
default files with Descriptor Tool output files.  This is because the development environment may 
not realize these files have changed.   

5.7 Accessing Interfaces from the Application 

It’s important the host and MSP430 application each understand how a device’s interfaces are 
mapped, for proper communication.  The Descriptor Tool helps with this.  In the figure below, 
three interfaces are defined:  two CDC and one HID.   

 

Figure 6. intfNum in the Descriptor Tool 

With this done, the stack is then configured to have these interfaces.  The application can 
access them using API function calls containing a parameter called intfNum.   The value of 
intfNum for each interface is displayed within the Descriptor Tool, as shown in the figure.   

If only a single interface is created, intfNum is always zero.  The interfaces (and therefore 
intfNum values) are always grouped as MSC first, then CDC, and finally HID.   

5.8 USB Configurations 

The API and Descriptor Tool support only a single USB configuration.  (The term USB 
configuration has a specific meaning within the USB specification.  Essentially, it refers to a set 
of USB interfaces that are in effect at any given time).   
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6 USB States/Events and How They Relate to the API 

Every USB device passes through a set of states that describes its interaction with the host.  
These are shown below.  The diagram makes references to function calls within the API, 
described later in this document.   

The discussion in this section applies to any USB device (CDC, HID, and MSC).   

 

 

Figure 7. State Diagram Reflecting a Device’s Interaction with USB 

 

The state of the connection is returned by the function USB_connectionState().  The underlying 
information that defines the state can be returned with the function USB_connectionInfo().  The 
relationship between these are shown in the table below.      
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Table 3. USB State Definitions 

 
USB_connectionInfo() 

 
VBUS 

detected? 
PUR 

high? 
Enumerated? Suspended? 

ST_USB_DISCONNECTED     

ST_USB_CONNECTED_NO_ENUM X    

ST_ENUM_IN_PROGRESS X X   

ST_ENUM_ACTIVE X X X  

ST_ENUM_SUSPENDED X X X X 
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ST_NOENUM_SUSPENDED X X  X 

Although each of these factors is discussed in the sections below, here is a brief description: 

• VBUS:  5V power from the host.  If present, the application can assume a host is attached.   

• PUR:  PUllup Resistor.  A USB device signals its presence to the host by pulling up the D+ 
signal through a resistor.  The MSP430 implements this pullup with the PUR pin, controlled 
by software.   

• Enumerated:  When a USB device has been successfully enumerated, it means the host has 
successfully interpreted the device’s descriptors and loaded the appropriate driver.  The 
process requires a series of USB device requests to complete.   

• Suspended:  A host can suspend a USB device at any time, at which point no 
communication can take place, and current allowed to be drawn from 5V VBUS is restricted  

Most applications are best served by using USB_connectionState() to direct program flow.  A 
device is likely to spend most of its time in the disconnected, active, and suspended states.   

The sections that follow elaborate on topics related to the state diagram. 

6.1 Initializing the API 

Before any other API call, the application must call USB_init().  It is recommended to call 
USB_setEnabledEvents() at the same time to enable any events the application will later use.    

6.2 Detection of the Host via VBUS 

A device can usually know an active host is present by sensing the availability of 5V on the 
VBUS signal.   
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Note:  Some hardware situations apply 5V to the VBUS pin even though there is no host attached.  
Sometimes this is done intentionally to take advantage of the integrated LDO, or sometimes the device’s 
upstream USB connector is attached to a powered hub without a host.  In these events, 
USB_connectionInfo() will show VBUS on, but USB_connectionState() will return 
ST_NOENUM_SUSPENDED.  The application must handle accordingly.   

When VBUS transitions on or off, an API event is generated.  These events are handled by 
handleVbusOnEvent() and handleVbusOffEvent(), respectively.  To be used, these must first be 
enabled with USB_setEnabledEvents().  They can be thought of as interrupts, and in fact are 
derived from the USB interrupt service routine handler.   

There are various ways to use these mechanisms.  The recommended way is to put code in 
handleVbusOnEvent() that connects to the host, since this is the behavior usually expected of a 
USB device when VBUS appears.  Another method would be to poll USB_connectionState() 
from within a main loop, and connect to the host if the returned state is 
ST_USB_CONN_NO_ENUM.   

6.3 Connection to the Host 

Connecting to the host usually consists of subsequent calls to USB_enable(), USB_reset(), and 
USB_connect(): 

 

if (USB_enable() == kUSB_succeed) 

{ 

  USB_reset(); 

  USB_connect();   

} 

6.4 Enumeration 

A full-speed USB device makes its presence known to the host by activating a pull-up resistor on 
the D+ signalling line.  MSP430 integrates this with the PUR pin.  As mentioned above, the 
default handleVbusOnEvent() handler activates this pullup by calling USB_connect().   

When the host sees this pull-up, it begins the enumeration process, by which it polls the device 
and loads it onto the system.  The API handles enumeration automatically.  As it does so, it 
makes use of the descriptor information in descriptors.c.   

When enumeration is complete, a call to USB_connectionState() reflects this, and the system is 
ready to transfer data.  A handleEnumCompleteEvent() is also generated.  (The API 
determines the completion of enumeration by the point at which the host sends a 
SET_CONFIGURATION request.)   

The enumerated state ends when VBUS is removed (state automatically reverts to 
ST_USB_DISCONNECTED and a handleVbusOffEvent() is generated), or when a call is 
made to USB_disconnect() or USB_disable().   
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6.5 Suspend/Resume 

At any point after successful enumeration, the host may choose to suspend the device.  This is 
characterized by 3ms of inactivity on the data signals (D+/D-).  Once the USB device recognizes 
this event, it has seven more milliseconds to move into a state where it consumes minimal 
current from VBUS.  After this, it cannot communicate with the host until the host resumes it.   

Power management of the MSP430’s internal USB functionality is handled automatically by the 
USB module and API.   They disable the PLL and shut down much of the USB circuitry, only 
keeping active what is necessary to detect a resume event (that is, when the host begins 
communicating on the data signals again).  With the PLL disabled, the USB module becomes 
clocked by the MSP430’s VLO oscillator (low-frequency, low-power).   

With the PLL no longer using XT2 as a reference, XT2 can be disabled during suspend.  If 
selected in the Descriptor Tool, the API will attempt to do this.  However, keep in mind that if any 
peripherals have selected XT2 as their clock source, then XT2 will remain enabled due to those 
peripherals issuing it a “clock request”.  The current draw required for XT2 should be considered 
in the VBUS budget during suspend.   

A host’s decision to suspend is largely based on its own activity state and its sensitivity to power 
drain.  Desktop PCs are likely to keep the device active for a long period of time, and only 
suspend when the PC itself enters a powerdown state.  Laptops are similar, except of course 
they tend to enter a powerdown state more often, due to being battery-powered.  Mobile hosts 
may cut power even more frequently.   

Although the internal circuitry’s power is handled automatically, the application may need to take 
steps to reduce the overall system’s power draw during suspend.  See Sec. 11.1 for information.   

6.6 Remote Wakeup 

A remote wakeup event is a mechanism by which a suspended USB device can prompt the host 
to resume it, perhaps waking the host in the process.  A common example of remote wakeup is 
when a USB mouse is attached to a PC, and the PC goes into standby mode.  Some 
configurations allow the mouse to wake the PC when moved, by issuing a remote wakeup event.  
After waking, the host resumes the mouse.   

A device first must declare itself as capable of remote wakeup within its configuration descriptor.  
The Descriptor Tool can configure the API to do this.  The host may choose to grant the ability 
for remote wakeup, or it may choose not to.  Whether it does so is OS-dependent and may also 
be dependent on user configuration.   

The application can issue a remote wakeup using the USB_forceRemoteWakeup() function.  If it 
returns kUSB_succeed, it means the host indeed had enabled the remote wakeup function and 
may choose to respond to the request by resuming the device.  A resume will be evident to the 
application through means of a return to the ST_ENUM_ACTIVE state, and the 
handleResumeEvent() handler will execute, if enabled.  If USB_forceRemoteWakeup() returns 
with kUSB_generalError, it means the host did not enable remote wakeup for this device.   
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6.7 Failed Enumeration 

If the device pulls PUR high and it does not lead to successful enumeration, 
USB_connectionState() will stay in the ST_ENUM_IN_PROGRESS.  Depending on the reason 
for the failed enumeration, the host may then suspend the device, which puts it into 
ST_NOENUM_SUSPENDED.   

6.7.1 Attachment to Powered Busses that Lack an Active Host 

Two possible ways of entering ST_NOENUM_SUSPENDED include: 

• the device attempted to enumerate while attached to a powered hub that doesn’t have a 
host upstream from it; or  

• the device attempted to enumerate on a host that is indeed powered, but in a ‘standby’ 
mode (during which all USB devices are suspended) 

The only way a USB device can detect the presence of a host using static signals is the 
presence of VBUS.   However, this doesn’t guarantee that the host is truly present and active.  
The only way to be certain is to attempt enumeration by pulling PUR high (calling 
USB_connect()).  If the host doesn’t respond by attempting to enumerate within 3ms, the 
MSP430 will recognize it as a suspend event.  The combination of having attempted to 
enumerate, but being suspended before completion defines the ST_NOENUM_SUSPENDED 
state.   

The software designer can choose to stay in this state until the bus situation changes; or if the 
situation is prolonged, disconnect from USB (de-assert PUR).  The bus situation could change if, 
for example, the host awoke from standby and resumed all its USB devices.   

If the application chooses to disconnect from USB, the device will not be able to recognize a 
host attempting to resume it.  Therefore, the end user would need to detach and re-attach the 
device before it could be enumerated.   

If instead the application chooses to stay in ST_NOENUM_SUSPENDED, then this state must 
be handled according to how the device should function while waiting for the host to begin 
enumeration.  This state keeps the USB module active, allowing it to detect a resume event.  
The API would then automatically handle the event, execute the enumeration process, and bring 
the device into ST_ENUM_ACTIVE.   

A possible way to implement this is as follows:   

 

 case (ST_USB_DISCONNECTED || ST_NOENUM_SUSPENDED): 

    __bis_SR_register(LPM3_bits + GIE);                   

    break; 

This code treats a ST_NOENUM_SUSPENDED device the same as if disconnected.  The only 
difference between the states is that in the latter, the USB module is enabled (but suspended).  
(This also means the device is consuming somewhat more current.)  If the host later resumes 
the device, the device’s USB module is kept on to detect it, and the resume event will cause the 
state to become ST_ENUM_IN_PROGRESS.   
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6.7.2 Active Host Attempts Enumeration, but It Fails 

If enumeration begins but fails for some reason, the host may suspend the device.  This would 
put it into ST_NOENUM_SUSPENDED.   

6.8 Removal from the Bus 

When the end user detaches the device from the host, this is recognized by the device as a 
VBUS-off event (bus power is no longer available on the VBUS pin).  The API responds by 
disconnected from USB and disabling the USB module.  It also calls handleVbusOffEvent().  
After this, a call to USB_connectionState()will return ST_USB_DISCONNECTED.   

As with suspend events, it is very important that the software designer consider that the end 
user may remove the bus at any moment during execution.  This is sometimes referred to as a 
“surprise removal”.  Software must anticipate that this and be able to recover gracefully.   

6.9 USB Hardware Conditions in Each State 

Each state is associated with certain hardware conditions, as shown below.   

Table 4. USB State Hardware Conditions 

 USB Module 
Enabled 

USB 
Transceiver

1
 

Integrated 
LDOs

2
 

XT2 
Oscillator 

PLL 
Enabled 

ST_USB_DISCONNECTED      

ST_USB_CONNECTED_NO_ENUM X Idle X X X 

ST_ENUM_IN_PROGRESS X Active X X X 

ST_ENUM_ACTIVE X Idle/Active X X X 

ST_ENUM_SUSPENDED X Idle X (see note 3)  

ST_NOENUM_SUSPENDED X Idle X (see note 3)  

Note 1: Idle means the transceiver is powered, but not transceiving any data, which means it is consuming minimal current.  
Active means data is being transceived, raising the current draw.  Idle/Active means the transceiver might be in either 
condition during this state.   

Note 2: The API enables both the 3.3V and 1.8V USB LDOs.   
Note 3: XT2 can be kept enabled during suspend, using the Descriptor Tool.   

The USB module must be enabled in order to detect suspend/resume events from the host, as 
well as to transceive data.  The other four columns relate primarily to power consumption.  In 
particular, the PLL is a major source of power draw, and must be shut down during USB 
suspend.  Similarly, an active USB transceiver consumes much more current than an idle one.  
See the device datasheet for specific parameters.   
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7 CDC, PHDC and HID-Datapipe:  Data Transmission/Reception 

The discussion in this section applies to any CDC interface, PHDC interface as well as any HID 
interfaces using the datapipe function calls.   It does not apply to traditional HID interfaces.   

7.1 Introduction 

The API provides a simple scheme of exchanging data with the USB host using either a CDC, 
PHDC or HID interface.  This scheme is called the datapipe.  This is a generic data interface that 
can be applied to any application.  It can send/receive data of any size with a single function call.  
The API handles all associated USB protocol to accomplish it.     

Any CDC interface or PHDC interface uses the datapipe.  Any HID interface in which the report 
descriptor has been left as the default can also use the datapipe, by using the HID-Datapipe 
function calls described in Sec. 9.4.  (If the report descriptor has been customized, then the HID-
Traditional function calls must be used, described in Sec. 9.11.)   

CDC send/receive function calls have the prefix USBCDC_,  PHDC send/receive functions have 
the prefix USBPHDC_ while HID calls have the prefix USBHID_.  Since the text in this 
discussion applies equally to CDC, PHDC  or HID-Datapipe, the function calls are sometimes 
shown to have the prefix USBxxx_.  The same applies to the prefix for return values 
(kUSBxxx_).   

7.2 Send/Receive “Operations” 

Send/receive operations are the basis of sending/receiving on a CDC interface, PHDC interface 
or an HID interface using datapipe function calls.  This section describes how they work.  For 
practical information and example send/receive construct functions, please see Sec. 11.     

For all sending and receiving, the application must first prepare a data source, called the user 
buffer.  The application passes the buffer, the number of bytes to be transceived, and the 
selected interface to USBxxx_sendData() or USBxxx_receiveData().  The user buffer can be 
located anywhere within the MSP430 memory map.   
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Figure 8. Send Operation 

A single call to USBxxx_sendData() initiates a send operation.  The API begins to copy the 
buffer to the USB endpoint buffer in packetized chunks.  After each packet is formed in the 
endpoint buffer, it’s made available to the host.  At the host’s discretion and timing, it reads the 
packet from the endpoint buffers.  When all the data has been read, the operation is complete.   

Similarly, a single call to USBxxx_receiveData() initiates a receive operation..  The user buffer 
acts as a data sink to any data subsequently received from the host.  As data is received into the 
USB endpoint buffers for this interface, the API copies it into the user buffer.  When the buffer is 
full, the operation is complete. 

7.2.1 User Buffer 

The term “buffer” implies a RAM source, but it can also be flash or peripherals – any contiguous 
block in the MSP430’s memory map.   

The buffer can be of any size, whether one byte or several kilobytes.  All packetization is 
automatic.   

The user buffer is separate from the endpoint buffers, which can be thought of as registers 
within the USB module that store USB data as it waits to be sent to the host, or data that has 
been received from the host and is waiting to be read by MSP430 software.  Unlike the user 
buffer, the endpoint buffers are limited in size to 64 bytes.  The API handles all interactions with 
the endpoint buffers automatically, so they’re not part of the API application programming model.    
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During a send operation, the data is only copied out of the user buffer; the contents of the buffer 
remain unchanged.  However, care should be taken that the application not write to the buffer 
until a send operation is known to be complete, as doing so could disrupt the operation.   

7.2.2 Background Execution 

Send/receive operations are executed “in the background”.  For example, when a call to 
USBxxx_sendData() returns, this has no bearing on whether the operation has completed or not 
-- only that is has started, or will start very soon.  The operation will occur in the background as 
the bus is available, until it’s completed.  (In other contexts, this concept is called asynchronous 
operation, because the USB MCU’s execution is “decoupled” from the host, rather than being 
dependent on it for a quick response.)   

This approach has several advantages: 

1. Execution is not held in one place while long transfers complete 

2. Execution is not held at the mercy of the host/bus’ availability 

3. Efficiency is increased, because the API isn’t waiting idle while waiting for the host to fetch 
the next packet.  Other useful activities can be performed during this time.   

Internal to the API, a send/receive operation is an interrupt-driven, host-driven process.  When 
the host is ready, it sends/receives data, and this results in interrupts in the MSP430.  After the 
operation is started, the MSP430 resumes execution of the application, and simply responds to 
these interrupts as they occur.  It effectively has “standing orders” to send/receive the user 
buffer.  Once these standing orders no longer apply – that is, once the buffer has been 
processed – USBxxx_handleSendCompleted() and USBxxx_handleReceiveCompleted() tell the 
application that the interface is available for more instructions.     

This is directly analogous to sending a block of memory over a SPI interface, using DMA to 
move the block to the SPI transmit register as the register becomes available.  In this example, 
the DMA module is in control of the operation; in the USB context, the API is in control.   

The application can know that an operation has completed by one of two means: 

1. A USBxxx_handleSendCompleted() or USBxxx_handleReceiveCompleted() event occurs 

2. A call to USBxxx_intfStatus() shows whether or not an operation is still in progress 

From the application’s point of view, send/receive operations are automatic; but the software 
designer should be mindful of the background processing.  For example, software should check 
for the presence of an open operation before starting another one, or before accessing the user 
buffer of an open operation.  That can be done with a call to USBxxx_intfStatus().   

7.2.3 How Many Operations Can be Open Simultaneously?   

An interface may have one send operation and one receive operation in progress at any time – 
but not more than one of either.  If more than one interface exist, each can have their own 
simultaneous operations.   
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7.2.4 Behavior During Suspend/Resume   

If the device gets suspended by the USB host or if the bus is removed, any active send or 
receive operations remain open.     

7.2.5 Lifecycle of a Send Operation 

T
im
e

 

Figure 9. Lifecycle of a Successful Send Operation 

As discussed earlier, a send operation is begun with a call to USBxxx_sendData().  The 
application can make its first call to this function any point it wishes while the state is 
ST_ENUM_ACTIVE.  A successful call to this function returns kUSBxxx_sendStarted.   

If a call to USBxxx_sendData() is made while a previous send operation is underway, it will 
immediately return with a value of kUSBxxx_intfBusyError.  This is because only one send 
operation (and one receive operation) may be open for a given interface at a time. The previous 
operation continues, unaffected.   

When a send operation is complete, the API makes a call to USBxxx_handleSendCompleted().  
User code may be placed here, perhaps flagging the application to begin another send 
operation, or to alert the user that all data has been transmitted.   

After USBxxx _sendData() returns kUSBxxx_sendStarted, software should be aware the 
operation might still be open.  Therefore, any subsequent calls to USBxxx_sendData() should 
check to ensure that no previous operation is underway.   
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Send operations usually complete fairly quickly, but if an operation is open, it can be aborted 
with USBxxx _abortSend().  After aborting the operation, this function returns how many bytes 
were successfully sent.   

7.2.6 Lifecycle of a Receive Operation 

 

Figure 10. Successful Receive Operation 

Similarly, a receive operation is begun with a call to USBxxx_receiveData().  The application can 
make its first call to this function any point it wishes after enumeration is complete.  A successful 
call returns kUSBxxx_receiveStarted.   

If a call to USBxxx_receiveData() is made while a previous receive operation is underway, it will 
immediately return with a value of kUSBxxx_intfBusyError.  This is because only one receive 
operation (and one send operation) may be open for a given interface at a time. The previous 
operation continues, unaffected.   

When a receive operation is complete, the API makes a call to 
USBxxx_handleReceiveComplete().  User code may be placed there; for example, it may set a  
flag that signals main() to begin another receive operation.   
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If data is received into the USB endpoint buffer without an open receive operation, the API has 
nowhere to put it.  After this, any subsequent attempts by the host to send more data will be 
NAK’ed by the device, and thus the pipe is effectively “clogged”.  If this situation occurs, the API 
makes a call to  USBxxx_handleDataReceived().  This gives the application an opportunity to 
“unclog” the pipe by either opening an operation or calling USBxxx_rejectData().  The former 
gives the incoming data a place to go.  The latter flushes the USB endpoint buffer; the “pipe” 
becomes unclogged again; but the data that was in it is lost.   

The function USBxxx_bytesInUSBBuffer() can be used to determine how many bytes are waiting 
in the USB endpoint buffer.  This can be useful when the event USBxxx_handleDataReceived() 
occurs; the application can respond by calling USBxxx_bytesInUSBBuffer(), and then calling 
USBxxx_receiveData() for the exact number of bytes that are waiting.   

7.2.7 How Long Does an Operation Stay Active? 

When a send operation is begun, the data is transmitted as quickly as the host, device, and bus 
conditions will allow.  Usually, this is very fast.  Obviously, the larger the data size, the longer the 
transmission takes.   

However, any factor that affects bandwidth also has an effect on the duration of a send 
operation.  The bus conditions can potentially have significant ability to delay transactions, and 
so it’s important for software to account for this – including the unknown timelength of open 
operations.   

Send operations are sent as quickly as conditions will allow.  Receive operations are subject to 
an additional factor:  depending on the application, it’s sometimes unknown when the host will 
send data.  So while send operations are almost assured to happen somewhat continuously, 
receive operations might be fulfilled in piecewise fashion.  If communication conforms to a 
defined protocol, the application may know when the data is arriving.  If this isn’t the case, 
software may need to be written in a more open-ended fashion.   

USBxxx_sendData(), USBxxx_receiveData(), and USBxxx_intfStatus() have all the return codes 
necessary to manage this.  Also, Sec. 11 provides clear example coding constructs that ensure 
proper operation.   

7.3 Host-Side Considerations When Interfacing to the Datapipe 

When using CDC, there are no considerations specifically related to send/receive operations.  
From the host’s perspective, data is simply sent/received through the COM port, as with any 
other virtual COM port application.   

When using HID, the application needs to take care to structure reports according to the API’s 
default report descriptor.  The report format is shown below.   

Table 5. Reports Described by the Default Report Descriptor 

Field Size Description 

IN report (into the host) 

Report ID 1 byte The report ID of the chosen report (automatically 
assigned to 0x3F by the HID-Datapipe calls) 

Size 1 byte The number of valid bytes in the data field 
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Data 62 bytes Data payload 

OUT report (out of the host) 

Report ID 1 byte The report ID of the chosen report (must be assigned to 
0x3F by the host) 

Size 1 byte The number of valid bytes in the data field 

Data 62 bytes Data payload 

This format effectively converts the report mechanism into a simple data carrier.  The MSP430 
application sees only an unformatted stream of data.  The Windows HID API provided for 
MSP430 does the same thing for Windows applications.  A host application for any operating 
system can accomplish the same thing by formatting data in the manner shown above.   
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8 MSC:  Software Architecture 

The MSC API creates an mass storage class USB interface in an MSP430 device – individually, 
or in composite with CDC and/or HID.  This section explains how the developer should build an 
application around the API.   

8.1 MSC Architecture:   High-Level Overview 

Unlike CDC and HID-Datapipe, an application using an MSC interface doesn’t “send” and 
“receive” data over an unformatted datastream.  Instead, it creates a large (“mass”) pool of data 
– a storage volume – to which the host has access.  Unless the developer is simply using the 
MSC interface as a “flash drive” – that is, a storage volume that only the USB host can access – 
the USB device’s application software will also need access to the volume, and this requires file 
system software.   

 

 

Figure 11. Simplified High-Level MSC Architecture 

There are ways around this requirement, although they usually involve tradeoffs.  One such way 
is demonstrated in example application #M1.  This example shows a form of file system 
“emulation”, at the expense of only allowing a limited number of files in the volume.   

The volume exists on a medium.  In an MSP430-based mass storage device, the medium might 
be internal memory or an external device accessible via the MSP430’s interfaces (for example, 
SPI, I2C, or an emulated parallel memory interface).   
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8.2 Storage “Address System”:  LUNs & LBAs 

Storage is divided into logical blocks; and each is addressed with a logical block address (LBA).  
In the FAT file system, one block consists of 512 bytes.  Blocks are sometimes called sectors.   

The USB host uses LBAs when making requests to the storage device for READ/WRITE 
operations.  Usually the MCU application will pass the LBA to the file system software, when 
then accesses the volume on the medium.  LBAs begin at zero.   

If no file system is being used and the medium is a space within MSP430 internal flash, the 
application might convert the LBA to a byte address simply by multiplying the LBA by the size (in 
bytes) per logical block, or sector; then add this to any appropriate offset within flash.   

All of this occurs within the context of a logical unit.  Logical units are referenced with a logical 
unit number, or LUN.  There might be multiple LUNs within an MSC interface.  The host 
operating system (i.e., Windows) presents each LUN to the user as a separate volume.  If an 
equipment maker wishes to have multiple storage media on a single physical mass storage 
device – for example, a removable media card as well as a separate volume located in internal 
MSP430 flash – they may choose to implement these as two separate LUNs.  In certain 
respects, this is analogous to having multiple interfaces within a composite USB device.   

This is illustrated in the figure below.   

 

Figure 12. MSC Interface LUN/LBA Addressing 

The API supports a multiple LUNs, containing any 32-bit number and size of logical blocks.  The 
number of LUNs can be selected within the Descriptor Tool.  (After being selected, each LUN 
must be implemented within the application.)   
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When the host sends a SCSI command over the MSC protocol, it designates the LUN for which 
the command is intended.  If the command reads/writes data, it also includes the LBA being 
accessed and the number of sequential blocks requested.  Since the API must rely on the 
application to make the file system access calls when a SCSI read or write command is 
received, the API makes the SCSI command’s LUN, initial LBA, and number of requested blocks 
available to the application.     

Only one SCSI command at a time can be handled by an MSC interface.  This means that if a 
command is received for LUN 0, it must be handled in full before a command can be received 
for LUN 1.  For this reason, only a single interchange buffer is needed for the interface (or two, if 
double-buffering is used).  (The current API version only supports single-buffering.)     

8.3 Components of an MSP430-Based MSC Application 

The table below shows the actions the application must take.   

Table 6. Actions the Application Must Take 

When Action How 

Define the LUN structure and characteristics USBMSC_config 

Allocate the data buffer exchange space, and 
then register it with the API  

USBMSC_registerBufInfo() 

Returns the pointer to the API’s 
USBMSC_RWBuf_Info structure, which 
describes any requested buffer operations.   

USBMSC_fetchInfoStruct()  

Initialization 

Inform the API about each LUN’s initial 
medium  

USBMSC_updateMediaInfo() 

Periodically Check for any received SCSI commands and 
initiate their handling 

USBMSC_poll() 

Process any buffer events the API generates 
during its SCSI READ/WRITE handling 

Access the file system, in response to 
USBMSC_handleBufferEvent(), then 
call USBMSC_bufferProcessed() 

Event-
driven 

If the medium is designated as ‘removeable’, 
and the medium changes state, inform the API 

USBMSC_updateMediaInfo() 

Each is defined in more detail below.   

8.3.1 Defining the Interface’s LUN Organization and LUN Characteristics 

An application must define the characteristics of its LUNs.  The API then uses this definition 
when responding to SCSI commands.  To accomplish this, the API internally defines a structure 
type called config_struct. The application must define an instance of this, named 
USBMSC_config, that reflects the characteristics of its LUN.   

An example for a single-LUN is shown below.   
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// Defined within the application 

struct config_struct USBMSC_config =  

{ 

  .number    = 0x00, 

  .PDT       = 0x00, 

  .removable = 0x80, 

  .t10VID    = « TI MSC », 

  .t10PID    = « LUN0 », 

  .t10rev    = « 0x00 » 

}; 

 

An example for two LUNs in shown below.   

 

 

// Defined within the application 

struct config_struct USBMSC_config =  

{ 

  { 

    .number    = 0x00, 

    .PDT       = 0x00, 

    .removable = 0x80, 

    .t10VID    = « TI MSC », 

    .t10PID    = « LUN0 », 

    .t10rev    = « 0x00 » 

  }, 

  { 

    .number    = 0x00, 

    .PDT       = 0x00, 

    .removable = 0x80, 

    .t10VID    = « TI MSC « , 

    .t10PID    = « LUN1 », 

    .t10rev    = « 0x00 » 

  }, 

}; 

The structure’s identifiers must be left unchanged, so that the API can interpret them; but the 
values must be customized.  The information to be populated in each field is shown in the table 
below.   

Table 7. LUN Information in the USBMSC_config Structure 

Field Format Description 

.LUN.number BYTE The logical unit number.  (Must be 0x00, because this version of the API only 
supports one LUN.)   

.LUN.PDT BYTE Peripheral Device Type.  This is a code that identifies to the host which set of SCSI 
commands to use with this device.  (Currently must be 0x00, which is for SBC 
devices.  Most flash-based USB devices use this class.)   

.LUN.removable BYTE Indicates whether the device’s media can be removed – for example, flash media 
cards.  0x80 indicates the medium is removable; 0x00 indicates it is not.   

.LUN.t10VID BYTE[8] A vendor ID assigned by the T10 organization.   

.LUN.t10PID BYTE[16] A product ID assigned by the owner of the T10 VID.   

.LUN.t10rev BYTE[4] A revision code assigned to a device with this T10 VID/PID.   
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T10 is the organization that oversees the SCSI specification.  (http://www.t10.org)  T10 VIDs are 
freely available.  There is no certification process that checks to ensure a unique VID is used, 
nor does the choice of VID/PID have any significant effect on most USB hosts.   

T10 VIDs/PIDs should not be confused with USB VIDs/PIDs; they are not related.   

8.3.2 Registering the Location of the Buffer:  USBMSC_registerBufInfo() 

Exchanging data between the host and the file system requires a memory buffer large enough to 
hold an entire block.  For the FAT file system, this is a multiple of 512 bytes.  Since this 
represents a significant amount of available RAM, the API gives as much control of its allocation 
to the application as possible.  The application must allocate the buffer, and then “register” it with 
the API.  It does this with USBMSC_registerBufInfo().   

This function passes in three parameters: 

• Address of the X-buffer 

• Address of the Y-buffer 

The size of the X- and Y-buffers   

The application can dynamically change the buffer location, and it can also disable the buffer 
completely.  The latter is advantageous for re-allocating the memory when USB isn’t attached.  It 
can be accomplished by calling USBMSC_registerBufInfo() with an X-buffer address of null.  
The API always uses the address/size from the most recent call to the function.   

If the host attempts to access the MSC interface, but the most recent call to 
USBMSC_registerBufInfo() de-activated the buffer, then the API has no way to exchange data 
with the application.  It begins failing READ/WRITE commands received from the host, telling it 
that the unit isn’t ready.  During this time, calls to USBMSC_poll() return kUSB_generalError.   

Therefore, if the buffer is to be dynamically managed, it is strongly recommended to re-instate it 
in response to USB_handleVbusOnEvent() (which occurs when USB is attached).  Also, if the 
buffer is de-activated during USB suspend, it should be re-instated in response to 
USB_handleResumeEvent(). 

8.3.3 Registering the Buffer Info Structures:  USBMSC_fetchInfoStruct() 

The API allocates an instance of the structure USBMSC_RWBuf_Info to describe any buffer 
operations it wants the application to process.   

The application needs the pointer to this structure, so that it can access the buffer operation 
description.  It must call this function near the beginning of operation, after 
USBMSC_registerBufInfo() but before USB enumeration.   

