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Forward 
Forward: I/O Control with the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

Introduction 
One of the things that makes the Scenix SX microcontroller so powerful is its versatile I/O.  Traditionally, 
microcontrollers have incorporated internal or external hardware for handling various I/O requirements.  
Particularly with internal hardware solutions, a different microcontroller must be selected to match each new 
design.  Manufacturers have, in turn, come up with an increasingly large number of microcontroller packages.  
They do so in an attempt to fit their products into as many different designs as possible.  The circuit designer 
ends up losing a degree of freedom when attempting to use these products.  For example, when one chooses a 
package with one asynchronous I/O port and one A/D port, adding one more A/D line can be costly in terms of 
redesign time and hardware. 
 
One thing that sets the SX apart from most microcontrollers is that it  is fast enough to handle many forms of I/O 
in software instead of requiring special hardware.  This allows the designer to simply change the SX program to 
meet the new design requirements. This is possible because of the SX chip’s comparatively high processing 
speed.  In future units, you’ll see how to use this processing speed to create asynchronous serial ports, A/D 
ports, and more. 

About This Course 
In the first part of this course, Introduction to Assembly Language Programming with the SX Microcontroller 
covered the basics of SX processing and I/O.  This second part covers more advanced I/O that can be 
implemented with the SX in software.  These techniques are essential tools that can be used by embedded 
systems designers in an ever increasing variety of applications. 
 
In addition to I/O, this course will highlight the use of macros.  Although not strictly necessary, macros do make 
programs easier to write and understand.  Macros can be used to make composite pseudo instruct ions consisting 
of multiple assembly instructions.  Parameters can be used within a macro making it possible to customize the 
code it produces. 
 
The SX chip’s E2/Flash memory can be erased and reprogrammed more than 10,000 times.  This allows students 
the luxury of trial and error with their assembly language programs.  Coupled with the powerful SX-Key 
debugging tools, the SX Tech Tool Kit provides an ideal environment for learning and experimentation.  The 
experiments in this course are best performed with the SX-Tech Tool Kit, available for on-line purchase at 
www.sxtech.com.   
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This text was written assuming the reader has already completed Introduction to Assemble Language 
Programming with the SX Microcontroller.  The suggested background for this course is a familiarity with electric 
circuits and elementary digital electronics.  Previous experience with a computer programming language is also 
important.  Those with little or no electronics or computer programming background are urged to complete 
What’s a Microcontroller? and Basic Analog and Digital before getting started with SX Tech.  These introductory 
texts are part of the stamps in class curriculum, available at www.stampsinclass.com.   
  
 



  Unit 1. Simple Hardware I/O Enhancements  

 I/O Control with the SX Microcontroller • Page 3 

Unit I. Simple Hardware I/O Enhancements 
Unit I from I/O Control with the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

Introduction 
The SX has a variety of built in, programmable I/O enhancements that can be used in place of certain external 
circuits.  Options can be set to enable internal pull up resistors, configurable logic thresholds, and analog 
comparator functions.  These features were first discussed in Introduction to Assembly Language Programming 
with the SX Microcontroller, chapter 6.  Although these features can be used to reduce the overall parts count in 
many designs, they are for use with specific current and voltage limits.  Three of the most common situations 
where the demands of a peripheral device exceed these limits are when: 
 

§ The device requires more current the SX I/O pin can supply. 
§ The device requires more than 5 V at its input. 
§ The device outputs above 5 V or below 0 V. 
 

This chapter introduces some simple hardware solutions for these situations.  These solutions can be used to 
make the SX light lamps, energize relays or coils, and control motors, or even pumps.  Hardware solutions for 
RS232 voltages are also discussed because many applications make use of this standard, such as the serial port 
on a PC. 
 
Specialized interfaces, such as liquid crystal display (LCD) drivers, or computer I/O ports, use a variety of 
different hardware connection schemes.  Most of these devices also use one of several established 
communication protocols for exchanging data.  These protocols are discussed, and an example of a 
hardware/software interface with a common parallel LCD is included.  This will help introduce some basic I/O 
and register management techniques, setting the groundwork for methods used in later chapters.  

Driving Loads 
Compared to many chips, an SX I/O pin set to output can sink or source significant amounts of current (30 mA). 
This is plenty for driving an LED as well as most IC inputs.  However, for many relays, lamps, and other loads, 
30 mA is not nearly enough. Attempting to use an SX I/O pin to drive a high current load can damage the chip. 
 
Fortunately, the SX chip’s output capacity can be extended using simple external parts.  Figures 1.1, 1.2 and 1.3 
show three circuits that can be used to significantly boost the SX chip’s output capacity.  Figure 1.1 shows a 
circuit built around a common 2N2222 transistor.  This circuit draws minimal current from the SX, but can sink 
nearly a half of an ampere when heat sinking is used on the transistor. 
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Figure 1.1 – Switching a high-current relay 
 
This configuration is ideal for loads that require ground to be switched on and off.  When the SX switches its 
output high, the voltage at the transistor's base, V BE, rises to 0.7 V.  The current through the resistor connected 
to the transistor’s base is (5 – 0.7)/1000 = 4.3 mA.  This is ample current to force the transistor into saturation 
without demanding too much current from the SX I/O pin. 
 
Because the transistor is saturated, the collector will be in the neighborhood of 0.2 V above the emitter.  For 
practical purposes, this is as good as ground. When the SX outputs 0 volts, or any voltage too low to bring V BE 
above 0.7V, the transistor switches off.  Although a very small amount of current is still conducted, it is 
insignificant as far as the coil is concerned.   
 
TIP: Notice the diode across the relay coil in Figure 1.1.  This is useful when driving inductive loads.  When the 
current in any inductor changes, it can cause large voltage spikes, which can destroy the transistor.  The diode 
shorts out negative voltage to prevent damage to the transistor.  A relatively low inductance load, such as a light 
bulb, does not require the diode. 
 
Most of the time, switching the ground lead of a load on and off works fine.  However, some jobs require a 
positive voltage to be switched. For example, suppose an EPROM programmer requires a 14V supply to be 
switched on and off.  The circuit in Figure 1.2 can be used for his application. 

9V

SX Output

1N914

B

E

C

2N222 
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Figure 1.2 Circuit for switching a positive voltage. 

 
The NPN transistor works as before, making a ground connection when the SX outputs a 1. This causes the 
voltage across the base of the PNP transistor to turn it on because the magnitude of V BE will be greater than 0.7 
V.  As with the previous circuit, the magnitude of VCE can be neglected.  
 
The circuit in Figure 1.3 uses a power MOSFET.  A MOSFET offers almost complete isolation between the 
processor and load.  Modern MOSFETs can also handle relatively heavy current loads, and the device shown 
here can conduct up to 4A.  Another MOSFET advantage is that it has a very low series resistance, in the 
neighborhood of 0.54 Ohms, when switched on.   
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Figure 1.3 Using a MOSFET 

 
The circuits just introduced will serve in a variety of situations, all of which are aimed at switching DC loads on 
and off.  However, many designs call for something other than on/off values. 

Analog I/O 
Many practical sensors generate analog signals, and there are several strategies for reading analog values with a 
digital device like the SX.  A common external hardware solution is to use specialized ICs that can convert analog 
to digital and vice versa.  A device that converts numeric quantities to analog is called a Digital to Analog 
converter (DAC or D/A).  The opposite function is performed by an Analog to Digital converter (ADC or A/D).  
These are available from many vendors with varying capabilities and price tags.  SX software A/D and D/A 
solutions also exist, and will be introduced in Units 3, 5, and 6.  In some cases, A/D conversion is overkill, 
because the voltage can be “trimmed” to a more appropriate level . 

Analog Level Conversion 
For an example of a trimming circuit, consider a battery monitor. A ssume a battery's nominal voltage is 9 V, and 
the circuit will operate at voltages as low as 7.2 V.  Your design goal is to detect when the voltage drops to 7.5 
V, perhaps to light a low voltage indicator. 
 
Using an A/D converter for this job would be a waste of money and resources.  Taking advantage of an SX I/O 
pin’s logic threshold is a much simpler, less expensive solution.  When an SX I/O pin is set to CMOS input mode, 
it reads signals above 2.5 V as 1 and below 2.5 V as 0.  A voltage divider can convert the 7.5V target voltage to 
2.5V.  A voltage divider is shown in Figure 1.4, and the voltage divider equation is given by: 
 


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
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Resistor values should be selected to make Vo = 2.5 V when Vi = 7.5 V.  A 10 and 20 KΩ resistor would do the 
job.  However, the total current consumed will be 9/30000 or 300 µA. This is plenty of current to drive the SX 
inputs. The values could also be increased to 100K and 200K to reduce current consumption to 30 µA.  
 

 
Figure 1.4 Detecting a low battery 

 
When the battery is at full charge, the input pin will be 3 V, which is enough voltage for the SX to register a 1.  
At 7.5 V the pin drops to 2.5 V, which is right at the logic threshold.  Any further drop is read by the SX as a 
zero.  Compared to either software or hardware A/D conversion, this technique greatly simplifies both the 
programming and hardware used in the design. 

Grouping Digital I/O – LCD Example 
When using an individual SX I/O pin for switching and sensing, a single bit in a given port register is addressed.  
However, peripheral devices connected to microcontrollers have traditionally used parallel interfaces.  These 
devices can be accommodated using the SX, but it’s not necessarily the best use of the SX chip’s limited number 
of I/O pins. 
 
When reading and writing to parallel devices, each I/O port can be treated as a group of bits.  For example, 
instead of treating rb.1 through rb.7 as individual bits, the RB register can be can be addressed as a group of 
8-bits.  In the 28 pin SX chip, RA is a 4-bit wide register, and RB and RC are each 8-bits wide.  Keep in mind 
that if the data bus connected to the SX is not 4 or 8-bits, the program must be adapted to handle the data 
correctly.   
 
Consider a typical liquid crystal display (LCD).  Common LCDs use an on-board LCD driver IC such as the Hitachi 
HD44780 or a compatible device.  Larger LCDs use a 44780 plus some additional Hitachi parts, but the 
programming turns out to be essentially the same.  The 44780's datasheet is at the Hitachi Web site: 
semiconductor.hitachi.com/products/pdf/99rtd006d1.pdf.    

9 V > Vi > 7V

Vo (SX Input)

10 k

20 k R1 
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LCD Hardware 
The 14 pins on the LCD are likely arranged in the standard configuration given in Table 1.1. 
 

Table 1.1: Pin Functions and Descriptions for Common LCDs with Hitachi or Compatible Driver 
Pin Function Description Pin Function Description Pin Function Description 
1 GND Ground 2 +5 + 5 V Power 3 C Contrast voltage 
4 RS Reg. Select 5 R/W Read/Write 6 E Enable 
7 DB0 Data Bit 0 8 DB1 Data Bit 1 9 DB2 Data Bit 2 
10 DB3 Data Bit 1 11 DB4 Data Bit 4 12 DB5 Data Bit 5 
13 DB6 Data Bit 6 14 DB7 Data Bit 7    

 
Some LCDs have 14-pin male single inline package (SIP) headers, and they can be plugged directly into a 
breadboard.  Other LCDs have these pins arranged with a piece of ribbon cable that ends in a dual-row header.  
This isn't very handy for breadboarding.  In this case, jumper wires can be used to connect the header 
pins/sockets to the breadboard.  Figure 1.5 shows a connection diagram for operating a 14 pin LCD in 4-bit 
mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5 LCD Connection Diagram 
 
Hitachi’s data sheet shows a signal sequence that can be sent to the LCD to reset it and force it into 4-bit mode. 
Once in 4-bit mode, RS can be asserted, then ASCII characters can be sent.  In 4-bit mode, the four most 
significant bits are sent first, and the lower four bits are sent second.  RS is taken low for sending command 
codes.  Each 4-bit transfer occurs when the E pin is pulsed. 

1 14
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If the LCD doesn’t appear to work, try varying the contrast voltage on pin 3 of the LCD’s 14-pin connector.  
Adjust the potentiometer connected to pin 3 until faint boxes or characters become visible.  Note: Very few LCDs 
require negative voltages to set the contrast. 

Program Listing – LCD Interface 
Program Listing 1.1 is an LCD interface example using the techniques just discussed.  The program displays a 
message you can change by changing the text in single quotes in the message routine. 
 

; Program Listing 1.1 
; 4-bit LCD driver by Al Williams 
 

  device SX28L,turbo,stackx_optionx,oscxt5,bor42 
  freq 4000000   ; Run at 4MHz to simplify timing. 
  reset start   ; Go to 'start' on reset. 
 
  org     $0c 

dlyctr ds 1   ; Main delay counter. 
dlymultds 1   ; Delay multiplier. 
tmp  ds 1  ; Temp storage. 
work  ds 1  ; More temp storage. 
i  ds 1  ; Loop counter. 

 
ebit  equ ra.1 ; I/O: Enable and Register Select. 
 
rsbit  equ ra.0 ; Assumes DB4 to DB7 connect to RB.0-RB.3. 

 
  org 0  
  

 
ldelay  mov dlymult,#5  ; Long delay (5x256). Enter here if you want  
delaym  clr dlyctr   ; to set your own dlymult. 

