

Warranty

Parallax warrants its products and printed documentation against defects in materials and workmanship for a period of 90
days. If you discover a defect, Parallax will, at its option, repair, replace, or refund the purchase price. Simply call for a
Return Merchandise Authorization (RMA) number, write the number on the outside of the box and send it back to Paral-
lax. Please include your name, telephone number, shipping address, and a description of the problem. We will return your
product, or its replacement, using the same shipping method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received this book, you find that it does not suit your needs, you may return it for a full refund.
Parallax will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the book
has been altered or damaged.

Copyrights and Trademarks

This documentation is Copyright 2002 by Parallax, Inc. The SX is a registered trademark of Ubicom. SX-Key is registered
trademark of Parallax, Inc. If you decide to use these names on your web page or in printed material, you must state:
"(trademark) is a registered trademark of (respective holder)". Other brand and product names are trademarks or regis-
tered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and
any costs or recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also
not responsible for any personal damage, including that to life and health, resulting from use of any of our products. You
take full responsibility for your microcontroller application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. These may be used to obtain software, communicate with members of Paral-
lax, and communicate with other customers. Access information is shown below:

 E-mail: sxtech@parallaxinc.com
 Web: http://www.parallaxinc.com

Internet SX Discussion List

Parallax maintains an e-mail discussion list for people interested in programming SX chips. The “SXTech” list server
includes engineers, hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all
questions and answers to the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss SX program-
ming issues and get answers to technical questions. This list generates about 10 messages per day. Subscribe at
www.yahoogroups.com under the group name “sxtech”.

This text copyright Parallax, Inc. 2002.

Programming the SX Microcontroller – Table of Contents

3

Table of Contents
1 Tutorial ___11
1.1 Introduction __11
1.2 SX Development - What You Need__13
1.2.1 The Tools ___13
1.2.2 Prototyping Systems ___13
1.2.3 A "Home-brew" Prototyping System _______________________________________13
1.3 SX-Key Quick Start using the Parallax SX-Key_______________________________16
1.3.1 The SX-Key __16
1.3.2 Installing the SX-Key IDE Software__16
1.3.3 The First Program ___17
1.3.4 The SX-Key Debugger Windows__23
1.3.4.1 The Registers (R) Window __23
1.3.4.2 The Code – List File (C) Window ___23
1.3.4.3 The Debug (D) Control Window __24
1.3.5 Executing the First Program in Single Steps _________________________________24
1.3.6 Compound Instructions ___25
1.3.7 Symbolic Addresses – Labels __28
1.3.8 Running the program at full speed __29
1.3.9 Program Loops for Time Delays __31
1.3.10 Setting a Breakpoint ___33
1.3.11 Where to go next __34
1.4 SX Configuration - ORG/DS - Conditional Branches___________________________35
1.4.1 Configuration Directives __35
1.4.2 The ORG and DS directives ___36
1.4.3 Conditional Branches __38
1.5 Subroutines - Symbols - Data Memory _____________________________________40
1.5.1 Subroutines __40
1.5.2 The Stack ___41
1.5.3 Local Labels ___43
1.5.4 Some More Considerations about Subroutines_______________________________45
1.5.5 Correctly Addressing the SX Data Memory__________________________________48
1.5.6 Clearing the Data Memory and Indirect Addressing ___________________________53
1.5.6.1 SX 18/20/28 ___53
1.5.6.2 SX 48/52__58
1.5.7 Symbolic Variable Names ___60
1.5.8 The equ, set and = Directives __61
1.5.9 Some Thoughts about Data Memory Usage _________________________________62
1.5.10 Don't Forget to Select the Right Bank ______________________________________63

Programming the SX Microcontroller – Table of Contents

4

1.5.11 Saving the Current Bank in a Subroutine ___________________________________ 65
1.5.12 Routines for an FSR Stack__ 68
1.5.13 The "#"-Pitfall __ 72
1.6 Arithmetic and Logical Instructions__ 74
1.6.1 Arithmetic Instructions ___ 74
1.6.1.1 Addition __ 74
1.6.1.2 Skip Instructions ___ 76
1.6.1.3 The test Instruction ___ 76
1.6.1.4 Multi-Byte-Addition ___ 77
1.6.1.5 Subtraction ___ 78
1.6.1.6 Signed Numbers ___ 79
1.6.2 Increment and Decrement __ 80
1.6.3 Arithmetic Instructions and Multi-Byte Counters______________________________ 81
1.6.4 The DEVICE CARRYX Directive ___ 83
1.6.5 Logical Operations __ 84
1.6.5.1 AND___ 84
1.6.5.2 OR __ 85
1.6.5.3 XOR___ 86
1.6.5.4 NOT___ 87
1.6.6 Rotate instructions __ 87
1.6.6.1 Multiplication and Division __ 88
1.6.7 The Swap Instruction __ 94
1.6.8 The DC (Digit Carry) Flag___ 94
1.6.9 MOV Instructions with Arithmetic Functions_________________________________ 94
1.7 MOV Instructions ___ 96
1.7.1 Basic MOV Instructions __ 96
1.7.2 Compound MOV Instructions __ 98
1.8 Recognizing Port Signals __ 100
1.8.1 Recognizing Signal Edges at Port B _____________________________________ 100
1.8.1.1 MODE and Port Configuration Registers__________________________________ 101
1.8.1.2 Signal Edges at Port B ___ 103
1.8.1.3 De-Bouncing Mechanical Contacts ______________________________________ 105
1.9 Interrupts - The OPTION Register _______________________________________ 107
1.9.1 Interrupts __ 107
1.9.1.1 Asynchronous Interrupts __ 109
1.9.1.2 Synchronous (Timer-Controlled) Interrupts ________________________________ 112
1.9.1.3 The Prescaler __ 115
1.9.1.4 Interrupts Caused by Counter Overflows__________________________________ 121
1.9.2 The OPTION Register Bits and their Meanings _____________________________ 125
1.10 The Watchdog - Reset Reasons - Conditional Assembly______________________ 126
1.10.1 The Watchdog Timer ___ 126

Programming the SX Microcontroller – Table of Contents

5

1.10.2 Determining the Reset Reason __129
1.10.3 Conditional Assembly ___131
1.10.3.1 More Directives for Conditional Assembly _________________________________131
1.10.4 "To Watchdog or not to Watchdog..." _____________________________________133
1.11 The Sleep Mode and Wakeup___134
1.11.1 Wakeups Caused by Port B Signal Edges _________________________________134
1.11.2 Using the Watchdog Timer for Wakeups___________________________________138
1.12 Macros - Expressions - Symbols - Device Configuration_______________________140
1.12.1 Macro Definitions___140
1.12.1.1 Macros or Subroutines? ___143
1.12.2 Expressions___144
1.12.3 Data Types ___146
1.12.4 Symbolic Constants___146
1.12.5 The DEVICE Directives __149
1.12.6 The FREQ Directive (SX-Key only) _______________________________________150
1.12.7 The ID Directive__150
1.12.8 The BREAK Directive (SX-Key only)______________________________________150
1.12.9 The ERROR Directive ___151
1.12.10 The END Directive ___151
1.13 The Analog Comparator ___151
1.13.1 The Comparator and Interrupts __154
1.13.2 The Comparator and the Sleep Mode _____________________________________156
1.14 System Clock Generation __156
1.14.1 The Internal Clock Generator ___156
1.14.2 Internal Clock Generator with External R-C Network _________________________157
1.14.3 External Crystal/Ceramic Resonator ______________________________________157
1.14.4 External Clock Signals___158
1.14.5 External Clock Signal using a PLL _______________________________________158
1.14.6 Selecting the Appropriate Clock Frequency ________________________________159
1.15 The Program Memory ___160
1.15.1 Organizing the Program Memory __160
1.15.1.1 The PAGE Instruction___161
1.15.1.2 The @jmp and @call Options___163
1.15.1.3 Subroutine Calls across Memory Pages___________________________________164
1.15.2 How to Organize Program Memory_______________________________________166
1.16 Tables - RETIW and IREAD __167
1.16.1 Tables ___167
1.16.1.1 The RETW Instruction __167
1.16.1.2 Reading Program Memory Using the iread Instruction________________________172

Programming the SX Microcontroller – Table of Contents

6

1.17 More SX Instructions ___ 175
1.17.1 Compare Instructions ___ 175
1.17.1.1 CJA (Compare and Jump if Above)______________________________________ 175
1.17.1.2 CJAE (Compare and Jump if Above or Equal) _____________________________ 175
1.17.1.3 CJB (Compare and Jump if Below) ______________________________________ 176
1.17.1.4 CJBE (Compare and Jump if Below or Equal)______________________________ 176
1.17.1.5 CJE (Compare and Jump if Equal) ______________________________________ 176
1.17.1.6 CJNE (Compare and Jump if Not Equal)__________________________________ 176
1.17.2 Decrement/Increment with Jump __ 177
1.17.2.1 DJNZ (Decrement and Jump if Not Zero) _________________________________ 177
1.17.2.2 IJNZ (Increment and Jump if Not Zero) ___________________________________ 177
1.17.3 Conditional Jumps ___ 178
1.17.3.1 JNB (Jump if Not Bit set) __ 178
1.17.3.2 JNC (Jump if Not Carry set)__ 178
1.17.3.3 JNZ (Jump if Not Zero) ___ 178
1.17.4 Conditional Skips __ 178
1.17.4.1 CSA (Compare and Skip if Above) ______________________________________ 178
1.17.4.2 CSAE (Compare and Skip if Above or Equal) ______________________________ 178
1.17.4.3 CSB (Compare and Skip if Below)_______________________________________ 179
1.17.4.4 CSBE (Compare and Skip if Below or Equal) ______________________________ 179
1.17.4.5 CSE (Compare and Skip if Equal) _______________________________________ 179
1.17.4.6 CSNE (Compare and Skip if Not Equal) __________________________________ 180
1.17.5 MOV and Conditional Skip ___ 180
1.17.5.1 MOVSZ (MOVe and Skip if Zero) _______________________________________ 180
1.17.6 NOP (No OPeration) ___ 181
1.17.7 SKIP __ 181
1.18 Virtual Peripherals ___ 182
1.18.1 The Software UART, a VP Example______________________________________ 182
1.18.1.1 The Transmitter ___ 189
1.18.1.2 The Receiver ___ 191
1.18.1.3 Utility Routines__ 192
1.18.1.4 The Main Program___ 194
1.18.1.5 Handshaking ___ 195
1.18.2 Conclusion ___ 196
2 Reference__ 198
2.1 Introduction___ 198
2.2 The SX internals (simplified) ___ 200
2.2.1 How SX Instructions are Constructed_____________________________________ 202
2.2.2 Organization of the Data Memory and how to Address it ______________________ 204
2.2.2.1 SX 18/29/28__ 204
2.2.2.2 SX 48/52 __ 205