8.3.4 Informing the API About the Media:  USBMSC_updateMediaInfo() 

For each LUN defined with USBMSC_config, the application must describe the storage medium 
to the API.  It must do this in two situations: 

1. Initially, before the USB device enumerates (that is, before calling USB_connect()).   



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 51 

2. If the media is removeable, it must also inform the API as soon as possible in response to 
any subsequent changes in the medium.   

The function that accomplishes this is USBMSC_updateMediaInfo().  With the information 
provided by this function, the API can respond appropriately to any related SCSI commands 
from the host.   

The application must declare an instance of the API-defined structure USBMSC_mediaInfoStr 
and pass it into USBMSC_updateMediaInfo().   

Table 8. USBMSC_mediaInfoStr 

Type Name Description 

BYTE mediaPresent Indicates that the medium is present (non-zero) or not present (zero).    

BYTE mediaChanged Indicates that the medium present is a different one than during the last 
call to USBMSC_updateMediaInfo() 

BYTE writeProtected Indicates that the medium is write-protected (non-zero) or not write-
protected (zero).   

DWORD lastBlockLba LBA of the last block in the media (effectively, the medium’s size) 

DWORD bytesPerBlock Number of bytes per block in this medium (for FAT, this is typically 512) 

The last three fields are only valid if mediaPresent is non-zero.   

If the media is removable (which should be reflected in USBMSC_config), then the application 
needs functionality to detect it.  The means of detection vary, depending on the media type.  As 
an example, SD-card interfaces can detect a pullup in the card, using an I/O pin interrupt.   

If the application detects that media has been inserted, it should: 

• Create an instance of USBMSC_mediaInfoStr 

• Set mediaPresent and mediaChanged  

• Determine whether the media is write-protected, and set writeProtected accordingly 

• Detemine the media’s size, and set lastBlockLba accordingly.   

• Call USBMSC_updateMediaInfo().  

 



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        52 

If instead the application detects that media has been removed, it should: 

• Create an instance of USBMSC_mediaInfoStr 

• Clear mediaPresent  

• Set mediaChanged  

• Call USBMSC_updateMediaInfo().  

To determine the media’s size and write-protected status, file system calls are usually available.  
If necessary, it could parse the volume’s master boot record manually.   

8.3.5 Periodically Initiating SCSI Command Handling, using USBMSC_poll() 

The application must initiate the handling of any SCSI commands that have been received, 
using USBMSC_poll().  Any SCSI commands received by the API will not be handled until 
USBMSC_poll() is called.   The API does not interrupt the application to tell it commands have 
been received; rather the application needs to call USBMSC_poll() periodically.   

8.3.5.1 Main Loop, No LPM Mode 

Many USB devices derive their power from the host (VBUS) while enumerated and active, and 
so they don’t have tight power requirements.  Developers of these devices might choose not to 
enter a low-power mode.   

If the application is based on a main loop, and doesn’t enter LPM0, the calling of 
USBMSC_poll() can simply be placed within the main loop.  Note that if the function is called 
when there is no SCSI command to handle, it will quickly return with no action taken.   

8.3.5.2 Main Loop, Entering an LPM Mode 

The API is designed for LPM0 to be entered within a main loop structure.  If a SCSI command 
occurs while the CPU is in LPM0, it automatically wakes the CPU, allowing the application’s 
main loop to call USBMSC_poll().   

Most SCSI commands are handled automatically when USBMSC_poll() is called, without any 
help needed from the application.  By the time USBMSC_poll() returns, the command has been 
handled.  However, SCSI READ/WRITE commands require the application to “process” buffers.  
When this occurs, the API automatically wakes the CPU out of LPM0, and execution resumes 
from its point of entry.   

Given this, the following coding structure is recommended in applications entering LPM0:   

 

      __disable_interrupt(); 

      if(USBMSC_poll() == kUSBMSC_okToSleep) 

      { 

        __bis_SR_register(LPM0_bits + GIE);       

      } 

      __enable_interrupt(); 
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This structure ensures robust handling.  The condition it guards against is one in which the CPU 
enters LPM0 even though the API is waiting for it to process a buffer.  It does this by first 
disabling interrupts, to prevent the API from servicing any subsequently-received SCSI 
commands.  USBMSC_poll() then checks to see if any SCSI commands have been received up 
to that time.  If not, it returns kUSBMSC_okToSleep.  Then, atomatically with the LPM0 entry, it 
re-enables interrupts.  This way, if a SCSI READ/WRITE command was received during 
USBMSC_poll(), the application won’t miss the fact that it’s supposed to remain awake; instead, 
the API will begin processing it immediately after the LPM0 entry, and the application will 
immediately wake again.   

Alternatively, if a READ/WRITE command was already received and the API is waiting for the 
application to process a buffer, USBMSC_poll() will return kUSBMSC_processBuffer, keeping 
the loop awake.   

Note that if LPM0 is not being entered – rather the CPU will be kept continuously active during 
the USB connection – then it is not necessary to disable interrupts or check the return value 
from USBMSC_poll().   

8.3.5.3 Frequency of Calling USBMSC_poll() 

It is important that USBMSC_poll() be called with sufficient frequency.  There are two main 
concerns the developer should consider: 

• Slow “average” polling frequency, leading to slow bandwidth performance 

• An occasional “long” polling period, causing a host timeout to be violated 

The more frequently an appication calls USBMSC_poll() during periods of peak mass storage 
activity, the higher the bandwidth will be.  In contrast, having a long average period between 
USBMSC_poll() calls during heavy mass storage activity can result in very slow performance.  
When setting the average polling frequency, the developer should call USBMSC_poll() as often 
as the application can afford.  It may be a good idea to perform experimental benchmarks.   

The second concern is that one long period between USBMSC_poll() calls that could exceed a 
host timeout period.  The timeout periods vary by operating system and situation. Most are fairly 
long, such that an occasional delay of even a few seconds may not cause the timeout to be 
exceeded.  However, one notable exception is when the LUN is marked as having removable 
media (with USBMSC_config), on a Windows machine.  Windows sends these LUNs a “TEST 
UNIT READY” SCSI command every second, to see if the medium is present.  The MSC device 
has until the next TEST UNIT READY– that is, one second -- to respond.  Some embedded 
applications could experience delays long enough to exceed this delay.  If that were to happen, 
the Windows host would issue a USB bus reset; this should be avoided.   

An advantage of using an RTOS is more direct control over the call frequency.     
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8.3.6 Processing Buffer Events 

8.3.6.1 What Are They?   

As discussed in Sec. 4.5.2, MSC applications typically require file system software.  In this 
arrangement, both the application and the host (via the API) access the storage volume though 
the file system.   

 

Figure 13. File System Access – Simplified 

There is a wide variety of file system middleware on the market, with various specialties.  For 
example, some are optimized for code size, while some have advanced features.  No one set of 
file system software fits all applications.  Therefore, a file system has not been integrated into 
the API.  Rather, it exists at the application level, under the control of the software developer, 
allowing flexibility to choose the right one for the application.  Putting the file system in the 
application requires a defined process by which the API can request the application to access 
the file system, which it needs to do during the handling of READ/WRITE SCSI commands from 
the host.   

READ/WRITE operations usually involve multiple blocks per command, and each block (for the 
FAT file system) is typically 512 bytes.  As a result, the total amount of data being moved for a 
single READ or WRITE operation is often fairly large.  In many cases the data storage is not 
even within the MSP430 memory map, but rather in an off-chip medium.  The combination of 
large data size, off-chip location, and limited RAM resources necessitates a multi-stage, iterative 
system in which data is paged between the medium and host through an intermediary RAM 
buffer.   
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This entire process is coordinated by the API; all the application must do is service buffer 
operations (that is, process the buffer) when requested to do so by the API.  As the API 
prepares to send or receive a block as part of a multi-block READ/WRITE operation, it makes 
these requests:   

• When handling READ commands, the application is requested to “fill” the buffer (i.e., using 
the file system to pull the data from the medium) so that the API can send it to the host.   

• When handling WRITE commands, the application is requested to “empty” the buffer (i.e., 
using the file system to move the data into the medium) so that the API can receive more 
blocks from the host.   

Since the API must ask the application to handle this function, the figure above isn’t sufficient to 
describe what actually happens.  Instead, see the figure below.     

 

 

Figure 14. File System Access – Actual 

The MCU application can access the media for its own purposes.  It also acts as a go-between 
whenever the API needs media access to fulfill a READ/WRITE command from the host.  The 
figure below details the latter, showing the complete cycle of a buffer operation.    
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Figure 15. Buffer Processing 

Buffer processing is further detailed below.   

8.3.6.2 The USBMSC_RWbuf_Info Structure   

The API defines an instance of this structure.  (If the API is configured for double-buffering, the 
API defines two such structures.)  It is considered a shared resource between the API and the 
application.  Its purpose is to describe buffer operations requested by the API.  Prior to USB 
enumeration, the application must call USBMSC_fetchInfoStruct() to obtain the pointer to this 
structure.   

 

 

    typedef struct 

    { 

        BYTE lun; 

        BYTE operation; 

        DWORD lba; 

        BYTE         lbCount; 

        BYTE *bufferAddr; 

        BYTE returnCode; 

        BYTE         XorY; 

    }USBMSC_RWbuf_Info; 
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Table 9. USBMSC_RWbuf_Info Definition 

Type Name Direction Description 

BYTE lun The logical unit on which the buffer operation is taking place.  Zero-
based.   

BYTE operation The type of operation being performed (kUSBMSC_READ or 
kUSBMSC_WRITE), or NULL if no operation is active for this 
instance.  

DWORD lba The logical block address (LBA) of the block the application needs 
to read/write.   

BYTE lbCount The number of blocks being requested.   

BYTE* bufferAddr 

From API to 
application 

The address of the RAM intermediary buffer the application should 
use to exchange the data.     

BYTE returnCode From 
application 
to API 

The result of the buffer operation.  (To be written by the 
application.)  Valid return codes are described in the definition of 
USBMSC_bufferProcessed().   

 

8.3.6.3 The Lifecycle of a Buffer Operation   

When the API wants to request the application to process a buffer: 

1. It populates this structure.  (As part of this, it sets the operation field to kUSBMSC_READ 
or kUSBMSC_WRITE.) 

2. It clears the LPM bits in the MCU’s status register, to ensure the CPU stays awake after 
the USB interrupt service routine exits.  (These actions usually take place out of this ISR.)   

3. It generates a USBMSC_handleBufferEvent().   

To determine whether the API is waiting for the application to process a buffer, the application 
can check the operation field.  A good place for this is immediately after calling USBMSC_poll() 
– refer to Sec. 8.3.5 regarding when in the application to do this.  Alternatively, checking the 
operation field can be prompted from within USBMSC_handleBufferEvent().   

Once the condition has been detected, the application should promptly process the buffer.  It 
usually does this by accessing the medium to either fill the buffer (for READ operations) or 
empty it (for WRITE operations).  It uses the information in the USBMSC_RWbuf instance to 
learn what kind of operation is being requested, and how it should be fulfilled.  During this time, 
the host is waiting for the USB device to either send a block of data (READ) or to send status 
that the block has been written (WRITE).   

When the media access is complete, the application must write a value into the returnCode field.  
Finally, it must call USBMSC_bufferProcessed() to inform the API that it has finished processing 
the buffer.  This marks the end of the buffer operation lifecycle.   
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The API then resumes communication with the host.  When it does, it uses the value in 
returnCode to tell the host the result of the operation.  If an error was returned, the host will 
probably end the READ/WRITE SCSI command cycle.  The information may further be passed 
to the application running on the host, in the form of an error code.  The origin of this return code 
depends on the storage medium.  If a file system is used, it is likely derived from error codes 
returned from the file system’s function calls.  Values the application may write into this field are 
shown in the table below.   

Table 10. Accepted Values for returnCode  

Name Description 

kUSBMSC_RWSuccess The operation succeeded.   

kUSBMSC_RWNotReady The device was not ready.   

kUSBMSC_RWIllegalReq  Illegal request 

kUSBMSC_RWLbaOutOfRange  The LBA was out of range.   

kUSBMSC_RWMedNotPresent  The media isn’t present.   

kUSBMSC_RWDevWriteFault Device write fault 

kUSBMSC_RWUnrecoveredRead  Unrecovered read 

kUSBMSC_RWWriteProtected The media is write protected 

 

The buffer lifecycle is shown in the figure below.   
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Figure 16. Buffer Lifecycle 
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8.4 Managing Dual Access to the Medium 

The application should take care not to allow both itself and the USB host to access the medium 
at the same time.   The host oftens keeps a cached version of the volume in its own memory 
that becomes out of sync with the one on the USB device.  For this reason, it’s best to avoid 
accessing the volume from the MCU application while the device is connected to a host as an 
MSC device.   
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9 Traditional HID Interfaces 

This section applies to traditional HID interfaces.  It does not apply to CDC interfaces, or to HID 
interfaces using the datapipe function calls.    

9.1 Introduction 

Traditional HID interfaces differ from those implemented by HID-datapipe in two respects:   

• There is a need to use a report format that’s different from the one used by the one used by 
HID-Datapipe.   

• The application makes calls to the HID-Traditional API function calls, rather than HID-
Datapipe function calls.  These calls access the interface at the report level, rather than at 
the higher level of sending/receives larger chunks of data.   

HID report descriptors are essentially a scripting language by which the device imposes 
structure on the data at a low-level, rather than the unformatted datastream created by a COM 
port or HID-Datapipe device.   

Generally speaking, there are only two situations in which HID-Traditional is advised rather than 
the HID-Datapipe: 

• If the engineer wants to maintain backward-compatibility with an existing host application 
(i.e., Windows/Mac/Linux).  In this case, the host application expects a particular format, and 
the new device must use the same.  

• Applications in which the host OS itself acts as the “application”.  Examples of this are mice, 
keyboards, and tablets.  In this case, the structure imposed by HID reports is necessary for 
the host and device to speak a common “language”.   

In  the above cases, the engineer has no choice but to create an HID-Traditional device.  In 
other situations, the heavy-handed, low-level structure imposed by reports typically doesn’t add 
much value.  The engineer typically controls both the device and the host applications anyway, 
and can impose structure of their own choosing at the application level.  This makes a simple, 
unformatted datastream (like a COM port or HID-Datapipe) easier and faster than learning the 
complex structuring of HID reports.   

This section describes the two cases above in more detail, and also outlines a general approach 
for others who wish to create a HID-Traditional “from scratch”.   

9.2 Overview of Creating a HID-Traditional Device 

In all HID-Traditional cases, the recommended approach is: 

1. Use the Descriptor Tool to generate a HID interface . Select a report type using the “HID 
Report Type” drop-down in the Interface View for the HID device. The choices are 
Datapipe, Mouse, Keyboard and Custom.   
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2. Selecting mouse or a keyboard report will generate the report descriptors as described in 
the HID specification. The “Custom” report selection pops up a text box that can be used 
to input your own report descriptor and the custom report length. Be sure to choose the 
correct polling interval (in the “interface view” tab) required for your application.  

3. In the application, use the HID-Traditional function calls to access the interface, rather 
than the the HID-Datapipe function calls 

4. These calls require the application to build reports before sending, and parsing them after 
receiving 

More details on Step #1 is covered in Sec. 5.  Detail on the remaining steps is provided below.   

9.3 Obtaining the Traditional HID Report Format 

By definition, a traditional HID application requires a customized report format. 

The first subsection reviews the default format, and the remaining ones describe common HID-
Traditional situations, and where the format can be obtained in each case.   
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9.3.1 Review of the Default (HID-Datapipe) Report Format 

The HID-Datapipe function calls require that the default report descriptor be used.  This is the 
one created in descriptors.c by the Descriptor Tool:   

 

BYTE const report_desc_HIDx[]= [SIZEOF_REPORT_DESCRIPTOR]= 

{ 

    0x06, 0x00, 0xff,  // Usage Page (Vendor Defined) 

    0x09, 0x01,   // Usage Page (Vendor Defined) 

    0xa1, 0x01,   // COLLECTION (Application) 

    0x85, 0x3f,   // Report ID (Vendor Defined) 

    0x95, MAX_PACKET_SIZE-1, // Report Count 

    0x75, 0x08,   // Report Size 

    0x25, 0x01,   // Usage Maximum 

    0x15, 0x01,   // Usage Minimum 

    0x09, 0x01,   // Vendor Usage 

    0x81, 0x02,   // Input (Data,Var,Abs) 

    0x85, 0x3f,   // Report ID (Vendor Defined) 

    0x95, MAX_PACKET_SIZE-1, // Report Count 

    0x75, 0x08,   // Report Size 

    0x25, 0x01,   // Usage Maximum 

    0x15, 0x01,   // Usage Minimum 

    0x09, 0x01,   // Vendor Usage 

    0x91 ,0x02,   // Output (Data,Var,Abs) 

    0xc0   // end Application Collection 

}; 
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This describes the following report format, which was shown in Sec. 7.       

Table 11. Reports Described by the Default Report Descriptor 

Field Size Description 

IN report (into the host) 

Report ID 1 byte The report ID of the chosen report (automatically 
assigned to 0x3F by the HID-Datapipe calls) 

Size 1 byte The number of valid bytes in the data field 

Data 62 bytes Data payload 

OUT report (out of the host) 

Report ID 1 byte The report ID of the chosen report (must be assigned to 
0x3F by the host) 

Size 1 byte The number of valid bytes in the data field 

Data 62 bytes Data payload 

 

9.3.2 The Mouse Report Format 

When “Mouse” is selected as the HID report type in the descriptor tool, the following standard 
mouse report gets generated by the tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE const report_desc_HIDx[] = 

{ 

    0x05, 0x01,        // Usage Pg (Generic Desktop) 

    0x09, 0x02,        // Usage (Mouse) 

    0xA1, 0x01,       // Collection: (Application) 

    0x09, 0x01,   // Usage Page (Vendor Defined) 
    0xA1, 0x00,       // Collection (Linked) 

    0x05, 0x09,        // Usage (Button) 

    0x19, 0x01,        // Usage Min (#) 

    0x29, 0x05,        // Usage Max (#) 

    0x15, 0x00,        // Log Min (0) 

    0x25, 0x01,   // Usage Maximum 

    0x95, 0x05,        // Report count (5) 

    0x75, 0x01,       // Report Size (1) 

    0x81, 0x02,       // Input (Data,Var,Abs) 

    0x95, 0x01,       // Report Count (1) 

    0x75, 0x03,       // Report Size (3) 

    0x81, 0x01,       // Input: (Constant) 
    0x05, 0x01,       // Usage Pg (Generic Desktop) 

    0x09, 0x30,       // Usage (X) 

    0x09, 0x31,       // Usage (Y) 

    0x09, 0x38,       // Usage (Wheel) 

    0x15, 0x81,       // Log Min (-127) 

    0x25, 0x7F,      // Log Max (127) 

    0x75, 0x08,      // Report Size 

    0x95, 0x03,      // Report Count (3) 

    0x81, 0x06,      // Input: (Data, Variable, Relative) 

    0xC0,               // End Collection 

    0xC0                // End Collection 

}; 
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This describes the mouse report format. 

Table 12. Reports Described by the Mouse Report Descriptor 

Field Size Description 

IN report (into the host) 

Buttons 1 byte 3 button bits and padding 

dX 1 byte X position 

dY 1 byte Y position 

dZ 1 byte Wheel position. 

9.3.3 The Keyboard Report Format 

When ‘Keyboard” is selected as the HID report type in the descriptor tool, the following standard 
keyboard report gets generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE const report_desc_HIDx[]= 
{ 
    0x05, 0x01,   // Usage Page (Generic Desktop) 
    0x09, 0x06,   // Usage (Keyboard) 
    0xA1, 0x01,   // Collection (Application) 
    0x05, 0x07,   // Usage Page (Key Codes) 
    0x19, 0xE0,   // Usage Minimum (224) 
    0x29, 0xE7,   // Usage Maximum (231) 
    0x15, 0x00,   // Logical Minimum (0) 
    0x25, 0x01,   // Logical Maximum (1) 
    0x75, 0x01,   // Report Size (1) 
    0x95, 0x08,   // Report Count (8) 
    0x81, 0x02,   // Input (Data, Variable, Absolute) -- Modifier 
byte 
    0x95, 0x01,   // Report Count (1) 
    0x75, 0x08,   // Report Size (8) 
    0x81, 0x03,   // (81 01) Input (Constant) -- Reserved byte     
    0x95, 0x05,   // Report Count (5) 
    0x75, 0x01,   // Report Size (1) 
    0x05, 0x08,   // Usage Page (Page# for LEDs) 
    0x19, 0x01,   // Usage Minimum (1) 
    0x29, 0x05,   // Usage Maximum (5) 
    0x91, 0x02,   // Output (Data, Variable, Absolute) -- LED 
report 
    0x95, 0x01,   // Report Count (1) 
    0x75, 0x03,   // Report Size (3) 
    0x91, 0x03,   // (91 03) Output (Constant) -- LED report 
padding 
    0x95, 0x06, // Report Count (6) 
    0x75, 0x08, // Report Size (8) 
    0x15, 0x00, // Logical Minimum (0) 
    0x25, 0x66, // Logical Maximum(102)  // was 0x65 
    0x05, 0x07, // Usage Page (Key Codes) 
    0x19, 0x00, // Usage Minimum (0) 
    0x29, 0x66, // Usage Maximum (102) // was 0x65 
    0x81, 0x00, // Input (Data, Array) -- Key arrays (6 bytes) 
    0xC0  // End Collection 
}; 
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This describes the keyboard report format, 

Table 13. Reports Described by the Keyboard Report Descriptor 

Field Size Description 

IN report (into the host) 

Modifier 1 byte Modifier keys (SHIFT, CTRL etc) 

Reserved 1 byte reserved 

Key 
Arrays 

6 bytes Non-modifier key 

OUT report (out of the host) 

LED 1 byte LED report and padding 

 

9.3.4 Creating a New Custom Report for Traditional HID Devices 

If creating a new device, then a new HID report descriptor will need to be created.  As 
mentioned previously, aside from the two cases described above, there's usually not much 
advantage to this approach, compared with using HID-Datapipe and imposing the needed 
structure (protocol, data formatting, etc.) at the application level.  If this is what the engineer 
wants to do, however, the general procedure below can be used.   

The USB Implementers Forum (USB-IF) provides a tool that can be used to create HID report 
descriptors, called the HID Descriptor Tool.  (Note that despite the similar name, the functionality 
of the USB-IF's tool is very different than the MSP430 HID Descriptor Tool.). 

 



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 67 

  

Figure 17. The USB-IF's HID Descriptor Tool 

Describing use of this tool is outside the scope of this Programmer's Guide; the USB-IF and 
other sources describe it.   

Once the report format is created, the output of this tool is a series of hex values.  These values 
are very similar to the format of the default report descriptor shown in Sec. 9.3.1. The output of 
the USB-IF's HID Descriptor Tool can be pasted  into the pop-up text box for Custom report 
type. 

When changing the contents of the report descriptor array, it's necessary necessary to update 
the value of report length, which is the length of the report described by the descriptor.  The 
custom report length can be input into the pop-up text box for Custom report type. 

Once these are done, the API should be fully configured for the desired HID device.  Code will 
need to be written at the application level that builds and parses the reports defined by the report 
descriptor.   
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9.3.5 Reports for Traditional HID where the Host OS is the “Application” 

Devices like mice, keyboards, and tablets are unique, in that the host operating system itself 
acts as the “application”.  This is a major reason HID (and USB) was originally created.  The 
engineer designing a mouse must format the data in a way the host OS will understand.  The 
HID report descriptor “scripting language” exists to provide a semi-flexible way for the USB 
device to communicate to the host OS how its data is arranged.  The host can then parse this 
descriptor to understand this formatting.   

Those controlling host operating systems (Microsoft, Apple, and the Linux community) may 
further reduce the formatting options, because it reduces their effort to implement a host 
operating system that doesn’t need to anticipate every possibility of report format.   

These organizations provide example report formats to implement, for example, a keyboard, 
mouse, tablet, joystick, etc.  For reports other than the standard mouse and keyboard use the 
“Custom” report in the HID Interface View.  When “Custom” is selected a text box will pop-up 
where the user can paste his custom report descriptor. 

When changing the contents of the custom report descriptor text box, it’s necessary to input the  
value of report length, which is the length of the report described by the descriptor.  The latter 
may be difficult to determine unless you understand HID report formatting; so hopefully the host 
OS documentation indicates this value as well.     

As mentioned in Sec. 9.2, be sure to set the polling interval to the required value when using the 
Descriptor Tool to generate the HID interface.  This value may be defined or recommended by 
the host OS documentation.   

Once these are done, the API should be fully configured for the desired HID device.  Code will 
need to be written at the application level that builds and parses the reports defined by the report 
descriptor.   

9.3.6 Backward-Compatibility with a Previous HID Application 

Some USB engineers use HID for general-purpose applications, developing both USB HID 
hardware and applications running on host platforms.  Later, other engineers may need to 
design HID devices that are compatible with those host applications.  These engineers must use 
whatever report format the previous engineers used.   

If the later engineers are within the same company as the previous ones, it’s likely the engineer 
already has access to source code from the previous USB device implementation that interacted 
with this host application.  This would include the previous HID report descriptor.  It can simply 
be copied and pasted into the text box for Custom report type (Some minor re-formatting of the 
syntax may be required.)   

It is necessary to update the value of REPORT LENGTH, which is the length of the report 
described by the descriptor.  Both values ought to be available within the previous device’s 
source code.   

As mentioned in Sec. 9.2, be sure to set the polling interval to the required value when using the 
Descriptor Tool to generate the HID interface.  This value can be obtained from the previous 
device’s source code.   



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 69 

If the engineer doesn’t have access to the previous USB device’s source code, another option is 
to use the source code for the host application.  It may contain information useful in re-creating 
the HID report format.  If this source isn’t available either, a bus analyzer could be placed on the 
bus between the host and device as the device enumerates.  This should be able to capture the 
report descriptor as it passes on the bus, allowing byte-by-byte reconstruction of the format.   

Once these are done, the API should be fully configured for the desired HID device.  Code will 
need to be written at the application level that builds the report defined by the report descriptor.   

 

 

9.4 Accessing the HID-Traditional Interface from the Application 

The API provides functions for sending/receiving HID reports:  USBHID_sendReport() and 
USBHID_receiveReport().  USBHID_sendReport() passes in a buffer (up to 64 bytes) 
containing, byte for byte, the report to be sent to the host the next time the host polls for a report.  
It is up to the application to format these 64 bytes in the exact same way they were defined by 
the report descriptor.   

Similarly, USBHID_receiveReport() receives a buffer (up to 64 bytes) that is formatted in the 
manner described by the report descriptor.  It can be called in response to a 
USBHID_handleDataReceived() event, or it can be polled at the polling interval that was chosen 
when generating descriptors.c with the Descriptor Tool.   

(Note that although reports themselves may be of any size up to 64 bytes (defined by 
USBHID_REPORT_LENGTH in descriptors.h), the actual USB packet size 
(MAX_PACKET_SIZE in descriptors.h) currently must be 64 bytes.  Usually there isn’t a 
downside to this, other than using up slightly more bandwidth than truly needed.)   

The report descriptor might define multiple reports, defined by “report ID” fields.  The application 
can therefore send/receive multiple reports by setting the correct report ID value prior to calling 
USBHID_sendReport(), or can separate reports once received with USBHID_receiveReport() by 
reading the report ID field.   

All bytes described by the report descrirptor are the responsibility of the application; the API 
does not change them.   

Currently the API is restricted to use 64-byte packets.  A report can be defined that is less than 
this, but the packet size on the bus will still be 64 bytes.   

9.5 Support for Boot Protocol 

Most USB devices will run with the support of some USB-aware operating system. The 
operating system can afford this level of complexity. In most systems, the ROM-based boot 
system cannot. 
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However, the ROM-based boot system usually requires some keyboard support to allow for 
system configuration, debugging, and other functions. Examples include the BIOS in PC-AT 
systems, and IEEE 1275 boot firmware in workstations. PCAT systems running DOS have an 
additional problem, in that the BIOS must provide full keyboard support for DOS legacy 
applications required for system setup. 

It is therefore necessary for the system to take keyboard input before the operating system 
loads. It soon follows that mouse support may also be necessary. To make this easier for the 
ROM developer, the HID specification defines a keyboard boot protocol and a mouse boot 
protocol. Since these protocols are predefined, the system can take the 8-byte packets and 
decode them directly. The boot system does not need to parse the Report descriptors to 
understand the packet. 

By default the HID protocol is Boot. The host sends a request to change from Boot protocol to 
standard Protocol. To support the Boot protocol, the USB Stack has a special event handler 
USBHID_handleBootProtocol(). This handler can be used to detect change in HID protocol and 
the application can switch reports if needed. 
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API Function Calls 

9.6 MSP430 USB Module Management 

These calls configure and manage the MSP430’s USB module.  They are shared among all the 
API stack interface types (CDC/HID/MSC).  They are all defined within the usb.c source file.   

Table 14. USB Module Management Call Summary 

Function Description 

BYTE USB_init() Initializes the USB hardware interface by configuring interrupts, 
power, and clocks, but does not activate the PLL or transceiver.   

BYTE USB_enable() Activates the USB module, PLL, and transceiver.   

BYTE USB_disable() Disable USB module, PLL, and transceiver.  

BYTE USB_setEnabledEvents() Enables/disables various USB events 

BYTE USB_getEnabledEvents() Returns the status of USB event enabling 

 

9.6.1 BYTE USB_init(void) 

Description   

Initializes the USB module by configuring power and clocks, and configures pins that are critical 
for USB.  This should be called very soon after the beginning of program execution.   

Note that this does not enable the USB module (that is, does not set USB_EN bit).  Rather, it 
prepares the USB module to detect the application of power to VBUS, after which the application 
may choose to enable the module and connect to USB.  Calling this function is necessary to 
achieve expected LPM3 current consumption into DVCC.   

Parameters 

Table 15. Parameters for USB_init() 

returns kUSB_succeed 

 

9.6.2 BYTE USB_enable(void) 

Description   

Enables the USB module, which includes activating the PLL and setting the USB_EN bit.  Power 
consumption increases as a result of this operation (see device datasheet for specifics).  This 
call should only be made after an earlier call to USB_init(), and prior to any other call except 
than USB_setEnabledEvents(), or USB_getEnabledEvents().  It is usually called just prior to 
attempting to connect with a host after a bus connection has already been detected.   
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Parameters  

Table 16. Parameters for USB_enable() 

Returns kUSB_succeed 

 

9.6.3 BYTE USB_disable(void) 

Description   

Disables the USB module and PLL.  If USB is not enabled when this call is made, no error is 
returned – the call simply exits with success.   

If a handleVbusOffEvent() occurs, or if USB_connectionState() begins returning 
ST_USB_DISCONNECTED, this function should be called (following a call to 
USB_disconnect()), in order to avoid unnecessary current draw.   

 Parameters 

Table 17. Parameters for USB_disable() 

Returns kUSB_succeed 

 

9.6.4 BYTE USB_setEnabledEvents(WORD events) 

Description   

Enables/disables various USB events.  Within the events byte, all bits with ‘1’ values will be 
enabled, and all bits with ‘0’ values will be disabled.  (There are no bit-wise operations).  By 
default (that is, prior to any call to this function), all events are disabled.   

The status of event enabling can be read with the USB_getEnabledEvents() function.  This call 
can be made at any time after a call to USB_init().   

USB_setEnabledEvents() can be thought of in a similar fashion to setting/clearing interrupt 
enable bits.  The only benefit in keeping an event disabled is to save the unnecessary execution 
cycles incurred from running an “empty” event handler.   

The mask constant kUSB_allUsbEvents is used to enable/disable all events pertaining to core  
USB functions; in other words, it enables all those with a kUSB_ prefix.   

See Sec. 10 for more information about events.  