 
:delay  nop 
  djnz dlyctr,:delay 
  djnz dlymult,delaym 
  ret 
 
init  mov ra,#0   ; Call to init the LCD. 
  mov rb,#0             ; Set all bits to zero. 
  mov !rb,#%11110000    ; Set outputs. 
  mov !ra,#%00 
  call ldelay        ; Give LCD some time to catch up. 

mov rb,#$3   ; Write a 3 out to the display 3 times. 
 
  call pulsee 
  call pulsee 
  call pulsee 

 
  mov rb,#$2   ; Now go to 4-bit mode (twice). 
  call pulsee 
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  call pulsee 
  mov rb,#$8   ; Set 2-line mode (remove next 2 lines if 

; display has 1 line). 
  call pulsee 

 
mov w,#14   ; Non blink cursor (use 15 for blinking). 

  call lcdout 
  mov w,#6   ; Activate the cursor. 
  call lcdout 

clear    ; Clear the screen (init falls  
; Into this routine). 

  mov w,#1   ; Send a command (clear falls  
; Into this routine). 

cmd  clrb rsbit 
  call lcdout 
  setb rsbit 
  ret 
 
lcdout  mov tmp,w   ; Write to the LCD (4 bits at a time). 
 
  mov work,w 
  rr work   ; Get top 4 bits first. 
  rr work 
  rr work 
  rr work 
  and work,#$F 
  mov rb,work 
  call pulsee 
  mov w,tmp   ; Then bottom 4 bits. 
  and w,#$F 
  mov rb,w 
pulsee  setb ebit   ; Pulse the E bit (lcdout falls into this). 
  
  call ldelay 
  clrb ebit 
  ret 
 

; Set the cursor to the specified pos note that all displays think that 
; line 2 starts at pos 40 even if they don't have 40 characters. 
 

setcursor mov work,w 
  mov w,#$80 
  add w,work 
  jmp cmd 
 

lookup mov w,i  ; Get a byte from the string to display. 
  jmp pc+w 
msg  retw 'Assembly Language I/O ' 
  retw 'with the SX-Key',13 
  retw 'by Al Williams and Parallax',0 

 
start  call init   ; Here is the main program. 
  call ldelay 
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  clr i    ; Loop for each character. 
 
ploop  call lookup 

; exit if 0 
  test w 
  jz :loop 
  inc i 
   
  mov work,w   ; If 13 then go to line #2. 
  cje work,#13,nl 
  mov w,work   

 
  call lcdout   ; Not 0 or 13 so print it. 
 

; this delay gives a "teletype" effectcomment the following 2 lines 
; for full speed. 

 
  clr dlymult 
  call delaym 
 
  jmp ploop      ; Keep going. 
 

; This look waits for about 5 seconds or so and then starts the whole  
; thing over. 
 

:loop  mov tmp,#64 
:loop1  clr dlymult 
  call delaym 
  djnz tmp,:loop1 
  jmp start   
 
nl  mov w,#40   ; Move to line 2. 
  call setcursor 
  jmp ploop 
 
This program listing assumes no other part of the program uses ports A and B.  If the pins not used by the LCD 
in a port are set to input, the program can write to the port bits, but no output occurs.  On the other hand, if 
pins not used by the LCD are outputs, the command below will arbitrarily wipe out any output bits used by the 
other part of the program.  This would lead to spurious outputs each time information is sent to the LCD.  One 
solution is to read the output bits already in use before writing back to the port.  In other words, instead of 
writing directly to a port using the command: 
 
 mov rb,bits 
 
Substitute the code below: 
 
 and bits,#$F 
 mov w,rb 
 and w,#$F0 
 or w,bits 
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 mov rb,w 
 
In this example, only the four least significant bits in RB change.  The hexadecimal value #$F is referred to as a 
mask.  Masks are used with logic commands to force certain bits high or low within registers.  For example, the 
first command: 
 

and bits,#$F  
 

forces the upper nibble (bits 4 through 7) in the bits register to zero while leaving the lower four bits unaffected.  
RB is then copied to the w register, followed by applying a mask that sets only the lower four bits in the w 
register to zero.  The or command can then be used to copy the lower four bits in the bits variable into the w 
register.  The contents of w can then be copied to RB.  Although it seems like a roundabout way of doing 
things, it enables numeric control of groups of bits within a given I/O port. 

About Serial Data 
The LCD controller is a good example of a parallel interface with a peripheral device.  The interface uses a total 
of six I/O pins, four for data and two for control.  If an 18-pin SX is used, this would monopolize half of the 
twelve available I/O lines.  Parallel interfaces that use too many I/O lines are a common problem among 
microcontrollers.  Not surprisingly, a wide variety of devices that use serial protocols to communicate have been 
developed.  
 
Serial communication can be done over a single wire, although two, three, and four-wire interfaces are also 
common.  The protocols used can be broadly characterized as synchronous and asynchronous.  A synchronous 
protocol uses some type of clock to synchronize the transmitter and receiver.  Synchronous systems include 
Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (IIC).  In contrast, asynchronous protocols 
synchronize on some prearranged signal, typically a start bit.  Common RS-232 ports, like those on the back of a 
PC, use asynchronous data transmission.  

Synchronous Serial Data 
Typical synchronous protocols use at least two lines, one for data and one for the clock signal.  The receiver 
reads the data at the rising or falling edge of a clock pulses it sends to the transmitter.  Often, the transmitting 
device clocks data in one pin and out another pin allowing an arbitrary number of devices to be daisy chained.  
Synchronous protocols allow high data rates but require multiple wires to work. Still many devices like A/D 
converters, EEPROMs, and other peripherals utilize this of protocol. 

Asynchronous Serial Data 
Asynchronous serial data is the more common of the two arrangements.  The transmitter and receiver are set 
for the same transmission speed.  The receiver then watches for a “start bit” and uses it to synchronize with the 
transmitter.  As an example, suppose a serial data transmission consists of a start bit, 8 data bits, and one stop 
bit at 9600 bits per second (bps).  To squeeze 9600 bits into a second, each bit can only be transmitted for: 
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ìs104
bps9600

1
Tbit ==       (2) 

 
The transmitter and receiver must also be agreed on the signal that gets transmitted between bytes, the idle 
state.  The start bit begins when the transmitter switches its signal out of the idle state.  For example, if 1 is the 
idle state, as soon as the transmitter switches to 0, the 104 µs start bit has begun.  When the receiver senses 
the start bit, it knows that 104 µs later the first bit of data will be transmitted.  So, the receiver checks the state 
of the signal after 104 µs and records the value of the first bit.  It repeats this sampling process eight more 
times, once for each of the eight data bits.  The stop bit is somewhat of a misnomer since the state of the stop 
bit is the same as the line’s idle state.  The stop bit is actually the minimum idle time before the next byte can 
be transmitted.  Modern systems often use 1 stop bit, that is, 1 bit period between bytes.  Some older systems 
required 1.5 or even 2 stop bits.  
 
RS-232C is by far the most common asynchronous serial protocol.  Personal computer serial ports use this 
scheme.  In fact, connecting a microcontroller to a PC is a common use for RS-232.  Other devices, including 
specialized serial LCDs, PWM coprocessors, and PS/2 keyboard interfaces also use RS-232.   
 
A typical RS-232 setup requires one line for each transmitter and one for each receiver.  Some systems will 
share a single line for both transmitting and receiving.  Additional lines used for flow control are also common.  
Flow control lines allow the receiver to send a signal that indicates when to send the next byte.  Commonly 
referred to as handshaking, the receiver has to signal its willingness to receive before the transmitter can send. 

RS-232 Practical Considerations 
RS-232 is more than just an arrangement of bits.  The standard also calls for particular connectors and voltage 
levels.  This can be a problem for designs incorporating microcontrollers because the RS-232 signal varies 
between –12 V to transmit a 1 and +12 V to transmit a 0.   Microcontrollers, of course, use the standard 
TTL/CMOS 0 and 5 V signals. 
 
A variety of techniques can be used to convert from TTL to RS232 voltages and visa versa.  Peripheral integrated 
circuits that make these conversions are often added to the design.  The classic chips to do this are the 1488 
and 1489 line drivers and receivers.  However, these require a +/- 12V power supply, common in computers, but 
not so common is smaller electronic designs.  
 
In many cases, the only reason to have +/-12V is for RS-232.  In this case, the need for +/- 12 V can be 
eliminated all together with a MAX232 or MAX233 IC from Maxim.  These clever chips convert TTL to RS232 
using only a single 5V supply.  The MAX232 and 233 generate their own 12 V supplies using internal “charge 
pumps”.  The actual voltage won’t be exactly +/- 12 V, but it will be well within the RS-232 specification. The 
MAX232 uses a few external capacitors, but the MAX233 requires no external capacitors. 
  
It is possible to connect a TTL output directly to an RS-232 input.  It works most of the time, but it’s only 
recommended for lab and prototyping situations, not for product ion designs.  The only thing to keep in mind is 
that 5 V is interpreted as a 0 while 0 V is interpreted as a 1.  An RS-232 output can also be connected to an SX 
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input, so long as a current limiting resistor is used.  A 22 kΩ resistor, for example, can be placed in series 
between the RS-232 output and the SX input.  The SX has internal diode protection that clamps voltages above 
5 V and below 0 V.  The resistor prevents possible circuit damage that can occur when these diodes conduct 
excessive current in an attempt to keep the voltage clamped.  Keep in mind that the same logic inversion that 
occurs when sending serial RS232 data without a line driver also occurs when receiving without a line driver. 

Summary 
A variety of designs feature devices with voltage or current requirements that are higher than the SX chip can 
supply.  External transistors can be selected to drive these loads, then the SX can be used to switch the 
transistors on and off.  Input voltages can also exceed the 0 to 5 V range.  For the sake of sensing when a 
voltage passes a particular threshold, a voltage divider can be used to trim the measured input so that it crosses 
an SX I/O pin’s logic threshold.   
 
When using the SX to communicate with a parallel device, such as the LCD with assembly code example 
introduced in this unit, masking may be necessary to make sure that outputs not used by the parallel device are 
unaffected.  Serial devices are a common solution for reducing the overall number of microcontroller I/O pins 
dedicated to each peripheral device.  Synchronous and asynchronous serial communication are the two most 
common timing schemes used for serial communication.   
 
RS232 is a common standard for asynchronous serial communication, and it uses +/- 12 V.  Although the SX can 
send TTL signals directly to an RS232 input and receive RS232 signals via a series resistor, this connection 
scheme is only recommended for experimentation.  Specialized RS232 line driver, receiver, and transceiver ICs 
can be used for much more foolproof communication between SX and RS232 I/O. 
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Exercises 
1. Which of the following is a characteristic of asynchronous communications? 
(a) An external clock signal 
(b) Bits take a variable amount of time 
(c) Each byte begins with a start bit  
(d) The transmitter sends 1, 1.5, or 2 bits at once 
 
2. A sensor emits 0V when off and 3V when on. What techniques could you use to read it with an SX? (Select all 
that apply) 
(a) Read the value directly with CMOS input thresholds 
(b) Use a 2N2222 transistor to switch on when the signal is present 
(c) Use a voltage divider with two resistors 
(d) Use an external A/D converter 
 
3. Which of the following is a characteristic of RS-232? 
(a) RS-232 uses the same line for transmitting and receiving 
(b) RS-232 does not require transmitter and receiver to agree on speed 
(c) All bits in an RS-232 byte require the same amount of time to send 
(d) Real-world RS-232 devices use positive and negative voltages to indicate 0s and 1s 
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Answers 
1. (c) is the correct answer. Each byte begins with a start bit used to synchronize the receiver.  
2. (a) and (b) are correct. Although you might argue that (d) would do the job, there is no need to measure the 
precise voltage of the sensor; only two voltages are required. Directly connecting the sensor to an SX pin would 
work, although the circuit will be more prone to noise errors than if you use method (b). 
3. (d) is the correct answer. Although most bits require the same time to send, stop bits may be longer than 1 
bit, so (c) is not correct. 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  

 
Rev1. 
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Unit II. A Software UART – The Transmitter 
Unit II from I/O Control the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
Asynchronous serial data is very popular in the real world. Modems, terminals, mice, and printers can all use RS-
232 ports to communicate with a variety of computers. Because of this popularity, single ICs that could handle 
RS-232 communications arrived on the scene even before microcontrollers became popular. These chips were 
called UARTs (for Universal Asynchronous Receiver and Transmitter). 
 
In this course, you’ll build a variety of software-only UARTs using the SX’s speed to simulate a UART and still 
leave time for your actual program. In this unit, you’ll examine the transmitter portion only. To avoid confusion, 
I’ll continue to refer to a UART, even though in this unit the code only transmits.  
 
Sometimes transmitting is all you need. For example, suppose you have a remote weather station that should 
send the temperature, wind speed, and wind direction to a remote receiver. This system may not require a 
receiver. It simply broadcasts its data to whoever is listening on the other end. 

UART Transmission Logic 
There are a few things you need to think about when designing a serial transmitter: 
 
• What state is the line in while idle? 
• How long should each bit last? 
• How many bits are transmitted? 
• Does the least-significant bit appear first or last? 
• How long is the minimum idle between characters (the stop bit)? 
 
For RS-232 many of these things can’t change. For example, you send bits least-significant first. The baud rate 
corresponds to the number of bits per second, and therefore, the length of each bit is the reciprocal of the baud 
rate. So at 9600 baud, for example, each bit’s period is 1/9600 or about 104 microseconds. The receiver and the 
transmitter agree on the minimum length of the stop bit and this is usually the same as the bit period. 
 
The only remaining question then is what state is the line in while idle? This varies depending on the hardware 
design. If you are using an inverting line driver (like a MAX232), the line should be high when idle. If you are 
connecting directly to an RS-232 receiver (which, as mentioned earlier, is not always going to work) the line 
should be low for an idle. Below is an RS-232 transmission of an ASCII “A” character (%01000001). Notice the 
bits are inverted and the least-significant bit is first. 
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Figure II.1 – RS-232 Transmission 

Creating the Code 
SX Web sites have several UART routines. Actually, one of these implements 8 19.2K UARTs! Another example 
allows you to configure it to operate between 2400 and 230.4K baud. 
That's a bit of overkill for this application. However, there is no shortage of examples to study. 
 
One approach would be to use part of your ordinary program to directly manipulate the output port. This would 
work, but it would also tie up your program for the entire duration of the byte you wanted to send. It would also 
prevent you from sending characters while anything else was happening. 
 
A better idea is to send the bits from within an interrupt service routine (ISR). You can set up a periodic 
interrupt that is faster than the bit rate and do all the work during the ISR. This makes even more sense when 
you consider that to receive serial data (the next logical step) you’ll almost have to use interrupts unless you 
plan to do nothing but wait for the input’s start bit. 
 
You can find a simple UART transmitter in the section at the end of this unit entitled The Transmitter Code. This 
UART is fixed a rate of 19.2Kbaud (19,200 baud) and directly drives an RS-232 receiver with 8 bits and no stop 
bit. 
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When the main program wants to send a character, it calls send_byte with the character in the w register. This 
routine loads the character into the top 8 bits of the 16-bit transmit register (tx_high and tx_low). In reality, 
the code only uses 10 bits of the register since only tx_low.7 and tx_low.6 make any difference. The 
send_byte routine clears the top bit (bit 7) of tx_low – this corresponds to the start bit. The ISR will invert the 
bits, so a 0 will represent a high start bit. 
 