Programming the SX Microcontroller – Table of Contents

7

2.2.3 Organization of the Program Memory and how to Access it ____________________208
2.2.4 The SX Special Registers and the I/O Ports ________________________________210
2.2.4.1 The W Register__210
2.2.4.2 The I/O Registers (Ports) __210
2.2.4.3 Read-Modify-Write Instructions ___211
2.2.4.4 Port Block Diagram___211
2.2.4.5 The Data Direction Registers ___213
2.2.4.6 The Level Registers __214
2.2.4.7 Pull Up Enable Registers __214
2.2.4.8 The Schmitt Trigger Enable Registers ____________________________________214
2.2.4.9 The Port B Wake Up Configuration Registers ______________________________215
2.2.4.10 The Port B Analog Comparator ___217
2.2.4.11 More Configuration Registers (SX 48/52)__________________________________218
2.2.4.12 Addressing the I/O Configuration Registers (SX 18/20/28) ____________________218
2.2.4.13 Addressing the SX 48/52 I/O Configuration Registers ________________________221
2.2.5 Interrupts, Watchdog and Brown-Out _____________________________________223
2.2.5.1 Interrupts___223
2.2.5.2 The Watchdog Timer ___226
2.2.5.3 Additional Bits in the OPTION Register ___________________________________227
2.2.5.4 Monitoring VDD - The Brown-Out Detection_________________________________227
2.2.5.5 Determining the Reason for a Reset _____________________________________228
2.2.6 The ALU and the STATUS Register ______________________________________229
2.2.7 The Stack Memory ___230
2.2.8 The FUSE Registers __230
2.2.8.1 The FUSE Registers (SX18/20/28)_______________________________________230
2.2.8.2 The Fuse Registers (SX 48/52) ___234
2.2.9 The SX 48/52 Multi-Function Timers______________________________________237
2.2.9.1 PWM Mode___238
2.2.9.2 Software Timer Mode ___238
2.2.9.3 External Event Counter__238
2.2.9.4 Capture/Compare Mode ___238
2.2.9.5 The SX48/52 Timer Control Registers ____________________________________239
3 Quick Reference ___243
3.1 SX Pin Assignments __243
3.2 Commonly Used Abbreviations __245
3.3 Instruction Overview __248
3.3.1 Comments on the Instruction Overview Tables______________________________248
3.3.2 Instructions in Alphabetic Order ___249
3.3.3 Instructions by Functions___252
3.4 Special Registers __256

Programming the SX Microcontroller – Table of Contents

8

3.4.1 Option___ 256
3.4.2 Status ___ 256
3.4.3 FSR __ 257
3.5 Addressing the Port Control Registers ____________________________________ 257
3.5.1 SX 18/20/28 __ 257
3.5.2 SX 48/52___ 258
3.6 Port Control Registers __ 259
3.6.1 TRIS (Direction) ___ 259
3.6.2 LVL (Level Configuration)__ 259
3.6.3 PLP (Pull Up Configuration) __ 260
3.6.4 ST (Schmitt Trigger Configuration)_______________________________________ 260
3.6.5 WKEN_B (Wake Up Enable) ___ 260
3.6.6 WKED_B (Wake Up Edge Configuration) _________________________________ 260
3.6.7 WKPND_B (Wake Up Pending Flags) ____________________________________ 261
3.6.8 CMP_B (Comparator)___ 261
3.6.9 T1CNTA (Timer 1 Control A) (SX 48/52 only) ______________________________ 261
3.6.10 T1CNTB (Timer 1 Control B) (SX 48/52 only) ______________________________ 262
3.6.11 T2CNTA (Timer 2 Control A) (SX 48/52 only) ______________________________ 262
3.6.12 T2CNTB (Timer 2 Control B) (SX 48/52 only) ______________________________ 263
4 Application Examples___ 265
4.1 Function Generators with the SX __ 265
4.1.1 A simple Digital-Analog Converter _______________________________________ 266
4.1.2 A Ramp Generator ___ 267
4.1.2.1 A Ramp Generator With a Pre-defined Frequency __________________________ 267
4.1.3 Generating a Triangular Waveform ______________________________________ 273
4.1.4 Generating Non-linear Waveforms_______________________________________ 277
4.1.4.1 Sine Wave ___ 278
4.1.4.2 Sine Generator with Defined Frequency __________________________________ 282
4.1.4.3 Super-Imposed Sine-Waves ___ 283
4.1.4.4 Generating a Sine Wave from a 1st Quadrant Table _________________________ 285
4.1.4.5 Generating Other Waveforms __ 287
4.2 Pulse Width Modulation (PWM) with the SX Controller _______________________ 288
4.2.1 Simple PWM VP___ 288
4.2.2 PWM VP with constant Period __ 290
4.2.3 More Areas Where PWM is Useful_______________________________________ 293
4.3 Analog-Digital Conversion with the SX____________________________________ 294
4.3.1 Reading a Potentiometer Setting __ 294
4.3.1.1 Reading more Potentiometer Settings____________________________________ 299
4.3.2 A/D Converter Using Bitstream Continuous Calibration_______________________ 303
4.4 Timers as Virtual Peripherals ___ 308

Programming the SX Microcontroller – Table of Contents

9

4.4.1 A Clock Timer – an Example__308
4.4.2 General Timer VPs und Timed Actions ____________________________________312
4.4.2.1 Execution within the ISR___312
4.4.2.2 Testing the Timers in the Mainline Program ________________________________313
4.5 Controlling 7-Segment LED Displays _____________________________________315
4.5.1 Program Variations ___321
4.6 An SX Stopwatch __328
4.7 A Digital SX Alarm Clock___340
4.7.1 When the Clock is Wrong...___357
4.8 Voltage Converters ___359
4.8.1 A Simple Voltage Converter __359
4.8.2 A Regulated Voltage Converter__360
4.9 Testing Port Outputs __363
4.10 Reading Keyboards___366
4.10.1 Scanning a Key Matrix, First Version _____________________________________368
4.10.1.1 Decoding the Key Number ___372
4.10.1.2 Initial “Quick Scan“ ___373
4.10.2 Quick-Scan and 2-Key Rollover ___374
4.10.3 Need more Port Pins for the Keyboard Matrix?______________________________380
4.11 An “Artificial“ Schmitt Trigger Input _______________________________________382
4.12 A Software FIFO ___384
4.13 I2C Routines __391
4.13.1 The I2C Bus ___391
4.13.2 The Basic I2C Protocol __391
4.13.2.1 “Master“ and “Slave“__392
4.13.2.2 The Start Condition___392
4.13.2.3 Data Transfer, and Clock Stretching______________________________________392
4.13.2.4 Acknowledge Message from the Slave____________________________________393
4.13.2.5 The Stop Condition___393
4.13.2.6 The Idle State ___393
4.13.2.7 Bus Arbitration __393
4.13.2.8 Repeated Transmissions __394
4.13.3 The I2C Data Format __394
4.13.4 Bus Lines and Pull Up Resistors ___397
4.13.5 I2C Routines for the SX Controller__397
4.13.5.1 Common Program Modules __409
4.13.5.2 The Mainline program___410

Programming the SX Microcontroller – Table of Contents

10

4.13.5.3 The I2C Master VP___ 410
4.13.5.4 The I2C Slave VP__ 412
4.14 A “Hardware Timer“ __ 413
4.15 A Morse Code Keyer ___ 415
5 Index ___ 427

Programming the SX Microcontroller - Tutorial

11

1 Tutorial
1.1 Introduction
This first part of the book is intended to give you a step-by-step introduction in how to use a de-
velopment system for the SX controller, and how to write your first applications for the SX.

Development systems for the SX are offered by several vendors. In this introduction, we will use
the SX-Key development system offered by Parallax.

In this text, you will find several sections that are marked in gray, together with one of the sym-
bols below:

The exclamation mark indicates important information. You should read this text in any
case to avoid problems.

This symbol indicates that a section contains useful additional information that is not
necessary for understanding the current topic.

The "Tip" symbol marks a section that contains hints on using the development system,
or other practical hints that might help you optimizing your work with the SX.

The Tutorial part of this book does not describe every feature of the SX in detail. The "R"
symbol followed by a chapter and a page number indicates that more information about
that topic can be found in the reference section of this book.

