Tl Information—Selective Disclosure

I3 TEXAS

INSTRUMENTS

MSP430® Peripheral Driver Library for FR57xx
Devices

USER’S GUIDE

Copyright © 2012 Texas Instruments Incorporated.

Copyright

Copyright © 2012 Texas Instruments Incorporated. All rights reserved. MSP430 and 430ware are registered trademarks of Texas Instruments. Other
names and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 1.30.00.00 of this document, last updated on 2012-10-25,0 : 43 : 15_0500.

2 2012-10-25,0 : 43 : 150500
Tl Information—Selective Disclosure

Table of Contents

Table of Contents

Copyright L e 2
Revision Information e e e e e e e e e e e s 2
1 IntrodUcCtion L e 5
2 How to create a new project thatuses Driverlib e e 7
3 10-Bit Analog-to-Digital Converter (ADC105) o o v i i e 9
3.1 Introduction . . . L L e e 9
3.2 APIFUNCLIONS e e 9
3.3 Programming Example e e 10
4 Comparator (COMP) i e i i e e e e e e e e e e e e e e e e e e e 11
4.1 Introduction L e e e 11
4.2 APIFUNCHONS o . e e 11
4.3 Programming Example e e 12
5 Cyclical Redundancy Check (CRC) i i i i i it e e e e e e e e e e et e e e e e e e e e n s 13
5.1 Introduction L e e e 13
5.2 APIFUNCLIONS e e e 13
5.3 Programming Example L e 13
6 Clock System (CS) i i i e 15
6.1 Introduction e e e e 15
6.2 APIFUNCLIONS e e 16
6.3 Programming Example L e 17
7 Direct Memory Access (DMA) i i i e ettt e 19
7.1 Introduction . . . L L L e e e 19
7.2 APIFUNCLONS e e 19
7.3 Programming Example e e 20
8 EUSCI Inter-Integrated Circuit (I2C) o o o i i i e 21
8.1 Introduction L L e e e 21
8.2 APIFUNCLIONS e e 23
8.3 Programming Example e 24
9 EUSCI Synchronous Peripheral Interface (SPI) i i i i i e e e e e e e e e e 25
9.1 Introduction L e e e e 25
9.2 FUNCLONS e 25
9.3 Programming Example e 26
10 EUSCIUART . . .ttt e e e et e 27
10.1 Introduction L L L e 27
10.2 APILFUNCLONS o e 27
10.3 Programming Example L 28
11 FRAM CoONtroller o o it et e e et e s 29
11.1 Introduction L L L L e 29
11.2 APILFUNCLONS o e 29
11.3 Programming Example 30
17 € 1 O 31
12.1 Introduction L L L e e 31
12.2 APILFUNCLONS o e 32
12.3 Programming Example L 32
13 Memory Protection Unit (MPU) o i ittt e e e e e et e e e e e e e e e e 35
13.1 Introduction L 35
13.2 APILFUNCLONS o o 35
13.3 Programming Example L e 36
14 32-Bit Hardware Multiplier (MPY32) o o i i e e e e e e e e e e e e e e e e e e 37
14.1 Introduction L L L e 37
14.2 APILFUNCLONS o e e 37
14.3 Programming Example L e 38
15 Power Management Module (PMM) o i i i i i e e e e e e e e e e e e e e e e e 39
15.1 Introduction L e 39
15.2 APLFUNCLONS o e 39
15.3 Programming Example L e 39
16 Internal Reference (REF) o o i i i e 43
16.1 IntrodUCtion L . e e e e e e 43
16.2 APIFUNCLONS o 43
16.3 Programming Example L 44
2012-10-25:0 : 43 : 150500 3

TI Information—Selective Disclosure

Table of Contents

17 Real-Time CIoCK (RTC) o i ittt i e e et e e e e e e e e et e e e e et et e st e et e e e 45
17.1 Introduction L e 45
17.2 APLFUNCHONS e 45
17.3 Programming Example L e 46
18 SFRModUlettt e e e e e e e e e e e e e e e e e e s 47
18.1 Introduction L e e e e 47
18.2 APIFUNCHONS o e e 47
18.3 Programming Example L L e 47
19 SYSModUle e 49
19.1 Introduction L L e 49
19.2 APIFUNCHONS o 49
19.3 Programming Example L L e 50
20 TIMER A . & ¢ vttt e 51
20.1 IntroduCtion L e e 51
20.2 APIFUNCLIONS o o e 52
20.3 Programming Example e 52
21 TIMER B . . . vttt i e 55
21.1 Introduction L L e 55
21.2 APLFUNCLIONS o o e 56
21.3 Programming Example e 57
22 Taglength Value i i i i e e et e e e e e e e e e e e e e e e e e e 59
22.1 IntroduCtion L L e 59
22.2 APIFUNCLIONS o o e 59
22.3 Programming Example L e 59
23 WatchDog Timer (WDT 4) « « v v v v i i et e e e e e e e e e e e st e e e e e e e s e e e s e e e 61
23.1 Introduction L L L e e 61
23.2 APIFUNCLIONS e e e e 61
23.3 Programming Example L e 61
IMPORTANT NOTICE i it i i it e e e e et s et et it ettt it et it e e 64
4 2012-10-25,0 : 43 : 150500

TI Information—Selective Disclosure

Introduction

1 Introduction

The Texas Instruments® MSP430® Peripheral Driver Library is a set of drivers for accessing the peripherals found on the
MSP430 FR5xx/FR6xx family of microcontrollers. While they are not drivers in the pure operating system sense (that is, they
do not have a common interface and do not connect into a global device driver infrastructure), they do provide a mechanism
that makes it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

They are written entirely in C except where absolutely not possible.

They demonstrate how to use the peripheral in its common mode of operation.

They are easy to understand.

They are reasonably efficient in terms of memory and processor usage.

They are as self-contained as possible.

Where possible, computations that can be performed at compile time are done there instead of at run time.

They can be built with more than one tool chain.
Some consequences of these design goals are:

B The drivers are not necessarily as efficient as they could be (from a code size and/or execution speed point of view).
While the most efficient piece of code for operating a peripheral would be written in assembly and custom tailored to
the specific requirements of the application, further size optimizations of the drivers would make them more difficult
to understand.

B The drivers do not support the full capabilities of the hardware. Some of the peripherals provide complex capabilities
which cannot be utilized by the drivers in this library, though the existing code can be used as a reference upon which
to add support for the additional capabilities.

B The APIs have a means of removing all error checking code. Because the error checking is usually only useful during
initial program development, it can be removed to improve code size and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be enhanced or rewritten in
order to meet the functionality, memory, or processing requirements of the application. If so, the existing driver can be used
as a reference on how to operate the peripheral.

Each MSP430ware driverlib API takes in the base address of the corresponding peripheral as the first parameter. This base
address is obtained from the msp430 device specific header files (or from the device datasheet). The example code for
the various peripherals show how base address is used. When using CCS, the eclipse shortcut "Ctrl + Space" helps. Type
__MSP430 and "Ctrl + Space", and the list of base addresses from the included device specific header files is listed.

The following tool chains are supported:

B |AR Embedded Workbench®
B Texas Instruments Code Composer Studio™

2012-10-25;0 : 43 : 150500 5
TI Information—Selective Disclosure

Introduction

6 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

How to create a new project that uses Driverlib

2

How to create a nhew project that uses
Driverlib

To create a driverlib project from scratch An emptyProject has been created for the conve-
nience of the user so that he can create a project that uses driverlib. This is available in
"C:\ti\msp430\MSP430ware_x_xx_xx_xx\examples\driverlib\MSP430FR57xx\00_emptyProject\IAR"
"C:\ti\msp430\MSP430ware_x_xx_xx_xx\examples\driverlib\MSP430FR57xx\00_emptyProject\CCS" or the cor-
responding relative path where MSP430ware is installed. The features of the emptyProject are

B Includes driverlib source files for that family by default
B Includes a main.c by default that has the following statements

"#include "inc/hw_memmap.h"
void main (void) { } "

B Project is build by default for MSP430F5438A and has a large data model since driverlib is built by defualt for large
data model.

B The project include path has the following added "C:\ti\msp430\MSP430ware_x_xx_xx_xx" or the corresponding
path where MSP430ware is installed.

2012-10-25:0 : 43 : 150500

TI Information—Selective Disclosure

How to create a new project that uses Driverlib

8 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC105g)

3

3.1

3.2

10-Bit Analog-to-Digital Converter (ADC10;)

INtrOAUCH ON .. e 9
AP FUNCHIONS .ottt e e e e e 9
Programming EXamIple 10

Introduction

The 10-Bit Analog-to-Digital (ADC10_B) API provides a set of functions for using the MSP430Ware ADC10_B modules.
Functions are provided to initializae the ADC10_B modules, setup signal sources and reference voltages, and manage
interrupts for the ADC10_B modules.

The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core to-
gether, sample select control and a window comparator.

ADC10_B features include:

Greater than 200-ksps maximum conversion rate

Monotonic 10-bit converter with no missing codes

Sample-and-hold with programmable sampling periods controlled by software or timers
Conversion initiation by software or different timers

Software-selectable on chip reference using the REF module or external reference

Twelve individually configurable external input channels

Conversion channel for temperature sensor of the REF module

Selectable conversion clock source

Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
Window comparator for low-power monitoring of input signals

Interrupt vector register for fast decoding of six ADC interrupts (ADC10IFGO, ADC10TOVIFG, ADC100VIFG,
ADC10LOIFG, ADC10INIFG, ADC10HIIFG)

This driver is contained in adc10_b. c, with adc10_b.h containing the API definitions for use by applications.

API Functions

The ADC10_B API is broken into three groups of functions: those that deal with initialization and conversions, those that
handle interrupts, and those that handle auxillary features of the ADC10.

The ADC10_B initialization and conversion functions are

ADC10_B_init
ADC10_B_memoryConfigure
ADC10_B_setupSamplingTimer
ADC10_B_disableSamplingTimer
ADC10_B_setWindowComp
ADC10_B_startConversion
ADC10_B_disableConversions
ADC10_B_getResults
ADC10_B_isBusy

The ADC10_B interrupts are handled by

B ADC10_B_enablelnterrupt

2012-10-25:0 : 43 : 150500 9

TI Information—Selective Disclosure

10-Bit Analog-to-Digital Converter (ADC105)

B ADC10_B_disablelnterrupt
B ADC10_B_clearInterrupt
B ADC10_B_getlnterruptStatus

Auxilary features of the ADC10_B are handled by

ADC10_B_setResolution
ADC10_B_setSampleHoldSignallnversion
ADC10_B_setDataReadBackFormat
ADC10_B_enableReferenceBurst
ADC10_B_disableReferenceBurst
ADC10_B_setReferenceBufferSamplingRate
ADC10_B_getMemoryAddressForDMA
ADC10_B_enable

ADC10_B_disable

3.3 Programming Example

The following example shows how to initialize and use the ADC10_B API to start a single channel, single conversion.