Finally, send_byte sets the tx_count  variable to 10. This is the bit count; 8 bits + 1 start bit + 1 stop bit. The 
routine, by the way, waits for tx_count  to be zero to prevent overwriting an output byte in progress.  
 
All the real work occurs in the interrupt routine. The first section examines tx_count . If this variable is zero, no 
transmission is pending, and there is no reason to do any further processing. 
 
The second section simply decrements a counter (tx_divide) by 1 and if the counter is not zero, the ISR returns 
immediately. This has the effect of dividing the interrupt rate by 16. Of course, you could program the interrupt 
to occur once per bit period, but this method allows you to easily change the baud rate. For example, setting the 
division rate (txdivisor) to 32 will result in a 9600 baud speed. If you need 4800 baud you could set txdivisor 
to 64. You’ll read more about baud rate calculations in the next section. 
 
If it is time for a new bit, the ISR shifts the 16-bit transmit register to the right one place. Before it does this, it 
sets the carry bit. This will ensure that the final bit (or bits) will be high – just what you need for the stop bit 
(since the output is inverted). The output bit, represented by tx_low.6, is written out (inverted) to the I/O port. 
The tx_count  variable, of course, is decremented. Shifting right means the least-significant bits go out first, as 
required by RS232. 
 
Once the bit is written, the ISR is done, so it exits, scheduling itself to run again 163 clock cycles after the last 
interrupt. The main code spends most of its time waiting for tx_count  to drop to zero (in the send_byte) 
routine so that it can send the next byte. Of course, a real program would probably have much more work to do 
while the ISR is sending data. 

Calculating Baud Rates 
Calculating the baud rate can sometimes seem like a black art, but with a little thought, it isn’t too difficult. The 
SX, in this case, is running at 50Mhz, which corresponds to 1/50000000, or 20nS per clock cycle. The ISR will 
execute every 163 clock cycles or 3.26uS. Finally, the ISR only executes every 16 interrupts, so the code runs 
every 52.16uS. The desired baud rate is 19200 bits per second, which is 1/19200 or 52.08uS. The 52.16uS 
period is only off by 0.15% -- close enough for practical purposes. 
 
Obviously, you can alter this equation to suit your needs. Suppose you want to run the SX at 10MHz instead of 
50Mhz and work at 9600 baud? This lower clock frequency would reduce power consumption, but it will also 
require you to recalculate the interrupt rates.  
 
Each clock cycle is 100nS. The total bit time is about 104.2uS. Dividing 104.2uS by 100nS tells you that each bit 
will require 1042 clock cycles. Of course, you can only program the timer with an 8 bit number, so you can’t 
program the timer to directly interrupt every 1042 clock cycles. 
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If you select a timer rate of 50 cycles, the interrupt will occur every 5uS (handy later generating a real-time 
clock). The interrupt divisor can then be 21. This, of course, is not exactly correct (it should be 20.84). Is this 
too far off? 
 
To determine this, reverse the calculations to find out the true bit time: 21 x 5uS is 105uS, and error of only 
0.77%. This is well within the tolerance of any real-world device. 
 
When selecting these values, you need to consider how many clock cycles your ISR requires to execute. In this 
example, the interrupt will occur every 50 clock cycles. If the ISR requires 50 clock cycles or more to execute, 
you’ll have a problem. Even if the ISR approaches 50 clock cycles, you may not be able to use the numbers you 
calculate. Why? Suppose the ISR requires 40 cycles. This leaves only 10 cycles out of 50 to process your main 
program! So in 5uS, the ISR will use up 4uS, and the main code can execute for 1uS. 
 
If you run into this problem, you can adjust the clock period up and the divisor value down. For example, 75 
cycles in the last example results in a 7.5uS interrupt time. With a divisor value of 14 this leads to a 105uS bit 
period (off by less than 1%). 
 
The simple transmitter code only requires 21 cycles (maximum) so in this case 50 cycles between interrupts is 
plenty. Also, most of the time the ISR only require 9 or 11 cycles so there is plenty of time left over for the main 
program. 

Configuration 
The program at the end of this unit simply transmits “ABC” repeatedly as fast as possible. The data bit is 
inverted so you can just directly connect the output pin (RA.3) to a PC’s serial input. If you are using a DB9 
connector, attach the DB9’s pin 2 to the SX’s RA.3 pin. You’ll also need to connect the DB9’s pin 5 to a common 
ground (Vss) on your SX-Tech board. 
 
What if you wanted to use a serial line driver (like a MAX232, for example)? You’d need to stop inverting the 
data output. The actual output operation occurs in this line of code (found just above the noisr label): 
  movb tx_pin,/tx_low.6  ; output next bit 
 
The slash character indicates that the SX should invert the bit before writing it to tx_pin. You’ll notice that near 
the top of the program, tx_pin is set to equal ra.3. This allows you to easily configure the program to use a 
different pin. Of course, if you change the port assignment, you’d need to change the initialization of the port 
registers too. For example, if you wanted to use ra.0, you’d also need to change the initialization code from: 
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reset_entry mov  ra,#%0000  ;init ra 
  mov !ra,#%0111 
 
to: 
reset_entry mov  ra,#%0000  ;init ra 
  mov !ra,#%1110 
 
 Of course if you wanted to use a pin on port B or C you’d have even more changes to make. 
 
If you wanted to handle a line driver, you could remove the slash on the movb command so that it read: 
  movb tx_pin,tx_low.6  ; output next bit 
 
Of course, you’d also want to change the initialization code to: 
reset_entry mov  ra,#%1000  ;init ra 
  mov !ra,#%0111 
 
Since the idle state of the line is high when using a driver. 
 
Obviously, making changes involves a lot of trouble. This is where the SX Key’s macro capabilities can be very 
handy. 
 
For example, consider the inverted bit change. You could define a single symbol near the top of the program 
that controls the inversion: 
 
linedriver equ 0 ; 1 if using line driver 
 
Then in the remainder of the code, you can use IF to selectively assemble different code. For example: 
 
IF linedriver=0 
 movb tx_pin,/tx_low.6  ; output next bit 
ELSE 
 movb tx_pin,tx_low.6  ; output next bit 
ENDIF 
 
Of course, you’d have to wrap each change with an IF statement. Keep in mind, this does not perform the logic 
at run time. It makes the comparison during assembly. This causes the assembler to only process one statement 
or the other. In this case, there is only one statement, but you can place as many statements as you like 
between the IF and the ELSE and the ELSE and the ENDIF. You don’t have to use the ELSE statement if you 
don’t want an alternative block of code. You can even nest one IF inside another: 
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IF someoption = 1 
    mov w,#100 
    IF anotheroption = 1 
  mov avar,w 
    ELSE 
  mov bvar,w 
    ENDIF 
ENDIF 
 
Another way to use IF is to use IFDEF and IFNDEF. Using these instead of IF allow you to test if a symbol is 
defined (or not defined in the case of IFNDEF).  
 
Tip: You may have noticed that when a program sets a symbol value, it might use the equ directive, or it might 
use an equal sign (=). For example: 
 
somevalue equ 100 
 
or: 
 
somevalue = 100 
 
These statements do the same thing, with one important difference. Once you use equ you can’t change the 
value of the symbol later. When you use the equal sign, you can decide to change the value later. For the 
purpose of these programs, equ is probably the best bet, but it doesn’t make much difference. However, when 
you construct macros, you might want to change the value of the symbol as part of macro processing. Then 
you’d avoid using equ. 
 
 

Testing The Transmitter 
If you enter the code listed under The Transmitter Code at the end of this unit, you should be able to run it with 
the SX-Key’s Run command. Connect RA.3 to pin 2 of a DB9 connector and Vss to pin 5 of the connector. Then 
use a normal 9-pin serial cable to connect the DB9 connector to a free serial port on your PC. You should use a 
serial port that is not otherwise in use. Also, on most PCs, you can’t use COM1 and COM3 or COM2 and COM4 at 
the same time.  
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You can use any terminal program to see the results. If you are using Microsoft Windows, you can use the 
Hyperterminal program. Simply create a new connection that uses the serial port you’ve used to connect to the 
SX. Make sure to select 19200 baud, 8 bits, 1 stop bit, no parity, and no handshaking, as in Figure II.2. 

 

Figure II.2. HyperTerminal Setup 
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You should observe the characters on the terminal window’s screen. Troubleshooting serial problems is always 
tricky, but here are a few things to look for: 
 
• If the terminal program complains that there is an error, you have no hope of anything working. You’ll first 

need to find a free port, or close software using the port already. 
• You should use a straight cable (or connect to DB9 pin 3 if the cable is crossed). You can determine if the 

cable is straight by measuring the pins with an ohmmeter. 
• As mentioned before, the baud rate and other parameters must match exactly. 
• Make sure the DB9’s ground pin (pin 5) is connected to the same ground as the SX-Tech board. 
• It is possible that the PC you are using will not accept RS-232 levels of 0 and 5V. If this is the case, try 

another PC if possible. You can also use a line driver like the Maxim MAX232. Virtually all modern desktop 
computers will work without a line driver. Laptops seem more questionable, but even then, most will work. 

Debugging ISRs 
Once you have the code running you might be tempted to use the SX’s debugging capability. You can do this of 
course, but there are a few things you should know. First, the ISR will not work properly while debugging. After 
all, the whole premise that the serial transmitter operates on is that an interrupt will occur at a regular period. 
When you stop at a breakpoint, this upsets that assumption. 
 
Of course, if you let the SX run at full speed under the debugger, the transmitter will work. Then you can’t really 
peek into its execution very well. If you are trying to see what happens inside the ISR, the best idea is to place a 
breakpoint in the ISR code and let the processor run. Of course, the ISR’s timing will be thrown off, but you can 
reliably see the flow of execution. 
 
If you are stepping through non-interrupt code, don’t be surprised if you suddenly find yourself inside the ISR 
(this happens when an interrupt occurs). If you don’t want to step through each line of the ISR, simply place a 
breakpoint on the RETIW instruction and then step from there. Either way, the timing of the interrupt routine 
will be affected. 

Summary 
A serial transmitter, while useful in its own right, is only half of the story. While some devices only transmit, 
most will want to transmit and receive. In the next unit, you’ll examine a case where transmitting data is 
sufficient. Later, you’ll see how to handle serial data reception and then marry the two pieces to create a true 
software UART. 
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The Transmitter Code 
; 19.2K RS232 transmitter 
; 
; 
  device sx28l,stackx_optionx 
  device oscxt5,turbo 
  freq   50000000 
  reset  reset_entry 
; 
; 
; I/O definition 
; 
tx_pin  = ra.3 
; 
; 
; Variables 
; 
  org 8 
 
temp  ds 1 
 
 
  org 10h    
serial  = $ 
 
tx_high ds 1    
tx_low ds 1 
tx_count ds 1 
tx_divide ds 1 
txdivisor equ 16   ; 16 periods per bit 
 
  org 0 
; 
; 
; Interrupt routine - UART 
; 
interrupt  
  bank serial    
  test tx_count   ; busy? 
  jz noisr    ; no byte being sent 
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  dec tx_divide 
  jnz   noisr 
  mov tx_divide,#txdivisor    ; ready for next   
  stc                           ; ready stop bit 
  rr tx_high   ; go to next bit 
  rr tx_low    
  dec tx_count   ; count-1 
  movb tx_pin,/tx_low.6  ; output next bit 
noisr 
  mov w,#-163  ;interrupt every 163 clocks 
  retiw     
; 
 
;*************** 
; 
; 
; Send byte via serial port 
; 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb  tx_low.7     ; set start bit 
  mov tx_count,#10 ;1 start + 8 data + 1 stop bit 
  ret 
 
reset_entry mov  ra,#%0000  ;init ra 
  mov !ra,#%0111 
 
  clr fsr   ;reset all ram banks 
:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
  mov tx_divide,txdivisor 
  mov !option,#%10011111 
 
; **** Your code goes here **** 
xloop 
       mov w,#'A' 
  call send_byte 
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  mov w,#'B' 
  call send_byte 
  mov w,#'C' 
  call send_byte 
  mov w,#13 
  call send_byte 
  mov w,#10 
  call send_byte 
  jmp xloop 
 

Exercises 
1.  After you have the transmitter code working, alter it so that it operates at 20MHz and works at 9600 baud. 

Calculate the error your code will have compared to the ideal as a percentage. 
 
2.  Use equates to set the interrupt period so you can easily change it from its default value of -163. 
 
3.  Use equates and the IF directive to allow you to select the baud rate using a line like this: 
 baudrate  = 9600 
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Answers 
1.  There are many possible answers to this question. Changing the interrupt divisor from 16 to 13 would work 

(without changing the –163 in the ISR). This results in a bit period of 105.95uS, and error of about 1.4% -- 
a bit high but probably acceptable for most devices. Changing the –163 to –80 and setting the interrupt 
divisor to 26 results in 104uS, an error of less than 0.5%. Your answer should use an interrupt period high 
enough to allow processing and less than 255.   

 
2.  Simply add this line near the top of the file (after the txdivisor value is set is a good spot): 
 isrperiod equ –163 
 

Then you also have to modify the line before the iretw statement to read: 
 mov w,#isrperiod 
 
3.  There are several ways you could do this. Here is one example (assuming a 50MHz clock): 
 baudrate  = 9600 
 IF baudrate = 19200 
 isrperiod equ -163 
 txdivisor equ 16 
 ENDIF 
 
 IF baudrate = 9600 
 isrperiod equ -163 
 txdivisor equ 32 
 ENDIF 
 
 . 
 . 
 . 
  
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  

 
Rev1. 
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Unit III. Analog Input 
Unit III from I/O Control the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
The SX is, of course, a digital device. The classic way to interface an analog input to a digital device is to use an 
Analog to Digital converter (ADC or A/D). This is certainly possible with the SX. Many vendors make suitable 
ADCs that connect using some type of serial connection. There are also many ADCs that use parallel 
connections, but these take many pins and are usually less suitable for use with the SX. 
 