Throughout the text, we have to deal with addresses, data, and values. The SX handles and
stores all these in binary format, i.e. as a collection of bits where each bit can be set (1) or
cleared (0). As the data memory is organized in 8-bit registers, data is always handled in bytes,
i.e. 8 bits. Instead of writing binary numbers, we will use two hexadecimal digits instead to repre-
sent the contents of a register in most cases. The SX program memory is addressed with 11 bits
(SX18/28) or 12 bits (SX48/52). To represent an address value, we usually use three
hexadecimal digits. Sometimes, when it comes to time calculations, etc. it is easier for us human
beings to do the calculations in decimal. In order to distinguish between the different number
types, we use the notation that most of the SX Assemblers expect:

A leading "%" for binary numbers, a leading "$" for hexadecimal numbers, and no special char-
acter for decimal numbers, e.g.

%1011 1100 = $BC = 188

Programming the SX Microcontroller - Tutorial

12

Sometimes, you may also find a notation like 0xbc, an alternative notation for hexadecimal num-
bers typically used by C programmers.

In the tutorial example programs, we sometimes make use of instructions that are not always
explained when they are used first. Please refer to the "Alphabetic Instruction Overview" in the
Quick Reference section of this book when you want to learn more about the function of a specific
instruction.

Programming the SX Microcontroller - Tutorial

13

1.2 SX Development - What You Need
1.2.1 The Tools
When you plan to develop software and systems using a new type of microcontroller, you usually
will have to buy new "tools", meaning a financial investment. For the SX, this is the case as well,
but fortunately, several vendors offer moderately priced development systems for the SX.

One reason why development systems for the SX can be offered cheaper than systems for other
microcontrollers lies in the SX itself; it has "built-in" debugging capabilities and due to the
EEPROM program memory and the in-system programming features, there is no need for UV
EPROM erasers or in-circuit emulation systems.

1.2.2 Prototyping Systems
When you perform your first experiments with the SX, it is most likely that you will not yet have a
finished PCB on hand designed for the SX system you intend to develop. Parallax, Ubicom, and
other vendors offer various prototype boards.

All the boards come with the basic components that are required to get the SX up and running,
like a voltage regulator, a reset circuitry, a clock generator, etc. Additional components like LEDs,
switches, RS-232 drivers, serial EEPROMS, components for A/D conversion, and filters for PWM
outputs can be found on most of the boards as well. Ubicom also offers boards designed to test a
specific SX feature in detail, like communications via the I2C bus, or a demonstration board for
TCP/IP applications (this is a WEB server on a 4.5 by 8.5 mm PCB).

1.2.3 A "Home-brew" Prototyping System
Like all CMOS components, the SX can be damaged by excessive voltages produced by
electro-static discharges. Therefore, take the usual safety measures that are required
when handling static sensitive components. Also, make sure that the supply voltage does

not exceed the maximum value specified in the SX datasheet (7.5 Volts).

For the first experiments, you can build your own “homebrew” prototyping system using a sche-
matic that should at least contain the following components:

Programming the SX Microcontroller - Tutorial

14

SX 28 AC/DP

Programming the SX Microcontroller - Tutorial

15

Component List

Name Dimension Remark
R1 10 kΩ
C1 100 nF
C2 100 µF Tantalum

Filter capacitors, use two or
more if necessary.

S1 Reset button
X1 50 MHz Ceramic reso-

nator
Alternatively you may use a 50
MHz crystal

 SX 28, DIP package On a PCB, use a socket
JP1 Open when the development

system is connected to HD1
HD1 4-pin header connector,

1/10’’ spacing
Connector for SX-Key

HD2 25-pin header connector SX ports, RTCC, reset, and
power supply

In order to connect external components to the SX, you should provide header pins for the port
lines, for the RTCC input, the MCLR input, and the 5V stabilized power supply.

Take care that the leads connecting to OSC1 and OSC2 are as short as possible as the clock
frequency may be up to 100 MHz (depending on the SX type used). It is also important to filter
VDD by placing capacitors as close as possible to the VDD and VSS pins of the SX.

Programming the SX Microcontroller - Tutorial

16

1.3 SX-Key Quick Start using the Parallax SX-Key
1.3.1 The SX-Key
Parallax, Inc has created SX-Key, a development system for the SX. The major component is a
serial cable with a female 9-pin SUB-D connector to be connected to a serial COM port of a PC at
one end, and with the other end connecting to a small PCB containing a 4-pole plug at the other
end that connects to the 4-pin ISP header you can find on prototype boards.

If you have built your own prototype board, double check that the header pins on your
board are connected to the SX pins in the order that matches the one printed on the SX-
Key plug, i.e. OSC1-OSC2-VDD-VSS. As this plug is not indexed, make sure that it is

plugged in the right direction.

When you take a closer look at the small PCB, you will notice that it is packed with various com-
ponents, including an SX controller, a clock generator and a voltage converter to generate the
programming voltage for the SX under test.

Together with the PC software that comes with the SX-Key you have a complete development
system that allows you to write applications for the SX in Assembly language, program the SX,
and test the application using the integrated debugger. All this is performed using the target SX
on the prototype board. This means that you can run an application in real-time speed but also in
single steps for testing purposes. All this is controlled by the PC program via the serial cable.

1.3.2 Installing the SX-Key IDE Software
Together with the SX-Key, you should have received a diskette or CD-ROM with the SX-Key IDE
software. You need a PC running a Windows-OS (Win 95 or greater). To install the software, run
the setup program that is on the diskette or CD-ROM, or copy the contents of the disk into a di-
rectory of your hard-drive.

It makes sense to setup a shortcut to launch the SX-Key software (e.g. SXKey.exe) from the
desktop or from the Start menu.

Before taking the next steps, it is a good idea to visit Parallax's web Site (www.parallaxinc.com)
looking for newer versions of the SX-Key software. Parallax, Inc. offers new versions for
download free of charge.

Programming the SX Microcontroller - Tutorial

17

1.3.3 The First Program
For the first tests, we need an LED connected to the port pin RB0 of the SX:

Some commercially available prototype boards do have an LED installed like this on the RB0 pin.
On some boards, the LED may be connected between RB0 and VSS instead. For our first tests,
this does not matter.

When you use a Parallax SX-Tech board, you can easily position the two components in the
breadboard area.

Connect the SX-Key cable to a serial port of your PC and plug the other end to the ISP header
pins (double-check the correct orientation of the plug). As the SX-Key cable is relatively short,
you might consider using a serial extension cable. Make sure that you use a "straight-through"
type of cable, i.e. not a null-modem cable. If you need adapters to convert between 9-pin and 25-
pin DB connectors, make sure that the adapters are "straight-through". Finally, note whether the
cable is connected to COM1, COM2, or another COM port.

Make sure that the jumper that connects a resonator or crystal to the OSC1 pin on the prototype
board is open. If there is no jumper, remove the resonator or crystal from its socket.

Now connect the power supply to the prototype board, and launch the SX-Key software on the
PC. After the program has loaded you should see a window like this:

Programming the SX Microcontroller - Tutorial

18

This window shows the text editor of the Parallax SX-Key IDE, Version 2. Compared to former
versions, this IDE has a lot of very useful enhancements, like syntax highlighting, the possibility to
open several files at the same time, and many more. You use the editor to enter the application
source code.

Select "Configure" from the "Run" menu, or press Ctrl-U to quickly open the dialog box shown
below:

Click the radio button next to the COM port you are going to use for the
SX-Key. For now, leave the other options in this dialog unchanged. See
the Parallax documentation for the meaning of the other options. Fi-
nally, click "Okay" to close the dialog box.

Now enter the following text in the editor window:

; TUT001.SRC
;
DEVICE SX28L
DEVICE TURBO, STACKX, OPTIONX
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET 0

 mov !rb, #%11111110
Loop
 clrb rb.0
 setb rb.0
 jmp Loop

It makes no difference if you type uppercase or lowercase letters. You
may enter tabs or spaces to separate the words. The leading spaces

Programming the SX Microcontroller - Tutorial

19

we have inserted in some lines is not actually required but they make the text look a bit more
"structured". You may insert any number of empty lines to format the text.

This and the following sample programs assume that you are using an SX 28 controller.
In case you use an SX 18, replace the DEVICE SX28L with DEVICE SX18L.

After you have entered your first program code, you need to save it. Either click on the diskette
button, select “Save” from the “File” menu, or press Ctrl-S on the keyboard to open the “Save
Source as...” Dialog. If you like, select the folder where the file shall be saved, or create a new
one and then enter a file name, e.g. Test1 (the “.SRC“ extension is added automatically, so there
is no need to enter it).

Next, click the Assemble button (the fourth button from the left), select Assemble from the Run
menu or press Ctrl-A as a shortcut to compile the little program you have entered before. If a
dialog opens, telling you that the file needs to be saved prior to assembling, click the “Ok” button.
You may consider selecting the “Don’t show this dialog again” option to avoid this dialog box in
the future. When the status line at the bottom right of the editor window displays "Assembly
Successful", the program was compiled without errors, and it can be executed.

Should a Dialog box pop up containing the message “Unable to assemble due to errors in source
code”, click the “Ok” button. The editor window should then look like in the next picture.

It is most likely that you have misspelled some text. The line, the assembler is "complaining"
about is highlighted, and in the new section that has opened under the text, you can find a de-
scription of the error. In our example, the assembler error message reads, "Symbol is a reserved

Programming the SX Microcontroller - Tutorial

20

word". This may be a bit mis-leading but assemblers don’t have too much intelligence to detect
each and every reason for an error. In our example, the word "clb" left of "rb" is mis-spelled, it
should read "clrb".