Parameters 

Table 18. Parameters for USB_setEnabledEvents() 

WORD events  passed in kUSB_clockFaultEvent 
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kUSB_VbusOnEvent 

kUSB_VbusOffEvent 

kUSB_UsbResetEvent 

kUSB_UsbSuspendEvent 

kUSB_UsbResumeEvent 

kUSBCDC_dataReceivedEvent 

kUSBCDC_sendCompletedEvent 

kUSBCDC_receiveCompletedEvent 

kUSBHID_dataReceivedEvent 

kUSBHID_sendCompletedEvent 

kUSBHID_receiveCompletedEvent 

 

kUSB_allUsbEvents 

Returns kUSB_succeed 

9.6.5 WORD USB_getEnabledEvents(void) 

Description   

Returns which events are enabled and which are disabled.  The definition of events is the same 
as for USB_enableEvents() above.    

If the bit is set, the event is enabled.  If cleared, the event is disabled.  By default (that is, prior to 
calling USB_setEnabledEvents() ), all events are disabled.    

This call can be made at any time after a call to USB_init().   

Parameters   

Table 19. Parameters for USB_getEnabledEvents() 

Returns kUSB_clockFaultEvent 

kUSB_VbusOnEvent 

kUSB_VbusOffEvent 

kUSB_UsbResetEvent 

kUSB_UsbSuspendEvent 

kUSB_UsbResumeEvent 

kUSBCDC_dataReceivedEvent 

kUSBCDC_sendCompletedEvent 

kUSBCDC_receiveCompletedEvent 
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9.7 USB Connection Management 

These calls pertain to the USB connection with the host.  They are shared among all the API 
stack interface types (CDC/HID/MSC).  They are defined within the usb.c source file.   

Table 20. USB Connection Management Call Summary 

Function Description 

BYTE USB_reset() Resets the USB module and the internal state of the API.   

BYTE USB_connect() Instructs USB module to make itself available to the host for 
connection, by pulling the PUR pin high.   

BYTE USB_disconnect() Forces a disconnect from the host by pulling the PUR pin low 

BYTE USB_forceRemoteWakeup() Forces a remote wakeup of the USB host 

BYTE USB_connectionInfo() Returns low-level information about the USB connection 

BYTE USB_connectionState() Returns the state of the USB connection 

 

9.7.1 BYTE USB_reset(void) 

Description   

Resets the USB module and also the internal state of the API.  The interrupt register is cleared 
to make sure no interrupts are pending.  If the device had been enumerated, the enumeration is 
now lost.  All open send/receive operations are aborted.   

This function is most often called immediately before a call to USB_connect().  It should not be 
called prior to USB_enable().   

Parameters 

Table 21. Parameters for USB_reset () 

Returns kUSB_succeed 

 

9.7.2 BYTE USB_connect(void) 

Description   

Instructs the USB module to make itself available to the host for connection, by pulling the D+ 
signal high using the PUR pin.  This call should only be made after a call to USB_enable().   
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Parameters  

Table 22. Parameters for USB_connect() 

Returns kUSB_succeed 

 

9.7.3 BYTE USB_disconnect(void) 

Description   

Forces a logical disconnect from the USB host by pulling the PUR pin low, removing the pullup 
on the D+ signal.  The USB module and PLL remain enabled.  If the USB is not connected when 
this call is made, no error is returned – the call simply exits with success after ensuring PUR is 
low.   

 Parameters 

Table 23. Parameters for USB_disconnect() 

Returns kUSB_succeed 

 

9.7.4 BYTE USB_forceRemoteWakeup(void)  

Description   

Prompts a remote wakeup of the USB host.   The user must ensure that the USB descriptors 
had indicated remote wakeup capability (using the Descriptor Tool); otherwise the host will 
ignore the request.   

If the function returns kUSB_generalError, it means that the host did not grant the device the 
ability to perform a remote wakeup, when it enumerated the device.   

 Parameters 

Table 24. Parameters for USB_forceRemoteWakeup() 

Returns kUSB_succeed 

kUSB_generalError 

kUSB_notSuspended 
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9.7.5 BYTE USB_connectionState(void) 

Description   

Returns the state of the USB connection, according to the state diagram in Sec. 6.    

Parameters 

Table 25. Parameters for USB_connectionState() 

Returns  ST_USB_DISCONNECTED     

 ST_USB_CONNECTED_NO_ENUM  

 ST_ENUM_IN_PROGRESS 

 ST_ENUM_ACTIVE            

 ST_ENUM_SUSPENDED       

 ST_NOENUM_SUSPENDED   

 ST_ERROR 

 

9.7.6 BYTE USB_connectionInfo(void) 

Description   

Returns low-level status information about the USB connection.   

Because multiple flags can be returned, the possible values can be masked together – for 
example, kUSB_vbusPresent + kUSB_suspended.   

 Parameters 

Table 26. Parameters for USB_connectionInfo() 

Returns kUSB_vbusPresent 

kUSB_purHigh 

kUSB_suspended 

kUSB_NotSuspended 

kUSB_Enumerated 
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9.8 CDC Management and Data Handling 

These calls are specific to the Communications Device Class. They are defined within the 
usbcdc.c source file.   

Table 27. CDC Management and Data Handling Call Summary 

Function Description 

BYTE USBCDC_sendData() Begins a send operation to the USB host 

BYTE USBCDC_receiveData()  Begins a receive operation from the USB host 

BYTE USBCDC_bytesInUSBBuffer() Returns the number of bytes residing in the USB endpoint buffer awaiting a 
receive operation to move them to a user buffer.   

BYTE USBCDC_abortSend()  Aborts an active send operation  

BYTE USBCDC_abortReceive()  Aborts an active receive operation  

BYTE USBCDC_rejectData() Rejects payload data residing in the USB buffer, for which a receive 
operation has not yet been initiated 

BYTE USBCDC_intfStatus() Returns status information specific to a particular CDC interface 

void USBCDC_setCTS() Toggle state variable for CTS in USB Stack (Bridge only) 

 



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        78 

9.8.1 BYTE USBCDC_sendData(BYTE * data, WORD size, BYTE intfNum) 

Description    

Initiates sending of a user buffer over CDC interface intfNum, of size size and starting at address 
data.  If size is larger than the packet size, the function handles all packetization and buffer 
management.  size has no inherent upper limit (beyond being a 16-bit value).   

In most cases where a send operation is successfully started, the function will return 
kUSBCDC_sendStarted.  A send operation is said to be underway.  At some point, either before 
or after the function returns, the send operation will complete, barring any events that would 
preclude it.  (Even if the operation completes before the function returns, the return code will still 
be kUSBCDC_sendStarted.)   

If the bus is not connected when the function is called, the function returns 
kUSBCDC_busNotAvailable, and no operation is begun.  If size is 0, the function returns 
kUSBCDC_generalError.  If a previous send operation is already underway for this data 
interface, the function returns with kUSBCDC_intfBusyError.   

USB includes low-level mechanisms that ensure valid transmission of data.   

See Sec. 7.2 for a detailed discussion of send operations.   

Parameters 

Table 28. Parameters for USBCDC_sendData() 

BYTE* data passed in An array of data to be sent 

WORD size passed in Number of bytes to be sent, starting from address data.   

BYTE intfNum passed in Which data interface the data should be transmitted over 

Returns kUSBCDC_sendStarted:  a send operation was successfully started 

kUSBCDC_intfBusyError:  a previous send operation is underway 

kUSBCDC_busNotAvailable:  the bus is either suspended or disconnected 

kUSBCDC_generalError:  size was zero, or other error 

 

9.8.2 BYTE USBCDC_receiveData(BYTE * data, WORD size, BYTE intfNum) 

Description   

Receives size bytes over CDC interface intfNum into memory starting at address data.  size has 
no inherent upper limit (beyond being a 16-bit value).   

The function may return with kUSBCDC_receiveStarted, indicating that a receive operation is 
underway.  The operation completes when size bytes are received.  The application should 
ensure that the data memory buffer be available during the whole of the receive operation.   
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The function may also return with kUSBCDC_receiveCompleted.  This means that the receive 
operation was complete by the time the function returned.   

If the bus is not connected when the function is called, the function returns 
kUSBCDC_busNotAvailable, and no operation is begun.  If size is 0, the function returns 
kUSBCDC_generalError.  If a previous receive operation is already underway for this data 
interface, the function returns kUSBCDC_intfBusyError.   

USB includes low-level mechanisms that ensure valid transmission of data.   

See Sec. 7.2 for a detailed discussion of receive operations.   

Parameters 

Table 29. Parameters for USBCDC_receiveData() 

BYTE* data passed in An array to contain the data received.   

WORD size passed in Number of bytes to be received 

BYTE intfNum passed in Which data interface to receive from 

Returns kUSBCDC_receiveStarted:  A receive operation has been succesfully started.   

kUSBCDC_receiveCompleted:  The receive operation is already completed. 

kUSBCDC_intfBusyError:  a previous receive operation is underway 

kUSBCDC_busNotAvailable:  the bus is either suspended or disconnected 

kUSBCDC_generalError:  size was zero, or other error 

 

9.8.3 BYTE USBCDC_bytesInUSBBuffer(BYTE intfNum) 

Description   

Returns the number of bytes waiting in the USB endpoint buffer for intfNum.  A non-zero value 
generally means that no receive operation is open by which these bytes can be copied to a user 
buffer.  If the value is non-zero, the application should either open a receive operation so that 
the data can be moved out of the endpoint buffer, or the data should be rejected 
(USBCDC_rejectData()).   

Parameters 

Table 30. Parameters for USBCDC_bytesInUSBBuffer() 

BYTE intfNum passed in The data interface whose buffer is to be checked 

Returns The number of bytes waiting in this buffer 
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9.8.4 BYTE USBCDC_abortSend(WORD* size, BYTE intfNum) 

Description   

Aborts an active send operation on data interface intfNum.  Returns the number of bytes that 
were sent prior to the abort, in size.   

An application may choose to call this function if sending failed, due to factors such as: 

• a surprise removal of the bus 

• a USB suspend event 

• any send operation that extends longer than desired (perhaps due to no open COM port on 
the host.)     

Parameters 

Table 31. Parameters for USBCDC_abortSend() 

WORD* size passed out Number of bytes that were sent prior to the abort action.   

BYTE intfNum passed in The data interface for which the send should be aborted 

Returns kUSB_succeed 

 

9.8.5 BYTE USBCDC_abortReceive(WORD* size, BYTE intfNum)  

Description   

Aborts an active receive operation on CDC interface intfNum.  Returns the number of bytes that 
were received and transferred to the data location established for this receive operation.  The 
data moved to the buffer up to that time remains valid.   

An application may choose to call this function if it decides it no longer wants to receive data 
from the USB host.  It should be noted that if a continuous stream of data is being received from 
the host, aborting the operation is akin to pressing a “pause” button; the host will be NAK’ed until 
another receive operation is opened.   

See Sec. 7.2 for a detailed discussion of receive operations.   

Parameters 

Table 32. Parameters for USBCDC_abortReceive() 

WORD* size passed out Number of bytes that were received and are waiting at the assigned 
address.   

BYTE intfNum passed in The data interface for which the send should be aborted 

Returns kUSB_succeed 
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9.8.6 BYTE USBCDC_rejectData(BYTE intfNum) 

Description   

This function rejects data that has been received from the host, for interface inftNum, that does 
not have an active receive operation underway.  It resides in the USB endpoint buffer and blocks 
further data until a receive operation is opened, or until rejected.  When this function is called, 
the buffer for this interface is purged, and the data lost.  This frees the USB path to resume 
communication.   

See Sec. 7.2 for a detailed discussion of receive operations.   

Parameters 

Table 33. Parameters for USBCDC_rejectData() 

Returns kUSB_succeed 

 

9.8.7 BYTE USBCDC_intfStatus(BYTE intfNum, WORD* bytesSent, WORD* 
bytesReceived) 

Description   

Indicates the status of the CDC interface intfNum.  If a send operation is active for this interface, 
the function also returns the number of bytes that have been transmitted to the host.  If a receive 
operation is active for this interface, the function also returns the number of bytes that have been 
received from the host and are waiting at the assigned address.   

Because multiple flags can be returned, the possible values can be masked together – for 
example, kUSBCDC_waitingForSend + kUSBCDC_dataWaiting.   



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        82 

 Parameters 

Table 34. Parameters for USBCDC_intfStatus() 

BYTE intfNum passed in Interface number for which status is being retrieved.   

WORD* bytesSent passed out If a send operation is underway, the number of bytes that have been 
transferred to the host is returned in this location.  If no send operation is 
underway, this returns zero.   

WORD* bytesReceived passed out If a receive operation is underway, the number of bytes that have been 
transferred to the assigned memory location is returned in this location.  If no 
receive operation is underway, this returns zero.   

Returns kUSBCDC_waitingForSend:  Indicates that a send operation is open on 
this interface 

kUSBCDC_waitingForReceive:  Indicates that a receive operation is 
open on this interface 

kUSBCDC_dataWaiting:  Indicates that data has been received from the 
host for this interface, waiting in the USB receive buffers, lacking an open 
receive operation to accept it.   

kUSBCDC_busNotAvailable:  Indicates that the bus is either suspended 
or disconnected.  Any operations that had previously been underway are 
now aborted.   

 

9.8.8 USBCDC_setCTS(BYTE state) 

Description   

This API is available only in the case of a Bridge application. See C7 example for more details. 

Parameters 

Table 35. Parameters for USBCDC_setCTS() 

BYTE state passed in State of CTS – an external input. 

Returns void 
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9.9 PHDC Management and Data Handling 

These calls are specific to the Personal Healthcare Device Class. They are defined within the 
usbPHDC.c source file.  Since he PHDC APIs work the same as CDC APIs, please refer to 
Section 9.8 for detailed description and parameters. 

Table 36. PHDC Management and Data Handling Call Summary 

Function Description 

BYTE USBPHDC_sendData() Begins a send operation to the USB host 

BYTE USBPHDC_receiveData()  Begins a receive operation from the USB host 

BYTE USBPHDC_bytesInUSBBuffer() Returns the number of bytes residing in the USB endpoint buffer awaiting a 
receive operation to move them to a user buffer.   

BYTE USBPHDC_abortSend()  Aborts an active send operation  

BYTE USBPHDC_abortReceive()  Aborts an active receive operation  

BYTE USBPHDC_rejectData() Rejects payload data residing in the USB buffer, for which a receive 
operation has not yet been initiated 

BYTE USBPHDC_intfStatus() Returns status information specific to a particular PHDC interface 

9.10 HID-Datapipe:  Management and Data Handling 

These calls are specific to HID interfaces. They are used to implement a datapipe, as opposed 
to a traditional HID device, as discussed in Sec. 4.3.   

These calls will only work properly using the default report format output by the Descriptor Tool.  
They should not be mixed with the traditional HID calls on a given interface.  The exceptions to 
this are USBHID_intfStatus() and USBHID_rejectData().   

They are defined within the HID source files listed in Sec. 4.1.5.    

Table 37. HID-Datapipe Management and Data Handling Call Summary 

Function Description 

BYTE USBHID_sendData() Begins a send operation to the USB host 

BYTE USBHID_receiveData()  Begins a receive operation from the USB host 

BYTE USBHID_bytesInUSBBuffer() Returns the number of bytes from the host waiting in the USB endpoint 
buffer 

BYTE USBHID_abortSend()  Aborts an active send operation  

BYTE USBHID_abortReceive()  Aborts an active receive operation  

BYTE USBHID_rejectData() Rejects payload data residing in the USB buffer, for which a receive 
operation has not yet been initiated 

BYTE USBHID_intfStatus() Returns status information specific to a particular HID interface 
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9.10.1 BYTE USBHID_sendData(BYTE * data, WORD size, BYTE intfNum) 

Description    

Initiates sending of a user buffer over HID interface intfNum, of size size and starting at address 
data.  If size is larger than the packet size, the function handles all packetization and buffer 
management.  size has no inherent upper limit (beyond being a 16-bit value).   

In most cases where a send operation is successfully started, the function will return 
kUSBHID_sendStarted.  A send operation is said to be underway.  At some point, either before 
or after the function returns, the send operation will complete, barring any events that would 
preclude it.  (Even if the operation completes before the function returns, the return code will still 
be kUSBHID_sendStarted.)   

If the bus is not connected when the function is called, the function returns 
kUSBHID_busNotAvailable, and no operation is begun.  If size is 0, the function returns 
kUSBHID_generalError.  If a previous send operation is already underway for this data interface, 
the function returns with kUSBHID_intfBusyError.   

USB includes low-level mechanisms that ensure valid transmission of data.   

See Sec. 7.2 for a detailed discussion of send operations.   

Parameters 

Table 38. Parameters for USBHID_sendData() 

BYTE* data passed in An array of data to be sent 

WORD size passed in Number of bytes to be sent, starting from address data.   

BYTE intfNum passed in Which data interface the data should be transmitted over 

Returns kUSBHID_sendStarted:  a send operation was successfully started 

kUSBHID_intfBusyError:  a previous send operation is underway 

kUSBHID_busNotAvailable:  the bus is either suspended or disconnected 

kUSBHID_generalError:  size was zero, or other error 

 

9.10.2 BYTE USBHID_receiveData(BYTE * data, WORD size, BYTE intfNum) 

Description   

Receives size bytes over HID interface intfNum into memory starting at address data.  size has 
no inherent upper limit (beyond being a 16-bit value).   

The function may return with kUSBHID_receiveStarted, indicating that a receive operation is 
underway.  The operation completes when size bytes are received.  The application should 
ensure that the data memory buffer be available during the whole of the receive operation.   

The function may also return with kUSBHID_receiveCompleted.  This means that the receive 
operation was complete by the time the function returned.   
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If the bus is not connected when the function is called, the function returns 
kUSBHID_busNotAvailable, and no operation is begun.  If size is 0, the function returns 
kUSBHID_generalError.  If a previous receive operation is already underway for this data 
interface, the function returns kUSBHID_intfBusyError.   

USB includes low-level mechanisms that ensure valid transmission of data.   

See Sec. 7.2 for a detailed discussion of receive operations.   

Parameters 

Table 39. Parameters for USBHID_receiveData() 

BYTE* data passed in An array to contain the data received.   

WORD size passed in Number of bytes to be received 

BYTE intfNum passed in Which data interface to receive from 

Returns kUSBHID_receiveStarted:  A receive operation has been successfully started.   

kUSBHID_receiveCompleted:  The receive operation is already completed. 

kUSBHID_intfBusyError:  a previous receive operation is underway 

kUSBHID_ busNotAvailable:  the bus is either suspended or disconnected 

kUSBHID_generalError:  size was zero, or other error 

 

9.10.3 BYTE USBHID_bytesInUSBBuffer(BYTE intfNum) 

Description   

Returns the number of bytes waiting in the USB endpoint buffer for intfNum.  A non-zero value 
generally means that no receive operation is open by which these bytes can be copied to a user 
buffer.  If the value is non-zero, the application should either open a receive operation so that 
the data can be moved out of the endpoint buffer, or the data should be rejected 
(USBHID_rejectData()).   

Parameters 

Table 40. Parameters for USBHID_bytesInUSBBuffer() 

BYTE intfNum passed in The data interface whose buffer is to be checked 

Returns The number of bytes waiting in this buffer 

 

9.10.4 BYTE USBHID_abortSend(WORD* size, BYTE intfNum) 

Description   

Aborts an active send operation on data interface intfNum.  Returns the number of bytes that 
were sent prior to the abort, in size.   
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An application may choose to call this function if sending failed, due to factors such as: 

• a surprise removal of the bus 

• a USB suspend event 

• any send operation that extends longer than desired  

Parameters 

Table 41. Parameters for USBHID_abortSend() 

WORD* size passed out Number of bytes that were sent prior to the abort action.   

BYTE intfNum passed in The data interface for which the send should be aborted 

Returns kUSB_succeed 

 

9.10.5 BYTE USBHID_abortReceive(WORD* size, BYTE intfNum)  

Description   

Aborts an active receive operation on HID interface intfNum.  Returns the number of bytes that 
were received and transferred to the data location established for this receive operation.  The 
data moved to the buffer up to that time remains valid.   

An application may choose to call this function if it decides it no longer wants to receive data 
from the USB host.  It should be noted that if a continuous stream of data is being received from 
the host, aborting the operation is akin to pressing a “pause” button; the host will be NAK’ed until 
another receive operation is opened.   

See Sec. 7.2 for a detailed discussion of receive operations.   

Parameters 

Table 42. Parameters for USBHID_abortReceive() 

WORD* size  passed out Number of bytes that were received and are waiting at the assigned address.   

BYTE intfNum  passed in The data interface for which the receive should be aborted 

Returns kUSB_succeed 
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9.10.6 BYTE USBHID_rejectData(BYTE intfNum) 

Description   

This function rejects data that has been received from the host, for interface intfNum, that does 
not have an active receive operation underway.  It resides in the USB endpoint buffer and blocks 
further data until a receive operation is opened, or until rejected.  When this function is called, 
the buffer for this interface is purged, and the data lost.  This frees the USB path to resume 
communication.   

See Sec. 7.2  for a detailed discussion of receive operations.   

Parameters 

Table 43. Parameters for USBHID_rejectData() 

Returns kUSB_succeed  

 

9.10.7 BYTE USBHID_intfStatus(BYTE intfNum, WORD* bytesSent, WORD* 
bytesReceived) 

Description   

Indicates the status of the HID interface intfNum.  If a send operation is active for this interface, 
the function also returns the number of bytes that have been transmitted to the host.  If a receive 
operation is active for this interface, the function also returns the number of bytes that have been 
received from the host and are waiting at the assigned address.   

Because multiple flags can be returned, the possible values can be masked together – for 
example, kUSBHID_waitingForSend + kUSBHID_dataWaiting.   

 Parameters 

Table 44. Parameters for USBHID_intfStatus() 

BYTE intfNum passed in Interface number for which status is being retrieved.   

WORD* bytesSent passed out If a send operation is underway, the number of bytes that have been 
transferred to the host is returned in this location.  If no send operation is 
underway, this returns zero.   

WORD* bytesReceived passed out If a receive operation is underway, the number of bytes that have been 
transferred to the assigned memory location is returned in this location.  If no 
receive operation is underway, this returns zero.   

Returns kUSBHID_waitingForSend:  Indicates that a send operation is open on 
this interface 

kUSBHID_waitingForReceive:  Indicates that a receive operation is 
open on this interface 

kUSBHID_dataWaiting:  Indicates that data has been received from the 
host for this interface, waiting in the USB receive buffers, lacking an open 
receive operation to accept it.   
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kUSBHID_busNotAvailable:  Indicates that the bus is either suspended 
or disconnected.  Any operations that had previously been underway are 
now aborted.   
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9.11 HID-Traditional:  Management and Data Handling 

These calls are specific to HID interfaces. They are used to implement a traditional HID device, 
as opposed to a datapipe, as discussed in Sec. 4.3.   

These calls should not be mixed with HID-Datapipe calls on a given interface.  The exceptions to 
this are USBHID_intfStatus() and USBHID_rejectData(), which are defined in the previous 
section.   

They are defined within the HID source files listed in Sec. 4.1.5.    

Table 45. HID-Traditional Management and Data Handling Call Summary 

Function Description 

BYTE USBHID_sendReport() Sends a report to the USB host 

BYTE USBHID_receiveReport() Receives a report from the USB host 

 

9.11.1 BYTE USBHID_sendReport(BYTE * reportData, BYTE intfNum) 

Sends a pre-built report reportData to the host, on interface intfNum.  The report must be 
organized to reflect the format defined by the report descriptor in descriptors.c.    

When the function returns kUSBHID_sendComplete, the data has been written to the USB 
transmit buffers, and will be transferred to the host in the next polling frame. If the function 
returns kUSBHID_busNotAvailable, then the bus has either been disconnected or the device is 
suspended, allowing no reports to be sent.  If the function returns kUSBHID_intfBusyError, it 
means the USB buffer for the interface has data in it, suggesting that the host has not yet 
fetched the previously-loaded report.   

Parameters 

Table 46. Parameters for USBHID_sendReport() 

BYTE* reportData passed in An array containing the report 

BYTE intfNum passed in Which HID interface the data should be transmitted over 

Returns kUSBHID_sendComplete 

kUSBHID_busNotAvailable 

kUSBHID_intfBusyError 
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9.11.2 BYTE USBHID_receiveReport(BYTE * reportData, BYTE intfNum) 

Receives a report from the host into reportData, on interface intfNum.  It is expected that the 
host will organize the report in the format defined by the report descriptor in descriptors.c.   

When the function returns kUSBHID_receiveCompleted, the data has been successfully copied 
from the USB receive buffers into reportData.  If the function returns kUSBHID_busNotAvailable, 
then the bus has either been disconnected or the device is suspended, allowing no reports to be 
sent.  If the function returns kUSBHID_generalError, it means the call failed for unspecified 
reasons.   

The call is intended to be called only when it is known that a report is in the USB buffer.  This 
means it is best called in response to the API calling USBHID_handleDataReceived(), which 
indicates that a report has been received for interface intfNum.   

Parameters 

Table 47. Parameters for USBHID_receiveReport() 

BYTE* reportData passed in An array containing the report 

BYTE intfNum passed in The HID interface over which the data is to be received 

Returns kUSBHID_busNotAvailable 

kUSBHID_receiveCompleted 

kUSBHID_generalError 
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9.12 MSC:  Management and Data Handling 

These calls are specific to MSC interfaces.  They are defined within the MSC source files listed 
in Sec. 4.1.5.      

Table 48. MSC Management and Data Handling Call Summary 

Function Description 

BYTE USBMSC_poll() Initiates the handling of the current SCSI command for this MSC interface.   

BYTE USBMSC_registerBufInfo()  Registers with the API which buffers it should use for READ/WRITE command 
handling.   

BYTE USBMSC_fetchInfoStruct()  Returns the pointer(s) to the API’s instance(s) of USBMSC_RWBuf_Info  

BYTE USBMSC_bufferProcessed()  Returns a buffer back to the API after processing it, in the course of SCSI READ 
or WRITE handling.   

BYTE USBMSC_updateMediaInfo() Posts an update to the host about the media being used for a LUN with 
removable media.   

 

9.12.1 BYTE USBMSC_poll() 

Description   

Checks to see if a SCSI command has been received.  If so, it handles it.  If not, it returns 
having taken no action.   

The return values of this function are intended to be used with entry of low-power modes.  If the 
function returns kUSBMSC_okToSleep, then no further application action is required; that is, 
either no SCSI command was received; one was received but immediately handled; or one was 
received but the handling will be completed in the background by the API as it automatically 
services USB interrupts.   

If instead the function returns kUSBMSC_processBuffer, then the API is currently servicing a 
SCSI READ or WRITE command, and the API requires the application to process a buffer.  (See 
Sec. 8.3.6 for a discussion of buffer processing.)   

Note that even if the function returns these values, the values could potentially be outdated by 
the time the application evaluates them.  For this reason, it’s important to disable interrupts prior 
to calling this function.  See Sec. 8.3.5 for more information.   

Parameters 

Table 49. Parameters for USBMSC_poll() 

Returns kUSBMSC_okToSleep 

kUSBMSC_processBuffer 

9.12.2  
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9.12.3 BYTE USBMSC_registerBufInfo(BYTE lun, BYTE* xBufAddr, BYTE* 
yBufAddr, WORD size)  

Description   

Gives the API a buffer to use for READ/WRITE data transfer.  size indicates the size of the 
buffer, in bytes.   

Note:  Currently, only single-buffering is supported, so yBufAddr should be set to null.   

If the application intends to allocate the buffer statically, then this function needs only to be 
called once, prior to any READ/WRITE commands being received from the host.  Most likely this 
would happen during the application’s initialization functions.   

NOTE: This API has to be called after the call to USBMSC_updateMediaInfo() at the beginning 
of execution. 

However, this function optionally enables dynamic buffer management.  That is, it can activate 
and de-activate the buffer, by alternately assigning a null and valid address in xBufAddr.  This is 
useful because the buffer uses a significant portion of the RAM resources (typically 512 bytes).  
This memory is not needed when USB is not attached or suspended.   

If doing this, it’s important that the application re-activate the buffer when USB becomes active 
again, by issuing another call to the function, this time using valid buffer information.  If the API 
needs the buffer and doesn’t have it, it will begin failing READ/WRITE commands from the host.  
The re-activation can take place within handleVbusOffEvent().    

Size must be a multiple of a block size – for FAT, a block size is typically 512 bytes.  Thus 
values of 512, 1024, 1536, etc. are valid.  Non-multiples are not valid.   

The function returns kUSB_succeed every time.  It is up to the application to ensure that the 
buffers are valid.     

 Parameters 

Table 50. Parameters for USBMSC_registerBufInfo() 

BYTE  lun Lun number 

BYTE* xBufAddr The address of an X-buffer.  If null, then both buffers are de-activated.   

BYTE * yBufAddr The address of an Y-buffer.  (Double-buffering is not supported in this 
version of the API.)    

WORD size The size, in bytes, of the buffers.   

Returns kUSB_succeed 

9.12.4  
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9.12.5 USBMSC_Rwbuf_Info* USBMSC_fetchInfoStruct(VOID) 

Description   

Returns a pointer to the USBMSC_Rwbuf_Info structure instance maintained within the API.  
See Sec. 8.3.6 for information on using this structure.   

This function should be called prior to USB enumeration; that is, prior to calling USB_connect().     

 Parameters 

Table 51. Parameters for USBMSC_fetchInfoStruct() 

Returns A pointer to an application-allocated instance of USBMSC_RWBuf_Info, 
which will be used to exchange information related to buffer requests from 
the API to the application.   

 

9.12.6 BYTE USBMSC_bufferProcessed(USBMSC_Rwbuf_Info * RWBufInfo) 

Description    

This function should be called by the application after it has processed a buffer request.  It 
indicates to the API that the application has fulfilled the request.   

Prior to calling this function, the application needs to write a return code to rwInfo.returnCode.  
This code should reflect the result of the operation.  The value may come from the file system 
software, depending on the application.  See Sec. 8.3.6 for a list of valid return codes.   

Parameters 

Table 52. Parameters for USBMSC_bufferProcessed() 

USBMSC_Rwbuf_Info * 
RWBufInfo 

Pass the value received from USBMSC_fetchInfoStruct() 

Returns kUSBMSC_succeed 

9.12.7  BYTE USBMSC_updateMediaInfo(BYTE lun, USBMSC_mediaInfoStr * info) 

Description   

Informs the API of the current state of the media on LUN lun.  It does this using an instance info 
of the API-defined structure USBMSC_mediaInfoStr.  The API uses the information in the most 
recent call to this function in automatically handling certain requests from the host.   

In LUNs that are marked as not removable in USBMSC_CONFIG, this function should be called 
once at the beginning of execution, prior to attachment to the USB host.  It then no longer needs 
to be called.   
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In LUNS that are marked as removable, the media information is dynamic.  The function should 
still be called at the beginning of execution to indicate the initial state of the media, and then it 
should also be called every time the media changes.   

See Sec. 8.3.4 for more about informing the API of media changes.   

 

 Parameters 

Table 53. Parameters for USBMSC_updateMediaInfo() 

BYTE lun The logical unit (LUN) on which the operation is taking place.  Zero-based.  
(This version of the API only supports a single LUN.)   

USBMSC_mediaInfoStr* info A structure that communicates the most recent information about the 
medium.   

Returns kUSB_succeed 

 

Table 54. USBMSC_mediaInfoStr 

Type Name Description 

BYTE mediaPresent Indicates that the medium is present (non-zero) or not present (zero).    