However, because of the SX’s speed and special features, you can perform analog input using just two resistors 
and a capacitor. Does that seem to good to be true? Well, there are some limitations to this technique, but in 
general you can make the SX read an analog voltage in this way. 

The Simple ADC 
Here is the circuitry required to form the simple ADC: 
 

22K

22K
0.1uF

RB0

RB1

Analog
In

 
Figure III.1 The ADC 

 
In this case, the input voltage is supplied by the potentiometer, which functions as a simple voltage divider. You 
could consider this technique one way to measure the position of a potentiometer, although it is really reading 
the voltage level developed at the junction of the resistors and the capacitor. 
 
At first glance this doesn’t seem likely to make an ADC. How does it work? The answer lies in two features of the 
SX. First, the SX can select a CMOS input threshold mode for input pins. In this mode, the input sees 2.5V as a 1 
and anything below that to be a 0. The second feature this scheme relies on is sheer speed. In the schematic, 
RB0 is an output and RB1 is an input. The SX, via a periodic interrupt, modulates the output pin so that the input 
(RB1) hovers around the 2.5V threshold. Along the way the program counts how often the capacitor has charged 
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up past 2.5V and required a discharge. After 255 cycles, this count will be proportional to the voltage (as a 
percentage of 5V). So a 5V input will read 255 counts. A 2.5V input should read 128 counts. 
 
Here is the basic logic written in pseudo code: 
 
1. Read the input bit  
2. Invert the input bit  
3. Write the inverted input to the output  
4. If the output was 0 (capacitor discharge), add 1 to the voltage count 
5. Add 1 to the cycle count  
6. If 256 cycles have elapsed (the count is 0), copy the result, set a flag, and zero the 
voltage count 
 
The code does not explicitly repeat because it executes during a periodic interrupt (much as the UART did in the 
last unit). 
 
If you take a minute to study the code in this easy-to-understand form, you can discern its operating principle. 
The processor tries to reverse the state of the input on each cycle. The number of discharge reversals is 
proportional to the input voltage. Consider the two extreme cases. If the input is stuck at 0V, the SX will never 
charge the capacitor, and will never need to discharge it. Therefore, the count should be 0. If the input is at 5V, 
the SX will never successfully discharge the capacitor and will try on each cycle leading to a count of 255. If the 
input is 2.5V, you’d expect it to alternate between charging and discharging leading to a count of 128 since the 
code will only count up on alternate cycles. 
 
In real life, the result will not be the same each time. The last bit or two will tend to shift back and forth and 
small imprecisions in the circuit elements will create small variations in the result. Still, for such a simple circuit 
the accuracy isn’t bad and the value is quite useful for many applications.  

Writing the Code 
Implementing the A/D in software isn’t that hard once you have the idea. Of course, during initialization you 
must set one pin to an input and the other to output. You also have to set the input threshold to CMOS by 
manipulating the I/O port option register. Assuming you want to use RB0 and RB1 for the A/D (and you don’t 
care about the rest of port B) you could use this code: 
 
  clr rb   ;init rb 
  mov !rb,#%00000010 
  mov m,#$D   ;set cmos input levels 
  mov !rb,#0 
  mov m,#$F 
 
You can find the complete code at the end of this unit. Setting the m register to $D allows you to set the 
threshold options. Clearing !rb sets the CMOS input level. Setting m back to $F is a good idea so you don’t 
forget later in your program that the !rb register doesn’t have its usual properties. 
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The interrupt routine follows the outline of the pseudo code: 
   
bank analog    

 
; shifting moves the input bit to the output bit 
  mov w,>>rb  ; read capacitor level  
  not w   ; invert 
  and w,#%00000001 ; write to output 
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0   
  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ; inc/inc/dec prevents rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
; standard UART transmit 
 . 
 . 
 . 
 
The interrupt routine continuously measures the input. When it completes 256 cycles (indicated by the 
adc_count  variable) it sets the complete flag and copies the result (in adc0_acc) to adc0. This allows the 
interrupt routine to continue with the next calculation while the main program reads the previous value. Here is 
an excerpt from the main program: 
 
:wait  jnb complete.0,:wait   ; wait for data ready 
  mov   w,adc0 
  clrb  complete.0       ; set up to wait again 
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Mixing Interrupt Routines 
The example program reads the analog input value and converts the raw hexadecimal value to 2 ASCII 
characters. It then uses the UART transmitter from the last unit to send this value to a PC. Each measurement 
ends with a carriage return. You can view the output with any terminal program (for example, Hyperterminal as 
used in the last unit). Of course, if you can write PC programs you could also write a custom program to post 
process and store the data. 
 
This example uses the interrupt routine for analog conversion along with the UART transmitter routine. When 
you mix routines you have to consider several important factors: 
1. Can the routines share an interrupt period? 
2. Does either of the routines take a constant time to execute? 
3. Does one or more routines need a precise period? 
4. What is the total execution time of the two routines? 
 
If you can adjust the routines to use the same interrupt period, you’ll have less trouble. However, this isn’t 
always possible. Sometimes you can set the interrupt period to a fast time and use counters to divide the time 
for the routines that need it. For example, suppose one interrupt routine needs to execute every 300uS and the 
other needs to execute every 500uS. You might consider setting the interrupt period to 100uS and use a counter 
to allow the first routine to execute on every third interrupt and the second routine to execute on every fifth 
interrupt. 
 
The other concern is how precise do you need the timing for each routine? Suppose you set the interrupt to 
occur every 200uS. The first routine takes somewhere between 300nS and 700nS to execute. Then the second 
routine will not necessarily run every 200uS.  
 
As an example, try an example using some numbers that are easier to work with (although unrealistic). Suppose 
your interrupt occurs every 10 seconds. Further suppose that routine A usually takes 1 second to execute. 
However, every third interrupt, routine A requires 3 seconds. Routine B always takes 1 second to execute. 
Finally, imagine that the first interrupt occurs when your mental stopwatch begins (T=0). Here is how your 
imaginary system would work: 
 

T Action Elapsed Time 
0 Routine A N/A 
1 Routine B N/A 
10 Routine A 10 
11 Routine B 10 
20 Routine A 10 
23 Routine B 12 
30 Routine A 10 
31 Routine B 8 
40 Routine A 10 
41 Routine B 10 
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You can see that routine B will not run every 10 seconds as you’d expect. Since your program normally sees 
errors in the micro or nanosecond range, this may not be a problem. The program for this unit, for example, can 
easily tolerate a small error in the RS-232 bit rate. However, the A/D code is less accurate if the time period is 
inexact. That’s why the A/D code appears first in the interrupt handler.  
 
Sometimes you can write your code so that it takes a constant amount of time to execute. For example, consider 
this code: 
 
 jz intb 
 inc ctr1 
intb 
 
If the jump is not taken, this code requires 3 cycles to execute. If the jump is taken, it requires 4. You could 
compensate for this by rewriting the code: 
 
 jz intb 
 inc ctr1 
 nop 
intb 
 
Now the code requires the same amount of time to execute no matter what. The nop instruction just wastes an 
instruction cycle. If you need to waste three cycles, you can save some space by using jmp $+1. This 
instruction effectively does nothing but wastes three cycles instead of just one. 
 
If you need to write lots of nops you can use the REPT directive. This is an instruction to the assembler that 
allows you to repeat a sequence of instructions. For example: 
 
 REPT 10 
 NOP 
 ENDR 
 
This inserts 10 nop instructions into your code. You can use the per cent character (%) to return the current 
repeat number (starting with 1). So to insert a table with the numbers 1 through 5 in it you could write: 
 
table5 
 dw 1 
 dw 2 
 dw 3 
 dw 4 
 dw 5 
 
Or you could write: 
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table5 REPT 5 
  dw % 
  ENDR 
 
If you wanted the numbers 0 to 4 instead, you’d use dw %-1 in the middle of the REPT block. 
 
The REPT block is one place where you have to be careful wit h labels. Suppose you wanted to repeat a 3 cycle 
nop. You might write: 
 
 REPT 10 
 jmp here 
here 
 ENDR 
 
This makes sense, but it fails because it defines the here label 10 times. Even local labels won’t work. Instead, 
use $ to reference the current location: 
 
 REPT 10 
 jmp $+1 
 ENDR 
 
You could also use this form, but it isn’t as elegant: 
 
here  ; must be on a separate line 
 REPT 10 
 jmp here+% 
 ENDR 
 

Hex Conversion 
The hex conversion routine might need a little study before it becomes clear. The send_hex routine stores the 
number in number_low so it can retrieve the value later. Notice this instruction:    
mov w,<>number_low  ;send first digit 
 
This swaps the two four-bit halves of number_low and stores the result in w. So if the original number was 
$A1, w now contains $1A. The program then calls :digit  which isolates the bottom four bits and converts it to 
ASCII (more on that routine later). 
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Once :digit  is complete, the program reloads w from number_low and then just drops into the :digit  routine. 
This is a special form of a technique known as the hidden return . It makes your code somewhat harder to read, 
but it saves valuable program space. 
 
In your program, you can use the hidden return by spotting places where you have code that looks like this: 
 
 call b 
 ret 
 
Since routine b must end in a ret instruction, you can replace these two lines with a single jmp b instruction. 
The hex conversion routine takes this idea one step further. By positioning the  b routine at this spot in the 
program, you can eliminate both lines of code. Any other part of the program that calls b doesn’t really care 
where it is located. Don’t forget that the SX call instruction does require you to keep your subroutines in the first 
half of each page, however. 

Table Lookup 
The :digit  routine uses the iread instruction to lookup the correct ASCII character. The iread instruction 
retrieves a value from the SX’s program memory. The SX has enough memory space that a single byte can’t 
address it all, so the iread instruction forms an address using the M register and the w register. So if you want 
to read location $200, you’d set M to 2 and w to 0. Of course, it is a good idea to restore M to its default value 
when you are done. 
 
The M register is 4 bits wide, so you can form a 12-bit address. The resulting word is also 12-bits wide and 
iread returns the result in the M and w registers. In this case, the program is only interested in the byte result, 
so it discards what is in M.  
 
The iread instruction is somewhat expensive (4 cycles in turbo mode). There is another way you can create a 
table – using the retw command. Suppose you want to construct a table that has the square of a number. You 
could write a subroutine like this: 
 
lookup2 jmp PC+W 
  retw 0 
  retw 1 
  retw 4 
  retw 9 
 
You could extend this to any number of entries. Now when you call lookup2, the value in the w register causes 
a jump to the correct return statement. The assembler will also let you put the values together as in: 
 
 retw 0,1,4,9 
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A Word about Input Impedance 
If you do some serious measurements with the A/D converter presented in this unit, you will find that the results 
may not match what you expect. The problem is that the input resistors set the circuit’s input impedance, which 
is relatively low (for practical purposes, 11K – the value of both resistors in parallel). You can combat this 
somewhat with higher-value resistors, but at some point, it becomes too difficult to charge and discharge the 
capacitor, so accuracy suffers again. 
 
If all you care about is measuring the position of a potentiometer or a relative voltage, you probably don’t care. 
For serious work, however, you’d want to use an op-amp buffer. Any general-purpose op-amp (for example, a 
741) could be connected as a non-inverting amplifier and would present a very high input impedance to the 
circuit. This would improve accuracy considerably. Just remember that most op-amp circuits require positive and 
negative voltages higher than the voltages they have to handle (for example, + and – 12V supplies are 
common). 
 
Tip: In Unit VIII, you’ll find out how to make another type of A/D converter that uses the SX’s built -in 
comparator and, therefore, provides excellent input isolation. Of course, the SX only has a single comparator, so 
you can only use this technique for a single channel. The method in this unit could be replicated to provide 
multiple channels of input. 

The Complete Code 
; Simple A/D Converter 
; 
; Device 
; 
  device sx28l,stackx_optionx 
  device oscxt5,turbo 
  reset reset_entry 
; 
; 
; Equates 
; 
tx_pin  = ra.3 
adc0_out_pin = rb.0 
adc0_in_pin  = rb.1 
; 
; 
; Variables 
; 
  org 8 
 
temp  ds 1 
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number_low ds 1 
complete ds 1   ; bit 0 = 1 when complete 
; holding for voltages 
v0  ds 1 
 
 
  org 10h    
serial  = $ 
 
tx_high ds 1 ;tx 
tx_low ds 1 
tx_count ds 1 
tx_divide ds 1 
txdivisor = 16   ; 16 periods per bit 
 
  org 30h 
analog  = $ 
 
port_buff ds 1 ;buffer - used by all 
 
adc0  ds 1 ;adc0 
adc0_acc ds 1 
 
adc_count ds 1 ; count for both ADCs 
 
 
  org 0 
; 
; 
; Interrupt routine – ADC + UART 
; 
interrupt  
  bank analog    
 
; shifting moves the input bit to the output bit 
  mov w,>>rb  ; read capacitor level  
  not w   ; invert 
  and w,#%00000001 ; write to output 
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0  ; adc0 
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  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ; inc/inc/dec prevents rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
; standard UART transmit 
adc_out 
  bank serial    
  dec tx_divide 
  jnz   noisr 
  mov tx_divide,#txdivisor   ; ready for next    
  test tx_count        ; busy? 
  jz  noisr         ; no byte being sent 
  stc                      ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6   ;output next bit 
noisr 
  mov w,#-163   ;interrupt every 163 clocks 
  retiw     
; 
 
; required to output HEX numbers 
_hex  dw '0123456789ABCDEF' 
; 
; 
;*************** 
;* Subroutines * 
 
; Send hex byte (2 digits) 
; 
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send_hex 
  mov number_low,w  ; save W 
  mov w,<>number_low  ;send first digit 
  call :digit 
 
  mov w,number_low  ;send second digit 
 
:digit and w,#$F    ;read hex chr 
  mov temp,w 
  mov w,#_hex 
  clc   ; just in case +c is enabled 
  add w,temp 
  mov m,#0 
  iread             ; read from program mem! 
  mov m,#$F 
 
; fall into send byte 
 
;*************** 
; 
; 
; Send byte via serial port 
; 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb  tx_low.7     ; set start bit 
 
 
  mov tx_count,#10 ;1 start + 8 data + 1 stop bit 
  ret 
reset_entry mov  ra,#%1000  ;init ra 
  mov !ra,#%0111 
  clr rb   ;init rb 
  mov !rb,#%00000010 
  mov m,#$D   ;set cmos input levels 
  mov !rb,#0 
  mov m,#$F 
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  clr fsr   ;reset all ram banks 
:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
  mov tx_divide,txdivisor 
  mov !option,#%10011111 
 
; **** Your code goes here **** 
top    ; main loop 
  bank analog 
:wait  jnb complete.0,:wait   ; wait for data ready 
  mov   w,adc0 
  clrb  complete.0     ; get ready to wait again 
  call send_hex       ; write out 
  mov w,#13     ; send cr  
  call send_byte 
  jmp top 

Summary 
Although the SX is primarily a digital device, its speed allows it to handle certain analog quantities. Under the 
right circumstances, employing techniques like this can save money by eliminating the need for an inventory of 
special processors or dedicated A/D chips. 
 