// Initialize ADCI10_B with ADC10_B’s built-in oscillator
ADC10_B_init (ADC10_B_BASE,
ADC10_B_SAMPLEHOLDSOURCE_SC,
ADC10_B_CLOCKSOURCE_ADC100SC,
ADC10_B_CLOCKDIVIDEBY_1);

//Switch ON ADC10_B
ADC10_B_enable (ADC10_B_BASE) ;

// Setup sampling timer to sample-and-hold for 16 clock cycles
ADC10_B_setupSamplingTimer (ADC10_B_BASE,
ADC10_B_CYCLEHOLD_16_CYCLES,
FALSE) ;

// Configure the Input to the Memory Buffer with the specified Reference Voltages
ADC10_B_memoryConfigure (ADC10_B_BASE,
ADC10_B_INPUT_AO,
ADC10_B_VREFPOS_AVCC, // Vref+ = AVcc

ADC10_B_VREFNEG_AVSS // Vref- = AVss
)i
while (1)
{
// Start a single conversion, no repeating or sequences.
ADC10_B_startConversion (ADC10_B_BASE,
ADC10_B_SINGLECHANNEL) ;
// Wait for the Interrupt Flag to assert
while(! (ADC1l0_B_getInterruptStatus (ADC10_B_BASE,ADC10IFGO)));
// Clear the Interrupt Flag and start another conversion
ADC10_B_clearInterrupt (ADC10_B_BASE,ADC10IFGO) ;
}
10 2012-10-25:0 : 43 : 150500

TI Information—Selective Disclosure

Comparator (COMPp)

4.1

4.2

Comparator (COMP))

I OAUCH ON ... e e s 11
AP FUNCHONS ..ot e e e e e e 11
Programming EXamIPIe e 12
Introduction

The Comparator D (COMP_D) API provides a set of functions for using the MSP430Ware COMP_D
modules. Functions are provided to initialize the COMP_D modules, setup reference voltages for
input, and manage interrupts for the COMP_D modules.

The COMP_D module provides the ability to compare two analog signals and use the output in
software and on an output pin. The output represents whether the signal on the positive terminal
is higher than the signal on the negative terminal. The COMP_D may be used to generate a
hysteresis. There are 16 different inputs that can be used, as well as the ability to short 2 input
together. The COMP_D module also has control over the REF module to generate a reference
voltage as an input.

The COMP_D module can generate multiple interrupts. An interrupt may be asserted for the output,
with seperate interrupts on whether the output rises, or falls.

This driver is contained in comp_d. c, with comp_d.h containing the API definitions for use by
applications.

API Functions

The COMP_D API is broken into three groups of functions: those that deal with initialization and
output, those that handle interrupts, and those that handle auxillary features of the COMP_D.

The COMP_D initialization and output functions are

m COMP_D_init

m COMP_D_setReferenceVoltage
m COMP_D_enable

m COMP_D_disable

m COMP_D_outputValue

The COMP_D interrupts are handled by

m COMP_D_enablelnterrupt

m COMP_D_disablelnterrupt

m COMP_D_clearinterrupt

m COMP_D_getinterruptStatus

m COMP_D_interruptSetEdgeDirection

m COMP_D_interruptToggleEdgeDirection

2012-10-25:0 : 43 : 150500 1

TI Information—Selective Disclosure

Comparator (COMPp)

Auxilary features of the COMP_D are handled by

COMP_D_enableShortOfinputs
COMP_D_disableShortOflnputs
COMP_D_disablelnputBuffer
COMP_D_enablelnputBuffer
COMP_D_lOSwap
COMP_D_setReferenceAccuracy

4.3 Programming Example

The following example shows how to initialize and use the COMP_D API to turn on an LED when
the input to the positive terminal is highed than the input to the negative terminal.

// Initialize the Comparator D module
/+ Base Address of Comparator D,
Pin CD2 to Positive(+) Terminal,
Reference Voltage to Negative(-) Terminal,
Normal Power Mode,
Output Filter On with minimal delay,
Non-Inverted Output Polarity
*/
COMP_D_init (COMP_D_BASE,
COMP_D_INPUTZ2,
COMP_D_VREF,
COMP_D_FILTEROUTPUT_OFF,
COMP_D_NORMALOUTPUTPOLARITY
) i

// Set the reference voltage that is being supplied to the (-) terminal
/+ Base Address of Comparator D,
Reference Voltage of 2.0 V,

Upper Limit of 2.0%(32/32) = 2.0V,
Lower Limit of 2.0x%(32/32) = 2.0V
*/

COMP_D_setReferenceVoltage (COMP_D_BASE,
COMP_D_VREFBASE2_0V,
32,
32,
COMP_D_ACCURACY_STATIC
)i

//Disable Input Buffer on P1.2/CD2
/* Base Address of Comparator D,
Input Buffer port
Selecting the CDx input pin to the comparator
multiplexer with the CDx bits automatically
disables output driver and input buffer for
that pin, regardless of the state of the
associated CDPD.x bit
*/
COMP_D_disableInputBuffer (COMP_D_BASE,
COMP_D_INPUT2) ;
// Allow power to Comparator module
COMP_D_enable (COMP_D_BASE) ;

__delay_cycles (400); // delay for the reference to settle

12 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

Cyclical Redundancy Check (CRC)

5.1

5.2

5.3

Cyclical Redundancy Check (CRC)

I OAUCH ON ... e e e e e e e s 13
AP FUNCHIONS .. e e e e 13
Programming EXamIPIe ... e 13
Introduction

The Cyclic Redundancy Check (CRC) API provides a set of functions for using the MSP430Ware
CRC module. Functions are provided to initialize the CRC and create a CRC signature to check
the validity of data. This is mostly useful in the communication of data, or as a startup procedure to
as a more complex and accurate check of data.

The CRC module offers no interrupts and is used only to generate CRC signatures to verify against
pre-made CRC signatures (Checksums).

This driver is contained in crc. ¢, with crc. h containing the API definitions for use by applications.

API Functions

The CRC APl is one group that controls the CRC module.

m CRC_setSeed

m CRC_setData

m CRC_setSignatureByteReversed
m CRC_getSignature

m CRC_getResult

m CRC_getResultBitReversed

Programming Example

The following example shows how to initialize and use the CRC API to generate a CRC signature
on an array of data that can be included in a UART message with the data to check for validity.

unsigned int crcSeed = 0xXBEEF;

unsigned int data[] = {0x0123,
0x4567,
0x8910,
0x1112,
0x1314};

unsigned int crcResult;

int i;

// Stop WDT
WDT_hold (WDT_A_BASE) ;

2012-10-25:0 : 43 : 150500 13

TI Information—Selective Disclosure

Cyclical Redundancy Check (CRC)

// Set P1.0 as an output
GPIO_setAsOutputPin (GPIO_PORT_P1,
GPIO_PINO);

// Set the CRC seed
CRC_setSeed (CRC_BASE,
crcSeed) ;

for (i=0; 1i<5; i++)
{
// Add all of the values into the CRC signature
CRC_setData (CRC_BASE,
datal([i]);

// Save the current CRC signature checksum to be compared for later
crcResult = CRC_getResult (CRC_BASE) ;

14 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

Clock System (CS)

6.1

Clock System (CS)

I OAUCH ON ... e e e e e e e s 15
AP FUNCHIONS .. e e e e 16
Programming EXamIPIe ... e 17
Introduction

The clock system module supports low system cost and low power consumption. Using three inter-
nal clock signals, the user can select the best balance of performance and low power consumption.
The clock module can be configured to operate without any external components, with one or two
external crystals,or with resonators, under full software control.

The clock system module includes up to five clock sources:

m XT1CLK - Low-frequency/high-frequency oscillator that can be used either with low-frequency
32768-Hz watch crystals, standard crystals, resonators, or external clock sources in the 4 MHz
to 24 MHz range. When optional XT2 is present, the XT1 high-frequency mode may or may
not be available, depending on the device configuration. See the device-specific data sheet
for supported functions.

m VLOCLK - Internal very-low-power low-frequency oscillator with 10-kHz typical frequency
m DCOCLK - Internal digitally controlled oscillator (DCO) with three selectable fixed frequencies

m XT2CLK - Optional high-frequency oscillator that can be used with standard crystals, res-
onators, or external clock sources in the 4 MHz to 24 MHz range. See device-specific data
sheet for availability.

Four system clock signals are available from the clock module:

m ACLK - Auxiliary clock. The ACLK is software selectable as XT1CLK, VLOCLK, DCOCLK,
and when available, XT2CLK. ACLK can be divided by 1, 2, 4, 8, 16, or 32. ACLK is software
selectable by individual peripheral modules.

m MCLK - Master clock. MCLK is software selectable as XT1CLK, VLOCLK, DCOCLK, and
when available, XT2CLK. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the
CPU and system.

m SMCLK - Subsystem master clock. SMCLK is software selectable as XT1CLK, VLOCLK,
DCOCLK, and when available, XT2CLK. SMCLK is software selectable by individual peripheral
modules.

m MODCLK - Module clock. MODCLK is used by various peripheral modules and is sourced by
MODOSC.

Fail-Safe logic The crystal oscillator faults are set if the corresponding crystal oscillator is turned on
and not operating properly. Once set, the fault bits remain set until reset in software, regardless if
the fault condition no longer exists. If the user clears the fault bits and the fault condition still exists,
the fault bits are automatically set, otherwise they remain cleared.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault is
detected. When OFIFG is set and OFIE is set, the OFIFG requests a user NMI. When the interrupt
is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no longer
required to reset the OFIE. NMI entry/exit circuitry removes this requirement. The OFIFG flag must

2012-10-25:0 : 43 : 150500 15

TI Information—Selective Disclosure

Clock System (CS)

6.2

be cleared by software. The source of the fault can be identified by checking the individual fault
bits.