Make the necessary corrections to the text, and press Ctrl-A again to compile the modified pro-
gram until the message "Assembly Successful" is displayed in the status line.

After correcting any errors, you should again save your "masterpiece". Click the Save button with
the diskette symbol, select "Save" from the "File" menu, or press the shortcut Ctrl-S.

When source code files become larger, it is a good idea to save the file from time to time. Simply
click the save button or press the Ctrl-S shortcut to make sure that your work is not lost. Please
note that the editor does automatically generate a backup copy of the previously saved version of
a file when the option “Create backup (.bak) files” is activated in the Configure dialog. So you
always have the current and the previous version of a program available on disk. In order to keep
certain versions of a file, use "File - Save As" to save the file under different name.

Now click the debug button (the fourth button from the right with the bug symbol), select "Debug"
from the "Run" menu, or press Ctrl-D to launch the SX-Key debugger. Since the programs are
always executed on the target SX controller, the program must be transferred to the SX first.
Invoking the debugger means that the current version of the source code file is compiled, and
then the program is transferred to the SX (provided that there are no errors in the source code).

When you see a display like

you are quite close to executing your first program. Should an error message come up like

click the "Abort" button, and find out what the problem is. There are several reasons for that mes-
sage:

• No supply voltage connected to the prototype board, or supply voltage too low or too
high.

Programming the SX Microcontroller - Tutorial

21

• SX-Key cable not connected, or wrong orientation of the ISP plug.

• You have configured the wrong COM port.

• The jumper between SX-Key pin OSC1 and the resonator is still in position.

• The orientation of the SX in the socket is wrong, is not plugged in at all, or a pin has been
bent.

• The SX is defective.

• The SX-Key is defective.

Check the reasons in the given order. You hopefully will have found the reason before reaching
the last two items in the list.

After you have fixed the problem, press Ctrl-D again. After a few seconds, the "Programming"
message should come up again. When the program has been transferred to the SX, the message
box will be closed.

Next, the following windows will open:

Programming the SX Microcontroller - Tutorial

22

The sizes and the positions of these windows depend on the screen resolution you have config-
ured. You can move each of the windows, and the "Code - List File" window can be resized as
well.

Programming the SX Microcontroller - Tutorial

23

1.3.4 The SX-Key Debugger Windows
1.3.4.1 The Registers (R) Window
This window shows the SX "internals", i.e. the various registers. The following picture explains the
different areas in that window:

In the middle of the "Registers" window, there is another window that we will call "Program Mem-
ory" or "P" Window. Currently address $7FF is highlighted in that window. (Note that the R win-
dow displays all values in hex or binary without leading "$" or "%" signs.)

1.3.4.2 The Code – List File (C) Window
This window displays the assembly source code as you have typed it in plus some additional
information. Actually, this is the "List" file format that shows the machine codes the assembler has
generated, and the addresses where the codes are stored in program memory.

Registers
$00...$0f

 hex binary
Register contents

Addr. Code Mnemonic
Program memory

Register bank 0...7
Addresses $10...$1F

 M W Register
Register hex binary Program memory (P)

Window

Programming the SX Microcontroller - Tutorial

24

1.3.4.3 The Debug (D) Control Window
This window contains the buttons that are required to operate the debugger, and buttons to open
other windows in case they have been closed or minimized. Click one of the buttons "Registers",
"Code", or "Watch" to open the corresponding windows ("Watch" is inactive for now).

1.3.5 Executing the First Program in Single Steps
The highlight in the window is positioned at program address $7FF and in the C window the line
containing RESET 0 is highlighted. After reset, the SX controller loads the program counter, i.e.
the register that contains the address of the instruction to be executed next, with the address of
the highest available program memory location. For the SX 28, this is $7FF.

Here the assembler has generated an instruction that makes the SX continue program execution
at the address defined with the RESET directive in our program (0 in our example).

The instruction that unconditionally causes the program execution to branch to another location is
the jmp instruction. This instruction loads the program counter (PC) with the target address, i.e. it
then "points" to the next instruction to be executed.

By the way, you can use the scroll bar to the right of the P window to scroll the displayed sector
up and down. In this case, the highlighted line may be moved out of the window, but it keeps its
position on the next instruction to be executed.

The same is true for the C window. Here you have horizontal and vertical scroll bars available to
move the text.

Now use the mouse and left-click the "Step" button in the D window once. Alternatively, you can
also enter Alt-S on the keyboard (make sure that the D window has focus).

Programming the SX Microcontroller - Tutorial

25

Now the window contents have changed like this:

The highlight has moved to address $000, i.e. the SX has executed the jmp 0 instruction it has
found at $7ff, and this has caused a jump to the new program address $000. As you can see, the
highlight in the (C) window is now positioned on that line.

1.3.6 Compound Instructions
The P window displays the MOV W, #FE instruction where the C window has highlighted the mov
!rb, #%11111110 instruction, i.e. a different instruction.

The point here is that the SX does not "know" how to execute a MOV 1, !rb, #%11111110
instruction. The Assembler automatically generated two separate instructions that mean the same
thing:
MOV W, #FE
MOV !RB, W

Programming the SX Microcontroller - Tutorial

26

These two instruction codes were saved in two subsequent locations of the program memory. We
will call such assembler instructions compound instructions. There is a variety of compound in-
structions available to make a programmer's life a bit easier because it saves you the extra work
of writing two separate lines of code. (Later, we will see that compound statements can also
cause situations that can make programmers’ lives quite hard.)

Now let's find out what the mov !rb, #%11111110 instruction means. A mov instruction copies the
contents of one register into another register or it copies a constant value into a register. "mov" is
derived from "move", but it actually copies a value instead of moving it, i.e. the contents of the
source remains unchanged after execution.

The hash-sign "#" to the left of the binary number %11111110 means that the constant value
%11111110 shall be copied to a target called !rb. The hash-sign is very important here - if you
leave it out, the assembler assumes that you want to copy the contents of register %11111110 to
!rb instead!

"!rb" specifies the SX configuration register for port B. We will discuss port configuration in more
detail later. For now, you should keep in mind that a cleared bit in the configuration register
means that the associated port pin shall be configured as an output. To clarify which bits are set
and cleared in the !rb register, we use binary notation here.

As you can see, in the P window, values are always displayed in hex (without the leading "$").

Here, we configure the RB0 pin as an output - this is where we have connected the LED.

Actually, the mov !rb, #%11111110 is composed of the instructions
mov w, #%11111110
mov !rb, w

i.e. the constant value %11111110 is copied into the w register, and then the contents of the w
register is copied into !rb. The w register (the "Working" register) is used as temporary storage by
many compound instructions. In general, w is a multi-purpose register used to hold one operand
of arithmetic or logical instructions, to hold the result of special mov instructions with arithme-
tic/logical functions and as temporary storage like in the example above. The w register is similar
to the “accumulator” register found in other microcontrollers or microprocessors.

Now click the "Step" button again, and you will see that the highlight in the P window now has
moved to the second part of the compound instruction where the highlight in the C window did not
move.

Click "Step" again to execute the mov !rb, w instruction, and to bring the highlight on the clrb
rb.0 instruction. Click "Step" to let the SX execute this instruction as well, and check if the LED
turns on.

If you have a prototype board where the LED is connected to VSS with the other end (the cath-
ode), click "Step" once more to execute the setb rb.0 instruction that should turn on the LED in
this case.

Programming the SX Microcontroller - Tutorial

27

If you managed to turn the LED on, you are all set - your first SX program works as expected!

In case the LED remains off, check the following:

• Is the constant that is moved into !rb actually %11111110 (did you forget the leading "#"
or "%" characters)?

• Do all instructions address the correct port (rb)?

• Do the clrb rb.0 and setb rb.0 instructions both contain the "0", and no other digit?

• Is the LED really connected to pin 10 (RB0) of the SX 28?

• Is the polarity of the LED correct?

In case you have found an error in the program, click the "Quit" button to return to the editor,
make the necessary corrections, and press Ctrl-D to launch the debugger again (the program will
be assembled and transferred to the SX automatically).

If the problem was caused by hardware, you have (hopefully) disconnected the power supply to
the SX. This has caused the SX-Key software to display the error message "SX-Key not found on
COMx". Click the "Abort" button to return to the Editor window and re-connect the power supply.

If the program did work properly, instead of disconnecting the power supply, click the "Quit" but-
ton to leave the debugger back to the Edit window.

As you did not make any changes to the program, it is not necessary to transfer the program into
the SX when you want to restart the debugger again. Therefore, don't select "Run - Debug" or
don't press the Ctrl-D shortcut. Instead, select "Run - Debug (reenter)", or enter Ctrl-Alt-D. This
starts up the debugger immediately without transferring the program into the SX again.

When the debugger is active again, address $7ff is highlighted as it was when you started the
debugger the first time.

Now click the "Hop" button instead of the "Step" button. You will not notice any difference - the
jump to address $000 is performed as before. Now click "Hop" again to see the difference: the
highlight is positioned at address $002. This means that the SX has executed both instructions
that make the compound mov !rb, #%11111110 in "one step" (actually, it has performed both
instructions in sequence at full speed).

Keep clicking the "Hop" button, and notice how the LED is turned on and off as you continue
clicking the button.