Along with analog conversion, this unit explored the REPT directive and some interesting ways to handle table 
lookups. The programs are getting more complicated and you’ll find directives like REPT more useful as you 
build more sophisticated programs. 

Exercises 
1. Add a second A/D channel using port B2 and B3. Have the program send both values then a carriage return. 
 
2. Set the baudrate to 300 baud by changing its interrupt period to 10432 clocks, but keep the A/D running at 
the same rate (163 clock cycles).  
 
3. Optional: If you are familiar with a PC programming language, write a program that reads the values from the 
program, calculates the voltage and displays it. The solution uses QBASIC under MSDOS. 
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Answers 
1. You must modify the code in several places to accomplish this task. First, you must set the correct pattern 
of I/O pins during initialization: 
 
  mov !rb,#%00001010 
 
You’ll also have to add corresponding lines to the interrupt routine: 
 
  mov w,>>rb  ; read capacitor level  
  not w   ; invert 
  and w,#%00000101 ; write to output    
  mov port_buff,w 
  mov rb,w   ; and update pins 
 
  sb port_buff.0  ; adc0 
  incsz adc0_acc  ; if it was high, inc acc 
  inc adc0_acc 
  dec adc0_acc  ; inc/inc/dec prevents rollover 
  sb port_buff.2  ; adc1     
  incsz adc1_acc  ; if it was high, inc acc  
  inc adc1_acc 
  dec adc1_acc  ; inc/inc/dec prevents rollover 
  inc adc_count  ; done (8 bits)? 
  jnz adc_out 
; Done so store result 
  mov adc0,adc0_acc 
  mov adc1,adc1_acc       
  setb complete.0  ; set complete flag 
; clear for next pass 
  clr adc0_acc 
  clr adc1_acc        
 
The lines with underlines beneath them are changes to the existing code. Of course, you also have to define the 
adc1_acc, and adc1 variables. Finally, you can modify the main program: 
 
top    ; main loop 
  bank analog 
:wait  jnb complete.0,:wait   ; wait for data ready 
  mov v1,adc1   ; hold temporary v1    
  mov   w,adc0 
  clrb  complete.0     ; get ready to wait again 
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  call send_hex       ; write out 
  mov w,v1        
  call send_hex       
  mov w,#13     ; send cr  
  call send_byte 
  jmp top 
 
It is important to store the value in a temporary (the new v1 variable) so that the two values are from the same 
measurement time. Without this new variable, it would be possible for the channel 1 value to change while you 
were writing out the value for channel 0. In this example, it doesn’t make much difference. In real life, you’d 
probably want the two values to correspond to each other.  
 
2. The easiest way to accomplish this is to put a 64x divider in front of the UART code using a new variable: 
 
adc_out 
      inc x64         
      jnb x64.6,noisr        
      clr x64         
bank serial 
 
This allows the A/D code to continue running at a 163 clock cycle period, but effectively only runs the UART 
transmitter every 10432 clock cycles. Since 19200 baud is 64 times 300 baud, the txdivisor value need not 
change. If the question had asked to move to, for example, 9600 baud, you could simply adjust the txdivisor 
value, but in this case the speed difference was too great to be held in a single byte. 
 
3. Your solution to this problem will vary depending on what languages you have at your disposal. The 
following program uses QBASIC (this Basic comes with many versions of MSDOS and Windows – you can also 
find it in the Windows Resource Kit). It assumes the SX is attached to COM1 and is operating at 300 baud. 
 
' Simple program to read a voltage 
DIM c AS STRING 
DIM v AS STRING 
DIM eu AS SINGLE 
COM(1) ON 
ON COM(1) GOSUB ComHandler  ' go here when characters available 
start: 
' open com1 no handshaking, 32k buffer 
OPEN "COM1:300,n,8,1,CD0,CS0,DS0,OP0,RS,RB32768" FOR INPUT AS #1 
top: 
  WHILE INKEY$ = "": WEND 
  END 
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ComHandler: 
  c = INPUT$(1, 1)    ' read character 
  IF ASC(c) = 13 THEN     ' end of packet? 
    IF LEN(v) <> 2 THEN   ' not a full packet? 
      v = "" 
      RETURN 
    ELSE 
' got a full packet so interpret it 
     eu = VAL("&H" + v) * 5 / 256 
     PRINT eu 
     v = "" 
     RETURN 
    END IF 
  END IF 
  v = v + c   ' build up packet 
  RETURN 
 
 
This program uses a special feature of QBasic that allows the ComHandler routine to gain control whenever 
serial data is available (similar to an interrupt). Note that QBasic is not fast enough to reliably handle high baud 
rates. 
 
When a character arrives, the program assembles it into a packet (this program assumes 1 byte per packet). 
When a correctly formed packet arrives (2 characters followed by a carriage return), the program performs this 
calculation: 
 
     eu = VAL("&H" + v) * 5 / 256 
 
Here the eu variable (short for engineering units) receives a floating point value that corresponds to the 
estimated input voltage. The VAL function converts a string to a number (the &H prefix tells QBasic this is a 
hexadecimal number). Each count from the SX is worth 5/256V (roughly 19.5mV). 
 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  
Rev1. 
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Unit IV. A Software UART – The Receiver 
Unit IV from I/O Control with the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
In Units 2 and 3, you worked with a software serial transmitter. This is half of a UART (Universal Asynchronous 
Receiver Transmitter). The next obvious step is to design and build a receiver. The transmitter is somewhat 
simpler than a receiver. Why? Consider that when transmitting you don’t have to synchronize with anyone else – 
it is the receiver’s job to synchronize with you. 
 
Receiving is a bit more difficult. Instead of generating pulses of a specific width, you have to measure pulses. 
This wouldn’t be so hard, except you must synchronize with the transmitter’s start bit. This leads to some special 
considerations that are not necessary for the transmitter. 

Fast Enough? 
Each bit in a 9600 baud data stream occupies 104uS. So if you sample an input every 104uS, you can detect 
each bit, right? No! The problem is that timing on both sides of the system are not precise. If you sample right 
at the leading or trailing edge of a start bit, you are in danger of looking at the very edges of the bits and you 
might read one a shade to early or too late. 
 
Ideally, you’d find the rising edge of the start bit and then delay 52uS. This would be approximately in the 
center of the start bit. Now the code can safely sample every 104uS (a total delay of 156uS) with reasonable 
certainly that each bit will be stable. With interrupts you can wait for the start bit in this way, but the SX’s 
interrupt structure makes it challenging to handle multiple interrupt sources. You’ll eventually want to integrate 
the transmitter and the receiver (among other things) and it would be handy if you could use one periodic 
interrupt as a basis for both. 
 
When you sample at a regular interval, the Nyquist sampling theorem rears its head. This staple of signal 
processing theory states (among other things) that you have to sample twice as fast as the fastest signal you 
want to measure. So to find a 104uS pulse, you’ll need to measure the input at least every 52uS. Even this isn’t 
enough if you are planning to delaying 52uS to center the timing. You might catch the center of the pulse – to 
be safe, you should sample much faster, say 26uS or less. 
 

Basic Logic 
The receiver will use several variables. The rx_count byte tracks the number of bits to read (including the stop 
bit). When the receiver is idle, this variable will be zero. Another byte, rx_divide, counts the number of 
interrupt periods that correspond to a bit. The received byte is in rx_byte and a single bit, rx_bit , is set when 
the byte is ready. The receiver’s logic on each interrupt is: 
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1. Read the input bit  
2. If no byte is in progress, check for a start bit  
3. If a start bit is present, load rx_count with 9 and rx_divide with 1.5 bit periods 
4. If a byte is in progress, decrement rx_divide; if not zero, exit  
5. Reset rx_divide to 1 bit period 
6. Decrement rx_count; if zero (indicating a stop bit) set the rx_flag bit; if not zero, shift rx_byte to the 

right and merge the sampled input bit from step 1 into the least-significant bit  
 
Here is the complete ISR: 
 
                bank serial 
    movb    c,/rx_pin           ;serial receive 
                test    rx_count                 
                jnz     :rxbit             ;if not, :bit 
                mov     w,#9               ;in case start, ready 9 
                sc                         ;if start, set rx_count 
                mov     rx_count,w               
                mov     rx_divide,#baud15  ;ready 1.5 bit periods 
:rxbit          djnz    rx_divide,rxdone   ;8th time through? 
                mov  rx_divide,#baud 
                dec     rx_count           ;last bit? 
                sz                         ;if not, save bit 
                rr      rx_byte                  
                snz                        ;if so, set flag 
                setb    rx_flag                  
rxdone 
 
This small bit of code performs the 6 steps (try and match each step with the corresponding code). Since the 
rx_divide counter is only really used once the receiver is synchronized, the code is searching for a start bit at 
the raw interrupt rate. If the ISR is using –163 as an argument to iretw, then this code searches for a start bit 
every 3.26uS. This is twice as fast as a 150 KBaud input signal and four times as fast as a 75 KBaud input. 
 
If your main program wants to read a byte, it first tests rx_flag. Then it can read the byte. Of course, it must 
read characters fast enough to prevent character overruns. Here is a simple subroutine that reads a single 
character: 
 
get_byte 
  bank serial 
            jnb     rx_flag,$           ;wait till byte is received 
  mov     byte,rx_byte        ;store byte (copy using W) 
  clrb    rx_flag             ;reset the receive flag 
  ret 
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Selecting the Baud Rate 
For the code above to work, you need definitions for baud and baud15. These represent the number of 
interrupt cycles for a bit, and for 1.5 bits. If the interrupt period is 163 clock cycles at 50MHz, then each 
interrupt cycle is 3.26uS. For 9600 baud the bit period is about 104.2uS. Since 104.2/3.26 is 31.96 you could use 
a count of 32 and be close enough. The baud15 symbol, of course would be 48. 
 
One way to get the receiver working at 9600 baud would be to use the following statements: 
 
baud  equ 32 
baud15 equ 48 
 
It would be clever to base baud15 on baud so that it had to be correct: 
 
baud  equ 32 
baud15 equ 3*baud/2 
 
You can do math like this as long as it uses all constants so the assembler can compute the result. In this case 
3, 2, and baud all have known values during assembly. You have to be careful, because the assembler only 
deals with integer math. It also evaluates expressions from left to right (not the usual order of operations). So 
writing 3*baud/2 works but writing 3/2*baud will not work. That’s because the assembler computes 3/2 first 
and finds the result is 1! You can use parenthesis if you like to make the order clear: 
 
baud15 equ (3*baud)/2 
 
It would be even better to select the baud rate in an intuitive way: 
 
baudrate equ 9600 
 
IF baudrate = 9600 
baud  equ 32 
ENDIF 
 
  IF baudrate = 19200 
baud  equ 16 
  ENDIF 
 
baud15 equ 3*baud/2 
 
Of course, you’d have to add IF cases for every baud rate you wanted to support. You might be tempted to 
write the entire calculation in the assembler. For example: 
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osc = 50_000_000  ‘ the assembler allows _ to separate numbers 
icycle = 163 
baudrate = 9600 
 
baud = osc/(icycle * baudrate) 
 
This is technically acceptable, but because of the integer math, the answer is not precise. The correct result for 
baud is 32 (because the real answer is 31.9). With integer math, the result is simply 31. This error will result in 
a baud rate of 9895, an error of 3%. This might be acceptable, but you can do better with 32 (about 0.15% 
error).  
 

Buffering 
Your program may have more to do than just process characters. It is often useful to store characters away in a 
buffer for later use. Usually such a buffer is a circular buffer. A circular buffer is constructed so you place 
characters in one end of the buffer and retrieve them from the other end. As long as you read the characters 
before the other end of the buffer catches up, the buffer can always accept more characters. 
 
To implement a circular buffer, you’ll decide on the total number of characters you can hold at once. You’ll 
usually pick a power of two (16 is a handy number for the SX). You’ll then use one pointer to point t o the head 
of the buffer (where input characters go) and another to point to the tail of the buffer. Programs read characters 
from the tail. When the tail and the head are equal, the buffer is empty. 
 
Each time you increment one of the pointers, you limit its value by anding it with, in this case, $F. This has the 
effect that the pointers wrap around. The head pointer moves in the sequence: 0, 1, 2, . . ., 14, 15, 0, 1, 2…  
 
The head pointer always points to the next empty slot. Unless the buffer is empty, the tail points to the next 
character waiting to be read. If the head pointer is just behind the tail pointer, the buffer is full. That means with 
16 bytes, the total number of characters you can store is really 15, since the full condition wastes one byte. 
 
You could modify the ISR to store the character in such a circular buffer. Assume that rx_byte is in bank 0 
(remember, bank 0 is available no matter what other bank is active). Also suppose that there is a head and tail 
variable in bank 0. An entire bank (any empty bank will do) will server as the 16-byte buffer.  
 
You could replace the setb rx_flag statement in the ISR with a subroutine call. The call could look something 
like this: 
 
 mov fsr,#buffer 
 add fsr,head 
 mov ind,rx_byte 
 inc head 
 and head,#$F 
 ret 
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Don’t forget: the ind register really isn’t a register at all. It contains the value of the memory location pointed to 
by fsr. This simple code doesn’t check for overflow – if you overflow the buffer, you’ll just lose characters. Don’t 
forget that loading fsr changes the bank, so any statements that depend on a special bank will need to reload 
fsr or issue a bank command. 
 