BYTE mediaChanged If non-zero, indicates that the medium is not the same one that was present the 
last time this function was called.  (This value is only valid if mediaPresent is 
non-zero.) 

BYTE writeProtected Indicates that the medium is write-protected (non-zero) or not write-protected 
(zero).  (This value is only valid if mediaPresent is non-zero.) 

BYTE[4] lastBlockLba LBA of the last block in the media.  (This value is only valid if mediaPresent is 
non-zero.) 

BYTE[4] bytesPerBlock Bytes per block.  (This value is only valid if mediaPresent is non-zero.) 
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10 Event-Handling 

The USB interrupt service routine (ISR) is contained within the API, and is not intended to be 
modified.   Rather, the API provides events the application needs to handle.  Most of the defined 
events are called from within the ISR, in response to various interrupt types.   

As with ordinary ISR handlers, the event handlers provide a way to keep the CPU awake after 
the interrupt service routine has completed.  This is a common technique in MSP430 
programming.   

The handler functions are located in USB_eventhandling.c.  This file is considered user space, 
and the software designer has complete freedom to modify these handlers.   

10.1 The Relationship between Interrupts and Events 

The event handler functions can be thought of as ISR handlers.  The software designer can 
write code into these functions without editing the ISR directly.  Using the function 
USB_setEnabledEvents() function can be thought of similarly to setting/clearing interrupt enable 
bits.   

As part of the USB ISR, general interrupts are disabled during the event handler, and therefore 
any precautions about good ISR coding apply to event handlers as well.  For example, it’s 
recommended the handler be kept as short as possible, so that the ISR can finish quickly; this 
avoid delays in handling other interrupts.  (If more functionality is required, see Sec. 10.2 for 
another means of handling).  The event handler should not enable general interrupts, since it 
opens the door to nested interrupts, which could cause a stack overflow.   

10.2 Waking from Event Handlers 

MSP430 coding usually makes frequent use of its low-power modes.  The program spends most 
of its time in a low-power mode, experiences an interrupt, and then goes back to sleep.  
Sometimes the interrupt handling requires that the CPU stay awake after the ISR completes; this 
can be accomplished with an intrinsic function such as:  

 

__bic_SR_register_on_exit(LPM3_bits); 

Upon exiting the ISR in this case, the CPU will not return to its low-power mode, but rather will 
stay awake and resume executing in main() from the point the low-power mode had been 
entered.  (This technique is well-documented in other MSP430 material, including the application 
note MSP430 Software Coding Techniques (slaa294).)   

Since events are generally extensions of the USB ISR, they often have a similar need to keep 
the CPU active.  Instead of issuing this intrinsic function, the event handlers return a TRUE or 
FALSE value to indicate whether the CPU should remain active.  Returning a value of FALSE 
causes the CPU to go back to sleep after the ISR, while a TRUE value causes the CPU to stay 
awake.    
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10.3 Calling API Functions from Event Handlers 

Generally speaking, it isn’t recommended to send data from within an event handler.  The main 
problem is that event handlers occur during an ISR context, and data can’t be sent during an 
ISR.  If data is written to be sent from within the event handler, it needs to call 
USBCDC_intfStatus() or USBHID_intfStatus(), and it may find that the interface is busy.  If it is in 
fact busy, it won’t become available until the event handler exits.  This means a proper sending 
construct needs to assume it may need to send after the ISR completes – in other words, in 
main().   

Since a proper application needs to put sending code in main() anyway, it may as well be 
designed this way from the beginning rather than having some in the event handler and some in 
main().  Therefore, if data transmission is to be triggered from an event, a flag can be set from 
within the event handler, and the handler can return TRUE, as described in Sec. 10.2.     

All other API calls can be made from within event handlers.   

10.4 Using USB_setEnabledEvents() 

The event handlers only run in response to an event if their respective event is enabled.  Calling 
the USB_setEnabledEvents() function is analogous to setting/clearing interrupt enable (IE) bits.  
By default, they are all disabled.  Most applications need only call this function once, at the 
beginning of the program, simply to enable all events that will be needed.   

The only reason to keep an event disabled is to avoid wasting execution cycles by calling 
“empty” event handlers.  In some cases these wasted cycles could affect bandwidth.   
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10.5 Event Handler Functions 

A summary of the event handler functions is shown in the table below.   

Table 55. Event Handler Summary 

Event Handler functions Interrupt source Event Description 

BYTE USB_handleClockEvent() USBVECINT_PLL_RANGE USB PLL failed (out of range) 

BYTE USB_handleVbusOnEvent() USBVECINT_PWR_VBUSOn Indicates that a valid voltage is now 
available on the VBUS pin (i.e., the bus 
is now attached) 

BYTE USB_handleVbusOffEvent() USBVECINT_PWR_VBUSOff Indicates that a valid voltage is no longer 
available on the VBUS pin (i.e., the bus 
has been removed) 

BYTE USB_handleResetEvent() USBVECINT_RSTR Indicates that the USB host has initiated 
a port reset.  This has a similar effect to 
calling USB_reset(), including that any 
enumeration will be lost.   

BYTE USB_handleSuspendEvent() USBVECINT_SUSR Indicates that the USB host has put this 
device into suspend mode.   

BYTE USB_handleResumeEvent() USBVECINT_RESR Indicates that the USB host has resumed 
this device from suspend mode.   

BYTE USB_handleEnumCompleteEvent() Interrupt for control endpoint 0 Indicates that the USB device has just 
become enumerated.   

BYTE USBCDC_handleDataReceived() Interrupt for the output 
endpoint associated with this 
data interface 

Indicates that data has been received for 
CDC interface intfNum, for which no data 
receive operation is underway 

BYTE USBCDC_handleSendCompleted() Interrupt for the input endpoint 
associated with this data 
interface 

Indicates that a send operation on CDC 
interface intfNum has just been 
completed 

BYTE USBCDC_handleReceiveCompleted() Interrupt for the output 
endpoint associated with this 
data interface 

Indicates that a receive operation on 
CDC interface intfNum  has just been 
completed 

BYTE USBCDC_handleSetLineCoding() Interrupt for control endpoint 0 This event indicates that the host has 
requested a change in baud rate settings 
for  the CDC interface 

BYTE USBCDC_handleSetControlLineState() Interrupt for control endpoint 0 This event indicates that the host has 
requested a change in RTS value. 

BYTE USBHID_handleDataReceived() Interrupt for the output 
endpoint associated with this 
data interface 

Indicates that data has been received for 
HID interface intfNum, for which no data 
receive operation is underway 

BYTE USBHID_handleSendCompleted() Interrupt for the input endpoint 
associated with this data 
interface 

Indicates that a send operation on HID 
interface intfNum has just been 
completed 

BYTE USBHID_handleReceiveCompleted() Interrupt for the output 
endpoint associated with this 
data interface 

Indicates that a receive operation on HID 
interface intfNum  has just been 
completed 

BYTE USBHID_handleBootProtocol() Interrupt for control endpoint 0 This event indicates that the host has 
requested a change in HID protocol.  

BYTE USBMCS_handleBufferEvent() Interrupt for the input/output 
endpoint associated with this 
data interface 

Indicates that the API needs for the 
application to process a buffer.   
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10.5.1 BYTE USB_handleClockEvent(void) 

Description   

This event signals that the output of the USB PLL has failed.  This event may have occurred 
because XT2, the source of the PLL’s reference clock, has failed or is unreliable.   

If this event occurs, the USB connection will likely be lost.  It is best to handle it by calling 
USB_disconnect() and attempting a re-connection.   

10.5.2 BYTE USB_handleVbusOnEvent(void) 

Description   

This event indicates that a valid voltage has been applied to the VBUS pin; that is, the voltage 
on VBUS has transitioned from low to high.   

This usually means the device has been attached to an active USB host.  It is recommended to 
attempt a USB connection from this handler, as described in Sec. 6.3.   

10.5.3 BYTE USB_handleVbusOffEvent(void) 

Description   

This event indicates that a valid voltage has just been removed from the VBUS pin.  That is, the 
voltage on VBUS has transitioned from high to low.   

This generally means the device has been removed from an active USB host.  It might also 
mean the device is still physically attached to the host, but the host went into a standby mode; or 
it was attached to a powered hub but the host upstream from that hub became inactive.  The 
API automatically responds to a VBUS-off event by powering down the USB module and PLL, 
which is the equivalent of calling USB_disable().  It then calls this handling function, if enabled.  

10.5.4 BYTE USB_handleResetEvent(void) 

Description   

This event indicates that the USB host has issued a reset of this USB device.  The API handles 
this automatically, and no action is required by the application to maintain USB operation.  After 
handling the reset, the API calls this handling function, if enabled.  In most cases there is no 
significant reason for the application to respond to bus resets.   
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10.5.5 BYTE USB_handleSuspendEvent(void) 

Description   

This event indicates that the USB host has suspended this USB device.  It’s important that a 
bus-powered, suspended USB device limit its consumption of power from VBUS during this 
time.  The API automatically shuts down USB-related circuitry inside the MSP430’s USB 
module.  However, the application may need to shut down other circuitry drawing from VBUS.  
This handler is a good place to do this.   

See Sec.11.1.3 for a complete discussion about handling suspend.     

10.5.6 BYTE USB_handleResumeEvent(void) 

Description   

This event indicates that the USB host has resumed this USB device from suspend mode.  If the 
device is bus-powered, it is no longer restricted in the amount of power it can draw from VBUS.  
The API automatically re-enables any circuitry in the MSP430’s USB module that was disabled 
during suspend.   The application can use this handler to re-enable other circuitry as well.      

10.5.7 BYTE USB_handleEnumCompleteEvent() 

Description   

This event indicates that the device has just become enumerated.  This corresponds with a state 
change to ST_ENUM_ACTIVE.   

10.5.8 BYTE USBCDC_handleDataReceived(BYTE intfNum) 

Description   

This event indicates that data has been received for CDC interface intfNum with no receive 
operation underway.  Effectively, the API doesn’t know what to do with this data and is asking for 
instructions.  The application can respond by either initiating a receive operation or rejecting the 
data.  Until one of these is performed, USB data reception cannot continue; any packets 
received from the USB host will be NAK’ed.   

Therefore, this event should be handled quickly.  A receive operation cannot be started directly 
out of this event, since USBCDC_receiveData() cannot be called from the event handlers.  
However, the handler can set a flag for main() to begin the receive operation.  After this function 
exits, a call to USBCDC_intfStatus() for this CDC interface will return kUSBDataWaiting.   

If the application is written so that a receive operation is always begun prior to data arriving from 
the host, this event will never occur.  The software designer generally has a choice of whether to 
use this event as part of code flow (initiating receive operations after data is received), or to 
always keep a receive operation open in case data arrives.  (See Sec. 11 for more discussion.)   
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10.5.9 BYTE USBCDC_handleSendCompleted(BYTE intfNum) 

Description   

This event indicates that a send operation on CDC interface intfNum has just been completed.   

In applications sending a series of data blocks, the designer may wish to use this event to trigger 
another send operation.  This cannot be done directly out of this event, since 
USBCDC_sendData() cannot be called from the event handlers.  However, the handler can set 
a flag for main() to begin the operation.   

10.5.10 BYTE USBCDC_handleReceiveCompleted(BYTE intfNum) 

Description   

This event indicates that a receive operation on CDC interface intfNum has just been completed, 
and the data is therefore available in the user buffer assigned when the call was made to 
USBCDC_receiveData().  If this event occurs, it means that the entire buffer is full, according to 
the size value that was requested.   

The designer may wish to use this event to trigger another receive operation.  This cannot be 
done directly out of this event, since USBCDC_receiveData() cannot be called from the event 
handlers.  However, the handler can set a flag for main() to begin the operation.   

 

10.5.11 BYTE USBCDC_handleSetLineCoding (BYTE intfNum, ULONG lBaudrate); 

 

Description 

 This event indicates that a SetLineCoding request has been received from the host and new 
values for baud rate are available. 

The application can use the new baud rate value to re-configure the Uart in the case of a usb to 
uart bridge application. See C7 Example for details. 

 

10.5.12 BYTE USBCDC_handleSetControlLineState(BYTE intfNum, BYTE 
lineState); 

Description 

 This event indicates that a SetControlLineState request has been received from the host and 
new values for RTS are available. 

The application can use the new RTS value to flow off the uart. See C7 Example for details. 
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10.5.13 BYTE USBHID_handleDataReceived(BYTE intfNum) 

Description   

This event applies to HID-Datapipe only, as opposed to HID-Traditional.  It indicates that data 
has been received for HID interface intfNum with no receive operation underway.  Effectively, 
the API doesn’t know what to do with this data and is asking for instructions.  The application 
can respond by either initiating a receive operation or rejecting the data.  Until one of these is 
performed, USB data reception cannot continue; any packets received from the USB host will be 
NAK’ed.   

Therefore, this event should be handled quickly.  A receive operation cannot be started directly 
out of this event, since USBHID_receiveData() cannot be called from the event handlers.  
However, the handler can set a flag for main() to begin the receive operation.  After this function 
exits, a call to USBHID_intfStatus() for this HID interface will return kUSBDataWaiting.   

If the application is written so that a receive operation is always begun prior to data arriving from 
the host, this event will never occur.  The software designer generally has a choice of whether to 
use this event as part of code flow (initiating receive operations after data is received), or to 
always keep a receive operation open in case data arrives.  (See Sec. 11 for more discussion.)   

10.5.14 BYTE USBHID_handleSendCompleted(BYTE intfNum) 

Description   

This event applies to HID-Datapipe only, as opposed to HID-Traditional.  It indicates that a send 
operation on data interface intfNum has just been completed.   

In applications sending a series of large blocks of data, the designer may wish to use this event 
to trigger another send operation.  This cannot be done directly out of this event, since 
USBHID_sendData() cannot be called from the event handlers.  However, the handler can set a 
flag for main() to begin the operation.   

10.5.15 BYTE USBHID_handleReceiveCompleted(BYTE intfNum) 

Description   

This event applies to HID-Datapipe only, as opposed to HID-Traditional.  It indicates that a 
receive operation on HID interface intfNum has just been completed, and the data is therefore 
available in the user buffer assigned when the call was made to USBHID_receiveData().  If this 
event occurs, it means that the entire buffer is full, according to the size value that was 
requested.   

The designer may wish to use this event to trigger another receive operation.  This cannot be 
done directly out of this event, since USBHID_receiveData() cannot be called from the event 
handlers.  However, the handler can set a flag for main() to begin the operation.   
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10.5.16 BYTE USBHID_handleBootProtocol (BYTE protocol, BYTE intfnum) 

Description 

 This event applies to HID Traditional only. It indicates that the host has requested a change in 
the HID protocol – from Boot to Standard or Standard to Boot. An application that maintains 
separate reports for boot and standard protocols can switch to the appropriate report upon 
receiving this request. The protocol field is either HID_BOOT_PROTOCOL or 
HID_REPORT_PROTOCOL 

 

10.5.17 BYTE USBMSC_handleBufferEvent(VOID) 

Description   

This event occurs when the API requests a buffer.  Immediately prior to this, the API sets the 
operation field of the USBMSC_RWBuf_Info structure corresponding with the request, and also 
clears the low-power-mode bits of the MCU’s status register to ensure the CPU remains awake 
to process the buffer after the event occurs.  (Note that this means the return value of this event 
has no effect; the CPU will remain awake even if this function returns FALSE.)   
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11  Practical Matters:  Writing USB Programs with the API 

The discussion in this section applies to any MSP430 CDC or HID device.   

11.1 Power Management 

USB provides 5V of power via the cable, called VBUS.  The MSP430’s USB module has an 
integrated LDO regulator that reduces this to 3.3V.  The output of this regulator is called VUSB, 
and this rail sources the USB module directly.  The hardware engineer can also direct this power 
into DVCC, which sources the rest of the MSP430.   

The flexibility of the MSP430’s USB power system provides options to the system designer.  As 
a result, arrangement of power is primarily the application’s responsibility.  Software does have a 
few USB-related responsibilities, however.   

11.1.1 The API’s Effect on Power Settings 

The only USB API call that affects power settings is USB_init().  This function enables the 3.3V 
and 1.8V USB LDOs.  The USB API does not affect the MSP430F5xx’s VCORE setting.   

USB_init() should be called very soon after powerup.  The device is unable to recognize the 
attachment of a USB host until this is done.  (Specifically, the 3.3V LDO must be enabled before 
a VBUS-on event will be recognized.)  This should be done even if USB attachment isn’t 
expected for a long period of time, because minor excess current draw into the DVCC pin can 
occur if the device operates without USB_init() having been called.  

11.1.2 VCORE Setting 

The MSP430F5xx’s Power Management Module (PMM) includes an LDO (separate from the 
ones in the USB module) that sources a nominal 1.8V to the digital core.  There are actually four 
settings for VCORE:  0-3.  Usually the minimum VCORE setting is determined by the MCLK 
speed.   

When the USB PLL is enabled, however, the minimum required setting is “2”, no matter the 
speed of MCLK.  The USB PLL is enabled with USB_enable() and disabled with USB_disable().  
It is also automatically disabled during USB suspend.  If VCORE is set to “0” or “1” during these 
times, errors will result.   

The VCORE setting is controlled by the PMMCOREV field in the PMMCTL0 register.  It’s 
recommended to configure the PMM using the F5xx/6xx Core Library, which is included with this 
API.  In this library, SetVCore() sets the VCORE level.    

11.1.3 Managing VBUS Power During USB Suspend 

When the host suspends a USB device, the device (meaning the entire physical USB device, not 
just the MCU) must reduce the current it’s drawing from the host via VBUS.  It must do this 
within 7ms of the suspend event, which the application sees as a handleSuspendEvent().  It is 
from this event handler that the application should insert any necessary code to shut down 
circuitry.   
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According to the USB specification, the amount most devices are allowed to draw is 500uA.  
However, the USB Implementers Forum reliably gives waivers to any device that consumes in 
the range of 500uA to 2.5mA.     

As discussed in Sec. 6.5, the USB module’s power is handled automatically.  If DVCC is drawing 
its power from VUSB (the output of the internal 3.3V regulator, usually derived from VBUS), the 
application is responsible for shutting down peripherals and/or CPU in order to meet the 
requirement.  The device datasheet provides the parameters necessary to determine the 
budget.  Software may also need to disable components elsewhere in the system; for example, 
if a battery is being charged from USB, this will need to be disabled.   

If a crystal is used on XT2, the oscillator consumes a couple hundred uA’s.  The Descriptor Tool 
can configure the API to attempt to power down XT2 during suspend.  However, if any 
peripherals derive their clocking from XT2, the oscillator will remain on, due to the peripheral 
issuing a “clock request”.  (See the F5xx Family User’s Guide for more information.)   

Powering down circuitry may very well mean an overall change in state for the device.  If so, the 
code may benefit from the state-dependent implementation as described in Sec. 11.5.  It is 
important to consider that a suspend can happen at any point in the code flow.  Therefore, it’s 
usually important to build the code so that it can exit from any event when the USB state has 
changed.   

When the host “resumes” the device from suspend, it is probably desirable for software to re-
activate the components that were disabled.  This can be performed within 
handleResumeEvent().   

In battery-powered systems, the engineer is encouraged to draw most of the device’s power 
from VBUS while it’s available.  Being attached to a USB host may keep the device active for 
longer periods of time than would occur for a non-USB mobile device, so if VBUS power is not 
used, the battery will experience extra power draw.   

11.1.4 Use of Low-Power Modes 

The software engineer is encouraged to use the MSP430’s low power modes in the application, 
because maximizing the time spent in these modes can increase power efficiency.  They can be 
used similarly to any MSP430 application.  The only restriction is that while the USB PLL is 
enabled, the power mode should not be “less” than LPM0 (in other words, do not use LPM3/4/5).  
The USB PLL is enabled with USB_enable() and disabled with USB_disable().   

The PLL is also automatically disabled during USB suspend.  During USB suspend, the CPU 
can be placed into LPM3 (but not LPM4/5).     

LPM entry often needs to be conditional upon USB events.  Since USB events are typically 
interrupt-driven, it is recommended to disable interrupts prior to evaluating these conditions, and 
re-enabling flags atomically with the LPM entry: 

 

          __disable_interrupt(); 

          if(!dataReceivedFlag)                              

            __bis_SR_register(LPM0_bits + GIE); //Simultaneous LPM0 entry & re-enabling ints              

          __enable_interrupt();                 //Enable ints if LPM0 was not entered 
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In this example, dataReceivedFlag is set in USBxxx_handleDataReceivedEvent().  If interrupts 
had not been disabled, then it would have been possible for the flag to have changed state after 
the evaluation but before the LPM entry.  If this were to happen, the LPM entry would be in error, 
and the device may possibly never wake from LPM0.  Disabling interrupts before the evaluation 
ensures the event won’t occur.   

11.2 Clock System Management 

As with power, arrangement of clocks in an MSP430 USB application is the application’s 
responsibility.  However, the API takes some actions that affect clock management, of which the 
software engineer should be aware.   

11.2.1 Summary of USB Clock System 

MSP430 devices supporting USB include a PLL that generates a 48MHz USB clock from a 
reference clock sourced by the XT2 oscillator.  Unlike other MSP430 peripherals, the PLL is 
sourced directly from XT2, rather than via a system clock such as SMCLK.   

During USB suspend, the PLL automatically switches its reference clock to the VLO (very low-
frequency, low-power oscillator).  This low-power oscillator is sufficient for the module’s 
functions during suspend, and XT2 is not needed at this time.   

11.2.2 Sourcing the USB PLL Reference Clock 

The simplest method to source the PLL reference is placing a crystal on XT2.  An alternative 
that might reduce cost is to inject a clock from outside the MSP430 into XT2, with XT2 placed in 
“bypass mode”.   

The PLL reference must adhere to certain frequency, precision, and jitter requirements.  (See 
the device datasheet.)  Crystals on XT2 easily meet these requirements.   

If bypass mode is desired instead, the designer must consider these requirements.  The 

tolerance requirement is driven by the USB specification:  ±2500ppm.  The MSP430’s DCO/FLL 
output does not meet the jitter requirements, and thus it cannot be used for USB.  The low-
frequency oscillators on the device (LFXT1, REFO, and VLO) do not run at a high enough 
frequency to source XT2 for USB.   

Therefore, the PLL reference must come from either: 

• a crystal on XT2, or  

• a clock source from elsewhere on the board – injected into XT2 in bypass mode – that 
originates from a crystal or perhaps some ceramic resonators capable of the needed 
precision   

11.2.3 Configuring the API for the Clock Conditions 

The API takes these actions with respect to clock configuration: 

• It automatically starts XT2 when it needs it 
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• It configures the PLL’s reference frequency 

USB cannot function if XT2 isn’t active; so the API activates it in USB_enable().  If XT2 isn’t 
being used for other functions, the application may choose to disable it in 
USB_handleVbusOffEvent(), saving power.   

The Descriptor Tool can configure the stack to disable XT2 during suspend.  If it does, it will also 
automatically re-start it when resuming.  Note that it can only “attempt” this deactivation, 
because if any MSP430 peripherals (or CPU) are using XT2, they will automatically keep XT2 
active by issuing a “clock request”.  (See the F5xx Family User’s Guide for more information.)     

The frequency the API configures for the PLL reference can be selected with the Descriptor 
Tool.  Its value depends on the crystal chosen for XT2 (or the external clock source used for 
XT2 in bypass mode).   

The API has one other aspect of clock interaction.  In a few places, the API employs CPU-driven 
delay loops.  CPU speed (called MCLK) is chosen by the application, and so in order to prevent 
the speed from changing the delay period of the loops, they take MCLK into account.  They do 
this via a compile-time constant generated by the Descriptor Tool.  Hence, it’s important that the 
system designer enter this value.  If MCLK isn’t always the same value during USB operation, 
choose the fastest value that is ever in effect; this will result in a delay that is longer than 
necessary, in some cases, but it is safe compared with choosing a delay value that is too small.   

The API stack project includes a set of functions that assist in setting up the F5xx Unified Clock 
System (UCS) module.  These are contained in hal_UCS.c.  

11.2.4 XT2 Startup Times 

It’s important that the load capacitors for XT2 be chosen properly, according to the crystal’s 
rating.  An improperly-tuned oscillator circuit will result in either oscillator failure, or extended 
startup times.  Startup times are important if XT2 is disabled during suspend, because once the 
host resumes the USB device, it has 10ms to begin communicating with the host.  A properly-
tuned XT2 oscillator circuit stabilizes well within this range, but an improperly-tuned one can 
take significantly longer.   

11.2.5 Using XT2 for Non-USB Functions 

It’s possible for XT2 to be used for non-USB functions; for example, it can drive the CPU, via the 
system clock MCLK; and it can drive peripherals, via the system clock SMCLK.  However, this is 
only recommended if there’s a specific need for crystal accuracy in these functions.  In 
particular, it is best to drive MCLK from the DCO.  There are several reasons for this.   

One is that some earlier USB-equipped MSP430 devices have an errata that causes “bus 
errors” to occur if the DCO isn’t used to drive any system clocks.  (See next section for 
information on bus errors.)  On these devices, USB won’t function unless the DCO is active.   

Another is that if XT2 is used for other functions, then it may need to run during USB suspend.  
The DCO consumes much less current than XT2 does.  If the device’s DVCC power rail is 
sourced from VBUS, XT2’s current draw will count against the VBUS current budget.   
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If any MSP430 component is configured to use XT2 (via MCLK or SMCLK), then XT2 will remain 
enabled whenever  it’s needed by that component.  The API will not be able to disable it, due to 
“clock requests” that keep it active.   

11.2.6 “Bus Errors” 

As mentioned earlier, the USB module is clocked by an internal PLL.  During USB suspend, the 
PLL is disabled, and the USB module is clocked by the VLO oscillator.  The VLO operates at a 
much slower frequency than the PLL.  If the CPU attempts to access the USB RAM at this time, 
a non-maskable interrupt (NMI) will occur, called a “bus error”.  (USB RAM must be accessed 
anytime there is an active USB connection; see the F5xx Family User’s Guide for details.)   

USB RAM is “multi-port” – that is, it’s mutually accessible by the USB module and the CPU, and 
thus affected by both clock domains.  The gap in speed between MCLK and the VLO will cause 
timeouts to occur on the MSP430’s internal data bus if an access is attempted.  This generates 
a bus-error NMI.   

Bus error NMIs must be handled by resetting the USB module, with USB_disable().  

 

 

 case SYSUNIV_BUSIFG: 

   SYSBERRIV = 0;             

   USB_disable();             

 

To re-attempt the USB connection, subsequent calls to USB_enable() and USB_connect() are 
required.   

A common cause of a bus error is entering LPM3 while the USB state is ST_ENUM_ACTIVE.  If 
this isn’t the cause, then usually the problem somehow involves the PLL being inactive at a time 
the software thinks it’s active (and thus attempting to access USB RAM).   

11.2.7 Use of DMA 

USB transfers will generally occur more quickly and efficiently if DMA is enabled.  This can be 
configured using the Descriptor Tool.   

11.2.8 Using an RTOS 

The MSP430 USB API stacks were designed to not require an RTOS.  As such, the discussion 
in this section is written from the perspective that a main loop is employed.  However, the API 
stacks are intended to be straightforward to port to an RTOS, and most of the concepts in this 
section still apply to an RTOS-based system.   

11.3 System Interrupts 

USB operation involves a large number of interrupts.  In some cases these interrupts have 
timeout periods enforced by the host, and if the USB device takes too long to respond, USB 
operations may fail.  USB interrupts fall below several other kinds of interrupts on the MSP430’s 
interrupt priority list – specifically the ones shown in the table below.   
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Table 56. Interrupts with Higher Priority than USB 

Interrupt Source Priority 

System Resets 63 (highest) 

System/User NMIs 61-62 

Comparator_B 60 

TB0 58-59 

Watchdog Timer (interval timer) 57 

USCI_A0/B0 (SPI/I2C/UART) 55-56 

ADC12_A (12-bit A/D) 54 

Timer_A 52-53 

USB 51 

Other interrupts 0-50 

If these other interrupts occur with unusually high frequency in the application, or with high 
duration, they might prevent the USB interrupts from being serviced.   

11.4 USB Design Considerations 

11.4.1 Robustness:  Handling Surprise Removal or Suspend 

It’s important for the software designer to consider that a USB connection can be lost at any 
time, due to being suspended by the host, or by the user disconnecting it (a “surprise removal”).  
A device should recover from these events gracefully.  The API functions and the example 
constructs provide help in this regard, having been designed to return the necessary information.     

11.4.2 The Impact of USB State on Functionality 

As discussed in Sec. 6, a USB device can be in one of several different bus states, returned by 
USB_connectionState().  A device spends most of its time in ST_DISCONNECTED, 
ST_ENUM_ACTIVE, and ST_ENUM_SUSPENDED.  The state can change at any time.   

For many USB devices, these states have a deep impact on functionality.  For example, a digital 
still camera’s main function when not connected to a host is to take pictures.  But once 
connected to the host, its purpose is now to upload pictures.  It may even prevent pictures from 
being taken.  Thus the state of the bus has completely altered the software flow.  This is in 
contrast to most equipment that uses an RS232 serial port; such devices typically do not change 
“identity” according to the connection state, the way many USB devices do.   

Not all USB devices behave this way.  Devices that are purely bus-powered (like a mouse or 
keyboard) do nothing when not attached to a host.  And some devices keep essentially the 
same functionality whether attached to USB or not – the only difference is whether these 
devices attempt to upload data.   

USB state may also affect the power configuration.  A battery-powered device may rely on 
VBUS for power while USB is attached, which means it needs to significantly reduce 
functionality when the host suspends it.  

Several example devices are shown in the table below, describing how they behave in the three 
primary states.   
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Table 57. State-Dependence of Some Example Devices 

 ST_DISCONNECTED ST_ENUM_ACTIVE ST_ENUM_SUSPENDED 

Digital camera Functions as a camera Playback and upload; pictures 
can’t be taken 

Functions as a camera 

Cell phone Functions as a phone Enumerates as a mass 
storage device; phone calls 
can’t be made 

Functions as a phone; stops 
charging the battery 

Mouse Unpowered Functions as a mouse Does nothing, except may be 
capable of remote wakeup 

Printer Allows configuration from its 
control panel 

Allows configuration, and also 
responds to print requests 

Allows configuration from its 
control panel 

Therefore, one of the first decisions the designer should consider is how (or if) the USB state will 
impact functionality. 

11.5 State-Dependent Functionality:  Main Loop Framework  

For devices that change functionality significantly according to USB state, one option for a main 
loop construct is shown below.  
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VOID main(VOID)   

{ 

    WDTCTL = WDTPW + WDTHOLD;        // Configure watchdog 

    Init_System(); 

    USB_init(); 

    USB_setEnabledEvents(kUSB_allUsbEvents);  

 

    if (USB_connectionInfo() & kUSB_vbusPresent) 

      USB_handleVbusOnEvent();  

 

    while(1)   

    { 

        switch(USB_connectionState()) 

        { 

          case ST_USB_DISCONNECTED: 

             __bis_SR_register(LPM3_bits + GIE);  // Enter LPM3 

             function_as_USB_disconnected(); 

             break; 

          case ST_USB_CONNECTED_NO_ENUM: 

             break; 

          case ST_ENUM_ACTIVE:              

             __bis_SR_register(LPM0_bits + GIE);  // Enter LPM0 

             function_as_USB_active(); 

             break; 

          case ST_ENUM_SUSPENDED: 

             __bis_SR_register(LPM3_bits + GIE);  // Enter LPM3 

             break; 

          case ST_ENUM_IN_PROGRESS: 

             break; 

           case ST_NOENUM_SUSPENDED: 

             break; 

          case ST_ERROR: 

             break; 

          default:; 

        }     

     }   

}  

 

BYTE USB_handleVbusOnEvent()  { 

    if (USB_enable() == kUSB_succeed)  { 

        USB_reset(); 

        USB_connect();   

    } 

    return TRUE;                // Wake the main loop to give it a chance     

}                               // to respond to the change in state 

 

BYTE USB_handleVbusOffEvent()  { 

    return TRUE;                // Wake the main loop to give it a chance  

}                               // to respond to the change in state 

 

BYTE USB_handleSuspendEvent()  { 

    return TRUE;                // Wake the main loop to give it a chance  

}                               // to respond to the change in state 

 

BYTE USB_handleResumeEvent()   { 

    return TRUE;                // Wake the main loop to give it a chance  

}                               // to respond to the change in state 
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Execution within this main loop “forks” depending on the state of the USB, creating several 
alternate main loops.  As such, USB state becomes a central part of managing software flow.   