Now let's find out what makes the LED turn on or off:

The clrb rb.0 instruction clears a bit in the specified register rb in this case, where rb is a pre-
defined name the assembler "knows". The assembler replaces it with $06, the address of the Port
B data register. Instead of "rb", you could have written "$06" as well. Which bit shall be cleared is
specified by the digit that follows the register name, separated by a period.

Programming the SX Microcontroller - Tutorial

28

In our case, we clear bit 0 in the Port B data register. Since the associated port pin has been
configured as an output, this means that the output pin goes to a low level and the LED is turned
on.

The next instruction, setb rb.0, does just the opposite of clrb - it sets a bit in the specified reg-
ister. In our case, it causes the output pin RB0 to go to a high level that turns the LED off again.

In the left part of the R window, the contents of the first 16 registers are displayed in hexadecimal
and binary format. If you watch the contents of address $06 you will notice how the content
changes as you keep clicking the "Hop" button. Note that the hexadecimal value is displayed with
a red background when it has recently changed, and that bit 0 in the binary display area is shown
with a red background when its state has changed. This helps you to quickly find out what data
have changed after the execution of an instruction.

Notice that the contents of PC is always displayed with a red background as the program counter
always changes its contents, either to address the next instruction in sequence, or another loca-
tion after a jmp, skip or call instruction has been executed.

1.3.7 Symbolic Addresses – Labels
The last instruction in our program is a jmp instruction that sets PC back to address $002 where
the clrb instruction is stored. If you look at the P window, you’ll notice that it shows jmp 002, but
in our program, we have written jmp Loop.

We could also have written jmp $002 instead, but this would not be very flexible. Imagine what
happens if we insert an instruction immediately following the mov !rb, #%11111110 instruction.
This would "shift" all subsequent instructions "up" in program memory, and to reach the clrb
rb.0 instruction, you would have to change the $002 address parameter of the jmp instruction.
Think what a "nice job" it would be to correct all the jmp instructions in a program consisting of
hundreds of lines, and what could happen if you forget to correct some of them.

Fortunately, the assembler allows the definition of symbolic addresses that makes life a lot easier.
When the assembler finds a word at the beginning of a line that is neither an instruction nor an-
other "reserved word" (more about this later), it interprets it as a "label". In this case, it stores the
word (Loop in our example) in an internal table (the symbol table) together with the address of the
instruction that follows the label, either in the same line, or in one of the next lines ($002 here).

Whenever the assembler finds an instruction that is not followed by a numeric value, as in jmp
Loop, it searches the symbol table for that word and replaces it with the numeric value that is
stored there ($002 in our example).

Note that some assemblers expect labels always beginning at the leftmost column of a
line, although the SX-Assembler allows leading spaces. For compatibility reasons, it is a
good idea to always let labels begin in the first column. This makes it easier when you

later might want to compile a program with another assembler.

Programming the SX Microcontroller - Tutorial

29

1.3.8 Running the program at full speed
If you are tired of clicking the "Hop" or "Step" buttons, you might consider having the program run
at full speed. Click the "Run" button, and see what happens: The LED "glows" rather dim and not
even half of the full intensity that you might have expected.

There are two reasons for that phenomenon: duty cycle and speed.

Here are the instructions that are continuously executed while the SX runs at full speed, together
with the required clock cycles:
Loop
 clrb rb.0; 1
 setb rb.0; 1
 jmp Loop; 3

You may add comments (like the number of clock cycles in the lines above) using the
semicolon. The assembler will ignore all text in a line that follows a semicolon. If a line
begins with a semicolon, all the rest of the line will be ignored. This is also sometimes

helpful to temporarily "comment out" instructions in a program.

The clrb and setb instructions take one clock cycle each, and the jmp requires three cycles. The
diagram below shows the LED timing (assuming that you run the SX at 50 MHz clock):

After the clrb instruction, the LED is turned on. It takes one clock cycle (20 ns with a 50 MHz
system clock) until the setb instruction is executed, i.e. until the LED is turned off again. Then it
takes three cycles to execute the jmp and another cycle for clrb until the LED is turned on again.
This means that during 20% of one loop the LED is on, and 80% of the loop, the LED is off.

To extend the LED's on time, we need to add some "cycle eater" instructions between the clrb
and setb instructions that "steal" three clock cycles. The SX "knows" a special "do nothing" in-
struction that does this, the nop (for no operation).

Quit the debugger, and add three nop instructions like this:

on

off

clrb setb jmp clrb

1C.
=

20ns

4 Cycles
=

80ns

LED

Programming the SX Microcontroller - Tutorial

30

Loop
 clrb rb.0; 1
 nop ; 1
 nop ; 1
 nop ; 1
 setb rb.0; 1
 jmp Loop; 3

Since you changed the source code, you can't restart the debugger now with just the Debug
Reenter feature, therefore press Ctrl-D to compile the modified program, and to have it
transferred into the SX. Then start the program at full speed by clicking the "Run" button.

The changes result in the following timing:

Now the LED is on and off for an equal time, i.e. it has a duty cycle of 50%.

One full loop now has a period of 8 clock cycles or 160 ns, and this means a frequency of 6.25
MHz! This is a frequency LEDs are not built for, and this is the second reason why the LED may
be darker than expected.

Instead of having the LED "blink" at this frequency, we want to make it blink slowly enough that
we really can see it blink. Before we enhance the program, try the following:

First, stop the full-speed execution by either clicking the "Stop" or "Reset" button. Now click the
"Walk" button, and you will see the LED blink.

The "Walk" mode is similar to single stepping except that the debugger "clicks" the "Step" button
for you a couple of times per second. As you may notice, the LED does not really blink, instead it
"flickers". This is because the debugger needs some time to update the window contents be-
tween each step.

Click "Reset" or "Stop" to end the "Walk" mode. When you click "Reset", the SX is really reset, i.e.
the PC is reset to $7ff (and some other registers are initialized to specific values as well). When
you click "Stop", the execution stops at the instruction that was executed when you clicked the
button, and all registers reflect the status at that time, and you may continue program execution
from that point.

Instead of "Walk", you can also click "Jog" to make the LED blink. In "Jog" mode, the debugger
steadily clicks the "Hop" button for you, i.e. the instructions that make up compound instructions
are executed at full speed in this mode.

on
clrb nop nop nop setb jmp clrb

4 Cycles
=

80ns

4 Cycles
=

80ns

LED

Programming the SX Microcontroller - Tutorial

31

1.3.9 Program Loops for Time Delays
Now we will slow down the SX in order to obtain a nicely blinking LED while the program is run-
ning at full speed.

In the last version of our program, we used three nop instructions to "eat up" time. In order to
"waste" more time we will add some more program loops.

Don't enter the following statements, as we only need them for some time calculations:
Loop
 decsz $08 ; 1/2
 jmp Loop ; 3

 clrb rb.0 ; 1

Loop1
 decsz $08 ; 1/2
 jmp Loop1 ; 3

 setb rb.0 ; 1

 jmp Loop ; 3

In this code, we have added two more program loops, one following the clrb instruction, and one
following the setb.

Within the loops, we use the decsz (decrement and skip on zero) instruction. This instruction
decrements the specified register (at address $08 in the data memory here) by one. If the content
of the register ends up at zero after the decrement, the next instruction will be skipped (the jmp in
our example).

Let's assume that the register at $08 contains zero when we start the program. In this case, the
first decsz instruction would change its contents to $ff or 255. Because its content is not zero, the
next instruction will not be skipped, i.e. the jmp instruction is executed.

You may wonder why 0 - 1 results in 255 in the SX, and not in -1, as you might guess.
This is because the SX (like most other controllers) does not “know” about negative num-
bers.

To understand the “underflow” from 0 to 255, let’s see what happens when a value of 255 (or
%11111111) is incremented by one. The “real” result would be %100000000, i.e. the 9th bit would
be set, and all other bits cleared. Because the registers in the SX can only hold eight bits, the
exceeding 9th bit is lost. This means that 255 + 1 yields in 0 in the SX.

Decrementing a value of 0 by one is the reverse of incrementing a value of 255 by one, and this
is why 0 – 1 yields in 255 in the SX.

This sequence is repeated until the content of $08 finally reaches zero. Now the jmp will be
skipped, and the clrb or setb instructions are executed.

Programming the SX Microcontroller - Tutorial

32

Again, we have added the number of clock cycles that each instruction requires. Note that the
decsz instructions usually take one cycle (when there is no skip), but two in case of a skip.

As a data register can hold 256 different values (0...255), each of these loops is executed 256
times where 255 times, the skip is not performed. Therefore, each loop takes 255 * (1+3) + 2 =
1,022 clock cycles and one more cycle to clear or set the port bit. So adding the three more cy-
cles for the final jmp Loop instruction, we finally end up in 1,023 * 2 + 3 = 2,047 cycles that take
2,047 * 20 ns = 40.94 µs which results in a LED blink frequency of 24.426 kHz - far beyond visi-
bility!

Even if we would nest another delay loop within each of the two loops, the SX would still be too
fast. Before considering to reduce the system clock rate, try this program:
; TUT002.SRC
;
DEVICE SX28L
DEVICE TURBO, STACKX, OPTIONX
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET 0

 mov !rb, #%11111110

Loop
 decsz $08 ; 1/2
 jmp Loop ; 3
 decsz $09 ; 1/2
 jmp Loop ; 3
 decsz $0a ; 1/2
 jmp Loop ; 3

 clrb rb.0; 1

Loop1
 decsz $08 ; 1/2
 jmp Loop1; 3
 decsz $09 ; 1/2
 jmp Loop1; 3
 decsz $0a ; 1/2
 jmp Loop1; 3

 setb rb.0; 1

 jmp Loop; 3

Here, we have nested three program loops before executing the clrb or setb instructions and we
use three registers as delay counters ($08, $09, and $0a).