Now the get_byte routine looks different: 
 
get_byte 
   
            mov   w,head              ;wait till byte is received 
  mov   w,tail-w 
  jz   get_byte 
  mov   fsr,#buffer 
  add   fsr,tail 
  mov     byte,ind         
  inc   tail 
  and   tail,#$F 
  ret 
 
This version of get_byte waits until the buffer contains at least one character and then loads it into the byte 
variable. Notice again that changing fsr changes the bank, so this code assumes byte is in bank 0.  

A Simple Macro 
In the ISR and get_byte there is code that increments a pointer and ands it with $F. This code is necessary to 
cause the pointers to wrap around from the end of the buffer back to the beginning. However, it is easy to 
forget to perform the and. This is a good place to use a macro. A macro is like a user-defined instruction. 
Consider this macro: 
 
 circinc macro 1 
   inc \1 
   and \1,#$F 
   endm 
 
The first line names the macro. You’ll use this name (circinc) to refer to the macro. The 1 at the end of the line 
signifies that the macro takes 1 parameter (or argument, if you prefer). The next two lines are straightforward 
assembly except for \1 which signifies the parameter. The endm keyword ends the macro. So if you write: 
 
 circinc tail 
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The assembler generates: 
 
 inc tail 
 and tail,#$F 
 
Of course, you can also write circinc head to do the same operation on the head variable. This is a very simple 
macro. You’ll often see macros that are more complex. You can combine macros with repeat blocks, conditional 
assembly, and local labels to make very complicated pseudo instructions. 

Connections 
Good design practice dictates connecting the SX to an RS-232 transmitter via a buffer (for example, a Maxim 
MAX232 IC). However, you can take advantage of the SX’s overvoltage protection diodes to prevent the +/- 12V 
signals from damaging the SX. However, the diodes will short the transmitter to ground and could damage it, 
unless you use a series resistor. In practice, a 22K resistor between the RS-232 transmitter (pin 3 on a DB9 
connector) and the SX pin will work fine. 
 
Tip: If you elect to use a buffer IC, it will most likely invert the data. That means you’d have to change the UART 
code to sense an incoming 1 as a 0 and vice versa. 

Summary 
This unit shows the inner workings of a software UART receiver. In the exercises, you’ll have a chance to 
implement this receiver and make it do something useful. Along the way you’ve learned about assembler math 
expressions and about simple macros. 
 
The receiver gives the SX the ability to listen to a PC or other serial device. Obviously, the ultimate goal is to 
marry the receiver and the transmitter. For now, however, we’ll only use one or the other.  
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Exercises 
1. Consider these lines of code: 
val = 33 
junk = 1000/12*val 
 
What is the value of junk? 
 
a) 2.5 
b) 2 
c) 2739 
d) 2750 
 
2. In the last unit, you used a rept directive to generate a number of nop instructions. Encapsulate the rept 
inside a macro named nop_n that takes a single argument to indicate how many cycles to waste. Bonus: Can 
you make the macro use a combination of jmp and nop instructions? (Hint: You need the remainder from 
division operator //). 
 
3. Hook LEDs in the usual way (using a 470 ohm resistor) to ports RA0 and RA1. Use a 22K resistor to connect 
pin 3 of a DB-9 connector to RB2. Be sure to ground pin 5 of the DB-9 to the common Vss pin on the SX-Tech 
board. Write a program so that when a PC sends an upper case A it lights the LED on RA0. Sending a lower case 
a turns the LED off. B and b can operate the LED on RA1. 
 
4. Write a program that joins the serial transmitter and serial receiver together. For a main program, you can 
read characters from a PC, convert them to upper case, and echo them back to the PC all at 9600 baud. Hint: To 
shift a lower case “a” to an upper case “A”, clear bit 5. Be sure to test that the letter is really a lower case letter 
before making the change. 
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Answers 
1. C is the correct answer. 
 
2. The simple solution is: 
nop_n     macro 1 
  rept \1 
  nop 
  endr 
  endm 
 
To do the bonus part of this question, you had to perform a little math. The idea is to use \1/3 to determine 
how many jmp $+1 instructions are required and \1//3 to determine how many nop instructions are 
necessary. However, it is possible that either of these numbers could be zero. Therefore each rept block is 
protected with an IF statement since rept does not accept zero as an argument.  
 
nop_n    macro 1 
  IF \1/3<>0  
       rept \1/3 
      jmp $+1 
     endr 
  ENDIF 
  IF \1//3<>0  
      rept \1//3 
      nop 
     endr 
  ENDIF 
  endm 
 
Try using these macros and press Control+L in the SX-Key environment to see how the code expands for 
different cases. 
 
3. There are several ways you could write this program. Here is one possible solution (assuming that 
a low on the output pin turns the LED on): 
 
  device sx28l,oscxt5,turbo,stackx_optionx 
  reset start_point 
  freq 50000000   ; 50 Mhz 
 
BAUDRATE EQU 9600  ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
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rx_pin      EQU     rb.2                ; PC input 
  org 8 
; Head/tail pointer  
head  ds 1  
tail  ds 1 
byte        ds    1                       ;temporary UART byte 
rx_byte     ds    1                       ;buffer for incoming byte 
 
  org     10h                      
serial          =       $                ;UART bank 
 
rx_count        ds      1                ;number of bits remaining 
rx_divide       ds      1                ;receive timing counter 
 
IF BAUDRATE=9600 
baud            =    32             
baud15          =    48             
ENDIF 
 
int_period      = 163  
bufmod  equ $F 
 
 
; circular buffer is at $50 
  org $50 
scan  ds 1     ; buffer 
 
 
  org 0 
; Interrupt service routine 
isr  bank    serial                  ;switch to serial register 
bank 
 
:receive    
                movb    c,/rx_pin         
                test    rx_count          ;waiting?                 
    jnz     :rxbit            ;if not,  
                mov     w,#9              ;in case start, ready 9 
                sc                        ;if start, set rx_count 
                mov     rx_count,w            
                mov     rx_divide,#baud15    ;ready 1.5 bit periods 
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:rxbit          djnz    rx_divide,rxdone     ;8th time through? 
                mov  rx_divide,#baud 
                dec     rx_count             ;last bit? 
                sz                           ;if not, save bit 
                rr      rx_byte               
                snz                          ;if so, put in circbuff 
                call    bufferin 
rxdone 
 
;interrupt every 'int_period' clocks 
end_int mov     w,#-int_period           
  retiw                           ;exit interrupt 
 
 
; put character in circular buffer 
bufferin   
 mov fsr,#scan 
 add fsr,head 
 mov ind,rx_byte 
 inc head 
 and head,#bufmod 
 ret 
 
start_point 
  mov     ra,#%0011           ;initialize port RA 
  mov     !ra,#%0000              ;Set RA in/out directions 
  mov rb,#%00001010 
  mov !rb,#%11110101 
 
  CLR     FSR               ;reset all ram starting at 08h 
:zero_ram       SB      FSR.4         ;are we on low half of bank? 
  SETB    FSR.3             ;If so, don't touch regs 0-7 
  CLR     IND               ;clear using indirect addressing 
  IJNZ    FSR,:zero_ram     ;repeat until done 
 
  mov     !option,#%10011111      ;enable rtcc interrupt 
  clr rb 
 
; Here is where the action is! 
mainloop 
 call get_byte 
 cje byte,#’A’,Aon 
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 cje byte,#’a’,Aoff 
 cje byte,#’B’,Bon 
 cje byte,#’b’,Boff 
 jmp mainloop 
  
  
Aon 
 clrb ra.0 
 jmp mainloop 
Aoff 
 setb ra.0 
 jmp mainloop 
Bon 
 clrb ra.1 
 jmp mainloop 
Boff 
 setb ra.1 
 jmp mainloop 
 
 
 
; Subroutine - Get byte via serial port 
; 
get_byte   
           mov   w,head              ;wait till byte is received 
  mov   w,tail-w 
  jz   get_byte 
  mov   fsr,#scan 
  add   fsr,tail 
  mov       byte,ind         
  inc   tail 
  and   tail,#$F 
  ret 
 
 
 
4. Again, there are many possible answers to this question. Here is one solution: 
 
  device sx28l,oscxt5,turbo,stackx_optionx 
  reset start_point 
  freq 50000000   ; 50 Mhz 
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BAUDRATE     EQU 9600  ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
rx_pin          EQU     rb.2                     
tx_pin     EQU rb.3 
 
  org 8 
; Head/tail pointer  
head  ds 1  
tail  ds 1 
byte        ds      1                       ;temporary UART byte 
rx_byte     ds      1                       ;buffer for incoming byte 
 
  org     10h                      
serial          =       $                       ;UART bank 
; 
rx_count        ds      1                ;number of bits left 
rx_divide       ds      1                ;receive timing counter 
tx_high     ds 1   ;tx 
tx_low     ds 1 
tx_count     ds 1 
tx_divide     ds 1 
 
IF BAUDRATE=9600 
txdivisor =    32    
baud        =    32             
baud15      =    48             
ENDIF 
 
int_period      = 163  
bufmod  equ $F 
 
 
; circular buffer is at $50 
  org $50 
scan  ds 1     ; buffer 
 
 
  org 0 



  Unit 4. A Software UART - The Receiver 
 
 
 

 I/O Control with the SX Microcontroller • Page 57 

; Interrupt service routine 
isr  bank    serial                  ;switch to serial register 
bank 
 
:receive    
                movb    c,/rx_pin             ;serial receive 
                test    rx_count              ;waiting 
                jnz     :rxbit                ; no? 
                mov     w,#9                  ;in case start, ready 9 
                sc                            ;if start, set rx_count 
                mov     rx_count,w             
                mov     rx_divide,#baud15     ;ready 1.5 bit periods 
:rxbit          djnz    rx_divide,rxdone      ;8th time through? 
                mov  rx_divide,#baud 
                dec     rx_count              ;last bit? 
                sz                            ;if not, save bit 
                rr      rx_byte                
                snz                           ;if so, set flag 
                call    bufferin 
rxdone 
; transmitter 
  bank serial 
  dec tx_divide 
  jnz     end_int 
  mov tx_divide,#txdivisor    ; ready for next    
  test tx_count   ;busy? 
  jz end_int         ; no byte being sent 
  stc                           ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6  ;output next bit 
 
 
 
 
end_int  mov     w,#-int_period       
  retiw                           ;exit interrupt 
 
 
; add to circular buffer 



Unit 4. A Software UART – The Receiver 
 

Page 58 • I/O Control with the SX Microcontroller 
 
 
 

bufferin   
 mov fsr,#scan 
 add fsr,head 
 mov ind,rx_byte 
 inc head 
 and head,#bufmod 
 ret 
 
start_point 
  mov   ra,#%0011           ;initialize port RA 
  mov   !ra,#%0000          ;Set RA in/out directions 
  mov rb,#%11110111 
  mov !rb,#%11110111 
 
  CLR     FSR                ;reset all ram starting at 08h 
:zero_ram       SB      FSR.4          ;are we on low half of bank? 
  SETB    FSR.3              ;If so, don't touch regs 0-7 
  CLR     IND                ;clear using indirect addressing 
  IJNZ    FSR,:zero_ram      ;repeat until done 
 
  mov     !option,#%10011111 ;enable rtcc interrupt 
  clr rb 
 
; Here is where the action is! 
mainloop 
 call get_byte 
 cjb byte,#'a',noshift 
 cja byte,#'z',noshift 
 clrb byte.5 
noshift 
 mov  w,byte 
 call send_byte 
 jmp mainloop 
  
 
 
; Subroutine - Get byte via serial port 
; 
get_byte   
           mov   w,head              ;wait till byte is received 
  mov   w,tail-w 
  jz   get_byte 
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  mov   fsr,#scan 
  add   fsr,tail 
  mov       byte,ind         
  inc   tail 
  and   tail,#$F 
  ret 
 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb    tx_low.7   ; set start bit 
 
 
  mov tx_count,#10 ;1 start + 8 data + 1 stop bit 
 
  ret 
  
 
 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  

 
Rev1. 
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Unit V. Pulse I/O 
Unit V from I/O Control with the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
When I was in high school I had a math teacher who used to say, “You have to use what you know to find out 
what you don’t know.” This is often the case with microcontrollers. Computers are very good at measuring 
certain things (like digital levels). Computers are not very good at measuring other things like analog quantities 
(at least without additional hardware). 
 
So to paraphrase my math teacher, if you could convert something that is hard to measure into something that 
is easy to measure, you could more easily read it. Consider a potentiometer. Sure, you can read it using an A/D 
converter (see unit 3). However, what if you could connect the potentiometer so that the SX could measure time 
and determine the position? The SX is excellent at measuring time. All that you need is a circuit that will allow 
the potentiometer to control the width of a pulse. The SX can measure the pulse width and deduce the 
potentiometer’s position. 
 
What about other types of input? Many real-world sensors look like variable resistors. Ideally, you could treat 
them just like potentiometers and use the SX to read temperature, humidity, light intensity or any of the other 
things you can measure with a resistive sensor. 
 
The same idea holds true for analog output. If you could convert time into voltage, you’d have a D/A (digital to 
analog) conversion scheme that the SX could handle. Converting back and forth between analog values and 
times requires a capacitor and the ability for the SX to create and measure pulses.   

Capacitor Fundamentals 
Capacitors have many uses in electronic circuits. For the purposes of this unit, we will use them as energy 
storage devices. Suppose you have a capacitor with one lead grounded. Initially, the capacitor has 0V across it. 
Then you apply 5V to the other lead of the capacitor via a resistor. At first, the capacitor looks like a dead short 
and the voltage across it remains 0V. But the capacitor charges so the voltage increases until the final voltage is 
practically 5V. 
 