If XT1 in LF mode is sourcing any system clock (ACLK, MCLK, or SMCLK), and a fault is detected,
the system clock is automatically switched to the VLO for its clock source (VLOCLK). Similarly, if
XT1 in HF mode is sourcing any system clock and a fault is detected, the system clock is automat-
ically switched to MODOSC for its clock source (MODCLK).

When XT2 (if available) is sourcing any system clock and a fault is detected, the system clock is
automatically switched to MODOSC for its clock source (MODCLK).

The fail-safe logic does not change the respective SELA, SELM, and SELS bit settings. The fail-safe
mechanism behaves the same in normal and bypass modes.

This driver is contained in cs. c, with cs . h containing the API definitions for use by applications.

API Functions

The CS APl is broken into four groups of functions: an API that initializes the clock module, those
that deal with clock configuration and control, and external crystal and bypass specific configuration
and initialization, and those that handle interrupts.

General CS configuration and initialization are handled by the following API

m CS_clockSignallnit

m CS_enableClockRequest
m CS_disableClockRequest
m CS_getACLK

m CS_getSMCLK

m CS_getMCLK

m CS_setDCOFreq

The following external crystal and bypass specific configuration and initialization functions are avail-
able for FR57xx devices:

m CS_XT1Start

m CS_bypassXT1

m CS_bypassXT1WithTimeout
m CS_XT1StartWithTimeout

m CS_XT10ff

m CS_XT2Start

m CS_bypassXT2

m CS_XT2StartWithTimeout
m CS_bypassXT2WithTimeout
m CS_XT20ff

The CS interrupts are handled by

m CS_enableClockRequest

16

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

Clock System (CS)

6.3

m CS_disableClockRequest

m CS_faultFlagStatus

m CS_clearFaultFlag

m CS_clearAllOscFlagsWithTimeout

CS_setExternalClockSource must be called if an external crystal XT1 or XT2 is used and the user
intends to call CS_getMCLK, CS_getSMCLK or CS_getACLK APIs and XT1Start, XT1ByPass,
XT1StartWithTimeout, XT1ByPassWithTimeout. If not any of the previous API are going to be
called, it is not necessary to invoke this API.

Programming Example

The following example shows the configuration of the CS module that sets
ACLK=SMCLK=MCLK=DCOCLK

//Set DCO Frequency to 8MHz
CS_setDCOFreq (CS_BASE, CS_DCORSEL_0, CS_DCOFSEL_3) ;

//configure MCLK, SMCLK and ACLK to be source by DCOCLK

CS_clockSignalInit (CS_BASE,CS_ACLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit (CS_BASE,CS_SMCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);
CS_clockSignalInit (CS_BASE,CS_MCLK,CS_DCOCLK_SELECT,CS_CLOCK_DIVIDER_1);

2012-10-25:0 : 43 : 150500 17

TI Information—Selective Disclosure

Clock System (CS)

18 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

Direct Memory Access (DMA)

7 Direct Memory Access (DMA)

INtrOAUCH ON .. e 19
AP FUNCHIONS .. e e 19
Programming EXamIPIe ... e 20

7.1 Introduction

The Direct Memory Access (DMA) API provides a set of functions for using the MSP430Ware DMA
modules. Functions are provided to initialize and setup each DMA channel with the source and
destination addresses, manage the interrupts for each channel, and set bits that affect all DMA
channels.

The DMA module provides the ability to move data from one address in the device to another, and
that includes other peripheral addresses to RAM or vice-versa, all without the actual use of the
CPU. Please be advised, that the DMA module does halt the CPU for 2 cycles while transfering,
but does not have to edit any registers or anything. The DMA can transfer by bytes or words at a
time, and will automatically increment or decrement the source or destination address if desired.
There are also 6 different modes to transfer by, including single-transfer, block-transfer, and burst-
block-transfer, as well as repeated versions of those three different kinds which allows transfers to
be repeated without having re-enable transfers.

The DMA settings that affect all DMA channels include prioritization, from a fixed priority to dynamic
round-robin priority. Another setting that can be changed is when transfers occur, the CPU may be
in a read-modify-write operation which can be disasterous to time sensitive material, so this can be
disabled. And Non-Maskable-Interrupts can indeed be maskable to the DMA module if not enabled.

The DMA module can generate one interrupt per channel. The interrupt is only asserted when the
specified amount of transfers has been completed. With single-transfer, this occurs when that many
single transfers have occured, while with block or burst-block transfers, once the block is completely
transfered the interrupt is asserted.

7.2 API Functions

The DMA APl is broken into three groups of functions: those that deal with initialization and trans-
fers, those that handle interrupts, and those that affect all DMA channels.

The DMA initialization and transfer functions are: DMA _init DMA_setSrcAddress
DMA setDstAddress DMA_enableTransfers DMA _disableTransfers DMA _startTransfer
DMA setTransferSize

The DMA interrupts are handled by: DMA_enablelnterrupt DMA_disablelnterrupt
DMA_getinterruptStatus DMA_clearInterrupt DMA_NMIAbortStatus DMA_clearNMIAbort

Features of the DMA that affect all channels are handled by:
DMA_disableTransferDuringReadModifyWrite DMA_enableTransferDuringReadModifyWrite
DMA_enableRoundRobinPriority DMA_disableRoundRobinPriority DMA_enableNMIAbort
DMA_disableNMIAbort

2012-10-25;0 : 43 : 150500 19
TI Information—Selective Disclosure

Direct Memory Access (DMA)

7.3 Programming Example

The following example shows how to initialize and use the DMA API to transfer words from one spot
in RAM to another.

// Initialize and Setup DMA Channel 0
/
Base Address of the DMA Module
Configure DMA channel 0
Configure channel for repeated block transfers
DMA interrupt flag will be set after every 16 transfers
Use DMA_startTransfer () function to trigger transfers
Transfer Word-to-Word
Trigger upon Rising Edge of Trigger Source Signal
*/
DMA_init (DMA_BASE,
DMA_CHANNEL_O,
DMA_TRANSFER_REPEATED_BLOCK,
16,
DMA_TRIGGERSOURCE_O,
DMA_SIZE_SRCWORD_DSTWORD,
DMA_TRIGGER_RISINGEDGE) ;
/ *
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1CO00 as source
Increment source address after every transfer
*/
DMA_setSrcAddress (DMA_BASE,
DMA_CHANNEL_O,
0x1C00,
DMA_DIRECTION_INCREMENT) ;
/%
Base Address of the DMA Module
Configure DMA channel 0
Use 0x1C20 as destination
Increment destination address after every transfer
*/
DMA_setDstAddress (DMA_BASE,
DMA_CHANNEL_O,
0x1C20,
DMA_DIRECTION_INCREMENT) ;

// Enable transfers on DMA channel 0
DMA_enableTransfers (DMA_BASE,
DMA_CHANNEL_O) ;

while (1)
{
// Start block tranfer on DMA channel 0
DMA_startTransfer (DMA_BASE,
DMA_CHANNEL_O) ;

20 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

8

8.1

EUSCI Inter-Integrated Circuit (12C)

I OAUCH ON ... e e e e e e e s 21
AP FUNCHIONS .. e e e e 23
Programming EXamIPIe ... e 24
Introduction

In 12C mode, the eUSCI_B module provides an interface between the device and 12C-compatible
devices connected by the two-wire 12C serial bus. External components attached to the 12C bus
serially transmit and/or receive serial data to/from the eUSCI_B module through the 2-wire 12C in-
terface. The Inter-Integrated Circuit (12C) API provides a set of functions for using the MSP430Ware
I2C modules. Functions are provided to initialize the 12C modules, to send and receive data, obtain
status, and to manage interrupts for the 12C modules.

The 12C module provide the ability to communicate to other IC devices over an 12C bus. The 12C
bus is specified to support devices that can both transmit and receive (write and read) data. Also,
devices on the 12C bus can be designated as either a master or a slave. The MSP430Ware 12C
modules support both sending and receiving data as either a master or a slave, and also support
the simultaneous operation as both a master and a slave.

I2C module can generate interrupts. The 12C module configured as a master will generate interrupts
when a transmit or receive operation is completed (or aborted due to an error). The 12C module
configured as a slave will generate interrupts when data has been sent or requested by a master.

8.1.1 Master Operations
To drive the master module, the APIs need to be invoked in the following order
m EUSCI_I2C_masterlnit
m EUSCI_I2C_setSlaveAddress
m EUSCI_I12C_setMode
m EUSCI_I2C_enable
m EUSCI_I2C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs
for transmit or receive as required
The user must first initialize the 12C module and configure it as a master with a call to EU-
SCI_I2C_masterlnit(). That function will set the clock and data rates. This is followed by a
call to set the slave address with which the master intends to communicate with using EU-
SCI_I2C_setSlaveAddress. Then the mode of operation (transmit or receieve) is chosen using
EUSCI_I2C_setMode. The 12C module may now be enabled using EUSCI_I2C_enable. It is
recommneded to enable the EUSCI_I2C module before enabling the interrupts. Any transmission
or reception of data may be initiated at this point after interrupts are enabled (if any).
The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.
Master Single Byte Trasnmission
2012-10-25;0 : 43 : 15_0500 21

TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

8.1.2

m EUSCI_I2C_masterSendSingleByte
Master Mulitple Byte Transmission

m EUSCI_I2C_masterMultiByteSendStart
m EUSCI_I2C_masterMultiByteSendNext
m EUSCI_I2C_masterMultiByteSendStop

Master Single Byte Reception

m EUSCI _12C_masterReceiveStart
m EUSCI_I2C_masterSingleReceive

Master Multiple Byte Reception

m EUSCI_I2C_masterMultiByteReceiveStart
m EUSCI_I2C_masterMultiByteReceiveNext
m EUSCI_I2C_masterMultiByteReceiveFinish
m EUSCI_I2C_masterMultiByteReceiveStop

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

Slave Operations

To drive the slave module, the APIs need to be invoked in the following order

m EUSCI_I2C_slavelnit

m EUSCI_12C_setMode

m EUSCI_I2C_enable

m EUSCI_I2C_enablelnterrupt (if interrupts are being used) This may be followed by the APIs
for transmit or receive as required

The user must first call the EUSCI_I2C_slavelnit to initialize the slave module in I2C mode and set
the slave address. This is followed by a call to set the mode of operation (transmit or receive).The
I2C module may now be enabled using EUSCI_I2C_enable. It is recommneded to enable the 12C
module before enabling the interrupts. Any transmission or reception of data may be initiated at this
point after interrupts are enabled (if any).