When this device isn’t attached to USB, the main loop functionality is defined by 
function_as_bus_disconnected(). When the device is attached, handleVbusOnEvent() 
initiates a connection.  (There is no rule that says a USB connection must be made upon 
attachment; so if this isn’t desired, this code could be removed.)   

While waiting for enumeration to complete, the state is ST_ENUM_IN_PROGRESS.  When 
enumeration completes, the main loop waits for an interrupt to begin executing 
function_as_bus_active().    

handleVbusOnEvent() is also called at the top of main().  Normally the application doesn’t call 
the event handler functions; the API does this.  However, this is an exception.  Since 
handleVbusOnEvent()only gets called when VBUS transitions, it misses the case where VBUS 
is already on when execution begins.  Thus it must be done “manually”.   

Notice that these four events are enabled and set to return TRUE: 

• USB_handleVbusOnEvent() 

• USB_handleVbusOffEvent() 

• USB_handleSuspendEvent() 

• USB_handleResumeEvent() 

This is because it’s important the main loop be “refreshed” to reflect the new state.  Each of 
these events correlates with a state change.  If these handlers execute and return with a TRUE 
return value, they will cause the main loop to execute once.  If the loop is asleep at an LPM 
instruction inside one of the case statements, this allows it to leave the main loop and make 
another call to USB_connectionState().  It can then handle whatever functionality is required in 
the new state.   

Note that the case for ST_ENUM_IN_PROGRESS does not enter an LPM mode.  This keeps 
the main loop active for the brief time until the state changes to ST_ENUM_ACTIVE.  The 
purpose of this is the same as returning TRUE in the event handlers – it gives the main loop a 
chance to respond to the forthcoming change in state.   

If it’s desired for a device to behave the same way in two separate states – for example, whether 
suspended or disconnected – their ”case” lines could be combined.   

Complete code files for main.c and USB_eventHandling.c corresponding with this approach are 
included in the API source distribution, under “Recommended Main Loop Framework”.  It is fully 
commented to explain the design rationales.   

11.6 State-Independent Functionality 

For devices that don’t significantly change their functionality according to USB state, something 
similar to below could be employed.   
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VOID main(VOID) 

{ 

    WDTCTL = WDTPW + WDTHOLD;        // Configure watchdog 

    Init_System(); 

    USB_init(); 

    USB_setEnabledEvents(kUSB_allUsbEvents); 

 

    //Connect to USB if cable already was plugged in 

    if (USB_connectionState() == ST_USB_CONNECTED_NO_ENUM) 

        USB_handleVbusOnEvent(); 

 

  while(1)  { 

    if(USB_connectionState() == ST_ENUM_ACTIVE)   // Enter a low-power mode 

      __bis_SR_register(LPM0_bits + GIE);    // LPM3 if possible, but must 

    else __bis_SR_register(LPM3_bits + GIE);      // stay in LPM0 if USB is active 

       

    process_data();                               // Do what we woke up to do 

      

    if(USB_connectionState() == ST_ENUM_ACTIVE)   // If USB happens to be active, 

    {                                             // also send the data 

      prepare_buffer(buffer,size); 

      USBCDC_sendData(buffer,size,0); 

    } 

  }  // while(1)  

} //main() 

 

 

BYTE USB_handleVbusOnEvent() 

{ 

    if (USB_enable() == kUSB_succeed)  { 

        USB_reset(); 

        USB_connect();   

    } 

    switchPowerToVBUS(); 

    return FALSE;    

} 

 

BYTE USB_handleVbusOffEvent() 

{ 

    switchPowerToBattery(); 

    return TRUE;    

} 

 

BYTE USB_handleSuspendEvent() 

{ 

    switchPowerToBattery(); 

    return FALSE;    

} 

 

BYTE USB_handleResumeEvent() 

{ 

    switchPowerToVBUS(); 

    return FALSE;    

} 

 

#pragma vector=TIMER1_A0_VECTOR 

__interrupt void TIMER1_A0_ISR(void) { 

  __bic_SR_register_on_exit(LPM3_bits);            // Exit LPM 

} 
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This example wakes periodically and processes data.  If USB happens to be available, it also 
broadcasts the data to the host.  The functionality is largely the same whether USB is attached 
or not.  Implementing this with the earlier switch() loop may have resulted in considerable 
duplication of code.   

In this model, USB state must be checked on a case-by-case basis as USB connectivity is 
needed.  Notice that it must also be checked before entering LPM3; doing so during USB active 
would result in a “bus error” non-maskable interrupt (see Sec.11.2.6).  It must be checked again 
later before sending data.   

This model relies on events more than the state-dependent model did.  This example portrays a 
battery-powered device.  Staying active on USB requires considerable power, so it must switch 
its power source to VBUS if it’s available.  However, if it’s not available, it switches its power 
source back to the battery so that it can continue its normal operation.  It uses events to 
accomplish this switching.   

Notice that this time, the events return FALSE.  The main loop in this case doesn’t require any 
“refreshing”, as the state-dependent loop did.  However, one event returns TRUE:  
handleVbusOffEvent().  The reason is that if this event occurs while the device is in LPM0, the 
reason for avoiding LPM3 is no longer valid, and depending on the timer period, this might end 
up wasting an appreciable amount of power.  Waking from LPM0 allows the loop to run once, 
and this time enter LPM3.  (This concept is very similar to why event handlers returned TRUE in 
the state-dependent switch() loop.)   

This particular example doesn’t check for pre-existing send operations before calling 
USBCDC_sendData(), as arguably it should.  However, if one already exists, the function simply 
returns an error and execution continues.  The only consequence is that this particular data 
transmission was missed.   
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11.7 Tips on Sending Data over CDC or HID-Datapipe 

The API provides the functions USBCDC_sendData() and USBHID_sendData().  When using 
them, two things need to be considered: 

• Background Processing (or “asynchronous” operation).  Send operations can continue to 
execute after sendData() returns.  Software must anticipate that a previous operation may 
still be in progress, before making another call to sendData().   

• Bus disconnect/suspend.  The end user may disconnect the bus at any time, or the host 
may suspend the device at any time.  Software must anticipate that the bus may suddenly 
become unavailable.     

TI provides example construct functions that take these into account.  The developer is free to 
edit them, but they function well in most applications as-is.   

Equivalent functions are provided for both CDC and HID-Datapipe, reflecting the similarity 
between these two interfaces.  The function prefixes are cdc or hid, accordingly.  Since the text 
in this section applies equally to both types, they’re frequently shown in this section with the 
prefix xxx -- for example, the text “cdcSendDataInBackground() and 
hidSendDataInBackground()” is shortened to “xxxSendDataInBackground()”.   

The functions are included with the application examples, in the file usbConstructs.c/h.   

11.7.1 Background Processing 

As discussed in Sec. 7.2.2, background send/receive operations increase efficiency, and they 
ensure fluid execution no matter what happens on the host.  The tradeoff is that if more than one 
send attempt will be performed, software must be mindful that a previous operation can still be in 
progress.   

If desired, background processing can be limited.  This is done by iteratively polling the status of 
the interface (USBxxx_intfStatus()) -- either after the call to USBxxx_sendData(), or before.   

If doing it after, this is called post-call polling.  It prevents execution from proceeding past the 
point of initiating the send until all the data has been transferred.  This effectively eliminates 
background processing altogether, which makes coding simpler in some respects.  However, it 
has two disadvantages:  it wastes CPU cycles during polling, and it also has a tendency to “lock” 
the MCU’s code execution to the host (“synchronous” operation).  If the host and bus are “fast”, 
this synchronicity isn’t a problem.  But host/bus performance are outside the device’s control, 
and can’t be guaranteed.   

An example of synchronicity being problematic is if the host is writing large amounts of data to a 
USB hard drive located on the same bus, making the host and/or bus “slow”.  In this situation, 
synchronous operation (post-call polling) might impact MCU code execution. 

Another approach is pre-call sending.  Data is sent using USBxxx_sendData(), and then 
execution immediately resumes while the API sends the data in the background.  The next time 
the application wants to send data, however, it iteratively polls USBxxx_intfStatus() before the 
next send attempt.  The advantage over post-call polling is that much of the data -- if not most, 
or all -- has probably already been sent in the background by the time this occurs.  As a result, 
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it’s usuallly much less wasteful.  At the same time, it can easily “contain” background processing, 
while still providing the simple coding of issuing a single function call.   

There are two disadvantages to pre-call polling.  First, the application isn’t allowed to edit the 
user buffer associated with the previous send operation, unless it’s sure that operation has been 
completed in the background.  (However, this can easily be handled by using an X/Y buffer 
scheme -- see Sec. 11.7.4.)  The second is that it can still allow wasted cycles if sending didn’t 
finish in the background before the next send.  But in most situations this isn’t the case; the 
polling is mostly eliminated.    

A third approach is true “asynchronous” sending.  It involves no polling of USBxxx_intfStatus(), 
but rather makes use of the API’s events to allow the CPU to sleep or perform other functions 
until the USBxxx_handleSendCompleted() event occurs, only then triggering the next send 
attempt.  Since this approach involves no polling, it’s somewhat more efficient than pre-call 
polling, at the expense of being a little more difficult to code.   

The three approaches are summarized below.   

Table 58. Three Approaches to Sending Data 

 Description Example Construct 
Function Provided in API 

Post-call polling  

(no background processing) 

Poll the interface status after 
USBxxx_sendData(), until the operation is 
complete.   

cdcSendDataWaitTilDone() 

hidSendDataWaitTilDone() 

Pre-call polling 

(“Contained” background 
processing) 

Poll the interface status before 
USBxxx_sendData(), until the interface is 
available.   

cdcSendDataInBackground() 

hidSendDataInBackground() 

True “asynchronous” operation No interface polling.  Instead, call 
USBxxx_sendData() after a 
USBxxx_handleSendCompleted() event for the 
previous send; and/or perform a single interface 
check before sending.   

Not applicable 

 

Table 59. Approaches to Sending Data 

 

 Cycle Efficiency Fluid Execution (not 
synchronous with host) 

Ease of Use 

Post-call polling  Low Low High 

Pre-call polling Good Good Moderate 

True “asynchronous” operation Excellent Excellent More difficult 

 

Here are some guidelines: 

• xxxSendDataWaitTilDone() can generally be used for small transfers without negative 
consequence.  If fast development is the priority, and the system has cycles to spare, this 
might be the best approach.   
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• xxxSendDataInBackground() provides a very good balance of efficiency and ease of use.  
It is also much more asynchronous with the host.  Therefore, if performing larger transfers, 
pre-call polling might be better, because it maximizes bandwidth and minimizes 
dependency on the host.   

• True asynchronous operation might be desirable in RTOS-based implementations that 
want to completely eliminate the possibility of polling, or if maximum CPU efficiency is 
required.   

• Use caution if mixing pre- and post-call polling.  For example, if using 
xxxSendDataWaitTilDone() after a previous call to xxxSendDataInBackground(), be sure 
to poll USBxxx_intfStatus() to ensure the previous send operation is complete.   

11.7.2 Anticipating a Lost Bus 

The USB connection might be disconnected or suspended at any time; and as Sec. 11.4 
indicated,  the program should respond to these changes in USB state.  For example, it’s 
undesirable for the program to “hang up” in a location that no longer fits the current state of the 
bus because it made an incorrect assumption about bus availability.  By checking return values, 
software can break from the main loop and re-assess the situation.   

The construct functions return a value that indicates whether the bus is available or not, so that 
the application may choose to handle a lost bus.  For example, software may need to close 
down certain operations.  If this occurs and execution is in a section that is very USB-specific, it 
should break from this location.   

11.7.3 Constructs:  cdcSendDataWaitTilDone() and hidSendDataWaitTilDone() 

These construct functions do not return until the send operation is completed, eliminating 
background processing.  When it returns a zero value, the send operation has returned 
successfully.  Because of this, the user buffer can be edited immediately after the function 
returns, without consequence.   

It assumes the interface is available (no active send operations) when the function is called.  If 
all sending is performed with this function, then this assumption will always be valid.   

If the function returns with a non-zero value, the transfer failed.  The operation should be 
aborted, and since the bus may no longer be available, the application may need to break from 
its current context.   

This call is recommended if all transfers are small, and bandwidth is not a concern.  It is robust, 
anticipating any bus- or host-availability issues.   
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Operations complete when 

sendData_waitTilDone() returns

while(1)

{

    switch(USB_connectionState())

    {

       case ST_ENUM_ACTIVE:

            {

               .

               .

               dataBuffer = temporaryBuffer1;

               if(cdcSendDataWaitTilDone(dataBuffer,100,1,0)

               {

                 USBCDC_abortSend(&x,1);             

                 break;

               }                

               .

               .

               dataBuffer = temporaryBuffer2;

               if(cdcSendDataWaitTilDone(dataBuffer,100,1,0)

               {

                 USBCDC_abortSend(&x,1);             

                 break;

               }    

               .

               .

               .

             }

     }

}

 

Figure 17. Usage of cdcSendDataWaitTilDone() 

In this example, two send operations are initiated in succession.  Notice that dataBuffer is edited 
between the two calls, without needing to be concerned that the buffer is still in use.  This is 
because xxxSendDataWaitTilDone() polled until the operation was complete, before returning.   

Notice that each call checks for a non-zero return value.  Such a value would indicate a serious 
bus issue – either the bus has become unavailable, or the host for whatever reason isn’t 
cooperating.  In each case, the operation is aborted.   

The parameters for the construct functions are the three for USBxxx_sendData() and also one 
for a timeout value.  This timeout mechanism is an inexact mechanism, but it effectively ensures 
that executation doesn’t stay here forever.  The value is very affected by CPU clock speed, 
since it merely represents the number of retries.  Large timeout values are recommended, in 
order to give the host every chance to respond before concluding that it is inactive.   

See Sec. 13 for a complete definition of xxxSendDataWaitTilDone().   
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11.7.4 Constructs:  cdcSendDataInBackground() and hidSendDataInBackground() 

This construct function first polls to ensure that the interface is available, and then calls 
USBxxx_sendData().  It then immediately returns.  When it returns a zero value, the send 
operation has begun  successfully, but may not have been completed.  Because of this, the user 
buffer should not be edited until a call to USBxxx_intfStatus shows the operation is complete.   

If the function returns with a non-zero value, the transfer failed.  The operation should be 
aborted, and since the bus may no longer be available, the application may need to break from 
its current context.   

This call takes full advantage of background operation, increasing efficiency in large-data 
transfers.  It is robust, anticipating any bus- or host-availability issues.   

 

First operation may be 

open; don’t edit dataBufferX

Second operation 

may be open; don’t 

edit dataBufferY

while(1)

{

    switch(USB_connectionState())

    {

       case ST_ENUM_ACTIVE:

            {

               .

               .

               .

               dataBufferX = temporaryBuffer1;

               if(cdcsendDataInBackground(dataBufferX,100,1,0)

               {

                 USBCDC_abortSend(&x,1);             

                 break;

               }    

               .

               .

               dataBufferY = temporaryBuffer2;

               if(cdcSendDataInBackground(dataBufferY,100,1,0)

               {

                 USBCDC_abortSend(&x,1);             

                 break;

               }    

               .

               .

               .

             }

     }

}

 

Figure 18. Usage of cdcSendDataInBackground() 

Two send operations are initiated in succession.  Notice that two different buffers are used – 
dataBufferX and  dataBufferY.  Each buffer is not allowed to be edited while its operation may 
still be underway.  Effectively, then, this arrangement uses an switched X/Y buffer scheme.   
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Notice that each call checks for a non-zero return value.  Such a value would indicate a serious 
bus issue – either the bus has become unavailable, or the host for whatever reason isn’t 
cooperating.  In each case, the operation is aborted.   

As with xxxSendDataWaitTilDone(),  the last passed-in parameter is a timeout value.  Large 
values are recommended.   

See Sec. 13 for a complete definition of cdcSendDataInBackground() and 
hidSendDataInBackground().   
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11.8 Tips on Receiving Data over CDC or HID-Datapipe 

Receiving USB data requires different considerations than sending.  When the application sends 
data, the operation will be completed as fast as the bus and host allow.  When receiving data, 
the application may not know: 

• how much data will be sent, or 

• when it will be sent 

These two factors create a need for a wider range of constructs than for send operations.  Many 
variations can be created, but the ones described below cover most usage scenarios.    

Table 60. Receive Construct Options 

 Size is 
Known? 

Expected 
Size 

Description 

cdcReceiveDataInBuffer() 

hidReceiveDataInBuffer() 
No Small 

Receive operations aren’t opened until data is 
already waiting in the USB endpoint buffers.  
Therefore, the operations are immediately 
completed.  The application must always be 
available to respond to handleDataReceived().   

Continuously-Open 
Receive 

No Large 

The application maintains an open, larger-than-
needed receive operation at all times.  When it 
wants to use the data, it simply looks inside the 
user buffer.   

Fixed Receive Yes n/a 

A receive operation is opened for the exact 
amount of data expected.  When this amount is 
received, a handleReceiveCompleted() event is 
generated, and the application handles it.   

 

As with the sending constructs described in the previous section, matching receive construct 
functions are provided for both CDC and HID-Datapipe.  The function prefixes are cdc_ or hid_, 
accordingly.  Since the text in this section applies equally to both types, they’re frequently shown 
in this section with the prefix xxx_.   

The functions are included with the application examples, in the file USB_constructs.c/h.   

11.8.1 cdcReceiveDataInBuffer() and hidReceiveDataInBuffer() 

The application may choose to call the construct function xxxReceiveDataInBuffer() rather than 
USBxxx_receiveData().  This function opens a receive operation only for data that has already 
been received into the USB endpoint buffers, which immediately completes.  (Recall that the 
endpoint buffers contain a single packet of data from the host – see Sec. 7.)  This method works 
best when the expected block of data is small in size, but the exact number of bytes is unknown.   
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VOID main(VOID) 

{ 

    WDTCTL = WDTPW + WDTHOLD;        // Configure watchdog 

    Init_System(); 

    USB_init(); 

    USB_setEnabledEvents(kUSB_dataReceivedEvent); 

 

    //Connect to USB if cable already was plugged in 

    if (USB_connectionState() == USB_CONNECTED_NO_ENUM) 

        USB_handleVbusOnEvent(); 

 

    while(1) 

    { 

      switch(USB_connectionState()) 

      { 

        case ST_ENUM_ACTIVE: 

          if(!bDataReceived_event) 

            __bis_SR_register(LPM0_bits + GIE);          // Enter LPM0              

           

          // CPU was awakened from LPM0 

          while(bDataReceived_event) 

          { 

            bDataReceived_event = FALSE; 

            BYTE count = cdcReceiveDataInBuffer(buffer,size,0); // Fetch contents of buffer 

            process_the_data(buffer,count);                  // Process them 

          } 

          break; 

          . 

          . 

          default:; 

        }  

    }  // while(1)  

} //main() 

 

 

BYTE USBCDC_handleDataReceived(BYTE intfNum) 

{ 

    bDataReceived_event = TRUE;     // Signal that data has been received 

    return TRUE;                    // Keep CPU awake after returning from event 

} 

         

Figure 19. Usage of cdcReceiveDataInBuffer() 

USBxxx_handleDataReceived() is used to set a flag that data is available in the USB endpoint 
buffers.  The event handler returns TRUE to signal the CPU to remain awake.  As a result, 
execution proceeds from the LPM0 entry in main.   

The flag is evaluated by a while() loop. This is because more data might be received during this 
branch of code, which would need to be handled before entering LPM0 again.  It’s for this same 
reason that the flag is immediately cleared before fetching the data.  If xxxReceiveDataInBuffer() 
gets called and there are no bytes there, no harm is done, so it’s better to call it more times than 
necessary than to miss data.    

The application could have chosen to simply poll xxxReceiveDataInBuffer, rather than set a flag.  
The problem with this is that more data might be received while the last data is being processed.  
For this same reason, the flag gets evaluated immediately before re-entering LPM0.     
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This approach requires that the data be fetched from the USB buffer quickly.  Otherwise, if the 
host tries to send more data, the device will begin NAKing the host (refusing to accept more 
data).   

A good application of the xxxReceiveDataInBuffer() approach is receiving text entry from a 
terminal application on the host.  The number of incoming bytes isn’t known, but it will be small.  
Using this method, a few characters can be received at a time, and accumulated into a longer 
string.  This is demonstrated in several of the application examples that accompany the API.   

See Sec. 13 for a complete definition of cdcReceiveDataInBuffer() and 
hidReceiveDataInBuffer().   

11.8.2 Continuously-Open Receive 

This approach keeps an “open ear” at all times.  A single call is made to USBxxx_receiveData() 
immediately after enumeration, of a size larger than the amount of expected data.  All received 
data is automatically moved to the user buffer as it’s received.  Then, at a time convenient to the 
application, it goes to the user buffer and processes the data.   

Unlike xxxReceiveDataInBuffer(), the application isn’t pressured to find a place for the data 
when it comes in, since the API has “standing orders” to deposit the data into the user buffer.  
The user buffer should be large enough that it won’t run out of space.  When done, the 
application can re-open another large operation, and the cycle continues.   

Notice that the application isn’t obligated to respond quickly to received data, as in reactive 
receive.  This approach is therefore favorable to situations where the application isn’t able to 
respond quickly.   
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VOID main(VOID) 

{ 

    WDTCTL = WDTPW + WDTHOLD;      

    Init_Ports();                    

    Init_Clock(); 

    USB_init(); 

    USB_setEnabledEvents(kUSB_VbusOnEvent + kUSB_VbusOffEvent); 

    

    if (USB_connectionInfo() & kUSB_vbusPresent) 

      USB_handleVbusOnEvent(); 

                  

    while(1) 

    { 

        switch(USB_connectionState()) 

        { 

           case ST_ENUM_ACTIVE: 

              if (!(USBCDC_intfStatus(1,&bytesTx,&bytesRx)&kUSBCDC_waitingForReceive)) 

                BYTE ret = USBCDC_receiveData(RXBuffer,MEGA_SIZE,1);                   

              . 

              . 

              USBCDC_intfStatus(1,&bytesTx,&bytesRx); 

              if(bytesRx > threshold) 

              { 

                abortReceive(bytesRx,1); 

                process_the_data(RXBuffer,bytesRx); 

              } 

              break; 

        } 

     } 

Figure 20. Continuously-Open Receive 

As the main loop executes, it checks to make sure a receive operation is open; if not, it opens 
one.  Separately, it polls to see if the amount of received data has reached a certain threshold.  
If it has, then it processes it.   

11.8.3 Fixed-Size Receive 

If the amount of data to be received is known in advance, a receive operation for that exact 
amount can be opened at any time.  When that amount has been received, a 
USBxxx_handleReceiveCompleted() event will occur.  This event handler can process the data 
directly, or set a flag for main() to process it.   

Suppose a protocol is to be implemented in which all commands from the host consist of a two-
byte command code and 32 bytes of payload data.  Once received, the device is to execute the 
command and respond with a two-byte acknowledge.   

 

Figure 21. Command Packet 
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VOID main(VOID) 

{ 

    WDTCTL = WDTPW + WDTHOLD;        // Configure watchdog 

    Init_System(); 

    USB_init(); 

    USB_setEnabledEvents(kUSB_receiveCompletedEvent); 

 

    //Connect to USB if cable already was plugged in 

    if (USB_connectionState() == USB_CONNECTED_NO_ENUM) 

        USB_handleVbusOnEvent(); 

 

        while(1) 

    { 

      switch(USB_connectionState()) 

      { 

        case ST_ENUM_ACTIVE: 

 

          __disable_interrupt(); 

          ret = USBCDC_receiveData(command,34,0); 

          if((ret == kUSBCDC_receiveStarted) || (ret == kUSBCDC_intfBusyError))                             

            __bis_SR_register(LPM0_bits + GIE);                

          __enable_interrupt(); 

           

          // CPU was awakened from LPM0 

          if(bReceiveCompleted_event) 

          { 

            bReceiveCompleted_event = FALSE; 

            execute_the_command(command); 

            if(USBCDC_receiveData(command,34,1)==kUSBCDC_busNotAvailable) //Open a new RX op 

            { 

              USBCDC_abortReceive(&x,1);            

              break;                                 

            }                   

          } 

          . 

          . 

          default:; 

        }  

    }  // while(1)  

} //main() 

 

 

BYTE USBCDC_handleReceiveCompleted(BYTE intfNum) 

{ 

    bReceiveCompleted_event = TRUE; // Signal that data has been received 

    return TRUE;                    // Keep CPU awake after returning from event 

} 

         

Figure 22. Fixed-Size Receive 

A receive operation is kept open at all times for 34 bytes.  When fulfilled, the IF-branch clears 
the flag, executes the command, and opens a new receive operation.   
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LPM0 is entered after beginning the receive operation, but only if the return value is 
kUSBCDC_receiveStarted or kUSBCDC_intfBusyError, both of which would mean a receive 
operation is open and the application should wait in LPM0 for it to finish.  If the return were 
kUSBCDC_busNotAvailable, then it means the state is no longer ST_ENUM_ACTIVE, and the 
main loop should be allowed to refresh.   

Since it’s possible for a receive operation to be completed between the point that the function 
assignts its return value and the point at which the value is evaluated in main(), and since the 
consequences of that return value are high (going to sleep), interrupts are disabled first and re-
enabled simultaneous to entering LPM0.  This way the receive operation can’t begin until LPM 
has been entered.   
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12 Debugging Tips 

12.1 The Device Enumeration Process 

If a USB connection fails to operate as expected, a first step is to determine whether the device 
enumerated successfully on the host.  Enumeration is the process by which the host identifies 
the device and associates it with the appropriate driver.  If enumeration did not complete, then 
it’s important to understand how far it proceeded.   

12.1.1 Summary of the Enumeration Process 

First, it’s important to understand the enumeration process.  This is shown below.   
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Figure 23. Basic Enumeration Flow 
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The first time a device is attached, enumeration will probably take longer than subsequent 
attachments.  This is largely due to the fact that the first attachment usually involves a “device 
installation”, in which information about the device is recorded.  (Windows does this in the 
system registry.)  Device installation can take several seconds, even on interfaces that install 
silently (HID/MSC).  Subsequent attachments may happen more quickly.   

12.1.2 Determining Whether the Device Enumerated 

Host operating systems may have ways to determine how far the enumeration process 
proceeded.   

Windows provides various clues.  The first attachment of a device may result in activity in the 
system tray.  A CDC interface, of course, will result in a “Found New  Hardware” wizard.  Both of 
these indicate that the host at least saw the presence of the USB device (D+ was pulled high).   

If the enumeration process succeeds – that is, a driver is loaded -- Windows plays audible alert 
tones.  It can also be verified by checking the Windows Device Manager, shown in the figure 
below.     

 

Figure 24. Windows Device Manager 
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The section under which the device should appear depends on the device; CDC devices 
enumerate under “Ports”, HID devices enumerate under “Human Interface Devices”, and MSC 
devices enumerate under “Disk Drives”.  Whichever category it’s listed under, attaching or 
detaching should both cause a refresh action in the display.  Selecting “Properties” for the 
device can reveal the VID, PID, and serial number for that device.   

Other operating systems have similar ways of determining enumeration.  The Mac OS doesn’t 
have an equivalent to the Device Manager built into the OS, but developer tools are available 
that provide similar information.   

12.1.3 Determining if the Device Asserted Itself to the Host 

If the Device Manager doesn’t refresh itself upon inserting/detaching the device, it suggests the 
host didn’t see the device asserting its presence (pulling D+ high).  This can be confirmed with a 
voltmeter or oscilloscope on the PUR or D+ pins.  This could be a problem with either hardware 
(a short to ground) or software (not calling USB_connect()).   

12.1.4 D+ Was Asserted, but Driver Association Failed 

If the device was seen by the host, but enumeration didn’t complete successfully, then somehow 
the OS failed to associate the device with the appropriate driver.  Windows sometimes reacts to 
this situation by showing a “yellow bang” on this device in the Device Manager, or another 
negative result.  This indicates the device was seen, but the driver was not loaded.   

  

Figure 25. Failed Enumeration Results in the Device Manager 

12.2 Common Problems 

12.2.1 Problems that Can Cause USB Failure at Any Time 

The following items are fundamental to USB operation.  If any of these is violated, it can cause 
failure at any time during operation.   
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First, always check the hardware against the reference schematic located in the application note 
“Starting a USB Design with MSP430 MCUs” (slaa457).  Missing a critical schematic element 
will probably cause USB failure very quickly after attempting enumeration.   

Clocking is critical.  If failure occurs at any time, double-check that an appropriate clock 
frequency is available on XT2.  (See Sec. 11.2.)   

Check to see if the MSP430 is experiencing any clock oscillator faults.  Also check for a “bus 
error” NMI, which generally indicates the PLL isn’t operating at an expected time (see Sec. 
11.2.6).   

Finally, the API can only do its job if its allowed to handle USB interrupts.  If the application 
prevents this somehow, then USB will fail.  An application might disable general interrupts 
directly, or it can do it indirectly by spending a lot of time in interrupt service routine handlers.  
(See Sec. 11.3.) 

12.2.2 Problems that Can Cause Failed Enumeration (Driver Association) 

The API handles enumeration automatically, but it needs a proper environment in which to do 
so.   

First, double-check the items in the previous section, as these can cause problems in USB 
communication at any time.   

The API performs delays after it enables the PLL and LDOs, giving them a chance to stabilize.  
These are simple delay loops dependent on MCLK frequency.  For this reason, the Descriptor 
Tool’s has an MCLK field (which controls the USB_MCLK_FREQ constant in descriptors.h).  
This needs to be configured for the fastest MCLK used during operation.  The API adapts its 
delays to this value.  A severe mismatch between this value and reality could cause the API to 
wait in inadequate amount of time when starting up the PLL and LDOs.  This would probably 
appear as failed enumeration.   

If none of these fundamental items is at fault (hardware, clocks, and power), then the problem 
may be occuring at the level of USB descriptors and the host’s handling of them.  One common 
problem is that a record of the device’s VID/PID already exists on this host machine, but the 
information on record is in conflict with this device’s USB descriptors.   This is caused by using 
the same VID/PID on this host machine earlier, but with a different USB descriptor set.  
Therefore, when making changes in the interface set or certain descriptor fields, always either 
delete the previous entry, or give it a new VID/PID pair.  See Sec. 12.3.   

Another possibility is that the descriptors themselves contain an error.  If the Descriptor Tool was 
used to generate the descriptors, then this shouldn’t occur.  It can occur, however, f the Tool’s 
output was manually modified.  After fixing the error, be sure to either delete the device’s 
previous entry, or give this descriptor set a new VID/PID.  See Sec. 12.3..   