Of course, the capacitor doesn’t charge instantaneously. It takes a finite amount of time for the capacitor’s 
voltage to change from one value to another.  The speed that the capacitor’s voltage ramps up depends on the 
value of the resistor (R) and the value of the capacitor (C). The voltage V at time t with a 5V supply will be: 
 
 V = 5(1-e -t/RC) 
 
So if R=100000 (100K ohms) and C = .00001 Farads (10uF), you’d find the voltage on the capacitor would look 
like this: 
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Figure V.1 – Capacitor Charging Curve 

 
A good rule of thumb is that after RC seconds, the voltage will be 63% of the charging voltage. You can verify 
this on the above chart. The charging voltage is 5V so 63% is 3.15V. The curve is just above 3V at 1 second 
(100000 times .00001 is equal to 1). 
 
Notice that changing the resistance value or the capacitor’s value will change the amount of time it takes the 
curve to get to any particular voltage. Using the 63% rule, how long would it take to reach 3.15V if you doubled 
the resistance? The answer is 2 seconds. So by charging a capacitor you can convert a resistance to a time – 
just what the SX needs. Of course, you could use a fixed-value resistor and vary the capacitance, too. It works 
just as well either way. 
 
The same thing happens if you charge the capacitor up and then discharge it through a resistor. It will take RC 
seconds to reach 37% of the initial voltage. 
 
What can you do with this idea? Obviously you could read a potentiometer. Perhaps you want the SX to dim a 
light or control a motor speed as the user moves a knob. However, many sensors provide a resistive or 
capacitive reading. For example, a thermistor changes resistance in response to temperature. A strain gauge 
varies its resistance with weight. A cadmium-sulfide cell changes resistance in response to light. You could read 
any of these sensors using this technique. 
 
Of course, theory and practice are often two dif ferent things. Real capacitors don’t store energy perfectly. There 
is leakage resistance and other factors that can throw things off slightly. Most capacitors are temperature 
sensitive themselves. However, in practice these issues are not problems in most cases. Still, be aware that real-
world capacitors are notorious for not matching their ideal characteristics. 
 



  Unit 5. Pulse I/O 
 
 
 

 I/O Control with the SX Microcontroller • Page 63 

Thresholds 
To measure an unknown resistance, you can discharge the constant-value capacitor and compute how much 
time it takes to charge back to a logic 1 level. Alternately, you could charge the capacitor to 5V and compute 
how much time it takes to fall to a logic 0. This is an excellent place to use the SX’s special I/O functions. 
 
Each input pin on the SX has several control registers. You can use these control registers to set different 
options. One of these options is to use a CMOS input threshold. When this mode is active, any input over 0.5Vdd 
(nominally 2.5V) is considered a logic 1. If the CMOS mode is not set, the threshold voltage is about 1.4 to 1.5V. 
You can set each pin individually. 
 
To set the threshold voltage for a port, you first set the M (mode) register to $D. Then you can store 
configuration bits in the !ra, !rb, and !rc registers. A zero in these registers makes the corresponding bit use the 
CMOS threshold. A one sets the pin for 1.4V (TTL) threshold. It is a good idea to set the M register back to the 
default value ($F) when you are finished. You could, in theory, use this feature to determine what part of the 
capacitor voltage curve you will detect. 
 
In real life, however, neither choice is the best one. To see why, think about the types of signals an input pin 
normally sees. A typical logic signal moves from 0 to 5V very quickly (ideally, instantaneously although that isn’t 
really possible). You think of these signals as “square” – the transitions are very steep. If you look at the above 
chart, you’ll see that the capacitor’s voltage is not steep at all. That means the circuit will slowly pass through 
the SX’s threshold voltage. Right at the threshold, the SX may detect more than one change in the input’s state. 
Power supply fluctuations and circuit noise can make a signal right at the threshold appear to be a 1 on one 
reading, a 0 on the next, and then later read to be a 1 again. 
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To combat this, it is common to use a special gate called a Schmitt trigger. This is simply a logic gate that reads 
a logic 1 when the input voltage rises above (approximately) 62% of Vdd (3.1V with a 5V supply). However, it 
will not read the pin as a logic 0, until the voltage falls below about 28% of Vdd (1.4V). This electronic inertia is 
known as hysteresis. Consider this table: 
 

Time Input voltage Input state 
0 0.0V 0 
1 4.0V 0 
2 4.5V 1 
3 4.0V 1 
4 2.0V 1 
5 0.5V 0 
6 2.0V 0 
7 4.0V 0 
8 4.5V 1 

 
You can buy ICs that perform the Schmitt trigger function, but luckily, the SX already has them built in if you 
want them. To set Schmitt trigger mode, you set the M register to $C and then set the !ra, !rb, or !rc registers. 
Placing a zero in a bit makes the corresponding input a Schmitt trigger. 

Measuring Time 
The SX, of course, can keep time in a variety of ways. The trick is to select a method that provides adequate 
resolution for the task at hand without using such a high resolution that you’ll need large counters to handle the 
time periods of interest. For example, suppose you have a 10K pot and a .1uF capacitor wired as shown: 

10K 220

0.1uF

RB0

5V

 
Figure V.2 – Reading a Potentiometer 
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The RC constant for this circuit is .001. That means that in 1mS, the capacitor will charge to about 3.15V. This is 
right around the threshold for a Schmitt trigger (3.1V). This sets an upper bound on the time you need to 
measure. Of course, the Schmitt level is not precise, and the components involved are not precise either. To be 
safe, you’d like to be able to measure at least 2mS. 
 
There are many ways you could perform these measurements. A simple counter would work. However, if you 
write the following code: 
 
loop inc counter 
 jnb loop  
 
You’ll find that the total execution time per loop is 5 clock cycles. At 50MHz that is only 100nS per count. You 
have to count to 20,000 to measure 2mS. That means you can’t use a single byte counter. Two bytes can 
contain up to 65535 so you could write: 
 
 loop jb done 
  inc count0 
  snz 
  inc count1 
  jmp loop 
 
This takes 8 cycles per loop (ignoring the final loop) so each count represents 160nS. When count0 overflows, 
the code increments count1. This forms a 16-bit counter.  
 
Tip: Be sure to use snz and not snc. Using inc does not affect the carry flag. It does affect the zero flag. 
 
This method leaves a little to be desired. The count will vary a bit because interrupts occur and steal cycles from 
the loop counter. You could disable interrupts, but that would affect the serial I/O code or any other ISRs that 
might be running. 
 
A better way is to use the ISR to perform the timing for you. Suppose you made the ISR increment a 16-bit 
counter on each pass. You could use this counter to measure the number of interrupt periods that elapsed 
between two events. If you use the same ISR we’ve used throughout this course, you’d get a count every 
3.26uS. A 2mS count would be around 613 or 614 – you’d still need two bytes for the counter.  
 
This method is also somewhat inaccurate in practice. The serial transmitter and receiver code take a varying 
amount of time to execute. This can lead to small inaccuracies in the timing. However, for this purpose the 
timing is more than adequate. 
 
Another idea would be to use the ISR to perform all the timing. Then the main program can simply read the 
count that the ISR generates. For the purposes of timing an RC network, any of these methods will work. 
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Program Details 
Here is the basic way that the program will work: 
1. Change RB.0 to an output and pull it low 
2. Pause a few ms to allow the capacitor to fully discharge 
3. Restore RB.0 to an input 
4. Time how long it takes for RB.0 to rise to a logic 1 
 
The difference, of course, is how you measure the time. Here is a simple version: 
 
read_rc 
 clrb rb.0 
 mov !rb,#%11110110 ; bit 0 to input 
 call pause   ; discharge time 
 mov dly,#$FF  ; reset timer 
 mov dly1,#$FF 
:zwait 
 test dly   ; sync with ISR 
 jnz :dwait 
 mov !rb,#%11110111 ; back to input 
captest 
 jnb rb.0,captest 
 mov vallow,dly 
 mov valhigh,dly1 
 ret 
 
This requires a bit of support. Obviously, you need a pause routine. The exact time is not important, but it does 
need to be a long enough delay to allow the capacitor to fully discharge. The other part of the code that isn’t 
clear here is how dly (and dly1) change. This, of course, is part of the ISR. The very first lines of the ISR are 
now: 
 
 bank delaybank 
 inc dly 
 snz 
 inc dly1 
 
The read_rc code doesn’t change banks, because the pause routine also uses dly and it sets the bank. The 
pause routine is just five calls to pausems. This routine delays about 1mS. Here is the code: 
 
pausems 
 bank delaybank 
 mov dly1,#$FE 
 mov dly,#$CD 
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:p1 mov w,dly1 
 or w,dly 
 jnz :p1 
 ret 
 
This bears some explanation. The routine takes advantage of the fact that the ISR will increment the 16-bit dly 
variable every 3.26uS. To pause 1mS (1000uS), the code needs to wait for 307 counts. Expressed in hex, 307 is 
$133. Rather than clear the dly variable and wait for $133, the code instead loads negative $133 and waits for 
the variable to reach 0 (a cleaner test). To negate $133 write it as binary, invert the bits and add 1. So: 
 
 %0000 0001 0011 0011 -> %1111 1110 1100 1100 + 1 = %1111 1110 1100 1101 = $FECD 
 
Of course, other factors contribute, so the delay is not precise, but it doesn’t need to be. Anything close to 1mS 
will be good enough in this case. 

Pulse Output 
It should be obvious that if you can measure precise times, you can also create pulses. You simply set an output 
bit’s state, wait for a particular interval, and then reset the bit’s state. In the next unit you’ll see how a train of 
pulses combined with a capacitor can generate an analog output using a method known as pulse width 
modulation (PWM). 
 
PWM is useful for other reasons as well. For example, you can control an LED or lamp’s brightness. You can also 
use PWM to control the speed of a motor. Some external systems require pulses to operate. For example, servo 
motors (common in the radio control hobby) use a pulse to determine the shaft’s position. These motors 
typically don’t rotate 360 degrees. Instead they will move over a certain arc. With a narrow pulse, the motor will 
position the shaft to one extreme of the travel range. The wider the pulse, the further away the shaft moves 
(until it reaches the other extreme). 

Summary 
Converting an analog value like a resistance or capacitance into a measurable time is a powerful idea. With some 
additional circuitry you could even do the same thing with a voltage. For example, a 555 IC can generate pulses 
that vary in width depending on an applied voltage. There are also specific voltage to frequency ICs. An 
oscillator with a varactor in its resonator can also change frequency (and hence, pulse width) with an applied 
voltage. 
 
Using sensors like thermistors or light-dependent resistors allows you to adapt this technique to make the SX 
read a variety of real-world parameters. Accepting this type of input is an essential component to creating 
control or data acquisition systems. 



Unit 5. Pulse I/O 
 

Page 68 • I/O Control with the SX Microcontroller 
 
 
 

Exercises 
1. Connect a 10K potentiometer and LED as in the diagram below. Write a program that allows you to test the 

threshold voltages for TTL, CMOS, and Schmitt trigger inputs by transferring the state of the input pin to the 
output LED. You can measure the input pin’s voltage with a common voltmeter.  

 

10K
RB0 470

RA0

5V 5V

 
Figure V.3 – Threshold Test Circuit  

 
2. Build the circuit shown earlier in this unit. Create a program that reads the 16-bit count that shows the 

potentiometer’s position and verify your code’s operation using the SX-Key debugger.  
 
3. Modify the above program to display the result on an RS-232 terminal. Hint: Write a carriage return (13) 

and disable the terminal’s auto linefeed mode (if any) to see a pleasing display. 
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Answers 
 
1. Here is a possible solution: 
  device sx28l,oscxt5,turbo,stackx_optionx 
  reset start_point 
  freq 50000000   ; 50 Mhz 
 
  org 0 
start_point 
  mov ra,#%1111 
  mov !ra,#%1110 
 
 
; set threshold here $C = Schmitt $D = CMOS 
    mov m,#$C 
  mov !rb,#%11111110 
  mov m,#$F 
 
 
; Here is where the action is! 
mainloop 
 movb ra.0,/rb.0 
 jmp mainloop 
  
 
 
Notice that in TTL or CMOS mode, the LED may light dimly. This is because without Schmitt trigger hysteresis, 
the SX is reading the pin as a 1 sometimes and a 0 at other times right at the threshold voltage. 
 
2. See the answer for exercise 3. This is the same code but without the serial transmitter code. 
3. There is no need for the serial receiver in this code although if you included it, there is no harm in it: 
 
  device sx28l,oscxt5,turbo,stackx_optionx 
  reset start_point 
  freq 50000000   ; 50 Mhz 
 
BAUDRATE EQU 9600  ; baud rate to stamp 
; Port Assignment: Bit variables 
; 
tx_pin  EQU rb.3 
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  org 8 
; Head/tail pointer  
byte            ds      1                       ;temporary UART byte 
vallow     ds 1 
valhigh     ds 1 
number_low     ds 1 
temp      ds 1 
 
 watch dly,16,uhex 
 
 
  org     10h                      
serial          =       $                       ;UART bank 
; 
tx_high ds 1   ;tx 
tx_low ds 1 
tx_count ds 1 
tx_divide ds 1 
 
IF BAUDRATE=9600 
txdivisor =    32    
ENDIF 
 
int_period      = 163  
 
 
  org $30 
delaybank equ $ 
dly  ds 1 
dly1  ds 1 
 
 
 
 
  org 0 
; Interrupt service routine 
isr   
  bank  delaybank 
  inc dly 
  snz 
  inc dly1 
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  bank    serial                   
 
; transmitter 
  bank serial 
  dec tx_divide 
  jnz     end_int 
  mov tx_divide,#txdivisor    ; ready for next   
  test tx_count   ;busy? 
  jz end_int    ; no byte being sent 
  stc                           ; ready stop bit 
  rr tx_high    
  rr tx_low    
  dec tx_count   
  movb tx_pin,/tx_low.6  ;output next bit 
 
 
 
 
end_int 
  mov     w,#-int_period         
  retiw                           ;exit interrupt 
 
 
 
 
start_point 
  mov     ra,#%0011           ;initialize port RA 
  mov     !ra,#%0000              ;Set RA in/out directions 
  mov rb,#%11110111 
  mov !rb,#%11110111 
 
  CLR     FSR               ;reset all ram starting at 08h 
:zero_ram       SB      FSR.4         ;are we on low half of bank? 
  SETB    FSR.3             ;If so, don't touch regs 0-7 
  CLR     IND               ;clear using indirect addressing 
  IJNZ    FSR,:zero_ram           ;repeat until done 
 
  mov     !option,#%10011111      ;enable rtcc interrupt 
  clr rb 
 
; Set Schmitt trigger input 
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    mov m,#$C 
  mov !rb,#%11111110 
  mov m,#$F 
 