The transaction can then be initiated on the bus by calling the transmit or receive related APls as
listed below.

Slave Transmission API

m EUSCI _12C_slaveDataPut
Slave Reception API

m EUSCI _12C_slaveDataGet

22

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

EUSCI Inter-Integrated Circuit (12C)

For the interrupt-driven transaction, the user must register an interrupt handler for the 12C devices
and enable the 12C interrupt.

This driver is contained in eusci_iZ2c.c, with eusci_i2c.h containing the API definitions for use
by applications.

8.2 API Functions

The eUSCI 12C API is broken into three groups of functions: those that deal with interrupts, those

that handle status and initialization, and those that deal with sending and receiving data.

The

I2C master and slave interrupts are handled by

EUSCI_I2C_enablelnterrupt
EUSCI_I2C_disablelnterrupt
EUSCI_I2C_clearinterruptFlag
EUSCI_I2C_getinterruptStatus

Status and initialization functions for the 12C modules are

EUSCI_I12C_masterlnit
EUSCI_I12C_enable
EUSCI_I2C_disable
EUSCI_I2C_isBusBusy
EUSCI_I2C_isBusy
EUSCI_I2C_slavelnit
EUSCI_I2C_interruptStatus
EUSCI_I2C_setSlaveAddress
EUSCI_I2C_setMode
EUSCI_I2C_masterlsSTOPSent
EUSCI_I2C_selectMasterEnvironmentSelect

Sending and receiving data from the 12C slave module is handled by

EUSCI_I2C_slaveDataPut
EUSCI_I2C_slaveDataGet

Sending and receiving data from the 12C slave module is handled by

EUSCI_I2C_masterSendSingleByte
EUSCI_I12C_masterSendStart
EUSCI_I2C_masterMultiByteSendStart
EUSCI_I2C_masterMultiByteSendNext
EUSCI_I2C_masterMultiByteSendFinish
EUSCI_I2C_masterMultiByteSendStop
EUSCI_I2C_masterMultiByteReceiveNext

2012-10-25:0: 43

: 150500
TI Information—Selective Disclosure

23

EUSCI Inter-Integrated Circuit (12C)

EUSCI_I2C_masterMultiByteReceiveFinish
EUSCI_I2C_masterMultiByteReceiveStop
EUSCI_I12C_masterReceiveStart
EUSCI_I2C_masterSingleReceive
EUSCI_I2C_getReceiveBufferAddressForDMA
EUSCI_I2C_getTransmitBufferAddressForDMA

DMA related

m EUSCI_I2C_getReceiveBufferAddressForDMA
m EUSCI_I2C_getTransmitBufferAddressForDMA

8.3 Programming Example

The following example shows how to use the 12C API to send data as a master.

//Initialize Slave

EUSCI_I2C_slavelInit (EUSCI_BO_BASE,
0x48,
EUSCI_I2C_OWN_ADDRESS_OFFSETO,
EUSCI_I2C_OWN_ADDRESS_ENABLE
)i

//Set in receive mode
EUSCI_I2C_setMode (EUSCI_BO_BASE,
EUSCI_I2C_TRANSMIT_MODE
)i

EUSCI_I2C_enable (EUSCI_BO_BASE) ;

EUSCI_I2C_enablelInterrupt (EUSCI_BO_BASE,
EUSCI_TI2C_TRANSMIT_INTERRUPTO +
EUSCI_I2C_STOP_INTERRUPT
)i

24 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

9

9.1

9.2

EUSCI Synchronous Peripheral Interface
(SPI)

I OAUCH ON ... e s 25
AP FUNCHONS .ottt e e e e e e e e e e e s 25
Programming EXample e 26
Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame.

This library provides the API for handling a SPI communication using EUSCI.
The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmabile bit rate clock divider and prescaler to generate the
output serial clock derived from the module’s input clock.

This driver is contained in eusci_spi.c, with eusci_spi . h containing the API definitions for use
by applications.

Functions

To use the module as a master, the user must call EUSCI_SPI_masterlnit() to configure the SPI
Master. This is followed by enabling the SPI module using EUSCI_SPI_enable(). The interrupts
are then enabled (if needed). It is recommended to enable the SPI module before enabling the
interrupts. A data transmit is then initiated using EUSCI_SPI_transmitData() and then when the
receive flag is set, the received data is read using EUSCI_SPI_receiveData() and this indicates
that an RX/TX operation is complete.

To use the module as a slave, initialization is done using EUSCI_SPI_slavelnit() and this is followed
by enabling the module using EUSCI_SPI_enable(). Following this, the interrupts may be enabled
as needed. When the receive flag is set, data is first transmitted using EUSCI_SPI_transmitData()
and this is followed by a data reception by EUSCI_SPI_receiveData()

The SPI APl is broken into 3 groups of functions: those that deal with status and initialization, those
that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

m EUSCI_SPI_masterlnit
EUSCI_SPI_slavelnit
EUSCI_SPI_disable
EUSCI_SPI_enable
EUSCI_SPI_masterChangeClock
EUSCI_SPI_isBusy

2012-10-25:0 : 43 : 150500 25

TI Information—Selective Disclosure

EUSCI Synchronous Peripheral Interface (SPI)

m EUSCI_SPI_select4PinFunctionality
m EUSCI_SPI_changeClockPhasePolarity

Data handling is done by

m EUSCI_SPI_transmitData
m EUSCI_SPI_receiveData

Interrupts from the SPI module are managed using

EUSCI_SPI_disablelnterrupt
EUSCI_SPI_enablelnterrupt
EUSCI_SPI_getinterruptStatus
EUSCI_SPI_clearlnterruptFlag

DMA related

m EUSCI_SPI_getReceiveBufferAddressForDMA
m EUSCI_SPI_getTransmitBufferAddressForDMA

9.3 Programming Example

The following example shows how to use the SPI API to configure the SPI module as a master
device, and how to do a simple send of data.

//Initialize slave to MSB first, inactive high clock polarity and 3 wire SPI
returnValue = EUSCI_SPI_slaveInit (EUSCI_AO_BASE,
EUSCI_SPI_MSB_FIRST,
EUSCI_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT,
EUSCI_SPI_CLOCKPOLARITY_INACTIVITY_HIGH
)i

if (STATUS_FAIL == returnValue) {
return;

}

//Enable SPI Module
EUSCI_SPI_enable (EUSCI_AO_BASE);

//Enable Receive interrupt
EUSCI_SPI_enablelInterrupt (EUSCI_AO_BASE,
EUSCI_SPI_RECEIVE_INTERRUPT
)i

26 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

EUSCI UART

10

10.1

10.2

EUSCI UART

I OAUCH ON ... e e e e e e e s 27
AP FUNCHIONS .. e e e e 27
Programming EXamIPIe ... e 28
Introduction

The MSP430Ware library for UART mode features include:

m Odd, even, or non-parity

m Independent transmit and receive shift registers

m Separate transmit and receive buffer registers

LSB-first or MSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for multiprocessor systems
Receiver start-edge detection for auto wake up from LPMx modes

Status flags for error detection and suppression
m Status flags for address detection
m |Independent interrupt capability for receive and transmit

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another
device. Timing for each character is based on the selected baud rate of the USCI. The transmit and
receive functions use the same baud-rate frequency.

This driver is contained in eusci_uart.c, with eusci_uart.h containing the API definitions for
use by applications.

API Functions

The EUSI_UART API provides the set of functions required to implement an interrupt driven
EUSI_UART driver. The EUSI _UART initialization with the various modes and features is done
by the EUSCI_UART_init(). At the end of this fucntion EUSI_UART is initialized and stays disabled.
EUSCI_UART _enable() enables the EUSI_UART and the module is now ready for transmit and re-
ceive. It is recommended to iniailize the EUSI_UART via EUSCI_UART _init(), enable the required
interrupts and then enable EUSI_UART via EUSCI_UART_enable().

The EUSI_UART API is broken into three groups of functions: those that deal with configuration
and control of the EUSI_UART modules, those used to send and receive data, and those that deal
with interrupt handling and those dealing with DMA.

Configuration and control of the EUSI_UART are handled by the

m EUSCI_UART _init()

m EUSCI_UART _initAdvance()
m EUSCI_UART_enable()

m EUSCI_UART_disable()

2012-10-25:0 : 43 : 150500 27

TI Information—Selective Disclosure

EUSCI UART

m EUSCI_UART_setDormant|()
m EUSCI_UART_resetDormant()
m EUSCI_UART _selectDeglitchTime()

Sending and receiving data via the EUSI_UART is handled by the

m EUSCI_UART_transmitData()

m EUSCI_UART _receiveData()

m EUSCI_UART_transmitAddress()
m EUSCI_UART_transmitBreak()

Managing the EUSI_UART interrupts and status are handled by the

m EUSCI_UART_enablelnterrupt()
m EUSCI_UART _disablelnterrupt()
m EUSCI_UART_getinterruptStatus()
m EUSCI_UART_clearInterruptFlag()
m EUSCI_UART_queryStatusFlags()

DMA related

m EUSCI_UART_getReceiveBufferAddressForDMA()
m EUSCI_UART_getTransmitBufferAddressForDMA()

10.3 Programming Example

The following example shows how to use the EUSI_UART API to initialize the EUSI_UART, transmit
characters, and receive characters.

// Configure UART

if (STATUS_FAIL == EUSCI_UART_init (EUSCI_AO_BASE,
EUSCI_UART_CLOCKSOURCE_ACLK,
CLOCK_VALUE,
32768,
EUSCI_UART_NO_PARITY,
EUSCI_UART_LSB_FIRST,
EUSCI_UART_ONE_STOP_BIT,
EUSCI_UART_MODE,
EUSCI_UART_LOW_FREQUENCY_BAUDRATE_GENERATION)) {

return;

}
EUSCI_UART_enable (EUSCI_AO_BASE) ;
// Enable USCI_AO RX interrupt

EUSCI_UART_enablelInterrupt (EUSCI_AO_BASE,
EUSCI_UART_RECEIVE_INTERRUPT) ;

28 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

FRAM Controller

11 FRAM Controller

INtrOAUCH ON .. e 29
AP FUNCHIONS .. e e 29
Programming EXamIPIe ... e 30

11.1 Introduction

FRAM memory is a non-volatile memory that reads and writes like standard SRAM. The MSP430
FRAM memory features include:

m Byte or word write access

m Automatic and programmable wait state control with independent wait state settings for access
and cycle times

m Error Correction Code with bit error correction, extended bit error detection and flag indicators
m Cache for fast read
m Power control for disabling FRAM on non-usage

This driver is contained in fram.c, with fram.h containing the API definitions for use by applica-
tions.