In each loop, we first decrement $08 until it is zero and then decrement $09. If the content of $09
has not yet reached zero, we repeat the 256 loops decrementing $08 until $09 is zero. Then we
decrement $0a, and repeat the previous steps until finally $0a is zero.

Now let's figure the approximate time the three nested loops take:

Programming the SX Microcontroller - Tutorial

33

Since the "inner" loop is identical to the one in the previous code example, it takes 1,022 cycles to
execute it. The "middle" and the "outer" loop are executed 256 times as well, therefore the total
number of clock cycles required by the three nested loops is approximately 256 * 256 * 1.022 =
67 * 106 cycles. For a complete LED on-off cycle, the total time delay is 2 * 67 * 106 * 20ns ≈ 2.6
seconds, i.e. the resulting LED blink frequency is about 0.38 Hz.

After you have entered this new version in the editor window, don't forget to save it under a new
file name (e.g. Demo2.src), and then press Ctrl-D to launch the debugger.

Click the "Run" button to execute the program. Provided you have correctly entered the program,
the LED should now blink quite slowly.

While the program is running at full speed, the R, P, and C windows are not updated because this
would slow down execution far beyond real-time. If you want to take a "picture" of the current
register status, click the "Poll" button at any time the program is executed at full speed.

If you want to execute this program in single steps, keep in mind that one nested delay loop now
takes about 67 Million steps. Maybe that clicking the "Step" button 67 Million times is a good test
for your left mouse button, but we don't take any responsibility for your hurting fingers.

Even the "Jog" or "Walk" modes take far too long to execute one LED on-off cycle.

As such kind of loops can be found frequently in SX programs, there should be a way to "skip
over" such loops and start single-stepping from there. Fortunately, the SX debugger allows
setting a "breakpoint" that solves this problem.

1.3.10 Setting a Breakpoint
Setting a breakpoint means that you tell the debugger to execute the instructions beginning at the
address currently pointing to up to and including the instruction where you set the breakpoint.

To set a breakpoint, first make sure that the program is halted by either clicking the "Stop" or
"Reset" button. Then, in the C window, move the mouse pointer to the program line where you
want to set the breakpoint and hit the left mouse button once. The debugger will display this line
with a red background now, indicating that a breakpoint is active on that line. If necessary, scroll
the text in the window up or down until the line you want is visible before setting the breakpoint.

In case the line with the breakpoint is the next line to be executed as well, only the left part of the
line is marked with a red background while the rest of the line is highlighted with a blue back-
ground.

For example, click "Reset" for a "clean start", and then click on the line with the clrb rb.0 in-
struction. Finally, start the program at full speed with "Run".

Programming the SX Microcontroller - Tutorial

34

You will notice that it takes a while until the LED is turned on. Once the LED is on, program exe-
cution halts due to the active breakpoint, and the decsz $08 instruction in Loop1 is the next one
to be executed.

If you like, you may single-step the program for a while but you can also click "Run" again to go
through the program at full speed until the breakpoint is reached next time. During that time, you
will notice that the LED is turned off after a while, and finally is turned on again, when the pro-
gram "hits" the breakpoint again after executing the clrb instruction.

Please note that there can only be one breakpoint active at a time. As soon as you click another
line in the C window, this new line will be highlighted in red, and the line marked before is reset to
normal.

In order to remove an active breakpoint, simply click on the highlighted line once again.

Please note that due to the internal structure of the SX the instruction in the line marked for a
breakpoint will be executed before the program actually halts. This may be confusing sometimes,
when you set a breakpoint on a line with a jump or call instruction as you will see later.

At the top of the top of the Code – List File window, you notice four buttons that are handy to
position the cursor at specific points:

From left to right, the buttons have the following meaning:

Go to Code - This positions the cursor at the first line with executable code, i.e. all
initial comments, definitions, etc. are skipped.

Go to Reset - This positions the cursor at the first line of the code that will be executed
after a reset, i.e. the line that is defined by the RESET directive.

Go to Breakpoint - This positions the cursor at the code line that is marked with a breakpoint
(if no breakpoint is set, this button will be inactive).

Go to next Run Line - This positions the cursor at the code line that will be executed next when
the debugger is in single-step mode.

1.3.11 Where to go next
This ends the Quick-Start chapter for the SX key development system. In this chapter, you have
learned some basic SX instructions, and programming techniques but most of the chapter was
dedicated to the SX-Key development system.

In the next tutorial chapters, we will concentrate on more SX instructions and features, assuming
that you are familiar with the development tool, you are using: The SX-Key system.

Programming the SX Microcontroller - Tutorial

35

1.4 SX Configuration - ORG/DS - Conditional Branches
1.4.1 Configuration Directives
In the sample programs shown before as well as in all following programs, there is a section at
the beginning, similar to:
DEVICE SX28L
DEVICE TURBO, STACKX, OPTIONX
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET 0

Statements like this are called "Assembler Directives". They do not cause the assembler
to generate program code. Instead, they instruct the development system how to config-
ure the SX when it transfers a program to the microcontroller. For configuration purposes,

the SX has special registers called "Fuse Registers".

The DEVICE directives make it easy to define the settings of the fuse register bits because you
need not to remember which fuse bit is used to set a specific option like the turbo mode or an
extended stack and option register.

(2.2.8.1 - 234) The parameters following a DEVICE directive each define a specific
configuration. For example, SX28L informs the assembler that the generated program
shall be transferred into an SX28 device. TURBO activates the turbo mode, i.e. each stan-

dard instruction will be executed in one clock cycle, and STACKX and OPTIONX activate an 8-level
return stack for subroutines and an extended option register.

You may wonder why the SX offers the “non-turbo” mode, where each standard instruc-
tion is executed in four clock cycles, the smaller 2-level return stack, and the reduced
option register functionality. This mode of operation is similar to some similar microcon-

troller devices manufactured by other Vendors. In “real life”, you will never use this reduced func-
tionality with an SX. Why would you drive a Porsche in the to lowest gears only?

As you can see, a DEVICE directive can be followed by more than one parameter. Use commas to
separate DEVICE parameters.

The IRC_CAL and FREQ directives are internal for the SX-Key debugger. They specifiy the cali-
bration of the SX-internal clock oscillator and the clock frequency, in Hz, the debugger shall gen-
erate when the SX runs at full speed. Note that you may insert underscores for better readability
of the frequency parameter.

We have already described the meaning of the RESET directive. It informs the assembler about
the starting address of the main program, and the assembler generates a jmp instruction to that
address in the highest location of program memory.

Note that the SX-Key assembler and other assemblers like SASM use a slightly different syntax
for the DEVICE directives.

Programming the SX Microcontroller - Tutorial

36

From now on, we will start each program with a configuration section like this:
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start

Here, we use a construct called "Conditional Assembly" that we will be discussing in detail later in
this tutorial. For now, just keep in mind that the directives between ifdef __SASM and else will
be respected as long as the symbol __SASM is defined, and the directives between else and
endif will be ignored. This symbol is defined by default when you use the SASM assembler that
comes with the new SX-Key Software.

When you compile a program with some assembler other than the SX-Key software’s integrated
SASM assembler, this symbol is not defined by default, and the assembler will ignore the
directives between ifdef __SASM and else and it will respect the ones between else and
endif.

If you are using a development system other than the SX-Key, make sure that the SX is clocked
at 50 MHz because many of the sample programs assume this clock speed when generating
timing delays, interrupts, etc.

1.4.2 The ORG and DS directives
In the previous program, we have used three nested loops to "slow down" the SX in order to see
the LED blink. To build a loop that is executed a certain number of times, you need a loop counter
that is incremented or decremented (as in our example) until a specific value has been reached
(0 in our case). We have used registers at address $08, $09 and $0a in the data memory as the
loop counters in this example.

Let's re-write this example and make it a bit more "generic":
; TUT003.SRC
;
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start

 org $08

Programming the SX Microcontroller - Tutorial

37

Counter1 ds 1
Counter2 ds 1
Counter3 ds 1

 org $100

Start
 mov !rb, #%11111110
Loop
 decsz Counter1
 jmp Loop
 decsz Counter2
 jmp Loop
 decsz Counter3
 jmp Loop
 clrb rb.0

Loop1
 decsz Counter1
 jmp Loop1
 decsz Counter2
 jmp Loop1
 decsz Counter3
 jmp Loop1
 setb rb.0

 jmp Loop

Following the configuration directives, you can see the org $08 ("originate") directive. This in-
forms the assembler that definitions following this directive shall begin at address $08 (in data
memory in this case).

In the next line, you find the statement Counter1 ds 1. As mentioned before, the assembler
interprets a word that has no pre-defined meaning - like "Counter1" in this case - as a label and
adds the word together with a numeric value that represents its address to the symbol table. The
address of the label Counter1 is $08 because we have instructed the assembler to continue
counting from that address with the previous org $08 directive.

The ds following the label name means "define space", and the 1 following ds instructs the as-
sembler to "set aside" one byte for Counter1. This also increments the assembler's internal ad-
dress-counter by one. Therefore, the next label, Counter2 is located at address $09. Because ds
1 also reserves one byte for Counter2, Counter3 is located at address $0a.

You can think of the three reserved bytes as three variables, each having a size of one byte,
named Counter1, Counter2 and Counter3.

Within the loops, you will notice that the decsz instructions no longer refer to "hard-coded" ad-
dresses in data memory, but use the variable names instead.