12.2.3 Problems Causing De-Enumeration Within One Minute 

The most direct cause of this behavior would be if the device pulled its D+ line low, telling the 
host it’s done communicating.  Assuming this isn’t the case,  this behavior could occur for any 
reason that interferes with the fundamental requirements for USB operation listed in Sec. 12.2.   
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One additional cause that could lead to this specific behavioral pattern is if the device is a 
composite device containing an MSC interface.  If the MSC interface isn’t properly implemented, 
the host will be unable to mount the storage volume.  The host may timeout waiting for the 
volume to mount – on the order of “seconds” – and then de-enumerate the entire device, 
including the non-MSC interfaces.  (CDC and HID interfaces don’t have a similar requirement –
there are no additional requirements placed on the application, beyond those listed in the 
previous sections.)   

The most likely offenders causing an incomplete MSC implementation would be insufficient 
calling of USBMSC_poll(), and not properly handling buffer requests for all LUNs.  See Sec. 8.3 
for information about proper MSC implementation.   

12.3 Avoiding Device Conflicts on the Host During USB Development 

As indicated above, when a USB device is enumerated for the first time, it undergoes a “device 
installation”.  The host records information from the device’s USB descriptors, indexed by the 
device’s VID/PID.  The next time this host machine encounters this VID/PID, it uses this 
recorded information, rather than re-installing the device.   

In the field, end users should never see a problem from this.  USB descriptors for a given 
VID/PID should never change once a product is released.  During development, however, the 
USB descriptors may change as the developer changes the device toward the final goals.  It’s 
therefore easy for the developer’s host machine to see multiple descriptor sets.  If the developer 
doesn’t consciously deal with the possibility of conflicts, problems will occur on this host 
machine.   

A simple way to deal with this is to increment the PID to a new value, each time descriptors are 
changed.  This ensures the host machine always sees the device as a new one.  Note that the 
INF file used with CDC interfaces also contains a VID/PID pair, and this must match the one 
reported by the device.  As the descriptor’s PID changes, so must the INF’s PID.  The Descriptor 
Tool automatically generates this file when generating the descriptor files for the USB API 
stacks.  The files generated at a given time should be used together.   

This approach is fast and easy, but a downside is that the system registry may become cluttered 
with new VID/PIDs.  Also, it’s easy to lose track of what this host machine has registered in the 
past.  A more complete solution is to delete the VID/PID from the host machine’s registry.   

As an example, in Windows, this can be performed by the following procedure: 

1. From the Start menu’s “Run” prompt, type “regedit”.  This opens Windows’ system registry 
editor.   

2. Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB 
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Figure 26. Locating USB Devices in RegEdit 

The device’s key within \USB is formed by a concatonation of VID and PID values.  If the device 
was a composite device, then additional keys are formed for each interface, with an &MI_xx 
extension.   

To delete the device from the registry, delete all keys containing the VID/PID being eliminated.   

Sometimes, RegEdit won’t allow deletion until permissions are enabled: 
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Figure 27. Enabling Permissions for a Registry Key 

Click “Allow”, press the “OK” button, then try again to delete.   

When the USB device is released to end users, the VID/PID must be finalized.  The same 
applies to custom strings in the descriptors and the INF file.  The Descriptor Tool can be used 
for this purpose.   
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13 Send/Receive Construct Functions for CDC and HID-Datapipe 

This section serves as a reference for the example construct functions described in the section 
above.  These functions are found in the file USB_constructs.c.   

The discussion in this section applies to any CDC interface or HID interface using the datapipe 
function calls (see Sec. 7).  It does not apply to traditional HID interfaces.     

These functions are user-editable, if desired.  An example of a modification the developer might 
want to make it to employ a timeout feature based on a hardware timer.  These functions were 
written to avoid using additional hardware resource, and so the sending functions use a less 
elegant approach of counting the times interface status is polled.  This probably works well in 
most situations, but a timer approach would be more accurate.   

13.1 BYTE cdcSendDataWaitTilDone(BYTE* dataBuf, WORD size, BYTE intfNum, 
ULONG ulTimeout) 

Description   

Sends the data in dataBuf, of size size, using the post-call polling method.  It does so over 
interface intfNum.  The function doesn’t return until the send has completed.  The function 
assumes that size is non-zero.   

The 32-bit number ulTimeout selects how many times USBCDC_intfStatus() will be polled while 
waiting for the operation to complete.  If the value is zero, then no timeout is employed; it will 
wait indefinitely.  When choosing a number, it is advised to consider MCLK speed, as a faster 
CPU will cycle through the calls more quickly.   

In many applications, the return value can simply be evaluated as zero or non-zero, where non-
zero means the call failed for reasons of host or bus non-availability.  Therefore, it may desirable 
for the application to break from execution.  Other applications may wish to handle return values 
1 and 2 in different ways.   

It’s recommended not to call this function from within an event handler.  This is because if an 
interface currently has an open send operation, the operation will never complete during the 
event handler; rather, only after the ISR that spawned the event returns.  Thus the 
USBCDC_intfStatus() polling would loop indefinitely (or timeout).  It’s better to set a flag from 
within the event handler, and use this flag to trigger the calling of this function from within main().   

Parameters  

Table 61. Parameters for cdcSendDataWaitTilDone() 

Returns 0:  the call succeeded; all data has been sent 

1:  the call timed out, either because the host is unavailable or a COM port 
with an active application on the host wasn’t opened.   

2:  the bus is unavailable.   

The function is shown below, followed by commentary about how it operates.   
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// This call assumes no send operation is underway; also assumes size is non-zero.   

// Returns zero if send completed; returns non-zero if main loop should exit 

BYTE cdcSendDataWaitTilDone(BYTE* dataBuf, WORD size, BYTE intfNum, ULONG ulTimeout) 

{ 

  ULONG sendCounter = 0; 

  WORD bytesSent, bytesReceived; 

 

  switch(USBCDC_sendData(dataBuf,size,intfNum)) 

  { 

     case kUSBCDC_sendStarted: 

          break; 

     case kUSBCDC_busNotAvailable: 

          return 2; 

     case kUSBCDC_intfBusyError: 

          return 3; 

     case kUSBCDC_generalError: 

          return 4; 

     default:;                                   

  } 

   

  // If execution reaches this point, then the operation successfully started.  Now  

  // wait til it’s finished.   

  while(1)                                      

  { 

    BYTE ret = USBCDC_intfStatus(intfNum,&bytesSent,&bytesReceived); 

    if(ret & kUSBCDC_busNotAvailable)                // This may happen at any time 

      return 2; 

    if(ret & kUSBCDC_waitingForSend) 

    { 

      if(ulTimeout && (sendCounter++ >= ulTimeout))  // Incr counter & try again 

        return 1 ;                                   // Timed out 

    } 

    else  

      return 0;                                      // It succeeded 

  } 

} 

Figure 28. cdcSendDataWaitTilDone() 

Notice this function checks every return value from USBCDC_sendData(), leaving nothing 
unhandled.   

The main purpose of the timeout function is to avoid being caught here infinitely.  For example, 
even if the bus is available, the host needs to initiate the data transfers – something it may not 
do if the COM port has not been opened by the host application.  If this happens, and if this 
function didn’t handle the situation, execution could poll USBCDC_intfStatus() indefinitely.  The 
timeout ensures this doesn’t happen.  The timeout function isn’t exact, but it does serve the 
purpose of limiting the length of retries, without using up a system timer resource.   
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13.2 BYTE cdcSendDataInBackground(BYTE* dataBuf, WORD size, BYTE intfNum, 
ULONG ulTimeout) 

Description   

Sends the data in dataBuf, of size size, using the pre-call polling method.  It does so over 
interface intfNum.  The send operation may still be active after the function returns, and dataBuf 
should not be edited until it can be verified that the operation has completed.  The function 
assumes that size is non-zero.   

The 32-bit number ulTimeout selects how many times USBCDC_intfStatus() will be polled while 
waiting for the previous operation to complete.  If the value is zero, then no timeout is employed; 
it will wait indefinitely.  When choosing a number, it is advised to consider MCLK speed, as a 
faster CPU will cycle through the calls more quickly.   

In many applications, the return value can simply be evaluated as zero or non-zero, where non-
zero means the call failed for reasons of host or bus non-availability.  Therefore, it may desirable 
for the application to break from execution.  Other applications may wish to handle return values 
1 and 2 in different ways.   

It’s recommended not to call this function from within an event handler.  This is because if an 
interface currently has an open send operation, the operation will never complete during the 
event handler; rather, only after the ISR that spawned the event returns.  Thus the 
USBCDC_intfStatus() polling would loop indefinitely (or timeout).  It’s better to set a flag from 
within the event handler, and use this flag to trigger the calling of this function from within main().   

Parameters   

Table 62. Parameters for cdcSendDataInBackground() 

Returns 0:  the call succeeded; all data has been sent 

1:  the call timed out, either because the host is unavailable or a COM port 
with an active application on the host wasn’t opened.   

2:  the bus is unavailable.   

 

The function is shown below.  See the previous section for commentary about how it operates 
(the same comments apply).   
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// This call assumes a send operation might be underway; also assumes size is non-zero.   

// Returns 0 if send completed; returns non-zero if main loop should exit 

BYTE cdcSendDataInBackground(BYTE* dataBuf, WORD size, BYTE intfNum, ULONG ulTimeout) 

{ 

  ULONG sendCounter = 0;  

  WORD bytesSent, bytesReceived; 

   

  while(USBCDC_intfStatus(intfNum,&bytesSent,&bytesReceived) & kUSBCDC_waitingForSend) 

  { 

    if(ulTimeout && ((sendCounter++)>ulTimeout))  // A send operation is underway;  

                                                  // incr counter & try again 

      return 1;                                   // Timed out                

  } 

   

  // The interface is now clear.  Call sendData().   

  switch(USBCDC_sendData(dataBuf,size,intfNum)) 

  { 

     case kUSBCDC_sendStarted: 

          return 0; 

     case kUSBCDC_busNotAvailable: 

          return 2; 

     default: 

          return 4; 

  } 

}                

Figure 29. cdcSendDataInBackground() 

 

13.3 WORD cdcReceiveDataInBuffer(BYTE* dataBuf, WORD size, BYTE intfNum) 

Description   

Opens a brief receive operation for any data that has already been received into the USB buffer 
over interface intfNum.  The data in the USB buffer is copied into dataBuf, and the function 
returns the number of bytes received.   

If size bytes are received, the function ends, returning size.  In this case, it’s possible that more 
bytes are still in the USB buffer; it might be a good idea to open another receive operation to 
retrieve them.  For this reason, operation is simplified by using large size values, since it helps 
ensure all the data is retrieved at one time.   

This function is usually called when a USBCDC_handleDataReceived() event flags the 
application that data has been received into the USB buffer.   

Parameters   

Table 63. Parameters for cdcReceiveDataInBuffer() 

Returns The number of bytes received into dataBuf 
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The function is shown below, followed by commentary about how it operates.   

 

 

// This call assumes a receive operation is NOT underway.  It only retrieves what data  

// is waiting in the buffer.  It doesn’t check for kUSBCDC_busNotAvailable, because it  

// doesn’t matter if the bus is there or not.  size is the maximum that is allowed to be 

// received before exiting; i.e., it is the size allotted to dataBuf.   

WORD cdcReceiveDataInBuffer(BYTE* dataBuf, WORD size, BYTE intfNum) 

{ 

  WORD bytesInBuf; 

  BYTE* currentPos=dataBuf; 

 

  while(bytesInBuf = USBCDC_bytesInUSBBuffer(intfNum)) // # of bytes already in USB buffer 

  { 

    if((WORD)(currentPos-dataBuf+bytesInBuf) <= size)  

      rxCount = bytesInBuf; 

    else rxCount = size;  

 

    USBCDC_receiveData(currentPos,bytesInBuf,intfNum); // Obtain the bytes waiting 

    currentPos += bytesInBuf; 

  }  

  return (currentPos-dataBuf);                         // Return the total bytes received 

} 

 

Figure 30. cdcReceiveDataInBuffer() 

The function ignores the return from USBCDC_receiveData(), because it already knows the 
answer will be kUSBCDC_receiveCompleted.  It knows this because the bytes are already in the 
USB endpoint buffer; it doesn’t matter of the bus has been disconnected, and none of the other 
return codes are possible.   

USBCDC_bytesInUSBBuffer() is called repeatedly, in case more data arrived while the first data 
was retrieved.  This situation could repeat indefinitely, so it continues to poll until 
USBCDC_bytesInUSBBuffer() returns zero.  This will happen when the stream of host data 
stops.   

13.4 BYTE hidSendDataWaitTilDone(BYTE* dataBuf, WORD size, BYTE intfNum, 
ULONG ulTimeout) 

Description   

Sends the data in dataBuf, of size size, using the post-call polling method.  It does so over 
interface intfNum.  The function doesn’t return until the send has completed.  The function 
assumes that size is non-zero.   

The 32-bit number ulTimeout selects how many times USBHID_intfStatus() will be polled while 
waiting for the operation to complete.  If the value is zero, then no timeout is employed; it will 
wait indefinitely.  When choosing a number, it is advised to consider MCLK speed, as a faster 
CPU will cycle through the calls more quickly.   
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In many applications, the return value can simply be evaluated as zero or non-zero, where non-
zero means the call failed for reasons of host or bus non-availability.  Therefore, it may desirable 
for the application to break from execution.  Other applications may wish to handle return values 
1 and 2 in different ways.   

It’s recommended not to call this function from within an event handler.  This is because if an 
interface currently has an open send operation, the operation will never complete during the 
event handler; rather, only after the ISR that spawned the event returns.  Thus the 
USBHID_intfStatus() polling would loop indefinitely (or timeout).  It’s better to set a flag from 
within the event handler, and use this flag to trigger the calling of this function from within main().   

Parameters  

Table 64. Parameters for hidSendDataWaitTilDone() 

Returns 0:  the call succeeded; all data has been sent 

1:  the call timed out, either because the host is unavailable or a COM port 
with an active application on the host wasn’t opened.   

2:  the bus is unavailable.   

The function is shown below, followed by commentary about how it operates.   
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// This call assumes no send operation is underway; also assumes size is non-zero.   

// Returns zero if send completed; returns non-zero if main loop should exit 

BYTE hidSendDataWaitTilDone(BYTE* dataBuf, WORD size, BYTE intfNum, ULONG ulTimeout) 

{ 

  ULONG sendCounter = 0; 

  WORD bytesSent, bytesReceived; 

 

  switch(USBHID_sendData(dataBuf,size,intfNum)) 

  { 

     case kUSBHID_sendStarted: 

          break; 

     case kUSBHID_busNotAvailable: 

          return 2; 

     case kUSBHID_intfBusyError: 

          return 3; 

     case kUSBHID_generalError: 

          return 4; 

     default:;                                   

  } 

   

  // If execution reaches this point, then the operation successfully started.  Now 

wait til it’s finished.   

  while(1)                                       

  { 

    BYTE ret = USBHID_intfStatus(intfNum,&bytesSent,&bytesReceived); 

    if(ret & kUSBHID_busNotAvailable)                // This may happen at any time 

      return 2; 

    if(ret & kUSBHID_waitingForSend) 

    { 

      if(ulTimeout && (sendCounter++ >= ulTimeout))  // Incr counter & try again 

        return 1 ;                                   // Timed out 

    } 

    else  

      return 0;                                      // It succeeded 

  } 

} 

 

Figure 31. hidSendDataWaitTilDone() 

Notice this function checks every return value from USBHID_sendData(), leaving nothing 
unhandled.   

The main purpose of the timeout function is to avoid being caught here infinitely.  For example, 
even if the bus is available, the host needs to initiate the data transfers – something it may not 
do if the COM port has not been opened by the host application.  If this happens, and if this 
function didn’t handle the situation, execution could poll USBHID_intfStatus() indefinitely.  The 
timeout ensures this doesn’t happen.  The timeout function isn’t exact, but it does serve the 
purpose of limiting the length of retries, without using up a system timer resource.   
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13.5 BYTE hidSendDataInBackground(BYTE* dataBuf, WORD size, BYTE intfNum, 
ULONG ulTimeout) 

Description   

Sends the data in dataBuf, of size size, using the pre-call polling method.  It does so over 
interface intfNum.  The send operation may still be active after the function returns, and dataBuf 
should not be edited until it can be verified that the operation has completed.  The function 
assumes that size is non-zero.   

The 32-bit number ulTimeout selects how many times USBHID_intfStatus() will be polled while 
waiting for the previous operation to complete.  If the value is zero, then no timeout is employed; 
it will wait indefinitely.  When choosing a number, it is advised to consider MCLK speed, as a 
faster CPU will cycle through the calls more quickly.   

In many applications, the return value can simply be evaluated as zero or non-zero, where non-
zero means the call failed for reasons of host or bus non-availability.  Therefore, it may desirable 
for the application to break from execution.  Other applications may wish to handle return values 
1 and 2 in different ways. 

It’s recommended not to call this function from within an event handler.  This is because if an 
interface currently has an open send operation, the operation will never complete during the 
event handler; rather, only after the ISR that spawned the event returns.  Thus the 
USBHID_intfStatus() polling would loop indefinitely (or timeout).  It’s better to set a flag from 
within the event handler, and use this flag to trigger the calling of this function from within main().   

Parameters   

Table 65. Parameters for hidSendDataInBackground() 

Returns 0:  the call succeeded; all data has been sent 

1:  the call timed out, either because the host is unavailable or a COM port 
with an active application on the host wasn’t opened.   

2:  the bus is unavailable.   

 

The function is shown below.  See the previous section for commentary about how it operates 
(the same comments apply).   
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// This call assumes a send operation might be underway; also assumes size is non-zero.   

// Returns 0 if send completed; returns non-zero if main loop should exit 

BYTE hidSendDataInBackground(BYTE* dataBuf, WORD size, BYTE intfNum, ULONG ulTimeout) 

{ 

  ULONG sendCounter = 0;  

  WORD bytesSent, bytesReceived; 

   

  while(USBHID_intfStatus(intfNum,&bytesSent,&bytesReceived) & kUSBHID_waitingForSend) 

  { 

    if(ulTimeout && ((sendCounter++)>ulTimeout))  // A send operation is underway;  

                                                  // incr counter & try again 

      return 1;                                   // Timed out                

  } 

   

  // The interface is now clear.  Call sendData().   

  switch(USBHID_sendData(dataBuf,size,intfNum)) 

  { 

     case kUSBHID_sendStarted: 

          return 0; 

     case kUSBHID_busNotAvailable: 

          return 2; 

     default: 

          return 4; 

  } 

}             

Figure 32. hidSendDataInBackground() 

 

13.6 WORD hidReceiveDataInBuffer(BYTE* dataBuf, WORD size, BYTE intfNum) 

Description   

Opens a brief receive operation for any data that has already been received into the USB buffer 
over interface intfNum.  The data in the USB buffer is copied into dataBuf, and the function 
returns the number of bytes received.   

If size bytes are received, the function ends, returning size.  In this case, it’s possible that more 
bytes are still in the USB buffer; it might be a good idea to open another receive operation to 
retrieve them.  For this reason, operation is simplified by using large size values, since it helps 
ensure all the data is retrieved at one time.   

This function is usually called when a USBHID_handleDataReceived() event flags the 
application that data has been received into the USB buffer.   

Parameters   

Table 66. Parameters for hidReceiveDataInBuffer() 

Returns The number of bytes received into dataBuf 
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The function is shown below, followed by commentary about how it operates.   

 

 

// This call assumes a receive operation is NOT underway.  It only retrieves what data  

// is waiting in the buffer.  It doesn’t check for kUSBHID_busNotAvailable, because it  

// doesn’t matter if the bus is there or not.  size is the maximum that is allowed to be 

// received before exiting; i.e., it is the size allotted to dataBuf.   

WORD hidReceiveDataInBuffer(BYTE* dataBuf, WORD size, BYTE intfNum) 

{ 

  WORD bytesInBuf; 

  BYTE* currentPos=dataBuf; 

 

  while(bytesInBuf = USBHID_bytesInUSBBuffer(intfNum)) // # of bytes already in USB buffer 

  { 

    if((WORD)(currentPos-dataBuf+bytesInBuf) <= size)  

      rxCount = bytesInBuf; 

    else rxCount = size; 

  

    USBHID_receiveData(currentPos,bytesInBuf,intfNum); // Obtain the bytes waiting 

    currentPos += bytesInBuf; 

  }  

  return (currentPos-dataBuf);                         // Return the total bytes received 

} 

 

Figure 33. hidReceiveDataInBuffer() 

The function ignores the return from USBHID_receiveData(), because it already knows the 
answer will be kUSBHID_receiveCompleted.  It knows this because the bytes are already in the 
USB endpoint buffer; it doesn’t matter of the bus has been disconnected, and none of the other 
return codes are possible.   

USBHID_bytesInUSBBuffer() is called repeatedly, in case more data arrived while the first data 
was retrieved.  This situation could repeat indefinitely, so it continues to poll until 
USBHID_bytesInUSBBuffer() returns zero.  This will happen when the stream of host data stops.   
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14 USB API and real time operating systems (RTOS). 

The USB API may be used with real time operating systems such as SYSBIOS, ucos-II and III 
and Free RTOS. However there are some important notes and restrictions given below. 

• For a composite device, each interface can be accessed only by a single thread. For 
example in the case of a HID + MSC composite device, the HID interface should be read 
and written to only from a single task. Similarly the MSC interface needs to be accessed 
by a single task. If the MSC interface has multiple LUNs then each LUN can be read and 
written to by a different task. 

• When using the USB API with an RTOS it is often necessary to call RTOS APIs with the 
USB event handlers to post semaphores, send messages to tasks etc. Since the USB 
event handlers are all called with the ISR context it is necessary to read the RTOS 
specific documentation on which APIs can be called within an ISR. Also most real time 
operating systems require specific changes to an ISR to be able to call OS APIs within 
the ISR. It may be necessary to modify the iUsbInterruptHandler() function in UsbIsr.c as 
per the RTOS requirements. 

• For a device with MSC, USBMSC_poll() needs to be called as part of the idle loop or 
task. 

14.1 USB API and SYSBIOS 

SYSBIOS is a real time operating system from Texas Instruments and supports a wide range of 
MSP430 devices. It provides a wide range of services such as: 

• Pre-emptive multitasking 

• Hardware abstraction 

• Real-time analysis 

• Memory management 

• Configuration tools 

SYSBIOS is very scalable and can be configured to fit in memory constrained devices such as 
the MSP430. 

SYSBIOS is integrated into Code Composer Studio and one can very easily create SYSBIOS 
projects within CCS. All SYSBIOS tools are integrated into CCS as eclipse plugins. 

For MSP430 specific features and examples please visit. 

http://processors.wiki.ti.com/index.php/SYS/BIOS_for_the_MSP430 

14.1.1 SYSBIOS Thread types and their use in USB applications 

  SYSBIOS supports the following thread types 
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14.1.1.1 Hardware interrupts (Hwi) 

Hwi threads are nothing but interrupt service routines (ISRs). They have the highest priority. 
They are triggered by device peripherals or externally. When an interrupt gets triggered, the 
CPU will vector into the interrupt service routine. Interrupts are automatically disabled within 
the ISR and the ISR will run to completion. 

SYSBIOS contains a Hwi module that can be used to manage ISRs. The Hwi module takes 
over the interrupt vector i.e the Hwi module has a stub function with the interrupt keyword and 
the user ISR becomes a regular C function that gets called by the Hwi module ISR. This 
allows SYSBIOS APIs to be called with the user ISR. If an ISR needs to call a SYSBIOS API 
then the ISR MUST be managed by the Hwi module. If an ISR does not require SYSBIOS API 
calls, then the application can manage the ISR.  

 When SYSBIOS is used with the USB API, the USB interrupt needs to be managed by the 
Hwi module so that SYSBIOS APIs can be called from within the USB event handlers. To 
make integration with SYSBIOS easier, the Descriptor Tool has a checkbox specific to 
SYSBIOS in the MCU Configuration View. Check this box when using the USB API with 
SYSBIOS. This causes the descriptor tool to generate the iUsbInterruptHandler() as a regular 
C function.  

The application can then plug iUsbInterruptHandler() into the SYSBIOS Hwi module using the 
following lines of code in the SYSBIOS configuration script. 

 
/* Create a Hwi Object and plug in the USB interrupt handler */ 

var hwi0Params = new Hwi.Params(); 

/* Have to make sure USB interrupt wakes up CPU */ 

hwi0Params.keepAwakeEnabled = true; 

Program.global.hwi0 = Hwi.create(51, "&iUsbInterruptHandler", 

hwi0Params); 

This enables the use of SYSBIOS APIs such as Semaphore_post(), Event_post(), Swi_post() 
within the USB event handlers. The USB API package provides two example that use 
SYSBIOS. See CHM2 and CHM3 examples in the next section for details. 

Two other important configuration parameters for the Hwi module are given below. The first 
Hwi.dispatcherAutoNestingSupport needs to be set to false to prevent interrupt nesting. This 
is the default in SYSBIOS for MSP430 but important for proper execution on the MSP430. 

Also Hwi.fillVectors needs to be set to false because most USB applications have interrupts 
that are managed by the application and the Hwi module should not generate duplicate 
vectors. 

 
/* Do not allow interrupts to nest */ 

Hwi.dispatcherAutoNestingSupport = false; 

/* Do not automatically fill un-used vectors. */ 

Hwi.fillVectors = false; 
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14.1.1.2 Software interrupts (Swi) 
The Swi module in SYS/BIOS provides the software interrupt capability. Software interrupts are 
patterned after hardware ISRs. SYSBIOS software interrupts or Swi threads have lower priority 
that Hwi threads but higher priority than tasks.  
 
SYSBIOS Swi Treads also have a priority associated with them. The number of Swi priorities 
supported by SYSBIOS is a configuration parameter for the Swi module. Swis are always pre-
empted by Hwi threads. Lower priority Swi threads are pre-empted by higher priority Swi threads.  
 
Software interrupts are triggered programmatically, through a call to a SYS/BIOS API such as 
Swi_post(). 
 
Swi threads are suitable for handling application tasks that occur at slower rates or are subject to 
less severe real-time deadlines than those of Hwis. Basically Swi threads run with interrupts 
enabled. 
 
When using SYBIOS with the USB API, using Swis are optional. For the MSP430 Swi threads are 
very useful as they do not require their own stack like stacks and help reduce the memory 
footprint. 
 
A USB interfaces such as CDC, HID, MSC etc should be handled by a single Swi thread. The USB 
API do not support the use case where multiple Swi thread read and write to the same USB 
interface. 
 
The USB API provides the CHM3 example that using SYSBIOS Swi threads. 

14.1.1.3 Tasks (Task) 
The Task module in SYSBIOS provides the tasking capability. Tasks have lower priority than 
hardware and software interrupts.  
 
The Task module dynamically schedules and preempts tasks based on the task’s priority level and 
the task’s current execution state. This ensures that the processor is always given to the highest 
priority task that is ready to run. There are up to 32 priority levels available for tasks but this is a 
configurable parameter in the Task module.  Zero is the lowest priority. 
 
The lowest priority level (0) is reserved for running the Idle Loop and cannot be used by the 
application. 
 
To enable switching between tasks SYSBIOS maintains a runtime stack for each Task thread. The 
the MSP430 this task stack is around 100bytes. 
 
When using SYBIOS with the USB API, using Tasks are optional. The USB API provides the 
CHM2 example that using SYSBIOS Tasks.  
 
A USB interfaces such as CDC, HID, MSC etc should be handled by a single Task. The USB API 
do not support the use case where multiple Tasks read and write to the same USB interface. 



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 147 

14.1.1.4 Background thread (Idle) 
The Idle thread in SYSBIOS runs continuously when no Hwi, Swi, or Task is running. Idle 
threads all run at the same priority, sequentially. The functions are called 
in the same order in which they were created. An Idle function runs to 
Completion before the next Idle function can start running. When the last idle 
function has completed, the Idle Loop starts the first Idle function again. 
Idle Loop functions are often used to poll non-real-time devices that do not (or 
cannot) generate interrupts, 
 

When using SYBIOS with the USB API. This background thread can be used by the 
application instead of main for the entire USB application. In the examples included in the 
USB API, the idle thread contains the forever while loop which checks the USB connection 
state and puts the CPU into a low power mode whenever needed. 
 
For MSC applications the USBMSC_poll() should also be called from the Idle thread. 

15 MSP430 USB API Application Examples 

Several application examples are provided with the API stack software, to demonstrate usage of 
the the API.  Each is described here.   

Most of the examples are very simple, in order to minimize the hardware requirements.   

Table 67. MSP430 USB API Application Examples, and PID Map 

Number Name Interface Type USB VID/PID 

C1 Command-line interface with LED on/off/flash 

C2 Receive 1K data 

C3 Echo back to host 

C4 Packet protocol 

C5 High-bandwidth sending using 
cdcSendDataWaitTilDone() 

C6 Efficient sending using 
cdcSendDataInBackground() 

CDC 0x2047 / 0x0300 

C7 Usb to Uart Bridge CDC 0x2047 / 0x0322 

H1 Command-line interface with LED on/off/flash 

H2 Receive 1K data 

H3 Echo back to host 

H4 Packet protocol 

H5 High-bandwidth sending using 
hidSendDataWaitTilDone() 

H6 Efficient sending using 
hidSendDataInBackground() 

HID-Datapipe 0x2047 / 0x0301 

H7 Circular mouse 0x2047 / 0x0309 

H8 Simple keyboard  

HID-Traditional 

0x2047 / 0x0315 

M1 File-System Emulation (FSE) 0x2047 / 0x0316 

M2 SD-card 

MSC 

0x2047 / 0x0317 
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M3 Multiple-LUN 0x2047 / 0x0318 

CH1 Composite CDC+HID Device; communicate 
between Terminal and HID Demo App 

CDC+HID 0x2047 / 0x0302 

CC1 Composite CDC+CDC Device; communicate 
between two terminal apps 

CDC+CDC 0x2047 / 0x0313 

HH1 Composite HID+ HID Device; communicate 
between two HID Demo App Instances 

HID+HID 0x2047 / 0x0314 

CHM1 Composite CDC+HID+MSC, in which the MSC 
consists of two LUNs 

CDC+HID+MSC 0x2047 / 0x0319 

CHM2 A SYSBIOS example that uses tasks. Composite 
CDC+HID+MSC, in which the MSC consists of 
two LUNs 

CDC+HID+MSC 0x2047 / 0x0320 

 

CHM3 A SYSBIOS example that uses tasks. Composite 
CDC+HID+MSC, in which the MSC consists of 
two LUNs 

CDC+HID+MSC 0x2047 / 0x0321 

User experimentation area 0x2047 /  0x03DF - 0x03FF 

 

15.1 The Examples’ VIDs/PIDs 

Sec. 12.3 explained how device conflicts can occur on a host machine during USB development, 
and the importance of ensuring that when descriptors change, the VID/PID do also.   

With this in mind, consider the example table above.  In each case, the VID is the one owned by 
TI MSP430:  0x2047.  In some cases, the PIDs are shared by multiple examples; these are 
examples that all share the same descriptor set.  This is true for the single-interface CDC and 
single-interface HID-Datapipe examples.    

In other cases, the PID is unique.  Each HID-Traditional example has a unique PID, because 
each has a different HID report format.  Similarly, the MSC examples have unique PIDs; this 
time, it isn’t as much because of different USB descriptors, but because the host may choose to 
record information about the device’s media, which is different between the examples.   

If there is any doubt, it is always safest to provide a unique VID/PID to the host. 

For the case that the developer wishes to experiment with new interface sets, report descriptors, 
etc., TI-MSP430 has provided the “experimentation area” shown in the table – a set of 32 PIDs 
that neither TI nor anyone to whom we license our VID (via our VID-sharing program; see 
http://www.ti.com/msp430usb) will ever use for a product.  As such, there is no risk that these 
PIDs have been encountered by any host machine unless its owner/developer was the one who 
caused it.   