11.2 API Functions

FRAM_enablelnterrupt enables selected FRAM interrupt sources.
FRAM_getinterruptStatus returns the status of the selected FRAM interrupt flags.
FRAM_disablelnterrupt disables selected FRAM interrupt sources.

Depending on the kind of writes being performed to the FRAM, this library provides APIs for FRAM
writes.

FRAM_write8 facilitates writing into the FRAM memory in byte format. FRAM_write16 facilitates
writing into the FRAM memory in word format. FRAM_write32 facilitates writing into the FRAM
memory in long format, pass by reference. FRAM_memoryFill32 facilitates writing into the FRAM
memory in long format, pass by value. FRAM_status checks if the FRAM is currently busy pro-
gramming.

The FRAM API is broken into 3 groups of functions: those that write into FRAM, those that handle
interrupts, and those that give status of FRAM.

FRAM writes are managed by

FRAM_write8
FRAM_write16
FRAM_write32
FRAM_memoryFill32

The FRAM interrupts are handled by

2012-10-25;0 : 43 : 150500 29
TI Information—Selective Disclosure

FRAM Controller

m FRAM_enablelnterrupt
m FRAM_getinterruptStatus
m FRAM_disablelnterrupt

The status is given by

m FRAM_status

11.3 Programming Example

The following example shows some FRAM operations using the APIs

//Writes the value of "data", 128 times to FRAM
FRAM _memoryFill32 (FRAM_BASE, data,

(unsigned long *)FRAM_TEST_START,128);

30

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

GPIO

12

12.1

GPIO

I OAUCH ON ... e e e e e e e s 31
AP FUNCHIONS .. e e e e 32
Programming EXamIPIe ... e 32
Introduction

The Digital I/O (GPIO) API provides a set of functions for using the MSP430Ware GPIO modules.
Functions are provided to setup and enable use of input/output pins, setting them up with or without
interrupts and those that access the pin value.

The digital I/0O features include:

Independently programmable individual I/Os

Any combination of input or output

Individually configurable P1 and P2 interrupts. Some devices may include additional port
interrupts.

Independent input and output data registers

Individually configurable pullup or pulldown resistors

Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ).
Most ports contain eight I/O lines; however, some ports may contain less (see the device-specific
data sheet for ports available). Each I/O line is individually configurable for input or output direction,
and each can be individually read or written. Each I/O line is individually configurable for pullup or
pulldown resistors. PJ contains only four 1/O lines.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 1/O lines can
be individually enabled and configured to provide an interrupt on a rising or falling edge of an
input signal. All P1 I/O lines source a single interrupt vector P11V, and all P2 1/O lines source a
different, single interrupt vector P2IV. On some devices, additional ports with interrupt capability
may be available (see the device-specific data sheet for details) and contain their own respective
interrupt vectors. Individual ports can be accessed as byte-wide ports or can be combined into
word-wide ports and accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc., are
associated with the names PA, PB, PC, PD, etc., respectively. All port registers are handled in this
manner with this naming convention except for the interrupt vector registers, P11V and P21V; that
is, PAIV does not exist. When writing to port PA with word operations, all 16 bits are written to the
port. When writing to the lower byte of the PA port using byte operations, the upper byte remains
unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the
lower byte unchanged. When writing to a port that contains less than the maximum number of bits
possible, the unused bits are a "don’t care". Ports PB, PC, PD, PE, and PF behave similarly.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination.
Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte
operations causes only the lower or upper byte to be transferred to the destination, respectively.
Reading of the PA port and storing to a general-purpose register using byte operations causes the
byte transferred to be written to the least significant byte of the register. The upper significant byte
of the destination register is cleared automatically. Ports PB, PC, PD, PE, and PF behave similarly.
When reading from ports that contain less than the maximum bits possible, unused bits are read
as zeros (similarly for port PJ).

2012-10-25:0 : 43 : 150500 31

TI Information—Selective Disclosure

GPIO

12.2

12.3

The GPIO pin may be configured as an 1/O pin with GPIO_setAsOutputPin(),
GPIO_setAslnputPin(), GPIO_setAsInputPinWithPullDownresistor() or
GPIO_setAslnputPinWithPullUpresistor(). The GPIO pin may instead be con-
figured to operate in the Peripheral Module assigned function by config-
uring the GPIO using GPIO_setAsPeripheralModuleFunctionOutputPin() or
GPIO_setAsPeripheralModuleFunctioninputPin().

This driver is contained in gpio.c, with gpio.h containing the API definitions for use by applica-
tions.

API Functions

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO
pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with

m GPIO_setAsOutputPin()

m GPIO_setAsInputPin()

m GPIO_setAsInputPinWithPullDownresistor()

m GPIO_setAsInputPinWithPullUpresistor()

m GPIO_setAsPeripheralModuleFunctionOutputPin()
m GPIO_setAsPeripheralModuleFunctionlnputPin()

The GPIO interrupts are handled with

m GPIO_enablelnterrupt()

m GPIO_disblelnterrupt()

m GPIO_clearInterruptFlag()
m GPIO_getinterruptStatus()
m GPIO_interruptEdgeSelect()

The GPIO pin state is accessed with

m GPIO_setOutputHighOnPin()
m GPIO_setOutputLowOnPin()
m GPIO_toggleOutputOnPin()

m GPIO_getinputPinValue()

Programming Example

The following example shows how to use the GPIO API. A trigger is generated on a hi "TO" low
transition on P1.4 (pulled-up input pin), which will generate P1_ISR. In the ISR, we toggle P1.0
(output pin).

32

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

GPIO

//Set P1.0 to output direction
GPIO_setAsOutputPin (

GPIO_PORT_P1,

GPIO_PINO

)i

//Enable P1.4 internal resistance as pull-Up resistance
GPIO_setAsInputPinWithPullUpresistor (

GPIO_PORT_PI,
GPIO_PIN4
)

//P1l.4 interrupt enabled

GPIO_enablelInterrupt (
GPIO_PORT_P1,
GPIO_PIN4

)i

//P1.4 Hi/Lo edge
GPIO_interruptEdgeSelect (
GPIO_PORT_P1,
GPIO_PIN4,
GPIO_HIGH_TO_LOW_TRANSITION
)i

//P1l.4 IFG cleared
GPIO_clearInterruptFlag(

GPIO_PORT_PI,
GPIO_PIN4
)

//Enter LPM4 w/interrupt
__bis_SR_register (LPM4_bits + GIE);

//For debugger
__no_operation();

//**
//
//This is the PORT1_VECTOR interrupt vector service routine
//
//**
#pragma vector=PORT1_VECTOR
__interrupt void Port_1 (void)
{
//P1.0 = toggle
GPIO_toggleOutputOnPin (
GPIO_PORT_P1,
GPIO_PINO
) i

//P1l.4 IFG cleared
GPIO_clearInterruptFlag(
GPIO_PORT_P1,
GPIO_PIN4
)

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

33

GPIO

34

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

Memory Protection Unit (MPU)

13

13.1

13.2

Memory Protection Unit (MPU)

I OAUCH ON ... e e e e e e e s 35
AP FUNCHIONS .. e e e e 35
Programming EXamIPIe ... e 36
Introduction

The MPU protects against accidental writes to designated read-only memory segments or execu-
tion of code from a constant memory segment memory. Clearing the MPUENA bit disables the
MPU, making the complete memory accessible for read, write, and execute operations. After a
BOR, the complete memory is accessible without restrictions for read, write, and execute opera-
tions.

MPU features include:

m Main memory can be configured up to three segments of variable size
m Access rights for each segment can be set independently

m Information memory can have its access rights set independently

m All MPU registers are protected from access by password

This driver is contained in mpu . ¢, with mpu . h containing the API definitions for use by applications.

API Functions

The MPU APl is broken into three group of functions: those that handle initialization, those that deal
with memory segmentation and access rights definition, and those that handle interrupts.

The MPU initialization function is
m MPU_start
The MPU memory segmentation and access right definition functions are

m MPU_createTwoSegments
m MPU_createThreeSegments

The MPU interrupt handler functions

= MPU_enablePUCOnViolation
MPU_getinterruptStatus

MPU_clearInterruptFlag
MPU_clearAllinterruptFlags

2012-10-25:0 : 43 : 150500 35

TI Information—Selective Disclosure

Memory Protection Unit (MPU)

13.3 Programming Example

The following example shows some MPU operations using the APls

//Define memory segment boundaries and set access right for each memory segment
MPU_createThreeSegments (MPU_BASE, 0x04, 0x08,
MPU_READ |MPU_WRITE |[MPU_EXEC,
MPU_READ,
MPU_READ |[MPU_WRITE |[MPU_EXEC) ;

// Configures MPU to generate a PUC on access violation on the second segment
MPU_enablePUCOnViolation (MPU_BASE,MPU_SECOND_SEG) ;

//Enables the MPU module
MPU_start (MPU_BASE) ;

36

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

32-Bit Hardware Multiplier (MPY32)

14 32-Bit Hardware Multiplier (MPY32)

INtrOAUCH ON .. e 37
AP FUNCHIONS .. e e 37
Programming EXamIPIe ... e 38

14.1 Introduction

The 32-Bit Hardware Multiplier (MPY32) API provides a set of functions for using the MSP430Ware
MPY32 modules. Functions are provided to setup the MPY32 modules, set the operand registers,
and obtain the results.

The MPY32 Modules does not generate any interrupts.

This driver is contained in mpy32 . ¢, with mpy32 . h containing the API definitions for use by appli-
cations.

14.2 API Functions

The MPY32 API is broken into three groups of functions: those that control the settings, those that
set the operand registers, and those that return the results, sum extension, and carry bit value.