Using symbolic addresses or names for variables makes a program much more readable, and it
is a lot easier to modify the program later.

Programming the SX Microcontroller - Tutorial

38

Note that there is another org directive in the program: org $100. As before, it instructs the as-
sembler to set its internal address pointer to the specified value ($100 in our example).

The next instruction, mov !rb, #%11111110 will be coded into that address. This means that our
program no longer begins at address $000 in the program memory but at address $100 instead.

Since we have placed the label Start in front of the first instruction, we can use that label to
specify that address in the RESET directive.

Note that one of the org directives specifies an address in data memory, where the other one
specifies an address in program memory. The assembler "sorts that out" automatically. Also note
that in case of the Start label, we have a "forward declaration", i.e. the label is referred to in the
source code before it is actually defined. Again, the assembler takes care of this (it actually does
an extra run through the source code where it "collects” all the label definitions before compiling
the instruction code).

1.4.3 Conditional Branches
In the sample programs above we have already used the decsz instruction to build the delay
loops. Let's discuss such kinds of instructions in more detail now.

Without the capability to change the flow of program execution depending on certain conditions, a
microcontroller would be rather useless as it could only execute "straight through" types of pro-
grams. Therefore, the SX comes with a set of conditional skip instructions, like the decsz instruc-
tion.
decsz Counter1
 jmp Loop

This example decrements the content of Counter1, i.e. it subtracts one from the former content,
and the result becomes the new content of Counter1. In case that the result yields zero, the
instruction immediately following the decsz is skipped (the jmp Loop in our example).

If you know microprocessors or other controllers, you may wonder why the SX does not "know"
instructions JZ or JNZ (Jump if Zero or Jump if Not Zero). This is because each instruction code
always consists of just one word, 12 bits wide, but 12 bits are not enough to hold a register
address as well as a jump address.

Therefore, keep in mind that the instruction following a conditional skip is not executed when the
condition is true.

You may wonder why we have indented the jmp instructions following the decsz instructions. The
first reason is to make the program more readable, and the indentation indicates that this instruc-
tion is not always executed. The second reason is much more important.

Look at the following code snippet:
decsz Counter1
 mov !rb, #%11111110

Programming the SX Microcontroller - Tutorial

39

On the first glance, this sequence seems to be fine, but it contains a "ticking bomb"! Remember
that the mov !rb, #%11111110 is a compound instruction as the SX does not provide a basic
instruction that can copy a constant value directly into a port configuration register. The assem-
bler compiles the instructions like this:
decsz Counter1
 mov w, #%11111110
 mov !rb, w

You can now immediately see what the problem is: The decsz instruction does not "know" about
compound instructions. All it does is increment the PC register in order to skip the next instruction
in case the condition is true. In our example, the mov w, #%11111110 instruction will be skipped
but not the mov !rb, w instruction! The result is that !rb will receive a random value, depending
on the current content of w, and this is definitely not what you want.

Therefore, the instruction that immediately follows a skip instruction must never be a
compound instruction; otherwise, strange results may occur.

There are two ways to avoid that dangerous situation: Not using compound statements at all, or
at least paying special attention to it.

Not using compound statements at all is possible because you can always write the basic in-
structions that make a compound instruction, but this means additional typing work, and in-
creases the size of the source code.

Indenting the instruction following a skip makes it easier to double-check for not using compound
instructions at such places.

Programming the SX Microcontroller - Tutorial

40

1.5 Subroutines - Symbols - Data Memory
1.5.1 Subroutines
If you look at the previous LED-Blinker program, you will notice that the nested delay loops are
duplicated, i.e. one is executed before turning the LED on, and the other is executed before the
LED is turned off again.

Subroutines can help to avoid such duplications, as shown in the following program version:
; TUT004.SRC
;
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start

org $08
Counter1 ds 1
Counter2 ds 1
Counter3 ds 1

org $000
TimeEater
Loop1
 decsz Counter1
 jmp Loop1
 mov Counter1, #50
 decsz Counter2
 jmp Loop1
 decsz Counter3
 jmp Loop1

 ret

org $100
Start
 mov !rb, #%11111110
Loop
 call TimeEater
 clrb rb.0
 call TimeEater
 setb rb.0
 jmp Loop

Here we have moved the delay loops to a subroutine called TimeEater. A subroutine is a se-
quence of instructions terminated with a ret (Return) instruction.

Programming the SX Microcontroller - Tutorial

41

To execute the instructions in a subroutine, you use the call instruction together with the ad-
dress where the first instruction of the subroutine is located. In our example, we have defined the
label TimeEater as a symbolic address for the subroutine entry, and therefore we used that label
together with the call instructions.

Similar to a jmp instruction, a call unconditionally causes a branch to the specified address, i.e.
the content of PC is changed accordingly.

As soon as the ret instruction is reached, the content of PC is restored to point to the address of
the instruction immediately following the call which caused the branch.

As you can see, in the program there are two call instructions, both invoking the TimeEater sub-
routine.

Within TimeEater you find the nested delay loops with the extension that Counter1 is now ini-
tialized to 50 when it underflows. This makes the delay a bit shorter in order to increase the LED's
blink frequency.

Instead of duplicating the delay loops twice in the program, we have now just one set of delay
loops in the subroutine, and we call the subroutine twice instead.

In this example, this only saves a few words in program memory but you can imagine that sub-
routines help to save a remarkable amount of program memory space.

Besides this, subroutines also help structure a program. Think of subroutines as "black boxes"
that perform a specific task. So the calling program needs not to take care of the details, it just
calls the subroutines, relying that the subroutines do their job properly.

1.5.2 The Stack
(2.2.7 - 230) Previously, we had mentioned that a ret instruction terminates a
subroutine, and that it restores the PC register to point at the instruction following the call.
This means that the content of PC+1 as return address must be saved somewhere

before loading it with the entry-address of the subroutine.

If there were just one fixed register to save the return address, it would not be possible to call
another subroutine from within a subroutine, although this is common programming practice.

The second call of a subroutine would overwrite the previously saved value, i.e. the return ad-
dress for the first-level subroutine call would get lost.

Therefore, a memory structure called "Stack" is used so save a certain number of return ad-
dresses to allow for nested subroutine calls. A stack structure is also called LIFO (Last In First
Out) as this describes the way data can be stored and retrieved.

You can think of a LIFO as a stack of dishes. If you put a new dish on the stack, it is a good idea
to later remove the top dish first in order to avoid a disaster.

Programming the SX Microcontroller - Tutorial

42

The SX has a stack that can hold up to eight return addresses (in "compatibility mode", the
SX18/20/28 can only hold two addresses). This means that the maximum nesting depth for sub-
routines is eight. If you’d like to see what happens when the depth is exceeded, single-step
through the following program:
; TUT005.SRC
;
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start
org $000
sr1
 call sr2
 ret
sr2
 call sr3
 ret
sr3
 call sr4
 ret
sr4
 call sr5
 ret
sr5
 call sr6
 ret
sr6
 call sr7
 ret
sr7
 call sr8
 ret
sr8
 call sr9
 ret
sr9
 ret
org $100
Start
 call sr1
 jmp Start

In the SX, the stack is dedicated to storing return addresses only. It cannot be used to store other
data, and there are no PUSH or POP instructions available that you may know from other micro-
processors.

This is not possible because in the SX, data and program code is stored in different memory,
having different size.

Programming the SX Microcontroller - Tutorial

43

In order to make use of the 8-level stack, make sure that the SX is configured accordingly, i.e.
include the DEVICE STACKX directive (DEVICE STACKX_OPTIONX for the SX-Key Assembler)
directive.

1.5.3 Local Labels
In the previous LED-Blinker sample program, we have used the label Loop to name the main
program loop, and the label Loop1 to name the delay loop within the subroutine.

See what happens when you rename the delay loop in the subroutine to Loop as well:
TimeEater
Loop
 decsz Counter1
 jmp Loop
 mov Counter1, #50
 decsz Counter2
 jmp Loop
 decsz Counter3
 jmp Loop

When you try to assemble this modified program, you will get an error message like "Label is
already defined". Obviously, it is not possible that two labels representing different addresses can
have the same name, otherwise the assembler would not "know" which address it should use
when the program contains a reference to a label.

On the other hand, when programs become larger, you must be creative to "invent" new label
names that are not only unique but also describe the meaning of what the labels stand for.

If you think of subroutines that are "generic" enough to be used in different programs, you must
even take care that a subroutine copied to, or included with another source code does not make
use of labels that are defined elsewhere in the code.

Fortunately, most assemblers for the SX allow the definition of local labels. Modify the incorrect
code sample above to look like
TimeEater
:Loop
 decsz Counter1
 jmp :Loop
 mov Counter1, #50
 decsz Counter2
 jmp :Loop
 decsz Counter3
 jmp :Loop
;
;...
;
Start
 mov !rb, #%11111110

Programming the SX Microcontroller - Tutorial

44

:Loop
 call TimeEater
 clrb rb.0
 call TimeEater
 setb rb.0
 jmp :Loop

and try to assemble the program again. This time, the assembler does not complain, and the
program runs as expected although the subroutine and the main program loop make use of labels
named :Loop.

The leading colon in front of the label names make :Loop local labels. A local label is valid only in
the area of a program that is enclosed by two non-local, i.e. public labels.

This means that the first :Loop label in our example is valid from TimeEater up to Start, and the
second :Loop label is valid from Start through the rest of the program code, where TimeEater
and Start are both public labels.