15.2 General Instructions to Run the Examples 

As discussed in Sec. 4.1.3, the examples are designed to run, “out-of-the-box”, on any USB-
equipped MSP430 derivative, provided a simple configuration change is made (which will be 
described below).   



  

 Programmer’s Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00 149 

15.2.1 Hardware 

Most of the examples were developed to run on the FET target boards – for example, the 
TS430PN80USB for the MSP430F5529.  These boards can be obtained by going to the product 
page on http://www.ti.com for the desired device.  (Do a device number search on the TI 
homepage, and then do a page search for the word “target”.)   

One of the MSC examples (M2) was designed to run on the F5529 Experimenter’s Board.  To 
obtain this board, follow the links from the F5529 product page.   

If running on different hardware, there are a few items to consider: 

• Some of the application examples assume the presence of an LED or button or a certain I/O 
pin located on the corresponding FET target board.  If other hardware is used, this pin 
setting may need to be modified in software for the example to run properly.   

• Ensure that the XT2 crystal frequency is configured properly.  Since the example 
applications set the frequency based on the USB_XT_FREQ value, one way to do this is to 
load the Descriptor Tool *.dat file provided with the example, modify the XT2 frequency; re-
generate the output; and use the new files to replace the default ones in the project directory.  
Or, directly modify USB_XT_FREQ in descriptors.h.  (If doing this, check the MSP430 
header file (i.e., msp430f5529.h) for available values for “USBPLL_SETCLK_xxxx”.)   

• The port I/O configuration in the function Init_Ports() may need to be adjusted.  The 
examples initialize ports with assumptions about how the I/Os are connected.  They’re 
intended to eliminate floating inputs, so they configure some I/Os as outputs.  This could 
interfere with custom hardware.  A quick way to deal with this might be to configure them as 
inputs, although keep in mind power draw will increase this way.   

15.2.2 Loading the Example Projects with IAR and CCS 

For each example, projects are provided for both the IAR and CCS environments.  Be sure to 
use the most recent version, available for download from http://www.ti.com/msp430.   

Please note that the MSC examples do not run on IAR’s Kickstart (free, code-size-limited 
version).  The code size exceeds the 8K object code limit.  The free version of CCS has a higher 
limit (16K), and thus can be used instead.   

In addition to source code and IAR/CCS projects, each example’s directory includes two 
additional files: 

• A *.dat file, which is the source input file format for the Descriptor Tool.  This file was used to 
generate the descriptors.c/h and usbisr.c included in this example.   

• If the example contains a CDC interface, an *.inf file is included.  It is placed in the 
\USB_config subdirectory of each example, alongside the other files output by the Descriptor 
Tool.  Windows will ask for this file when enumerating the device.   
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To use the examples with IAR, open the workspace file (*.eww) for the desired group of 
examples.  One of the projects in the “workspace” view will be highlighted in bold; this is the 
active project.  (If a different example is desired, right-click on it and select “set as active”.)     

Open the “project options” for the active project:   

 

Figure 34. Opening “Project Options” in IAR 

In the view shown below, choose the MSP430 device derivative being used: 

 

Figure 35. Choosing the MSP430 Device Derivative in IAR 

Then click “OK”.  The project is now configured for the appropriate device.  IAR automatically 
predefines a symbol based on this device, and the examples detect this and adapt accordingly, 
using compiler directives.  (The API code itself only changes its selection of MSP430 header 
files, but at the application level, some minor changes are made in the intialization of clcoks and 
ports.)   

Because of the need  to remove some of the IAR project’s debugger files prior to distribution, the 
project by default will have the debugger set to “simulator”.  (Project Options � Debugger)  
When opening the example projects for the first time, it will always be necessary to set this back 
to “FET Debugger” prior to downloading to the target MSP430; otherwise code won’t be 
downloaded into the MSP430, but will enter the simulator instead.   
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Using the examples with CCS is similar.  Open CCS, directing the workspace to the example 
group’s directory containing the “.metadata” directory (not the “.metadata” file itself).   

 

 

Figure 36. Selecting the Appropriate CCS Workspace Directory 

When CCS finishes loading, it should show a workspace view containing all the examples in the 
selected group.  As with IAR, one of the projects in the “workspace” view should be highlighted 
in bold; this is the active project.  (If a different example is desired, right-click on it and select “set 
as active project”.)   

To select the device being used, open the project’s properties as shown below.   

 

Figure 37. Opening the Project’s “Properties” in CCS 
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Then select the “CCS Build” view, and select the “Device Variant”, as shown in red below, and 
press “OK”.   

 

 

Figure 38. Choosing the MSP430 Device Derivative in CCS 

The project is now fully configured for the new device.  Like with IAR, the API and application 
adapt to the device selection.   
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In either environment, if compiling for a device that isn’t the “flagship” of its family (that is, any 
device other than F5529, F5510, F5638, or F6638), there may be compiler errors in the function 
Init_Ports().  This function initializes every port register, in order to eliminate any floating inputs.  
(Floating inputs cause extra current to be drawn through DVCC.  See the F5xx Family User’s 
Guide for more information.)  Smaller devices within a family don’t always have every I/O pin the 
flagship does, and thus compiling for these devices may generate errors for attemping to 
initialize a non-existent register.  If this occurs, simply comment-out the offending lines.  The 
example will still work correctly from a USB standpoint.  However, if making current 
measurements, be sure that the port configuration exactly matches the I/Os available on the 
device, to ensure no floating inputs exist.   

15.2.3 Host Software 

15.2.3.1 CDC Interfaces 

CDC interfaces generate a COM port on the host.  Therefore, the CDC examples are designed 
to interface with a general-purpose “terminal” application, like Hyperterminal.  Any terminal 
application can be used, but behavior can differ between terminal applications.  Therefore, 
Hyperterminal is recommended for best operation. 

15.2.3.2 Datapipe HID Interfaces  

TI provides a utility for HID called the HID Demo App (HID Demo App.exe).  This utility is the 
compiled output of the demo application for the Windows HID API.  Its functionality is very 
similar to that of terminal applications, except it uses HID as the underlying interface.  It’s 
designed specifically for use with the HID-Datapipe function calls.  This utility can be found with 
the HID examples.   
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Figure 39. HID Demo AppWindow 

The application is capable of locating any USB interface attached to it.  Using a VID/PID, it 
narrows its search to only devices of a particular type.  It then lists the serial numbers of all 
devices attached to it with that VID/PID.  Each serial number represents a different physical USB 
device.  Finally, within a physical device, it lists all the HID interfaces present, in the order 
they’re defined in the USB descriptors (“HID 0”, “HID 1”, etc.).  Once all of these have been 
selected, press the “Connect” button.   

If connection is not successful, try the following: 

• Check the Windows Device Manager to ensure that the device successfully enumerated on 
the system as an HID device 

• Ensure that the VID/PID shown in descriptors.h matches the value entered into the VID/PID 
fields in the utility 

• Try pressing the “Set VID/PID” button again.   

Once the connection is initialized, data can be sent to the device by entering text and pressing 
“Send”.  Data received by the application from the device at any time is displayed in the large 
text field.  The receive window can be cleared with the “Clear” button.   
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In the CDC examples, strings are terminated with a return character, and the applications look 
for this.  The HID Demo App’s “Send” button doesn’t automatically add a return character.  
Instead, end the string with a “!” character before pressing send.  The HID examples look for this 
character as a means of terminating the string.   

The application can be opened in multiple instances, for interfacing with more than one HID 
interface.   

15.2.3.3 Traditional HID Interfaces  

These examples use Windows as the “application”, by reporting themselves to be a mouse or 
keyboard.   

15.2.3.4 MSC Interfaces  

These examples use Windows as the “application”.  Interact with these devices using the host’s 
usual mechanisms for storage volumes.  Some of the examples specfically use text files, for 
interaction with simple text editors (i.e., Windows’ “Notepad”).   

15.2.4 CDC Interfaces:  INF Files and Device Installation on Windows 

All the examples include an INF file in their \USB_config subdirectory.  When attaching a CDC 
device to a Windows machine, Windows must be able to find an INF that allows it to associate 
the device with the correct driver.  When dealing with multiple examples and enumerations, as 
the developer is, it’s very beneficial to understand how Windows deals with INF files.  
(Fortunately the end user only needs to go through a single device installation, and so for them it 
is simple; but the developer might do this many times.)   
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Every Windows CDC INF file is associated with two unique aspects: 

• A unique VID/PID pair 

• A unique set of USB interfaces (which itself should be associated with a unique VID/PID 
pair) 

The first time enumerating a new device (new combination of VID, PID, and serial number), 
Windows performs a device installation process.  In Windows XP, it begins like this: 

  

 

Figure 40. Windows’ Device Installation (“Found New Hardware”) Box 

If this was a product on the market, and if the driver had been previously certified with Microsoft, 
the end user might be able to use Windows Update.  This would be the easiest process.  Since 
that isn’t the case for the engineer developing a product, the engineer should select “No, not this 
time”.   This causes the following box to display: 
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Figure 41. Device Installation, Second Box 

If this box is displayed, and if the user believes this same INF has been used on this machine 
before, choose the first item “Recommended”.  Windows will look in its history and find it.  If it 
doesn’t find it, this will fail and bring the user back to the box shown above.   

If the INF hasn’t been used on this machine before, select “Advanced”, then press “Browse”.  
This opens a “file open” box.  Guide it to the example’s directory, which contains an INF file 
loaded with the correct information for this example.  (The “OK” button becomes enabled 
anytime a directory is selected that contains an INF file.)   

After a successful device installation, when enumerating any other example 1-6 – all of which 
have the same VID/PID and, if using the same board each time, same serial number – Windows 
will see it as the same device each time, and not prompt a device installation process.   

If instead, one of the examples is subsequently run from a different piece of hardware, Windows 
will recognize the VID/PID but still prompt a device installation process.  This time, it is possible 
to select the “Recommended” button; Windows will look in the system registry and find the 
necessary information.   

When running the composite examples for the first time, Windows will see a new VID/PID.  
These examples are loaded with unique PIDs because their USB descriptors are different.  
Among other things, this is necessary because Windows stores descriptor information in the 
system registry, using the VID/PID as an index.  Windows needs a different INF file to load 
these, so it’s important to guide Windows to the INF files located in the directories for those 
examples.   



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        

158 

All of this can be a little complicated.  However, bear in mind these things: 

• For the end user installing a single CDC device, the process is quite straightforward; they’re 
only doing it once.   

• Windows Update can automate the procedure 

• A good installer can eliminate this procedure.   

• INF files are only necessary on Windows machines, and only for CDC.  On a Linux/Mac 
machine, CDC devices enumerate silently – no installation process required.  On a Windows 
machine, enumerating an HID or Mass Storage device also happens silently.   

• Even though an INF file must be distributed to the end user, the actual driver binaries are 
already in every Windows installation.   

15.2.5 General Instructions for Running Examples on a Windows PC 

For each example, open the IAR/CCS workspace, download the project, and run it.  Attach the 
hardware to a PC.  If the device contains a CDC interface, Windows will prompt for a device 
installation, as discussed in the previous section.  Follow the instructions in that section to 
complete the process.   

If the interface is CDC, then start Hyperterminal and select the appropriate COM port.  (After an 
installation, this is usually the one with the highest number.  If necessary, use the Windows 
Device Manager to identify which COM port is associated with the MSP430.)  The baudrate and 
other COM port configuration settings do not matter.   

If the interface is HID, then start the HID Demo App.  Set the VID to 0x2047 and the PID to 
0x0301 (unless otherwise indicated in the example’s instructions), and press “Set VID/PID”.  A 
value should appear in the “Serial Number” and “Interface Number” menus.  Press the “Connect” 
button to initiate a connection with the HID interface.   

When working with terminal applications like Hyperterminal, it will soon be noticed that they’re 
not very tolerant of the COM port disappearing during operation.  Because of this, the terminal 
application must close and re-open the port whenever the MSP430 program is reset while the 
port is open, or if the cable is removed, before attempting to re-connect.  There’s an order in 
which this must be done: 

• Close the terminal’s connection to the port 

• Connect the USB device to the PC; if the volume is up, Windows’ alert can be heard 
indicating that a new device has been attached 

• Now, re-open the terminal’s connection to the port 

In short, the port should not be already open while the device enumerates.  This is simply a 
symptom of using an old software mechanism (COM ports) over a new, dynamic medium (USB)   
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15.3 Example #C1:  Single-CDC; Command-Line Interface with LED On/Off/Flash 

15.3.1 Running It 

This example implements a simple command-line interface, where the command is ended by 
pressing ‘return’.  It accepts four “commands”: 

• “LED ON” 

• “LED OFF” 

• “LED TOGGLE - SLOW” 

• “LED TOGGLE – FAST” 

These commands control the LED on an MSP430 FET board.  If using other hardware that has 
an LED attached to an MSP430 I/O pin, the code can be easily changed to use that I/O.  

Some terminal applications display text locally as it’s typed.  Some, like Hyperterminal, don’t.  By 
default, this example echoes back text as it’s typed.  If using a terminal app that automatically 
echoes, the echo coming from the USB device can be eliminated by simply commenting out the 
line that does this.   

15.3.2 Implementation Comments 

This example uses the receiveDataInBuffer() construct function described in Sec. 11.8.1.  This 
function is advantageous in this application, because with a return-delimited command interface, 
there’s no way to predict the exact number of bytes from the host.  Characters are handled as 
they arrive; or if no characters arrive, this application will stay in LPM0 indefinitely.   

Because of this piece-wise approach, each newly-arrived group of characters needs to be 
concatonated to a master string, and each group is searched for a return character that indicates 
the end of the string.   

This example uses cdcSendDataWaitTilDone() to send the response data.  
cdcSendDataInBackground() could have been used as well, with no practical difference in the 
application.   

15.4 Example #C2:  Single-CDC; Receive 1K Data 

15.4.1 Running It 

This example implements a device whose only purpose is to receive a 1K chunk of data from the 
host.  It begins by prompting the user to press any key.  When the user does so, it asks for 1K of 
data.  Any data received after that point will count toward the 1K (1024 byte) goal.  When 1K has 
been received, the program thanks the user, and the process repeats.   

A text file with 1K of data is included in the example’s directory.  This can be sent from 
Hyperterminal using the “Send text file” command.  (Note that Hyperterminal and many other 
terminal applications use 1-byte packets for this function, and therefore the transfer is slow.)   



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        

160 

15.4.2 Implementation Comments 

This application receives data in two different ways.  It uses USBCDC_handleDataReceived() to 
wake up the main loop out of LPM0.  The main loop then enters a clause that prepares to 
receive 1K of data, where it simply calls USBCDC_receiveData() to begins a receive operation 
for 1024 bytes.    

Notice that execution resumes immediately after the receive operation is started, and doesn’t 
wait for it to finish.  When the operation does finish, a call to 
USBCDC_handleReceiveCompleted() will be generated.  Like USBCDC_handleDataReceived(), 
this handler sets a flag and wakes the main loop.  This time the main loop enters a clause that 
thanks the user and puts the application back in the “Press any key” state.  The operation 
repeats as before.   

15.5 Example #C3:  Single-CDC; Echo Back to Host 

15.5.1 Running It 

This application simply echoes back characters it receives from the host.  Unless the terminal 
application has a built-in echo feature turned on, typing characters into it only causes them to 
be sent; not displayed locally.  This application causes typing in Hyperterminal to feel like typing 
into any other PC application – characters get displayed.   

15.5.2 Implementation Comments 

Since there’s no predicting how many bytes will come -- or when – cdcReceiveDataInBuffer()  is 
used.  Most of the time, the application is in LPM0.  When data is received, the application 
wakes and echoes the characters back.   

15.6 Example #C4:  Single-CDC; Packet Protocol 

15.6.1 Running It 

This application emulates a simple packet protocol that receives packets like the following: 

 

Establish a connection with the device using the terminal application.  No text is initially 
displayed.  Type one digit (a number between 1-9) to enter the size value.  Then, press any set 
of keys, for a total of size times.  For example, type 3, and then type “abc”.  The application 
responds by indicating it has received the packet, and waits for another.   

Note:  This application assumes the size byte is received in a USB packet by itself.  This is what 
happens when typing text into Hyperterminal, for example.  If using a terminal application that 
gives control of this to the user, be sure to send the data separately from the size byte.   
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15.6.2 Implementation Comments 

This example begins a fixed-size receive operation for a single byte, since it’s known that all 
“packets” in this protocol start with a one-byte size field.  Then, this field is used to determine the 
size of the next fixed-size receive operation.  When that operation completes, it displays text 
indicating as such.    

15.7 Example #C5:  Single-CDC; High-Bandwidth Sending Using 
cdcSendDataWaitTilDone() 

15.7.1 Running It 

The example implements large data transfer using cdcSendDataWaitTilDone, which doesn’t 
allow execution to proceed until all the data has been sent.  It prompts for any key to be 
pressed, and when this happens, the application sends a large amount of data to the host.   

15.7.2 Implementation Comments 

At the beginning of execution, the application fills a buffer with characters that can be clearly 
displayed in the terminal application (no control characters).   

As with some of the other examples, it uses the USBCDC_handleDataReceived() event to see 
the keypress, and then rejects the data received.  This clears the USB endpoint buffer for the 
next keypress.   

cdcSendDataWaitTilDone() is used, but cdcSendDataInBackground() could easily have been 
used instead.  Indeed, in a real application, cdcSendDataInBackground() could raise efficiency 
and/or increase bandwidth.   

No timeout value is used on the sendData calls.  Because of this, if the COM port isn’t opened 
on the PC, the call to cdcSendDataWaitTilDone() will wait forever for the “Press any key” send to 
complete (or, until the bus becomes unavailable through detaching from the host or being 
suspended).   

Keep in mind all the factors that can affect bandwidth, discussed in Sec. 4.2.3.  If using 
Hyperterminal, bandwidth will be slow because it uses only a single byte per USB packet.   

15.8 Example #C6:  Single-CDC; Efficient Sending Using cdcSendDataInBackground() 

15.8.1 Running It 

The example shows how to implement efficient, high-bandwidth sending using background 
operations.  It prompts for any key to be pressed, and when this happens, the application sends 
a large amount of data to the host.   

Although this example demonstrates the technique, the bandwidth in this example will not vary 
significantly from that of cdcSendDataWaitTilDone().  This is because the example isn’t 
performing any other large operations that need CPU time, and because the bus usually isn’t 
loaded down.  Also, with many terminal applications, data is also significantly slowed by the fact 
that they don’t send/receive data using large USB packet sizes.  This increases overhead.   
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It’s recommended to review Sec. 7.2.2,  which discuss the API’s background processing.   

15.8.2 Implementation Comments 

At the beginning of execution, the application fills two buffers, bufferX and bufferY, with 
characters that can be clearly displayed in the terminal application (no control characters).   

At the beginning of the main loop, it repeatedly sends “Press any key” to the host.  In 
Hyperterminal, this appears as a fixed string.  When any data is sent from the host, the API 
makes a call to USBCDC_handleDataReceived().  The actual data received doesn’t matter; it is 
only used to start the transmission.  The event sets a flag indicating received data, and this 
changes the flow within main().  The data remains in the USB endpoint buffer until the sending is 
complete, at which point it is rejected so that the process may begin again.   

When the key is pressed, the application alternately sends bufferX and bufferY.  They’re 
alternately sent until rounds expires.   

By itself, this approach doesn’t provide any functionality that couldn’t have been accomplished 
by a single call to cdcSendDataWaitTilDone() with a buffer the size of bufferX + bufferY.  
However, other code can now be inserted into the application that will be executed 
simulatenously with the send operations, increasing efficiency.  Code flow is also more fluid with 
this approach, because execution won’t be locked up in a polling loop after the send, as would 
have happened with cdcSendDataWaitTilDone().   

15.9 Example #C7:  Single-CDC; Usb to Uart Bridge application 

15.9.1 Running It 

This example use the USB API to implement a usb to uart bridge. Basically characters received 
from uart are sent through the CDC interface to a Virtual COMPORT on the host and characters 
received through the Virtual COMPORT are sent to the uart. 

Such a bridge is useful in transmitting data received by the MSP430 from an external chip such 
as a sensor to a connected USB host. 

To run this application you will need two MSP430F5529 target boards. Load this application on 
both the boards. Connect the TXD output of one board to RXD on the other board and vice 
versa. For the MSP430F5529 target board, TXD is pin 37 and RXD is pin 38. 

This application also implements RTS/CTS flow control and the terminal application can use 
RTS to flow off the device. The application uses P1.1 for RTS and P1.2 for CTS. Please connect 
P1.1 on the 1st board to P1.2 on the 2nd board. Then connect P1.1 on 2nd board to P1.2 on first 
board. To test this flow control use a terminal application like Docklight that allows manual 
control of RTS. 

As part of the flow control implementation the application needs to set/reset the RTS pin when it 
receives the USBCDC_handleSetControlLineState event. It also needs to detect changes in 
CTS and inform the USB Stack by calling USBCDC_setCTS(). This application handles this 
using the Port 1 interrupt. 
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Now connect both boards to the same host or separate hosts. The driver for this CDC interface 
is located in the USB_config directory. Once the driver gets installed a COMPORT application 
like HyperTerminal or Docklight can be used to connect to the Virtual COMPORTs of both 
boards. Note that the COMPORT settings like baud rate have to be the same for both 
COMPORTS. Data sent through the COMPORT of one board will show up in the COMPORT of 
the other board. 

Now disconnect the two COMPORTS. Change the baud rate on both of them to some new 
value. This application supports only the following rates – 9600, 19200, 38400, 57600 and 
115200. Connect to the COMPORTS again and send data. Data sent from one COMPORT will 
be received by the other COMPORT. 

Now de-assert RTS on one COMPORT. It will stop receiving data. Assert RTS again to receive 
data. 

15.9.2 Implementation Comments 

This example uses a CDC interface which has been configured in a special way by the 
Descriptor tool.  The Descriptor tool has a checkbox named “CDC to UART Bridge” in the 
Interface View of a CDC device. When checked, three new parameters can be input – UART to 
USB DMA channel, USB to UART DMA channel and UART USCI Number.  
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The two DMA channels are now managed by the USB Application and the DMA_ISR is 
generated by the Descriptor Tool in UsbIsr.c. NOTE: If the application is using other DMA 
channels for their own purpose please edit the DMA_ISR in UsbIsr.c 

Also the Descriptor Tool limits one Bridge per application i.e. Only one CDC interface can be a 
bridge.  

The Usb to Uart DMA channel is configured to send data to the Uart TX Buffer on a per packet 
basis. When a packet is received from the host, the Usb to Uart DMA channel is configured 
depending on number of bytes received. The data is directly moved through DMA to the Uart TX 
buffer. The CPU is not involved in this transfer. The host is NAKed until the data is sent out 
through the Uart. 

The Uart to Usb DMA channel is configured to send data to the host when 16 bytes are 
received. This DMA channel will directly move data from the Uart Rx buffer to the USB endpoint 
buffers. Once 16 bytes have been moved, a CDC send operation will trigger the data to be sent 
to the host. Again the CPU is not involved in this operation. The use of ping pong buffers allows 
data to be received while transmitting to the host. Note that there is no flow control on the Uart 
side. However it is possible to have special hardware to assist in Uart flow control. 

The CDC stack includes some special functions that help setup the DMA and USCI peripherals 
and special ISRs to handle CDC data. These functions should not be directly used by the 
application. 

Also the application should not invoke any CDC APIs on a CDC interface that has been 
configured as bridge. 

15.10 Example #H1:  Single-HID; Command-Line Interface with LED On/Off/Flash 

15.10.1 Running It 

This example implements a simple command-line interface, where the command is ended by 
pressing ‘return’.  It accepts four “commands”: 

• “LED ON!” 

• “LED OFF!” 

• “LED TOGGLE – SLOW!” 

• “LED TOGGLE – FAST!” 

(Recall that when using the HID examples, a “!” character  serves the same purpose as a return 
character did in the CDC example, in terminating a string.)   

These commands, entered with the HID Demo App, control the LED on an MSP430 FET board.  
If using other hardware that has an LED attached to an MSP430 I/O pin, the code can be easily 
changed to use that I/O.  
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Some terminal applications display text locally as it’s typed.  Some, like Hyperterminal, don’t.  By 
default, this example echoes back text as it’s typed.  If using a terminal app that automatically 
echoes, the echo coming from the USB device can be eliminated by simply commenting out the 
line that does this.   

15.10.2 Implementation Comments 

This example uses the hidReceiveDataInBuffer() construct function described in Sec. 11.8.1.  
This function is advantageous in this application, because with a return-delimited command 
interface, there’s no way to predict the exact number of bytes from the host.  Characters are 
handled as they arrive; or if no characters arrive, this application will stay in LPM0 indefinitely.   

Because of this piece-wise approach, each newly-arrived group of characters needs to be 
concatonated to a master string, and each group is searched for a return character that indicates 
the end of the string.   

This example uses hidSendDataWaitTilDone() to send the response data.  
hidSendDataInBackground() could have been used as well, with no practical difference in the 
application.    

15.11 Example #H2:  Single-HID; Receive 1K Data 

15.11.1 Running It 

This example implements a device whose only purpose is to receive a 1K chunk of data from the 
host.  Establish a connection with the HID Demo App.  The program prompts the user to press 
any key.  When the user does so, it asks for 1K of data.  Any data received after that point will 
count toward the 1K (1024 byte) goal.  When 1K has been received, the program thanks the 
user, and the process repeats.   

The HID Demo App can send the full 1024 bytes at one time.  A text file with 1K characters is 
provided, which can be copied/pasted into the HID Demo App.   

15.11.2 Implementation Comments 

This application receives data in two different ways.  It uses USBHID_handleDataReceived() to 
wake up the main loop out of LPM0.  The main loop then enters a clause that prepares to 
receive 1K of data, where it simply calls USBHID_receiveData to begin a receive operation for 
1024 bytes.    

Notice that execution resumes immediately after the receive operation is started, and doesn’t 
wait for it to finish.  When the operation does finish, a call to 
USBHID_handleReceiveCompleted() will be generated.  Like USBHID_handleDataReceived(), 
this handler sets a flag and wakes the main loop.  This time the main loop enters a clause that 
thanks the user and puts the application back in the “Press any key” state.  The operation 
repeats as before.   
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15.12 Example #H3:  Single-HID; Echo Back to Host 

15.12.1 Running It 

This application simply echoes back characters it receives from the host.  Establish a 
connection with the HID Demo App, and begin sending data.   

15.12.2 Implementation Comments 

Since there’s no predicting how many bytes will come -- or when – hidReceiveDataInBuffer()  is 
used.  Most of the time, the application is in LPM0.  When data is received, the application 
wakes and echoes the characters back.   

15.13 Example #H4:  Single-HID; Packet Protocol 

15.13.1 Running It 

This application emulates a simple packet protocol that receives packets like the following: 

 

Establish a connection with the HID Demo App.  No text is initially displayed.  Send a single 
digit, a number between 1-9.  Then, send that number of bytes.  For example, send ‘3’, and then 
send “abc”.  The application responds by indicating it has received the packet, and waits for 
another.   

Note:  the way this application is written, it assumes the size byte is received in a packet by 
itself, with no data behind it.  It won’t work to send “3abc” in a single transmission.   

15.13.2 Implementation Comments 

This example begins a fixed-size receive operation for a single byte, since it’s known that all 
“packets” in this protocol start with a one-byte size field.  Then, this field is used to determine the 
size of the next fixed-size receive operation.  When that operation completes, it displays text 
indicating as such.    

15.14 Example #H5:  Single-HID; High-Bandwidth Sending Using 
hidSendDataWaitTilDone() 

15.14.1 Running It 

The example implements large data transfer using hidSendDataWaitTilDone, which doesn’t 
allow execution to proceed until all the data has been sent.  It prompts for any key to be 
pressed, and when this happens, the application sends a large amount of data to the host.   
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15.14.2 Implementation Comments 

At the beginning of execution, the application fills a buffer with characters that can be clearly 
displayed in the HID Demo App (no control characters).   

As with some of the other examples, it uses the USBHID_handleDataReceived() event to see 
the keypress, and then rejects the data received.  This clears the USB endpoint buffer for the 
next keypress.   

No timeouts are used on the sendData calls.  Because of this, if the host application doesn’t 
establish a connection with the device and begin polling for data, the call to 
hidSendDataWaitTilDone() will wait forever for the “Press any key” send to complete.   

Because HID uses USB’s interrupt transfer type, the datarate is very predictable and not 
affected by a loaded bus or busy host.  Using the HID datapipe interface, 62 bytes of data are 
transferred every USB frame (every 1ms), which makes the datarate a consistent 62KB/sec.  
This is in contrast to the CDC protocol, which uses bulk transfers; bulk has the capacity to be 
much faster than interrupt transfers, and most of the time it is.  However, since any traffic on the 
bus or loading on the host can delay bulk transfers, the bandwidth is potentially variable, and 
has the capacity to be stalled for long periods of time.   

15.15 Example #H6:  Single-HID; Efficient Sending Using hidSendDataInBackground() 

15.15.1 Running It 

The example shows how to implement efficient sending using background operations.  It 
prompts for any key to be pressed, and when this happens, the application sends a large 
amount of data to the host.   

Although this example demonstrates the technique, the bandwidth in this example will not vary 
significantly from when hidSendDataWaitTilDone() is used.  This is because the example isn’t 
performing any other large operations that need CPU time, and because HID isn’t susceptible to 
delays resulting from a loaded bus.   

It’s recommended to review Sec. 7.2.2,  which discuss the API’s background processing.   

15.15.2 Implementation Comments 

At the beginning of execution, the application fills two buffers, bufferX and bufferY, with 
characters that can be clearly displayed in the HID Demo App.   

At the beginning of the main loop, it repeatedly sends “Press any key” to the host.  When any 
data is sent from the host, the API makes a call to USBHID_handleDataReceived().  The actual 
data received doesn’t matter; it is only used to start the transmission.  The event sets a flag 
indicating received data, and this changes the flow within main().  The data remains in the USB 
endpoint buffer until the sending is complete, at which point it is rejected so that the process 
may begin again.    

When the key is pressed, the application alternately sends bufferX and bufferY.  They’re 
alternately sent until rounds expires.   
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By itself, this approach doesn’t provide any functionality that couldn’t have been accomplished 
by a single call to hidSendDataWaitTilDone() with a buffer the size of bufferX + bufferY.  
However, other code can now be inserted into the application that will be executed 
simulatenously with the send operations, increasing efficiency.  Code flow is also more fluid with 
this approach, because execution won’t be locked up in a polling loop after the send, as would 
have happened with hidSendDataWaitTilDone().   

   

15.16 Example #H7:  Traditional Single-HID (Mouse); Sending/Receiving Reports 

15.16.1 Running It 

This example functions as a mouse on the host.  It causes the mouse pointer to move in a 
circular pattern on the screen.  Simply build and run the example.  To re-gain control of the 
mouse, unplug USB.   

Unlike the HID-Datapipe examples, this one does not communicate with the HID Demo 
Application.  In HID-Traditional applications, the host operating system acts as the “application”, 
rather than a user-created application running on that host.  Further, the HID Demo App is 
designed for HID-Datapipe communication, not for custom HID reports.   

15.16.2 Implementation Comments 

The application begins by configuring the timer for interrupts to occur with a period of 
approximately 1/60 second.  During USB enumeration, the main loop spends most of its time in 
LPM0.  The timer interrupts prompt it to send a report to the host containing mouse data, prior to 
returning to sleep.   