The settings are handled by

MPY32_setWriteDelay
MPY32_setSaturationMode
MPY32_resetSaturationMode
MPY32_setFractionMode
MPY32_resetFractionMode

The operand registers are set by

m MPY32_setOperandOne8Bit

MPY32_setOperandOne16Bit
MPY32_setOperandOne24Bit
MPY32_setOperandOne32Bit
MPY32_setOperandTwo8Bit

MPY32_setOperandTwo16Bit
MPY32_setOperandTwo24Bit
MPY32_setOperandTwo32Bit

The results can be returned by

m MPY32_getResult8Bit
m MPY32_getResult16Bit
m MPY32_getResult24Bit

2012-10-25;0 : 43 : 150500 37
TI Information—Selective Disclosure

32-Bit Hardware Multiplier (MPY32)

MPY32_getResult32Bit
MPY32_getResult64Bit
MPY32_getSumExtension
MPY32_getCarryBitValue

14.3 Programming Example

The following example shows how to initialize and use the MPY32 API to calculate a 16-bit by 16-bit
unsigned multiplication operation.

WDT_hold (WDT_A_BASE) ; // Stop WDT

// Set a 16-bit Operand into the specific Operand 1 register to specify
// unsigned multiplication
MPY32_setOperandOnel6Bit (MPY32_BASE,
MPY32_MULTIPLY_UNSIGNED,
0x1234);
// Set Operand 2 to begin the multiplication operation
MPY32_setOperandIwol6Bit (MPY32_ BASE,

0x5678) ;
__bis SR register (LPM4_bits); // Enter LPM4
__no_operation(); // BREAKPOINT HERE to verify the
// correct result in the registers
38 2012-10-25;0 : 43 : 15-0500

TI Information—Selective Disclosure

Power Management Module (PMM)

15 Power Management Module (PMM)

INtrOAUCH ON .. e 39
AP FUNCHIONS .. e e 39
Programming EXamIPIe ... e 39

15.1 Introduction

The PMM manages all functions related to the power supply and its supervision for the device.
Its primary functions are first to generate a supply voltage for the core logic, and second, provide
several mechanisms for the supervision of the voltage applied to the device (DVCC).

The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core
voltage (VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies
the CPU, memories, and the digital modules, while DVCC supplies the 1/0Os and analog modules.
The VCORE output is maintained using a dedicated voltage reference. The input or primary side
of the regulator is referred to as its high side. The output or secondary side is referred to as its low
side.

15.2 API Functions

PMM_enableSVSH() / PMM_disableSVSH() If disabled on FR57xx, High-side SVS (SVSH) is dis-
abled in LPM4.5. SVSH is always enabled in active mode and LPMO0/1/2/3/4 and LPM3.5. If
enabled, SVSH is always enabled. Note: this API has different functionality depending on the part.

PMM_enableSVSL() / PMM_disableSVSL() If disabled, Low-side SVS (SVSL) is disabled in low
power modes. SVSL is always enabled in active mode and LPMO. If enabled, SVSL is enabled in
LPMO0/1/2. SVSL is always enabled in AM and always disabled in LPM3/4 and LPM3.5/4.5.

PMM_regOff() / PMM_regOn() If off, Regulator is turned off when going to LPM3/4. System enters
LPM3.5 or LPM4.5, respectively. If on, Regulator remains on when going into LPM3/4

PMM_clearInterrupt() Clear selected or all interrupt flags for the PMM
PMM_getinterruptStatus() Returns interrupt status of the selected flag in the PMM module

PMM_lockLPM5() / PMM_unlockLPM5() If unlocked, LPMx.5 configuration is not locked and de-
faults to its reset condition. if locked, LPMx.5 configuration remains locked. Pin state is held during
LPMx.5 entry and exit.

This driver is contained in pmm. c, with pmm . h containing the API definitions for use by applications.

15.3 Programming Example

The following example shows some pmm operations using the APls

//Unlock the GPIO pins.
/ *

2012-10-25;0 : 43 : 150500 39
TI Information—Selective Disclosure

Power Management Module (PMM)

Base Address of Comparator D,

By default, the pins are unlocked unless waking
up from an LPMx.5 state in which case all GPIO
are previously locked.

*/
PMM_unlockLPM5 (PMM_BASE) ;

//Get Interrupt Status from the PMMIFG register.
/* Base Address of Comparator D,
mask:
PMM_PMMBORIFG
PMM_PMMRSTIFG,
PMM_PMMPORIFG,
PMM_SVSLIFG,
PMM_SVSHIFG
PMM_PMMLPMSIFG,
return STATUS_SUCCESS (0x01) or STATUS_FAIL (0x00)
*/
if (PMM_getInterruptStatus (PMM_BASE, PMM_PMMLPM5SIFG))
{
//Clear Interrupt Flag from the PMMIFG register.
/+ Base Address of Comparator D,
mask:
PMM_PMMBORIFG
PMM_PMMRSTIFG,
PMM_PMMPORIFG,
PMM_SVSLIFG,
PMM_SVSHIFG
PMM_PMMLPM5SIFG,
PMM_ALL
*/
PMM_clearInterrupt (PMM_BASE, PMM_PMMLPM5SIFG) ;

if (PMM_getInterruptStatus (PMM_BASE, PMM_PMMRSTIFG))
{
PMM_clearInterrupt (PMM_BASE, PMM_PMMRSTIFG);

__delay_cycles (1000000);
//Lock GPIO output states (before triggering a BOR)
/%
Base Address of Comparator D,
Forces all GPIO to retain their output
states during a reset.
*/
PMM_lockLPM5 (PMM_BASE) ;
//Trigger a software Brown Out Reset (BOR)
/%
Base Address of Comparator D,
Forces the devices to perform a BOR.
*/
PMM_trigBOR (PMM_BASE) ;

if (PMM_getInterruptStatus (PMM_BASE, PMM_PMMBORIFG))
{ PMM_clearInterrupt (PMM_BASE, PMM_PMMBORIFG) ;
__delay_cycles (1000000);
PMM_lockLPM5 (PMM_BASE) ;

//Disable SVSH
/%

// Was this device in LPMx.5 mode before

// Clear the LPMx.5 flac

// Was this reset triggered by the Reset

// Clear reset flag

// Software tric

// Was this reset triggered by the BOR i1

// Clear BOR flag

40
TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

Power Management Module (PMM)

Base Address of Comparator D,
High-side SVS (SVSH) is disabled in LPM4.5. SVSH is
always enabled in active mode and LPM0/1/2/3/4 and LPM3.5.
*/
PMM_disableSVSH (PMM_BASE) ;
//Disable SVSL
/ *
Base Address of Comparator D,
Low-side SVS (SVSL) is disabled in low power modes.
SVSL is always enabled in active mode and LPMO.
*/
PMM_disableSVSL (PMM_BASE) ;
//Disable Regulator
/ *
Base Address of Comparator D,
Regulator is turned off when going to LPM3/4.
System enters LPM3.5 or LPM4.5, respectively.
x/
PMM_regOff (PMM_BASE) ;
__bis_SR_register (LPM4_bits); // Enter LPM4.5, This automatically locks
// (if not locked already) all GPIO pir
// and will set the LPM5 flag and set
// in the PM5CTLO register upon wake

[/ e
while (1)
{
__no_operation(); // Don’t sleep
}
2012-10-25;0 : 43 : 150500 41

TI Information—Selective Disclosure

Power Management Module (PMM)

42

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

Internal Reference (REF)

16

16.1

16.2

Internal Reference (REF)

I OAUCH ON ... e e e e e e e s 43
AP FUNCHIONS .. e e e e 43
Programming EXamIPIe ... e 44
Introduction

The Internal Reference (REF) API provides a set of functions for using the MSP430Ware REF
modules. Functions are provided to setup and enable use of the Reference voltage, enable or
disable the internal temperature sensor, and view the status of the inner workings of the REF
module.

The reference module (REF) is responsible for generation of all critical reference voltages that can
be used by various analog peripherals in a given device. These include but are not limited to the
ADC12_B and COMP_B modules, dependent upon the particular device. The heart of the reference
system is the bandgap from which all other references are derived by unity or non-inverting gain
stages. The REFGEN sub-system consists of the bandgap, the bandgap bias, and the non-inverting
buffer stage which generates the three primary voltage reference available in the system, namely
1.5V, 2.0V, and 2.5 V. In addition, when enabled, a buffered bandgap voltage is also available.

This driver is contained in ref . ¢, with re £ . h containing the API definitions for use by applications.

API Functions

The REF APl is broken into three groups of functions: those that deal with the reference voltage,
those that handle the internal temperature sensor, and those that return the status of the REF
module.

The reference voltage of the REF module is handled by
m REF_setReferenceVoltage

m REF_enableReferenceVoltage
m REF_disableReferenceVoltage

The internal temperature sensor is handled by

m REF_disableTempSensor
m REF_enableTempSensor

The status of the REF module is handled by

m REF_getBandgapMode
m REF_isBandgapActive
m REF_isRefGenBusy

m REF_isRefGen

2012-10-25:0 : 43 : 150500 43

TI Information—Selective Disclosure

Internal Reference (REF)

16.3 Programming Example

The following example shows how to initialize and use the REF API with the ADC12 module to use
as a positive reference to the analog signal input.

// By default, REFMSTR=1 => REFCTL is used to configure the internal reference

// 1f ref generator busy, WAIT

while (REF_refGenBusyStatus (REF_BASE)) ;

// Select internal ref = 2.5V

REF_setReferenceVoltage (REF_BASE,
REF_VREF2_5V) ;

// Internal Reference ON

REF_enableReferenceVoltage (REF_BASE) ;

__delay_cycles (75); // Delay (~75us) for Ref to settle

44 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

Real-Time Clock (RTC)

17

17.1

17.2

Real-Time Clock (RTC)

I OAUCH ON ... e e e e e e e s 45
AP FUNCHIONS .. e e e e 45
Programming EXamIPIe ... e 46
Introduction

The Real Time Clock (RTC) API provides a set of functions for using the MSP430Ware RTC mod-
ules. Functions are provided to calibrate the clock, initialize the RTC modules in Calendar mode,
and setup conditions for, and enable, interrupts for the RTC modules. If an RTC_B_A module is
used, then Counter mode may also be intialized, as well as prescale counters.

The RTC module provides the ability to keep track of the current time and date in calendar mode,
or can be setup as a 32-bit counter (RTC_B_A Only).

The RTC module generates multiple interrupts. There are 2 interrupts that can be defined in cal-
endar mode, and 1 interrupt in counter mode for counter overflow, as well as an interrupt for each
prescaler.

This driver is contained in rtc_b. c, with rtc_b.h containing the API definitions for use by appli-
cations.

API Functions

The RTC API is broken into 4 groups of functions: clock settings, calender mode, counter mode,
and interrupt condition setup and enable functions.