This tip helps you avoid unnecessary headaches:

Just "for fun", insert a new global label Foo in TimeEater, following the first jmp :Loop
instruction:

TimeEater
:Loop
 decsz Counter1
 jmp :Loop
Foo
 mov Counter1, #50
 decsz Counter2
 jmp :Loop

and try to compile the program. This time, the assembler will report that the label :Loop in the line
following the decsz Counter2 instruction is not defined.

According to the definition of the range in which a local label is valid, this is correct because the
:Loop label following decsz Counter2 is now only valid between Foo and Start, and there is no
definition for :Label in this area.

Here, in this small program, such problems can be localized quite easily but imagine how difficult
this might be in a large program with many local labels. Therefore, pay special attention when
inserting new global labels "in the middle" of a program.

When the assembler comes across a global label, it is stored in the symbol table, but also in a
"Recent Global Label" buffer.

When the assembler comes across a local label, it builds the full label name by appending the
local label name to the recent global label, and stores this name in the symbol table. For exam-
ple, when the recent global label is Subroutine, a local label :NoClear would be stored as Sub-
routine:NoClear in the symbol table.

Programming the SX Microcontroller - Tutorial

45

When the assembler comes across the reference to a local label, it first builds the full name from
the recent global symbol and the local label, before searching it in the symbol table. On the other
hand, the assembler also accepts references to full names.

This means that you can refer a specific local label even from a location that follows a new global
label. However, in this case, you must specify the label in full, like in the following example:
org $000

Subroutine
 clr w
:NoClear
 mov $09, w
 ret

org $100

Main
 call Subroutine
 call Subroutine:NoClear
 call :NoClear ; This causes an error

 Although this code is of no specific use, it demonstrates how two different entry points of a sub-
routine can be accessed from the main program. First, the "regular" call enters the subroutine at
the main entry point that causes w to be cleared, using the global name Subroutine. The second
call refers to a local label within the subroutine by specifying the "full" label name (Subrou-
tine:NoClear) i.e. w is not cleared. The third call causes an error because the assembler tries to
locate the label Main:NoClear which does not exist.

1.5.4 Some More Considerations about Subroutines
You may have wondered why we have originated the TimeEater subroutine at address $000,
and why the main program begins at $100 now.

To understand this, it is important to know that the call instruction only contains eight bits to
specify the address of a subroutine. This is how the instruction code for call is structured:
1001 aaaa aaaa

When the assembler compiles a call instruction, it replaces the lower eight bits aaaa aaaa in the
instruction code with the lower eight bits of the address that is specified together with the call
instruction. As a result, the entry point of a subroutine can only be specified as values between
$000 and $0ff.

Therefore, it makes sense to reserve the lower area in program memory from $000 through $0ff
for subroutines, and let the main program begin at $100.

Later we will see that address $000 has a special meaning when we discuss interrupts.

Programming the SX Microcontroller - Tutorial

46

When the program memory from $000...$0ff is not large enough to hold the code for all of your
subroutines, there are two options:

1. Usage of another program memory page (we will discuss this later in the tutorial).

2. Jump to a higher address in program memory - here comes an example:
RESET Start
org $000

SR1
 jmp _SR1

org $100

Start

; Initializations

:Loop

 ; Instructions within the main loop

 call SR1
 jmp :Loop

_SR1

 ; Instructions within the subroutine

ret

As you can see, the subroutine SR1 requires one word only in the program area from $000 to $0ff
for the jmp _SR1 instruction where the remaining instructions for the subroutine are located be-
hind the main program loop in memory above $100. The only little disadvantage is the additional
word required for the jmp instruction and the three extra clock cycles needed to execute the jmp.

Fortunately, the assemblers report an error when you try to compile a program where the entry
point of a subroutine lies above $0ff (this may happen when you add more instructions to a sub-
routine that cause following subroutines being "pushed up" in program memory. Error messages
will be similar to "Address is not within lower half of memory page" or "ERROR: CALL must be to
first half of page".

As mentioned before, a subroutine should behave like a "black box", i.e. it should be possible to
call it from any location in the program, without any side effects caused by the subroutine. This
especially means that the subroutine may not make changes to register contents that are impor-
tant for other parts of the program.

For example, a function in the C programming language can fulfill this requirement when all ar-
guments are passed to the function by value, and when the function uses local variables only. In
addition, a function can optionally return a value to the calling program.

Programming the SX Microcontroller - Tutorial

47

Requirements like this cannot be realized with the SX that easy. The main reason is the lack of a
stack for data that C uses for passing arguments and storing local variables.

When you write subroutines, take special care that no register contents are changed that are
required to remain unchanged by the calling program. On the other hand, it is almost impossible
to write a subroutine that does not modify the content of the w register. Therefore, the calling pro-
gram should never trust that w remains unchanged after a subroutine call. The same is true for
the flags in the status register that we will address later. Often, the w register, or the status regis-
ters are used to return a result from the subroutine to the calling program. Here is an example:
; The subroutine multiplies the contents of number by three
; and returns the result in w.
;
TimesThree
 mov w, Number
 add w, Number
 add w, Number
ret

mov Number, #2
call TimesThree

; w now holds 6

Note that this simple subroutine does not handle results greater than 255.

A good method to protect variables from being overwritten by a subroutine is the usage of differ-
ent memory banks that are dedicated to the subroutines and the main program. We will discuss
this in the next chapter.

Sometimes, subroutines need to store intermediate results. In such cases, it is a good idea to
reserve one or more variables that can be used for temporary storage. By convention, the con-
tents of such variables are only valid from the point where a subroutine has saved a value there,
until it terminates. This means that no other part of the program may rely on the variable’s con-
tents. Nor can any subroutine assume that the variables hold specific values when it is called
next.

When you write programs with nested subroutine calls, take care that a subroutine at a lower
level does not make use of the same temporary variables. This would make its contents invalid
for the calling subroutine.

Ubicom recommends the definition of variables named localTemp0, localTemp1, localTemp2,
etc. as temporary storage. The subroutine at the highest nesting level may use localTemp0, the
subroutine at the next lower level may use localTemp1, etc.

Even when you make use of clearly defined conventions how to use variables, it is always a good
idea to double-check the integrity of the variable usage, and it is also helpful to add comments to

Programming the SX Microcontroller - Tutorial

48

each subroutine to explain which variables are changed by the subroutines, and on with variables
the subroutines rely.

1.5.5 Correctly Addressing the SX Data Memory
(2.2.2 - 204) The reference section in this book describes how the data memory is
divided in eight memory banks of 32 bytes each (SX 18/20/28), where the first 16 bytes
always lay in the first bank (bank 0), no matter which bank is currently active. Within this

first bank, only the upper eight bytes can be used as general-purpose registers where the lower
eight registers stand for the SX'es special registers.

Let's try to learn more about memory banks with this little program (this version contains a bug as
you'll see):
; TUT006.SRC
;
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start

Start
 inc $10
 inc $30
 inc $50
 inc $70
 jmp Start

Enter and assemble this program, and then step through it with the debugger. After the first step,
the inc $10 instruction will be executed that increments the memory location at $10. As you step
through this instruction, watch the displayed content of $10, and see how it increments as ex-
pected.

Now, when you step through the inc $30 instruction you might expect that the contents of mem-
ory location $30 will increment, but this is not the case. Instead, $10 is incremented again. The
same happens when you step through the next two instructions. Each time, $10 is incremented,
but not $50 or $70.

The problem here is that the instruction code for an inc only provides five bits for an address in
data memory:
0010 101f ffff

When the assembler compiles the instruction, it replaces the five bits that are marked with "f" with
the lower five bits of the address argument that is part of the inc instruction.

Programming the SX Microcontroller - Tutorial

49

Programming the SX Microcontroller - Tutorial

50

Using our example, the following codes result:
$10 -> 0001 0000
inc -> 0010 101f ffff
Instruction code -> 0010 1011 0000

$30 -> 0011 0000
inc -> 0010 101f ffff
Instruction code -> 0010 1011 0000

$50 -> 0101 0000
inc -> 0010 101f ffff
Instruction code -> 0010 1011 0000

$70 -> 0111 0000
inc -> 0010 101f ffff
Instruction code -> 0010 1011 0000

As you can see, the instruction code is always the same, this is why each of the inc instructions
addresses $10, and not the other registers as you might have expected.

You may compare the organization of the SX data memory with a parking garage. Each parking
deck has 32 lots, numbered from 0 to 31 where the lots 0 to 15 are reserved for special people,
while the remaining lots from 16 to 31 are open to the public with the exception that parking is
allowed for white cars of brand XYZ, type A only.

Let's assume, you have borrowed a car from a friend (of course, a white XYZ, type A), and you
have arranged that you will return his car to our (fancy) parking garage.

Later, you park the car in deck 5, lot 16 and call your friend: "Thanks for the car, I have parked it
in lot 16, you may pick it up there again".

You can be sure, your friend will get mad at you because you forgot to tell him in which deck you
have left his car. How should he find his car when in all lots No. 16 in all decks there are white
XYZ A-Types only?

This is similar to the SX data memory: For the upper 16 bytes in each bank, it is not enough to
specify the address because this would always be a value from $10 to $1f. In addition, you must
tell the SX which memory bank it shall use.

Now let's improve our program:
; TUT007.SRC
;
ifdef __SASM
 DEVICE SX28L, STACKX, OPTIONX
 IRC_CAL IRC_FAST
 FREQ 50_000_000
else
 DEVICE SX28AC, OSCHS, OPTIONX
endif
DEVICE TURBO
RESET Start