A custom report descriptor is defined in descriptors.c.  Windows recognizes certain things about 
this report descriptor; it sees a top-level collection of type “Generic Desktop”, and a usage of 
“Mouse”.  When it sees this, it assumes ownership of the device, interpreting the reports as 
mouse data for the pointer.   

The example was written for FET target boards, which don’t have a motion sensor.  Therefore, 
the motion data is fabricated, using a lookup table.  The lookup table is stored in flash, and an 
index rotates through the table.  The data in the table contains data producing a circular motion.   

When the timer interrupt occurs, the ISR sets a flag and keeps the CPU awake after the ISR 
returns.  This allows execution to resume from the LPM0 entry in main().  The flag is evaluated, 
and the report is built and sent.  There isn’t much need to check the return value from 
USBHID_sendReport(); this is because mouse data is soon outdated and will soon be replaced.  
If a report somehow fails to be sent, the application will soon be sending another one.  Thus the 
application doesn’t wait for report to get sent.   

With HID-Traditional function calls, the software designer is responsible for everything related to 
the report format.  This includes creating the report descriptor in descriptors.c (must be pasted in 
after the Descriptor Tool is run), and it also includes building reports that match the report 
descriptor.  With HID-Datapipe, these things aren’t necessary.     
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15.17 Example #H8:  Traditional Single-HID (Keyboard); Sending/Receiving Reports 

15.17.1 Running It 

This example functions as a keyboard on the host.  It’s designed to run on a FET target board.  
Once enumerated, pressing one of the target board’s buttons causes a string of six characters – 
“msp430” -- to be “typed” at the PC’s cursor, wherever that cursor is.  If the other button is held 
down while this happens, it acts as a shift key, causing the characters to become “MSP$#)”.    

Unlike the HID-Datapipe examples, this one does not communicate with the HID Demo 
Application.  In HID-Traditional applications, the host operating system acts as the “application”, 
rather than a user-created application running on that host.  Further, the HID Demo App is 
designed for HID-Datapipe communication, not for custom HID reports.   

15.17.2 Implementation Comments 

A custom report descriptor is defined in descriptors.c.  Windows recognizes certain things about 
this report descriptor; it sees a top-level collection of type “Generic Desktop”, and a usage of 
“Keyboard”.  When it sees this, it assumes ownership of the device, interpreting the reports as 
mouse data for the pointer.   

With HID-Traditional function calls, the software designer is responsible for everything related to 
the report format.  This includes creating the report descriptor in descriptors.c (must be pasted in 
after the Descriptor Tool is run), and it also includes building reports that match the report 
descriptor.     

15.18 Example #M1:  Single-LUN; File System Emulation 

This example demonstrates usage in which there is no file system software.  Instead, a FAT 
volume is “emulated”.  Also, the entire contents of the volume are not stored inside the MSP430 
flash; only ten blocks (512 x 10 = 5K) are emulated, including the Master Boot Record, File 
Allocation Table, and Root Directory.   

Although the elimination of file system software has advantages (cost and less code space), and 
not having to store the entire volume saves a large amount of data space, this technique has 
limitations.  Only a single file is supported (although it could probably be adapted to more).  Also, 
care must be taken so that the end user doesn’t do something to disrupt the volume.  For 
example,  the root directory might need to be made write-protected so that the user can’t add 
additional files.   

The reason this example is useful is that it supports a common usage model:  using mass 
storage as a simple data exchange interface with the host.  For example, the MCU application 
can log data gathered during normal operation into the file in storage; and then when attached to 
a host, the host can read it.  The same can work in reverse.   

15.18.1 Running It 

This example shows a data logging application like the one described above.  It is specifically 
designed to operate on a FET target board, but can also work with other hardware.   
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Since  part of the functionality is the logging of data when not attached to USB, be sure to power 
the board from a non-USB source (such as the FET programming tool).  Build and run the 
example, and without enumerating the device, press the S1 button several times.  Each press 
simulates another entry of “data” into the data log file.   

Then enumerate the device.  Open “My Computer”; a volume should appear entitled 
“Removable Disk”.  Open the volume.  There should be only one file in it:  a text file entitled 
data_log.txt.  Open this file using Windows’ Notepad application.  Several entries should be 
found there, one for each button press.  Changes can be made and saved from Notepad as well.   

If you don’t press S1 but rather simply enumerate the device, some default text appears in the 
file.   

15.18.2 Implementation Comments 

As described at the beginning of this section, this example saves memory space and the cost of 
a file system, at the expense of only supporting one (or a few) file(s), and the extra effort to 
ensure the user can’t disrupt the system through unintended actions.   

The storage volume data (in UsbMscUserData.c) is a system in itself.  It is recommended to be 
very familiar with storage volumes before making significant changes.  Having said this, there 
are a couple areas that can be fairly easily changed: 

One is the short filename in the root directory (Root_Dir[]).  This allows some flexibility in how 
the file gets presented to the host.   

Another is the file attributes immediately beneath the filename in the root directory.  With this, 
the file can be marked as ‘hidden’, ‘read-only’, etc.  These attributes might be useful in hiding the 
file from the end user (while still be accessible to a custom application that knows what file to 
look for).   

Finally, the data block itself  (Data[]) can be modified.  The data logging code in main() modifies 
this block.   

The Master Boot Record (MBR[]),file allocation table (FAT[]), and root directory (Root_Dir[]) are 
stored in flash.  Only the data block (Data[]) is stored in RAM.  Since the intent is to prevent the 
host from adding files, there is no real need for it to be able to write to the root directory.  Since 
the file is intended to not grow larger than one cluster, there is no real need to write to the FAT.  
(Since the volume data indicates two blocks per cluster, a second data block could be added, 
i.e. Data1[] and Data2[], without having to adjust the FAT.) 

15.19 Example #M2:  SD-Card Reader 

This example demonstrates usage of the API with file system-software.  It includes a port of the 
open-source “FatFs” software for the FAT file system.   

This example requires hardware with an SD-card interface, and is specifically designed to run on 
the F5529 Experimenter’s Board, available from TI’s eStore.   
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When run on the F5529 Experimenter’s Board, this example implements a fully-functional SD-
Card reader.  It detects (and tolerates) live insertion and removal of the SD-Card, recovering 
gracefully.  It’s been tested on Windows XP/Vista/7, the Mac OS, and Ubuntu Linux.  Although 
it’s only been tested with the Experimenter’s Board’s “micro” SD-Card port, it should work with 
other forms of SD-Card as well.  It works with “high-capacity” cards, as well as previous, smaller 
cards.   

If adapting the example to other hardware, please note that some software adaptations were 
made with regards to detection of the SD-Card.  The Experimenter’s Board doesn’t include the 
usual circuitry to detect insertion/removal with an I/O.  Therefore, a software method was 
employed, described below.  On alternative hardware, the hardware-based method might be 
desired.   

15.19.1 Running It 

Simply plug into the USB host.   It should enumerate as a storage device, and the storage 
volume should be mounted on the system.  On Windows, this means the volume will appear in 
“My Computer”.  If a card is present in the hardware, then the volume can be opened.  If no card 
is present, then attempting to open it will probably result in a warning that no media is present.  
Insert one, and then re-attempt opening the volume.   

After opening the volume, files can be written to the volume and read from it, as with any storage 
volume.   

The speed of the file transfer is limited by the speed of the SD-Card interface, which is 
implemented using SPI as opposed to the parallel SD interface.  The MSC API implements a 
double-buffering feature, essentially multitasking the USB and media sides of the transfer which 
mitigates this problem. See the M4 example for details.  

15.19.2 Implementation Comments 

USBMSC_config sets up this device as having removable media, since the SD-Card can be 
removed.  This device has only a single-LUN, which is the SD-Card interface.  As with all 
applications using this version of the MSC API, it only supports a Peripheral Device Type (PDT) 
of 0x00, which indicates “direct-access block device”.  This includes all devices based on 
magnetic or flash-based media.   

A static buffer RWBuf is allotted for transferring data between the application and host.  This will 
be used every time the API requests the application to “process” a buffer.  
USBMSC_registerBufInfo() is used to register this buffer with the API.   

A pointer to a structure USBMSC_RWbuf_Info, named *RWbuf_info, is created.  This structure 
is used as an exchange for information related to buffer requests.  The application will later poll 
the operation field of this structure to determine if a buffer has been requested.  Unlike the 
buffer, this structure instance is allocated within the API, and the pointer is passed back to the 
application using USBMSC_fetchInfoStruct().  The reason the buffer is allocated in the 
application is because it’s relatively large, and this allows the application to dynamically de-
allocate it when it’s not needed for USB.   

One of the first thing the code does is inform the API of the initial state of the media.  It uses 
FatFs calls to learn this state, and then calls USBMSC_updateMediaInfo() to inform the API.   
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Detection of the SD-Card is usually done with an I/O.  The card has a pullup on one of the 
interface lines, and this pullup can be detected with an I/O pin.  The F5529 Experimenter’s 
Board doesn’t have this I/O connection, so this method wasn’t possible.  Instead, a new function 
detectCard() was added to FatFs, which employs a software algorithm to determine if the card is 
present or not.  This call is then called from the application once every second.   

Therefore, early in the application, the timer is configured to generate an interrupt once every 
second.  This is usually fast enough to detect the user inserting/removing the card.   

Within the main loop’s ST_ENUM_ACTIVE branch, USBMSC_poll() is called.  If no 
READ/WRITE operation is in work, the CPU goes into LPM0.  If an operation is active, however, 
the return value will keep the main loop awake.  it will check the operation field of RWbuf_info, 
and find a value indicating whether it’s a read or write.  This marks the beginning of the “buffer 
operation”.  The application performs the buffer operation by making appropriate calls to FatFs, 
to access the SD-Card.   

Return values from these FatFs calls are then used to assign a status code to return to the API.  
The application then calls USBMSC_bufferProcessed() to inform the API that the buffer has 
been fully processed, including the return code.  This marks the end of the buffer operation.  
Based on the return code, the API will handle any necessary interaction with the host.   

Note that the application has no awareness of specific SCSI operations.  All it is aware of is that 
the API occasionally asks it to access the media.  Through this, it is somewhat aware that a 
READ or WRITE command has been issued from the host.  But these commands may generate 
mutiple buffer operations, and the application doesn’t need to know “where” within that 
READ/WRITE command the buffer request lies.  It simply processes buffers.   

15.20 Example #M3:  Multiple LUNs 

This example demonstrates the implements of two logical units (LUNs).  It causes two volumes 
to mount on the host.  It is essentially the combination of #M1 (file system emulation) and #M2 
(SD-card).   

Like #M2, this example requires hardware with an SD-card interface, and is specifically 
designed to run on the F5529 Experimenter’s Board, available from TI’s eStore.   

Because of the example’s similarity to #M1 and #M2, please reference the sections above for 
those examples regarding its usage.   

15.20.1 Running It 

Simply plug into the USB host.   It should enumerate as a storage device, with two storage 
volumes mounted on the system.  On Windows, this means two volumes will appear in “My 
Computer”.   

Again, please reference the sections for examples #M1 and #M2.     
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15.20.2 Implementation Comments 

The number of LUNs is set by the Descriptor Tool.  Once this is done, the application must 
configure USBMSC_config in such a way that it includes information for the number of LUNs 
selected within the Tool.  The information for each LUN is the same as it has been for other 
MSC examples.   

Both LUNs are set  up as removable media.  The reason for the file-system-emulation volume 
requiring this is unique to the volume this example chose to emulate; the example doesn’t work 
properly if configured as non-removeable.  The reason the SD-card volume is marked as 
removable is because the media in fact is removable.   

As with all applications using this version of the MSC API, it only supports a Peripheral Device 
Type (PDT) of 0x00, which indicates “direct-access block device”.  This includes all devices 
based on magnetic or flash-based media.   

Unlike the other examples, this application’s handling of buffer operations checks the lun field of 
the USBMSC_RWBuf_Info structure.  Obviously, the file system emulation volume (which uses 
no file system software) is handled much differently than the SD-card (which is accessed 
through the FatFs file system software).   

Since there can be only one MSC interface in a device implemented by this API, it is assured 
that only one SCSI command can be received from the host at a time, and thus only one buffer 
operation can be active at a time.  This simplifies the application’s handling of buffer operations.   

15.21 Example #M4:  Double Buffering 

This example is the same as the M2 example but uses double buffering. The application 
specifies two buffers when it calls USBMSC_registerBufInfo(). Both buffers need to be the same 
size. The double buffering improves MSC performance.  

As with M2 Example, this example requires hardware with an SD-card interface, and is 
specifically designed to run on the F5529 Experimenter’s Board, available from TI’s eStore.  

15.21.1 Running it 

Simply plug into the USB host.   It should enumerate as a storage device, and the storage 
volume should be mounted on the system.  On Windows, this means the volume will appear in 
“My Computer”.  If a card is present in the hardware, then the volume can be opened.  If no card 
is present, then attempting to open it will probably result in a warning that no media is present.  
Insert one, and then re-attempt opening the volume.   

After opening the volume, files can be written to the volume and read from it, as with any storage 
volume.   

The speed of the file transfer is limited by the speed of the SD-Card interface, which is 
implemented using SPI as opposed to the parallel SD interface.   

15.21.2 Implementation Comments 

Please read Implementation Comments for the M2 Example as it applies to the M4 example as 
well. 
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In the M4 example the USB API tries to keep both the host and the SD-Card busy. When the 
host initiates a READ operation the API will ask the application to fill the two available buffers 
one after the other by setting fields in RWBuf.. When the first buffer is filled by the application, 
the API will immediately start a transfer to the host. The API keeps track of whether application 
is done processing buffer to make a full buffer available to the host as soon as possible.  

When the host initiates a WRITE operation, the API will make available both buffers for the host 
to fill. When the first buffer is filled by the host, the API will set fields in RWBuf to indicate a 
WRITE operation. The API keeps track of whether application is done processing buffer to make 
an empty buffer available to the host as soon as possible. 

In the ideal case both interfaces will be busy. However we do see that in most cases we are 
limited by the speed of the SPI interface. 

15.22 Example #M5: CD File System using Virtual FatFS Mount 

15.22.1 Running It 

This application shows an example of how to use the CD-ROM support of the USB API. In this 
example, the SD storage card is used as the storage medium however this can be expanded to 
adapt for a different storage destination.  

This example consists of two different parts: an application to copy over an ISO image file to a 
FAT file system and an example which will virtually "mount" the ISO and make the storage 
device visible as a CD-ROM drive. A common use case for this functionality would be for users 
who want to implement an auto running installer on their USB device.  In this example, the SCSI 
MMC commands are utilized. 

Once you download the M5_Example-FatFS application to your device, a normal removable 
mass storage device will be reported to the host. On this device, format the device with a 
generic FAT file system. On this file system copy a single file named mount.iso in the root 
directory. This ISO file should be in a generic ISO 9660 CDFS format. 

After the ISO file is on the FAT file system, download the M5_Example-CDFS application to your 
device. Once downloaded and plugged into the host, the application will show up as a generic 
CD-ROM device with the mount.iso file. If any autorun information is present in the ISO file, the 
host will take the appropriate actions. If the mount.iso file is not found by the application, an 
empty CD-ROM device will be reported to the host. 

15.22.2 Implementation Comments 

The first part of this example (M5_Exampled-FatFS) is implemented identically as M2_Example. 
Having a FatFS volume is simply a way for the user to mount the ISO file without the need for a 
host application.  

The second part of this application (M5_Example-CDFS) is implemented slightly differently. 
Before the main loop of the application is executed a call to the FatFS library is made to open 
the FAT file system contained on LUN 0. Once the file system is open, a call is made to the 
FatFS API to open the mount.iso file contained in the root of the file system. If the file does not 
exist, the CD-ROM drive is reported as empty to the host. 
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With the ISO file open, whenever a read occurs a FatFS read call is performed on the mount.iso 
file. LBA addresses and offsets in the ISO file are calculated and generated on-the-fly. Write 
occurs are not supported as CD-ROM devices are write-protected.  

15.23 Example #CH1:  Composite CDC+HID Device; Communicate Between Terminal 
and HID Demo App 

15.23.1 Running It 

This application shows a composite device consisting of a CDC and HID interface.  To run it, an 
application called the MSP430 HID Demo App.exe is provided.  Its function is similar to a 
terminal application, but it interfaces via HID instead of a COM port.  In this example, a terminal 
application is used to communicate with the CDC interface, and the HID Demo App is used to 
communicate with the HID interface.  The MSP430 application echos data between the 
interfaces.   

Run the example and enumerate the device.  As with the first time running one of the previous 
examples, Windows will generate a “Found New Hardware” box, initiating the device installation 
process.  It’s important that the correct INF file be used, because the PID for this example is 
different than previous PIDs.  As with all the examples, an INF file is provided in the same 
directory.  Be sure to use this INF for this example.   

When the installation is complete, run Hyperterminal (or another terminal application), and open 
the proper COM port, as with the previous examples.  Then also run the program MSP430 HID 
Demo App.exe.  Set the VID to 0x2047 and the PID to 0x0302, and press “Set VID/PID”.  A 
value should appear in the “Serial Number” and “Interface Number” menus.  Press the “Connect” 
button to initiate a connection with the HID interface.   

Typing characters into the terminal application will cause them to appear in the HID Demo App, 
and vice versa.   

The value that appears in the “Serial Number” menu originates in the MSP430 device when it’s 
produced.  Each physical MSP430 manufactured contains a unique die ID value.  If the 
Descriptor Tool is configured to enable serial number reporting, the API automatically pulls this 
die ID and uses it to generate a unique serial number for this device.  This value appears in this 
menu.   

If the “Serial Number” and “Interface Number” fields don’t populate after pressing “Set VID/PID”, 
the device may not have enumerated  properly.  Check the Device Manager for a device listed 
under “Human Interface Devices”.  Open “Properties”, and look in the “Details” tab.  A string that 
includes the aforementioned VID/PID values should be present.   

If this particular VID/PID pair has ever been associated with any other interface configuration on 
this machine (for example, CDC only), Windows may be confused about what this device is.  Try 
changing the PID, by going into descriptors.h and changing the PID value to something new.  
Re-compile the code, and re-enumerate the device.  Then change the PID value in the HID 
Demo App to match.   



 

 Programmer's Guide:  MSP430 USB API Stack for CDC/PHDC/HID/MSC v3_20_00                        

176 

15.23.2 Implementation Comments 

The active-enumerated portion of the main loop consists mostly of two blocks which evaluate 
flags set by USBHID_handleDataReceived() and USBCDC_handleDataReceived(), respectively.  
When any data is received, it’s echoed onto the other interface.   

CDC and HID are handled somewhat differently because of differences in the way that 
Hyperterminal and the HID Demo App send data.  The HID Demo App sends data in one action 
when the ‘send’ button is pressed (whether or not it includes return characters).  Hyperterminal 
sends data as it’s typed, and the string is return-delimited.  If a terminal application is used that 
handles this in the same way as the HID Demo App, different behavior will be seen.  This could 
be resolved by altering the CDC code to look just like the HID code, but inverting the CDC and 
HID calls/flags.  (The CDC calls and the corresponding HID datapipe calls function almost 
identically, allowing easy migration between the two.)   

15.24 Example #CC1:  Composite CDC+ CDC Device; Communicate Between Two 
Terminal Apps 

15.24.1 Running It 

This application is just like the preceding one, except it shows a composite CDC+CDC device.   
Two instances of a terminal application are opened, each opening a COM port associated with a 
different CDC interface in this device.  The MSP430 application echos data between the two 
interfaces.   

Run the example and enumerate the device.  Unlike previous example, there should be two 
device installation procedures, since there are two CDC interfaces.  Once again, it’s important to 
use the INF file provided in this example’s directory.  This is because the PID is once again 
different than the other examples, and equally important is that the USB interface set has 
changed.  This INF contains the necessary information for having two CDC interfaces.  (See 
Sec. 15.2.4 for more information about how Windows handles INF files.)   

Once the device installation procedures are finished, two new COM ports should be present on 
the system.  Run Hyperterminal or another terminal application, and open one of these COM 
ports.  Run a second instance of this application, and open the other new COM port.   

Once both ports are opened, sending characters from one instance of the terminal application 
(and pressing return) will cause them to appear in the other, and vice versa.   

15.24.2 Implementation Comments 

This example is written almost exactly like #CH1, except using CDC for both interfaces.  The 
code for each interface is exactly the same, except for using intfNum values of 0 versus 1.   
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15.25 Example #HH1:  Composite HID+HID Device; Communicate Between Two HID 
Demo App Instances 

15.25.1 Running It 

This application is just like the preceding ones, except it shows a composite HID+HID device.   
Run the example and enumerate the device.  Since both interfaces are HID, there will be no 
“Found New Hardware” boxes – both interfaces will load silently.   

Run two instances of the MSP430 HID Demo App.exe application.  Set the VID in each one to 
0x2047, and the PID to 0x0314.  Press “Set VID/PID” in each instance’s window.  After a few 
seconds, a value should appear in the “Serial Number” menu, and “HID0” should appear in the 
“Interface” menu, of both windows.  In one of the windows, select interface “HID1” instead.  Then 
press the “Connect” button in each instance window, to initiate connections with the HID 
interfaces.   

Now, type text into one window and press “Send”; the data appears in the other window, being 
echoed by the MSP430 from one interface  to the other.   

15.25.2 Implementation Comments 

Once again, this example is written almost exactly like #CH1, except using HID for both 
interfaces.  The code for each interface is almost exactly the same.   

 

15.26 Example #CHM1:  Composite CDC+HID+MSC Device; Communicate Between 
Communicate Between Terminal and HID Demo App, with Two Storage Volumes 

This example is essentially a combination of the #CH1 and #M3 examples.  It combines 
interfaces from all three device classes (CDC/HID/MSC), while making the MSC multiple-LUN.  

Reference the commentary for #CH1 and #M3 for more information.   

15.27 Example #CHM2_SYSBIOS_tasks_example:  Composite CDC+HID+MSC Device; 
CDC and HID both echo. MSC has a single LUN. 

This example shows the use of SYSBIOS RTOS with the USB API. This example has one CDC, 
one HID and an MSC interface 

This application has three SYSBIOS tasks – cdc0Task, hid0Task and lun0Task. The cdc0Task 
manages the CDC interface and implements a simple echo. The hid0Task manages the HID 
interface and implements a simple echo. The lun0Task manages a File System Emulation drive. 
Each of these tasks start up and pend on semaphores. When data is received on any interface 
the responsible task is made ready to run by a Semaphore_post() call from within the USB event 
handlers. 

This example also uses an idle background function myIdleFxn to check the USB connection 
state and enters a low power mode when needed. The USBMSC_poll() function is also called as 
part of this idle thread. Please read Section 14.1 for more information. 
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This application can easily be modified to have multiple CDC and HID interfaces or an MSC with 
multiple LUNs. 

 

15.28 Example #CHM3_SYSBIOS_swis_example:  Composite CDC+HID+MSC Device; 
CDC and HID both echo. MSC has a single LUN. 

This example shows the use of SYSBIOS RTOS with the USB API. This example has one CDC, 
one HID and an MSC interface 

This application has three SYSBIOS swis – cdc0swi, hid0Swi and lun0Swi. The cdc0Swi 
manages the CDC interface and implements a simple echo. The hid0TSwi manages the HID 
interface and implements a simple echo. The lun0Swi manages a File System Emulation drive.  

When data is received on any interface the responsible Swi is made ready to run by a 
Swi_post() call from within the USB event handlers. 

This example also uses an idle background function myIdleFxn to check the USB connection 
state and enters a low power mode when needed. The USBMSC_poll() function is also called as 
part of this idle thread. Please read Section 14.1 for more information. 

This application can easily be modified to have multiple CDC and HID interfaces or an MSC with 
multiple LUNs. 
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16 For More Information 

MSP430 landing pages: 

• MSP430 USB landing page (http://www.ti.com/msp430usb)  

• Check here for all MSP430 USB software, tools, and datasheets 

• MSP430 landing page (http://www.ti.com/msp430)  

• Check here for general MSP430 documentation and software 

• Product pages for individual USB-equipped MSP430 devices 

• Check here for information specific to a given MSP430 device derivative 

• From any page on http://www.ti.com, enter the device number in the ‘device search’ field) 

 

Documentation for MSP430 hardware architecture, including the USB module: 

• MSP430F5xx User’s Guide (http://www.ti.com/msp430) 

 

Datasheets for specific USB-equipped MSP430 devices, including device-specific information and 
parametric data: 

• MSP430F5529 datasheet (http://www.ti.com/lit/gpn/msp430f5529) 

• MSP430F550x datasheet (http://www.ti.com/lit/gpn/msp430f5510)  

• MSP430F563x datasheet (http://www.ti.com/lit/gpn/msp430f5638) 

• MSP430F663x datasheet (http://www.ti.com/lit/gpn/msp430f6638) 

 

USB specifications: 

• USB 3.0 specification (http://www.usb.org/developers/docs/) 

• Communications Device Class specification  and PSTN Subclass specification 
(http://www.usb.org/developers/devclass_docs#approved) 

• Device Class Definition for Human Interface Devices (v1.11) 
(http://www.usb.org/developers/devclass_docs#approved) 
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17 References 

• Starting a USB Design with MSP430 MCUs (http://www.ti.com/msp430usb) 

• MSP430 Software Coding Techniques (slaa294)  

• USB 3.0 specification (http://www.usb.org/developers/docs/) 

• Communications Device Class specification  and PSTN Subclass specification 
(http://www.usb.org/developers/devclass_docs#approved) 

• Device Class Definition for Human Interface Devices (v1.11) 
(http://www.usb.org/developers/devclass_docs#approved) 
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Appendix A. Configuration Constants 

Various aspects of the API are controlled with configuration constants defined in descriptors.h.  
They are intended to be controlled with the Descriptor Tool, but they are also documented here.  
They are compile-time values that do not change during operation.   

Table 68. USB-Specific Configuration Constants 

Constant Description 

USB_VID Four-digit hex value reflecting the USB vendor ID, as assigned by the USB-IF.   

USB_PID Four-digit hex value reflecting this device’s product ID, as assigned by the OEM.   

USB_STR_INDEX_SERNUM Indicates the index of the string descriptor that contains the serial number string.  For 
information regarding the tradeoffs of reporting a serial number, see the Descriptor 
Tool’s help pane.   

If this value is non-zero, then a string descriptor must be located at that index.  If no 
serial number is desired, this index should be assigned a value of 0.   

USB_SUPPORT_REM_WAKE Controls whether the remote wakeup feature is supported by this device.  A value of 
0x20 indicates that it is supported.  A value of zero indicates remote wakeup is not 
supported.  Other values are undefined and could result in unpredictable behavior.   

USB_SUPPORT_SELF_POWERED If the device is self-powered to any degree, this constant should be set to 0x40 (default 
value).  If it is fully bus-powered while attached to the host, it should be set to 0x00.   

USB_MAX_POWER This is the value to be reported in the bMaxPower  field of the configuration descriptor.  
The maximum amount of current the device will draw from the host, in mA, is the value 
of USB_MAX_POWER times two.  (a value of 50 = 100mA).   

USB_NUM_CONFIGURATIONS The current version of the API restricts this value to 1.   

USB_DMA_CHAN Selects the DMA channel to be used for USB operations.  Must reflect a channel that is 
implemented in the chosen MSP430 derivative.  0x00 for ch. 0, 0x01 for ch. 1, up to 
0x07 for ch. 7.  If no DMA channel is to be used, rather relying on CPU transfers, set 
this to 0xFF.   

USB_PLL_XT This selects the high-speed oscillator used to source the PLL.  It must have a value of 
either 1 (for XT1) or 2 (for XT2).  All current MSP430 USB devices use XT2. 

USB_DISABLE_XT_SUSPEND If non-zero, then the API will disable the oscillator indicated by USB_PLL_XT in 
response to a USB suspend.  If zero, then a USB suspend will not affect the oscillator.  
USB_resume() will always restore the oscillator in either case.   

USB_MCLK_FREQ The MCLK frequency while USB is operating, in Hz.  (12500000 = 12.5MHz)  The API 
uses this only to determine delays during startup of the USB module; it does not 
configure MCLK.  This must be done outside the application.  If MCLK isn’t always the 
same speed during operation, this constant should reflect the highest value ever in use.   

VER_FW_H / VER_FW_L The high and low bytes of the device release number, which is reported in the 
bcdDevice field of the device descriptor.  As the name implies, the values are binary-
coded decimal.   

Table 69. Interface-Specific Configuration Constants 

Constant Description 

MAX_PACKET_SIZE  

 

The size of packets used to exchange serial data over USB for CDC.  
Larger packets are generally more efficient when transceiving large 
chunks of data.  Must be set to 64.   

USBHID_POLL_INTERVAL Interval at which the host will poll this device for HID reports.  Can be 
1 to 255.  By default, it is 1, which maximizes throughput.   

MSC_MAX_LUN_NUMBER The number of LUNs in an MSC interface, minus one.  (0 means 
there is one LUN, 1 means two LUNs, etc.)   
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Appendix B. Supported SCSI Commands 

The MSC API automatically handles all SCSI commands required to function with the target host 
operating systems, based on information it receives from the application.  The list of SCSI commands 
includes:     

• INQUIRY 

• REQUEST SENSE 

• TEST UNIT READY 

• READ 

• WRITE 

• READ CAPACITY 

• MODE SENSE 

• REPORT LUNS 
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Appendix C. Non-composite support for multiple interfaces 
 

The USB API supports multiple interfaces with a single active interface. This is different from a 

composite device where all defined interfaces are active. 

C.1 Descriptor Tool changes 
Use the following steps to create a non-composite device with support for multiple interfaces. 

 

1. Add interfaces using the CDC, HID, MSC and PHDC add buttons. Note that for non-composite 

mode multiple interfaces of the same type are not allowed.  

 

 
 

2.  Click on Device View and select “No composite Device”. This will cause the descriptor tool to 

generate independent descriptors for the interfaces added. Note that the VID/PID fields get grayed 

out in the Device View. 
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3. Visit the Interface View for each interface and enter VID, PID and index values. The index 

value will be used by the application when calling USB_switchInterface() (described in the next 

section). The descriptor tool will generate #defines to help application. The interface with index 

0 is the default interface. 
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C.2 USB_switchInterface() 

Description   

A new API has been added to allow the application to switch between interfaces in the non-
composite mode. This API is only available when the corresponding checkbox is selected in the 
descriptor tool. 

This API takes a single parameter, an interfaceIndex. The generated descriptor.h file will contain 
#defines that can be used. (e.g  CDC_INTERFACE_INDEX).  

The API returns TRUE for success and FALSE for failure. 

IMPORTANT: This API can only be called at startup before a call to USB_init() or after a call to 
USB_disconnect(). See examples below. 

This API will switch the active interface such that upon re-connecting to the host the device will 
enumerate as the chosen interface. 

Example code 1 – calling API at startup 

USB_switchInterface(CDC_INTERFACE_INDEX); 

USB_Init(); 

Example code 2 – calling API I active mode 

USB_disconnect(); 

USB_switchInterface(PHDC_INTERFACE_INDEX); 

USB_reset(); 

USB_connect(); 

Parameters 

Table 70. Parameters for USB_switchInterface 

interfaceIndex passed in Index value for active interface 

Returns TRUE for success and FALSE for failure. 

 

C.3 Use cases for this non-composite mode. 
 

1. At startup the USB application can determine the active interface based on an external input (e.g GPIO pin) and call 

USB_swithInterface() to set the active interface. Upon connection to the host, the device will enumerate as the selected 

interface. 
2. It is also possible that the device enumerates as one interface (e.g CDC) and then based on user input, the application 

can call USB APIs to disconnect, switch and connect again as another interface. 