The RTC clock settings are handled by

m RTC_B_startClock

m RTC_B_holdClock

m RTC_B_setCalibrationFrequency
m RTC_B_setCalibrationData

The RTC Calender Mode is initialized and setup by

m RTC_B calenderlnit

m RTC_B_getCalenderTime
m RTC_B_getPrescaleValue
m RTC_B_setPrescaleValue

The RTC interrupts are handled by

m RTC_B setCalenderAlarm
m RTC_B_setCalenderEvent
m RTC B definePrescaleEvent

2012-10-25:0 : 43 : 150500 45

TI Information—Selective Disclosure

Real-Time Clock (RTC)

RTC_B_enablelnterrupt
RTC_B_disablelnterrupt
RTC_B_getinterruptStatus
RTC_B_clearInterrupt

The RTC conversions are handled by

m RTC_B convertBCDToBinary
m RTC_B_convertBinaryToBCD

17.3 Programming Example

The following example shows how to initialize and use the RTC API to setup Calender Mode with
the current time and various interrupts.

//Initialize Calendar Mode of RTC
/ *
Base Address of the RTC_B_A
Pass in current time, intialized above
Use BCD as Calendar Register Format
*/
RTC_B_calendarInit (RTC_B_BASE,
currentTime,
RTC_B_FORMAT_BCD) ;

//Setup Calendar Alarm for 5:00pm on the 5th day of the week.
//Note: Does not specify day of the week.
RTC_B_setCalendarAlarm (RTC_B_BASE,

0x00,

0x17,

RTC_B_ALARMCONDITION_OFF,

0x05) ;

//Specify an interrupt to assert every minute
RTC_B_setCalendarEvent (RTC_B_BASE,
RTC_B_CALENDAREVENT_MINUTECHANGE) ;

//Enable interrupt for RTC Ready Status, which asserts when the RTC
//Calendar registers are ready to read.
//Also, enable interrupts for the Calendar alarm and Calendar event.
RTC_B_enablelInterrupt (RTC_B_BASE,

RTCRDYIE + RTCTEVIE + RTCAIE);

//Start RTC Clock
RTC_B_startClock (RTC_B_BASE) ;

//Enter LPM3 mode with interrupts enabled
__bis_SR_register (LPM3_bits + GIE);
__no_operation();

46 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

SFR Module

18

18.1

18.2

18.3

SFR Module

I OAUCH ON ... e e e e e e e s 47
AP FUNCHIONS .. e e e e 47
Programming EXamIPIe ... e 47
Introduction

The Special Function Registers API provides a set of functions for using the MSP430Ware SFR
module. Functions are provided to enable and disable interrupts and control the ~RST/NMI pin

The SFR module can enable interrupts to be generated from other peripherals of the device.

This driver is contained in sfr. c, with sfr.h containing the API definitions for use by applications.

API Functions

The SFR APl is broken into 2 groups: the SFR interrupts and the SFR ~RST/NMI pin control
The SFR interrupts are handled by

m SFR_enablelnterrupt

m SFR_disablelnterrupt

m SFR_getinterruptStatus
m SFR_clearInterrupt

The SFR ~RST/NMI pin is controlled by

m SFR_setResetPinPullResistor
m SFR_setNMIEdge
m SFR_setResetNMIPinFunction

Programming Example

The following example shows how to initialize and use the SFR API

do
{

// Clear SFR Fault Flag
SFR_clearInterrupt (SFR_BASE,
OFIFG) ;

// Test oscillator fault flag
}while (SFR_getInterruptStatus (SFR_BASE,OFIFG));

2012-10-25:0 : 43 : 150500 47

TI Information—Selective Disclosure

SFR Module

48

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

SYS Module

19

19.1

19.2

SYS Module

I OAUCH ON ... e e e e e e e s 49
AP FUNCHIONS .. e e e e 49
Programming EXamIPIe e ??
Introduction

The System Control (SYS) API provides a set of functions for using the MSP430Ware SYS mod-
ule. Functions are provided to control various SYS controls, setup the BSL, and control the JTAG
Mailbox.

This driver is contained in sys. c, with sys . h containing the API definitions for use by applications.

API Functions

The SYS APl is broken into 3 groups: the various SYS controls, the BSL controls, and the JTAG
mailbox controls.

The various SYS controls are handled by

m SYS_enableDedicatedJTAGPins

m SYS_getBSLEntryIndication

m SYS_enablePMMAccessProtect

m SYS_enableRAMBasedInterruptVectors
m SYS_disableRAMBasedInterruptVectors

The BSL controls are handled by

m SYS_enableBSLProtect

m SYS_disableBSLProtect

m SYS_disableBSLMemory

m SYS_enableBSLMemory

m SYS_setRAMAssignedToBSL
m SYS_setBSLSize

The JTAG Mailbox controls are handled by

m SYS_JTAGMailboxInit

m SYS_getJTAGMailboxFlagStatus

m SYS_getJTAGInboxMessage16Bit

m SYS_getJTAGInboxMessage32Bit

m SYS_setJTAGOutgoingMessage16Bit
m SYS_setJTAGOutgoingMessage32Bit
m SYS_cleardTAGMailboxFlagStatus

2012-10-25:0 : 43 : 150500 49

TI Information—Selective Disclosure

SYS Module

19.3 Programming Example

The following example shows how to initialize and use the SYS API

SYS_enableBSLProtect (SYS_BASE) ;

50

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

TIMER 4

20 TIMER,

INtrOAUCH 0N .. e 51
AP FUNCHONS .. e 52
Programming EXamIpIe 52

20.1 Introduction

TIMER_A is a 16-bit timer/counter with multiple capture/compare registers. TIMER_A can support
multiple capture/compares, PWM outputs, and interval timing. TIMER_A also has extensive inter-
rupt capabilities. Interrupts may be generated from the counter on overflow conditions and from
each of the capture/compare registers.

This peripheral API handles Timer A hardware peripheral.
TIMER_A features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m Interrupt vector register for fast decoding of all Timer interrupts

TIMER_A can operate in 3 modes

m Continuous Mode
m Up Mode
® Down Mode

TIMER_A Interrupts may be generated on counter overflow conditions and during capture compare
events.

The TIMER_A may also be used to generate PWM outputs. PWM outputs can be generated by
initializing the compare mode with TIMER_A_initCompare() and the necessary parameters. The
PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle,
output mode, timer period etc. The library also provides a simpler way to generate PWM using
TIMER_A_generatePWM() API. However the level of customization and the kinds of PWM gener-
ated are limited in this API. Depending on how complex the PWM is and what level of customization
is required, the user can use TIMER_A_generatePWM() or a combination of Timer_initCompare()
and timer start APIs

The TIMER_A API provides a set of functions for dealing with the TIMER_A module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values, and
to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in TIMER_A. c, with TIMER_A . h containing the API definitions for use by
applications.

2012-10-25;0 : 43 : 150500 51
TI Information—Selective Disclosure

TIMER A

20.2 API Functions

The TIMER_A APl is broken into three groups of functions: those that deal with timer configuration
and control, those that deal with timer contents, and those that deal with interrupt handling.

TIMER_A configuration and initialization is handled by

= TIMER_A_startCounter(),

m TIMER_A_configureContinuousMode(),
m TIMER_A_configureUpMode(),

m TIMER_A_configureUpDownMode(),
m TIMER_A_startContinuousMode(),
m TIMER_A_startUpMode(),

m TIMER_A_startUpDownMode(),

= TIMER_A_initCapture(),

m TIMER_A_initCompare(),

m TIMER_A_clear(),

m TIMER_A_stop()

TIMER_A outputs are handled by

m TIMER_A_getSynchronizedCaptureComparelnput(),
m TIMER_A_getOutputForOutputModeOutBitValue(),
m TIMER_A_setOutputForOutputModeOutBitValue(),
m TIMER_A_generatePWM()

m TIMER_A_getCaptureCompareCount()

m TIMER_A_setCompareValue()

The interrupt handler for the TIMER_A interrupt is managed with

m TIMER_A_enablelnterrupt(),

= TIMER_A_disablelnterrupt(),

m TIMER_A_getinterruptStatus(),

m TIMER_A_enableCaptureComparelnterrupt(),

m TIMER_A_disableCaptureComparelnterrupt(),

m TIMER_A_getCaptureComparelnterruptStatus(),
m TIMER_A_clearCaptureComparelnterruptFlag()
m TIMER_A_clearTimerInterruptFlag()

20.3 Programming Example

The following example shows some TIMER_A operations using the APls

52 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

TIMER 4

{ //Start TIMER_A
TIMER_A_configureUpDownMode (TIMER_Al_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_DISABLE,
TIMER_A_CCIE_CCRO_INTERRUPT_DISABLE,
TIMER_A_DO_CLEAR
)i

TIMER_A_startCounter (TIMER_Al_BASE,
TIMER_A_UPDOWN_MODE
)i

//Initialze compare registers to generate PWM1
TIMER_A_initCompare (TIMER_A1l_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_1,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLE1
)i
//Initialze compare registers to generate PWM2
TIMER_A_initCompare (TIMER_A1l_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE,
TIMER_A_OUTPUTMODE_TOGGLE_SET,
DUTY_CYCLEZ2
)i

//Enter LPMO
__bis_SR_register (LPMO_bits);

//For debugger
__no_operation();

2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

53

TIMER 4

54

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

TIMERgs

21 TIMERjp

INtrOAUCH 0N .. e 55
AP FUNCHONS .. e 56
Programming EXamIpIe 57

21.1 Introduction

TIMER_B is a 16-bit timer/counter with multiple capture/compare registers. TIMER_B can support
multiple capture/compares, PWM outputs, and interval timing. TIMER_B also has extensive inter-
rupt capabilities. Interrupts may be generated from the counter on overflow conditions and from
each of the capture/compare registers.

This peripheral API handles Timer B harware peripheral.
TIMER_B features include:

m Asynchronous 16-bit timer/counter with four operating modes

m Selectable and configurable clock source

m Up to seven configurable capture/compare registers

m Configurable outputs with pulse width modulation (PWM) capability
m Asynchronous input and output latching

m Interrupt vector register for fast decoding of all Timer_B interrupts

Differences From Timer_A Timer_B is identical to Timer_A with the following exceptions:

m The length of Timer_B is programmable to be 8, 10, 12, or 16 bits

m Timer_B TBxCCRn registers are double-buffered and can be grouped
m All Timer_B outputs can be put into a high-impedance state

m The SCCI bit function is not implemented in Timer_B

TIMER_B can operate in 3 modes

m Continuous Mode
m Up Mode
® Down Mode

TIMER_B Interrupts may be generated on counter overflow conditions and during capture compare
events.

The TIMER_B may also be used to generate PWM outputs. PWM outputs can be generated by
initializing the compare mode with TIMER_B_initCompare() and the necessary parameters. The
PWM may be customized by selecting a desired timer mode (continuous/up/upDown), duty cycle,
output mode, timer period etc. The library also provides a simpler way to generate PWM using
TIMER_B_generatePWM() API. However the level of customization and the kinds of PWM gener-
ated are limited in this API. Depending on how complex the PWM is and what level of customization
is required, the user can use TIMER_B_generatePWM() or a combination of Timer_initCompare()
and timer start APIs

2012-10-25;0 : 43 : 150500 55
TI Information—Selective Disclosure

TIMERB

The TIMER_B API provides a set of functions for dealing with the TIMER_B module. Functions are
provided to configure and control the timer, along with functions to modify timer/counter values, and
to manage interrupt handling for the timer.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured.

This driver is contained in TIMER_B. c, with TIMER_B. h containing the API definitions for use by
applications.

21.2 API Functions

The TIMER_B APl is broken into three groups of functions: those that deal with timer configuration
and control, those that deal with timer contents, and those that deal with interrupt handling.

TIMER_B configuration and initialization is handled by

m TIMER_B_startCounter(),

m TIMER_B_configureContinuousMode(),
= TIMER_B_configureUpMode(),

m TIMER_B_configureUpDownMode(),

m TIMER_B_startContinuousMode(),

m TIMER_B_startUpMode(),

m TIMER_B_startUpDownMode(),

= TIMER_B_initCapture(),

= TIMER_B_initCompare(),

= TIMER_B_clear(),

m TIMER_B_stop()

m TIMER_B_initCompareLatchLoadEvent(),
m TIMER_B_selectLatchingGroup(),

m TIMER_B_selectCounterLength(),

TIMER_B outputs are handled by

m TIMER_B_getSynchronizedCaptureComparelnput(),
m TIMER_B_getOutputForOutputModeOQutBitValue(),
= TIMER_B_setOutputForOutputModeOutBitValue(),
m TIMER_B_generatePWM()

= TIMER_B_getCaptureCompareCount()

m TIMER_B_setCompareValue()

The interrupt handler for the TIMER_B interrupt is managed with

= TIMER_B_enablelnterrupt(),
m TIMER_B_disablelnterrupt(),
m TIMER_B_getInterruptStatus(),

56 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

TIMERgs

TIMER_B_enableCaptureCompareinterrupt(),
TIMER_B_disableCaptureCompareinterrupt(),
TIMER_B_getCaptureComparelnterruptStatus(),

TIMER_B_clearCaptureComparelnterruptFlag()
TIMER_B_clearTimerInterruptFlag()

21.3 Programming Example

The following example shows some TIMER_B operations using the APls

{ //Start TIMER B
TIMER_B_configureUpMode (TIMER_BO_BASE,

TIMER_B_CLOCKSOURCE_SMCLK,
TIMER_B_CLOCKSOURCE_DIVIDER_1,
511,
TIMER_B_TBIE_INTERRUPT_DISABLE,
TIMER_B_CCIE_CCRO_INTERRUPT_DISABLE,
TIMER_B_DO_CLEAR
)i

TIMER_B_startCounter (TIMER_BO_BASE,
TIMER_B_UP_MODE
)i

//Initialize compare mode to generate PWMIL
TIMER_B_initCompare (TIMER_BO_BASE,
TIMER_B_CAPTURECOMPARE_REGISTER_1,
TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
TIMER_B_OUTPUTMODE_RESET_SET,
383
)i

//Initialize compare mode to generate PWM2
TIMER_B_initCompare (TIMER_BO_BASE,
TIMER_B_CAPTURECOMPARE_REGISTER_2,
TIMER _B_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_B_OUTPUTMODE_RESET_SET,
128
)i

2012-10-25;0 : 43 : 150500 57
TI Information—Selective Disclosure

TIMERg

58

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

Tag Length Value

22

22.1

22.2

22.3

Tag Length Value

I OAUCH ON ... e e e 59
AP FUNCHIONS .. e e e e e 59
Programming EXamIpIe 59
Introduction

The TLV structure is a table stored in flash memory that contains device-specific information.
This table is read-only and is write-protected. It contains important information for using and
calibrating the device. A list of the contents of the TLV is available in the device-specific data
sheet (in the Device Descriptors section), and an explanation on its functionality is available in the
MSP430x5xx/MSP430x6xx Family UserSs Guide

This driver is contained in t1v. c, with t 1v.h containing the API definitions for use by applications.

API Functions

The APIs that help in querying the information in the TLV structure are listed

m TLV_getinfo() This function retrieves the value of a tag and the length of the tag.
m TLV_getDeviceType() This function retrieves the unique device ID from the TLV structure.
m TLV_getMemory() The returned value is zero if the end of the memory list is reached.

m TLV_getPeripheral() The returned value is zero if the specified tag value (peripheral) is not
available in the device.

m TLV_getinterrupt() The returned value is zero is the specified interrupt vector is not defined.

Programming Example

The following example shows some tlv operations using the APIs

struct s_TLV_Die_Record * pDIEREC;
unsigned char bDieRecord_bytes;

TLV_getInfo (TLV_TAG_DIERECORD,
O 14
&pbDieRecord_bytes,
(unsigned int xx) &pDIEREC
)i

2012-10-25:0 : 43 : 150500 59

TI Information—Selective Disclosure

Tag Length Value

60

TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

WatchDog Timer (WDT 4)

23 WatchDog Timer (WDT ,)

I OAUCH ON .. e e 61
AP FUNCHONS ..t e e e e e e e 61
Programming EXamIPIe e 61

23.1 Introduction

The Watchdog Timer (WDT_A) API provides a set of functions for using the MSP430Ware WDT_A
modules. Functions are provided to initialize the Watchdog in either timer interval mode, or watch-
dog mode, with selectable clock sources and dividers to define the timer interval.

The WDT_A module can generate only 1 kind of interrupt in timer interval mode. If in watchdog
mode, then the WDT_A module will assert a reset once the timer has finished.

This driver is contained in wdt_a . c, with wdt_a . h containing the API definitions for use by appli-
cations.

23.2 API Functions

The WDT_A APl is one group that controls the WDT_A module.

= WDT_A_hold

m WDT_A_start

m WDT_A_clearCounter

m WDT_A_watchdogTimerlnit
m WDT_A_intervalTimerlnit

23.3 Programming Example

The following example shows how to initialize and use the WDT_A API to interrupt about every 32
ms, toggling the LED in the ISR.

//Initialize WDT_A module in timer interval mode,
//with SMCLK as source at an interval of 32 ms.
WDT_A_intervalTimerInit (WDT_A_BASE,

WDT_A_CLOCKSOURCE_SMCLK,
WDT_A_CLOCKDIVIDER_32K);

//Enable Watchdog Interupt
SFR_enableInterrupt (SFR_BASE,
WDT_AIE);

//Set P1.0 to output direction
GPIO_setAsOutputPin (
GPIO_PORT_P1,
GPIO_PINO
)i

2012-10-25;0 : 43 : 150500 61
TI Information—Selective Disclosure

WatchDog Timer (WDT 4)

//Enter LPM0O, enable interrupts
__bis_SR_register (LPMO_bits + GIE);
//For debugger

__no_operation();

62
TI Information—Selective Disclosure

2012-10-25:0 : 43 : 15_0500

2012-10-25:0 : 43 : 150500

TI Information—Selective Disclosure

63

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications " ’
Amplifiers amplifier.ti.com Audio Wmoﬂve
Data Converters dataconverter.ti.com Automotive grs

DLP® Products www.dlp.com Broadband www.f[!.comﬁg_ro_?dlban? |
DSP dspi.com Digital Control www.ti.com/digitalcontro
Clocks and Timers www.ti.com/clocks Medical %m/mgdmal
Interface interface.ti.com Military w
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.fi.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

64 2012-10-25,0 : 43 : 150500
TI Information—Selective Disclosure

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 How to create a new project that uses Driverlib
	3 10-Bit Analog-to-Digital Converter (ADC10B)
	3.1 Introduction
	3.2 API Functions
	3.3 Programming Example

	4 Comparator (COMPD)
	4.1 Introduction
	4.2 API Functions
	4.3 Programming Example

	5 Cyclical Redundancy Check (CRC)
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 Clock System (CS)
	6.1 Introduction
	6.2 API Functions
	6.3 Programming Example

	7 Direct Memory Access (DMA)
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 EUSCI Inter-Integrated Circuit (I2C)
	8.1 Introduction
	8.2 API Functions
	8.3 Programming Example

	9 EUSCI Synchronous Peripheral Interface (SPI)
	9.1 Introduction
	9.2 Functions
	9.3 Programming Example

	10 EUSCI UART
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 FRAM Controller
	11.1 Introduction
	11.2 API Functions
	11.3 Programming Example

	12 GPIO
	12.1 Introduction
	12.2 API Functions
	12.3 Programming Example

	13 Memory Protection Unit (MPU)
	13.1 Introduction
	13.2 API Functions
	13.3 Programming Example

	14 32-Bit Hardware Multiplier (MPY32)
	14.1 Introduction
	14.2 API Functions
	14.3 Programming Example

	15 Power Management Module (PMM)
	15.1 Introduction
	15.2 API Functions
	15.3 Programming Example

	16 Internal Reference (REF)
	16.1 Introduction
	16.2 API Functions
	16.3 Programming Example

	17 Real-Time Clock (RTC)
	17.1 Introduction
	17.2 API Functions
	17.3 Programming Example

	18 SFR Module
	18.1 Introduction
	18.2 API Functions
	18.3 Programming Example

	19 SYS Module
	19.1 Introduction
	19.2 API Functions
	19.3 Programming Example

	20 TIMERA
	20.1 Introduction
	20.2 API Functions
	20.3 Programming Example

	21 TIMERB
	21.1 Introduction
	21.2 API Functions
	21.3 Programming Example

	22 Tag Length Value
	22.1 Introduction
	22.2 API Functions
	22.3 Programming Example

	23 WatchDog Timer (WDTA)
	23.1 Introduction
	23.2 API Functions
	23.3 Programming Example

	IMPORTANT NOTICE