 
; Here is where the action is! 
mainloop 
 call read_rc 
 mov w,valhigh 
 call send_hex 
 mov w,vallow 
 call send_hex 
 mov w,#$D 
 call send_byte 
 jmp mainloop 
  
 
read_rc  
 clrb rb.0 
 mov !rb,#%11110110  ; bit 0 to output 
; pause a bit to let capacitor discharge 
 call pause 
 mov dly,#$FF 
 mov dly1,#$FF 
:zwait 
 test dly   ; synchronize with ISR 
 jnz :zwait 
 mov !rb,#%11110111  ; back to input 
captest 
 jnb  rb.0,captest 
 break 
 mov vallow,dly 
 mov valhigh,dly1  
 ret 
 
 
pause  
:p1 
 rept 5 
 call pausems 
 endr 
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 ret 
 
; pause about 1mS 
; (each int tick is 3.26uS 
; 1000uS/3.26=307 
; 307=$133 and -$133 = $FECD 
pausems 
 bank delaybank 
 mov dly1,#$FE 
 mov dly,#$CD 
:p1 mov w,dly1 
 or  w,dly 
 jnz :p1 
 ret 
 
 
; required to output HEX numbers 
_hex            dw      '0123456789ABCDEF' 
; 
; 
;*************** 
;* Subroutines * 
 
; Send hex byte (2 digits) 
; 
send_hex 
                mov     number_low,w            ; save W 
                mov     w,<>number_low          ;send first digit 
                call    :digit 
 
                mov     w,number_low            ;send second digit 
 
:digit  and     w,#$F                   ;read hex chr 
                mov     temp,w 
                mov     w,#_hex 
                clc 
                add     w,temp 
                mov     m,#0 
                iread             ; read from program mem! 
                mov     m,#$F 
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; fall into send byte 
 
send_byte bank serial 
 
:wait  test tx_count  ;wait for not busy 
  jnz :wait 
 
  mov tx_high,w 
  clrb    tx_low.7   ; set start bit 
 
 
  mov tx_count,#10 ;1 start + 8 data + 1 stop bit 
 
  ret 
  
 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  

 
Rev1. 
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Unit VI. PWM 
Unit VI from I/O Control with the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
In the last unit you looked at measuring pulse widths. Of course, if you can measure an interval, you can also 
create pulses. However, using pulses can have a few nuances that you should understand. In particular, you can 
use pulses, in combination with a handy capacitor, to generate a voltage from 0 to 5V – if you know all the right 
tricks. 

PWM Theory 
The most interesting use of pulses with a microcontroller is to use a string of pulses to generate an arbitrary 
analog voltage. These analog signals might be useful as control voltages or even audio outputs. Using pulses 
this way is known as Pulse Width Modulation (PWM). 
 
To generate a voltage with PWM, you’ll use our favorite energy storage device: the capacitor. The best way to 
understand the process is to look at the two extreme cases first. Suppose you have an SX output pin connected 
to a capacitor. If you bring the output pin low, the capacitor will discharge and it is easy to see that the 
capacitor’s voltage will be 0V. Similarly, if you bring the output high, the voltage will charge the capacitor and 
you will soon have 5V across the capacitor. 
 
What happens, however, if you bring the output pin high for 1mS and then low for 1mS and keep repeating this 
sequence? When the pin is high, the capacit or will charge up. When the pin is low, the capacitor will discharge. 
Since the 1mS time is the same for both conditions, the average voltage across the capacitor will be 2.5V (one 
half of the 5V output). If you keep the pin high for 1mS and then low for 4mS, the output will be 1V.  
 
In general, the output voltage will be 5V times the percentage of time the pulse is high. In theory, it doesn’t 
matter how long the pulses are, as long as the percentage is correct. If the high and low periods were 100uS 
and 400uS, the output would still be 1V. The percentage of time the signal is high is known as its duty cycle. In 
this example, the duty cycle is 20%. 
 
Figure VI.1 shows a practical circuit. The resistor prevents excessive current draw from the SX.  

.1uF
Output Pin Voltage Output

22K

 
 

Figure VI.1 – PWM Output Circuit  
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Tip: Selecting a resistor and capacitor value can make a big difference in a PWM circuit. The smaller the 
capacitor, the quicker it will charge to the final desired value. On the other hand, smaller capacitors discharge 
quicker as well. The resistor, of course, also affects the timing. Lower values will reduce the amount of time 
required to charge the capacitor to its final value. 

Practical Pulses 
If you wanted to write a PWM output routine, you might be tempted to select a time period and divide it into, 
say, 100 slots. Then you could turn the output on, for the number of slots you wanted. For example, if each slot 
was 2uS and you wanted a 50% duty cycle, you’d turn the output high for 50 time periods (100uS) and then off 
for the next 50. 
 
This would work, but it is less than optimal. Why? This scheme increases the amount of time it takes for the 
capacitor to charge and discharge. Ideally, the pulses should be as short as practical. One way to do this is to 
make the pulses proportional. For example, a 50% duty cycle with a 2uS timebase would have one 2uS high 
followed by a 2uS low. A 33% duty cycle would be 2uS on and 4uS off.  
 
At first glance this would seem to be difficult to compute. However, a clever trick makes it quite simple. Suppose 
you use a byte to define 256 duty cycles. With this scheme, $FF is nearly 100%, $80 is 50% and, of course, 0 is 
0%. Each unit is then roughly 0.4%.  
 
Suppose you have an interrupt service routine that runs every 2uS and a duty cycle stored in the pwm variable. 
You can use an accumulator (pwm_acc) to easily handle the PWM algorithm. Here are the steps: 

1) Set pwm_acc equal to pwm_acc plus pwm 
2) If a carry results from the addition, set the output bit  
3) If a carry did not result, clear the output bit. 

 
The ISR is probably the simplest ISR you can imagine: 
 
 add pwm_acc,pwm 
 movb rb.0,c 
 mov w,#-100   ; every 2uS 
 retiw 
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Why does this work? Look at this table of values: 
 

duty=$FF duty=$80 Time 
uS pwm_acc output  pwm_acc output  

0 0 0 0 0 
2 $FF 0 $80 0 
4 $FE 1 $00 1 
6 $FD 1 $80 0 
8 $FC 1 $00 1 

 
If you follow this sequence you’ll see that this in fact works as promised. Of course, at a duty cycle of 1 (0.4%) 
you still have 2uS on and 511uS off, but this is the extreme case. Using a more straightforward algorithm results 
in this being the case for all values. 
 

Limitations and Enhancements 
There are several practical issues to consider with this type of circuit. First, the capacitor charges through a 
resistor. The larger the capacitor, the more time it takes to charge and discharge. On the other hand, holds it 
charge poorly as the PWM rate slows down. 
 
If you really expect to draw any significant current from the PWM pin, you should consider using some sort of 
buffer amplifier (like an op-amp or an emitter follower amplifier). However, if you are drawing modest amounts 
of current (for example, a comparator or op-amp input) you can just use the PWM output directly. 
 
You can also drive an LED using this type of PWM. You don’t need a capacitor because your eye will integrate 
the flashes from the rapidly blinking LED. PWM (properly buffered) can also vary motor speeds. 
 
In general, the faster the PWM rate, the smoother the PWM appears. With such a short ISR, you can easily 
reduce the rate by adjusting the ISR’s period. For example, changing the ISR so that it loads w with 50 instead 
of 100 would drop the rate to 1uS. The entire ISR only requires 10 clock cycles, so you could reduce the number 
even further (as long as you don’t add code to the ISR). Setting the ISR rate to 20, for example, drops the 
period to 400nS!  
 
If you want finer-grain control, you could use larger PWM accumulators (and duty cycles). For example, a 10-bit 
set up would allow you to step the voltage about 0.1% per step (about 5mV). In this case you wouldn’t use the 
carry bit to control the PWM, you’d use bit 9 of a 16-bit variable. Of course, at some point your step size will be 
smaller than the accuracy possible because of the component tolerances. 
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Summary 
Generating pulses is both easy and extremely useful. Pulse trains can control motors, dim lights, and generate 
voltages with a minimum of external components. 
 
PWM is not your only choice when it comes to analog output. There are readily available chips that will produce 
analog outputs. These D/A or DAC (Digital to Analog Converters) come in a bewildering array of styles and 
features. If you want to use a chip-level DAC, be sure to find one that accepts serial data so you conserve the 
SX’s pins. 

Exercises 
1. Below is a view of two PWM outputs. What is the duty cycle of each expressed as a percentage? If the 
PWM generator uses 8 bits to express the duty cycle, what number is used to create each output? 

 
 

2. Set up a PWM circuit as shown and create code that varies the pwm duty cycle by 1 bit about 
every 250mS (or more). Using a voltmeter (or even better, an oscilloscope) verify that the change 
in voltage is near the expected 19.5mV. What would happen if you changed the pwm counter to 
use 9 bits instead of 8? Verify your answer. 
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3. Using your PWM circuit, devise a program that will find the input threshold voltage of another I/O pin 
automatically. You can do this by connecting the PWM output to another input and slowly ramping the 
output voltage until you find a 1 input. You can either verify your results with the debugger or with a 
voltmeter. 
 
 

4. Look at the triangle waveform below. Can you simulate this with PWM? Write a program to generate this 
waveform. You can observe your results with an LED, or even better an oscilloscope, if available. Hint: The 
exact timing or voltage levels are not important. 
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Answers 
 
1. The upper trace is high for 2uS of every 4uS and is therefore at 50% or duty cycle 128. The lower trace is 

high for 2uS of every 10uS – a 20% or 51 duty cycle. 
 

2. Here is a possible 8 bit solution: 
 

  device  sx28l,oscxt5 
  device turbo,stackx_optionx 
  reset reset_entry 
  freq 50_000_000 
 
 
pwm_pin = rb.0 
 
  org 8 
 
temp  ds 1 
pwm  ds 1   ;pwm0 
pwm_acc  ds 1 
dly  ds 1 
dly1  ds 1 
 
 
  org 0 
; 
; 
 
; 
interrupt  
  inc dly 
  snz 
  inc dly1 
 
  add pwm_acc,pwm 
  movb pwm_pin,c 
 
  mov     w,#-100 
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  retiw  
;******** 
;* Main * 
;******** 
; 
; 
; Reset entry 
; 
reset_entry  
 
  mov  rb,#%00000000  ;init rb 
  mov !rb,#%11111110 
  clr fsr   ;reset all ram banks 
:loop  setb fsr.4 
  clr ind 
  ijnz fsr,:loop 
 
  mov !option,#%10011111 ;enable rtcc interrupt 
; 
; 
;  - main loop 
; 
 
mainloop 
 
 
 
  inc pwm 
  call pause 
  jmp mainloop 
 
 
pause 
:p0 mov temp,#250 
:p1 call pausems 
 djnz temp,:p1 
 ret 
 
; pause about 1mS 
pausems 
 mov dly1,#$FE 
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 mov dly,#$0C  ; FE0C = -500 
:p1 mov w,dly1 
 or  w,dly 
 jnz :p1 
 ret 

 
To change the code to 9 bits, you’d change the ISR to look like this: 

interrupt  
  inc dly 
  snz 
  inc dly1 
 
  add pwm_acc,pwm 
  addb pwm_acc1,c 
  add pwm_acc1,pwm1 
  movb pwm_pin,pwm_acc1.1 
  clrb pwm_acc1.1 
 
  mov     w,#-100 
  retiw  

 
Of course, you’ll have to add the pwm_acc1 and pwm1 variables. Your main loop might look 
something like this: 

  inc pwm 
  snz 
  inc pwm1 
 
  call pause 
  jmp mainloop 

 
The expected voltage shift per step for 9 bits is 1/512V or about 2mV. 
 
3. Here is a possible solution’s main loop (this assumes an 8 bit PWM ISR): 

mainloop 
   
  call pause 
  jb  rb.1,found 
  inc pwm 
  jnz mainloop 
; hmmm... didn't find it 
  jmp mainloop 
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found  break 
  mov w,pwm 
  jmp $   ; stop but let PWM continue 

 
 
4. The length of the pause will determine the period of the triangle wave. Here is one possible 

way to generate the wave: 
mainloop 
  inc pwm 
  jz  reverse 
  call pause 
  jmp mainloop 
 
reverse dec pwm 
  jz mainloop 
  call pause 
  jmp reverse 
 
 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  
Rev1. 
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Unit VII. A Practical Design - The SSIB 
Unit VII from I/O Control the SX Microcontroller 
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC  

 
One of the things the SX excels at is producing custom I/O devices for other microcontrollers. The SX is fast and 
inexpensive – it is well suited to the task of making dedicated peripheral devices. In this unit, you’ll examine a 
serial communications buffer that uses an SX. This peripheral device can help other microcontrollers (like the 
Basic Stamp, for example) receive serial data from a PC or other device. 
 
The Basic Stamp is a microcontroller (made by Parallax) that you program using Basic. These “Stamps” are 
perfect for quick and simple projects. Although Stamps excel at many jobs, they are inherently single-tasking. 
This single-tasking philosophy makes programming simpler, but it makes serial input tricky. 
 
The Stamp has a perfectly capable command for reading serial data (the SERIN command). The problem is that 
the Stamp can't issue a SERIN command and do something else at the same time. If the Stamp is performing a 
task when serial data arrives, the data is lost. 
 
To ameliorate this limitation, the Stamp can employ a handshaking signal. This output line signals the 
transmitting device when the Stamp is ready to accept serial data. This works well if the sending device can stop 
transmission. Unfortunately, this isn't always possible or desirable. 
 
The best answer would be to insert a buffer between the sending device and the Stamp. The buffer would hold 
any incoming data until the Stamp program reads it. This is a perfect application for an SX. The high speed of 
the SX allows you to service many serial channels simultaneously with no chance of data loss. This particular 
design uses an SX18 – the project doesn’t even use all the pins available, so there is no need for a 28-pin 
device. If you are working with the SX-Tech board, you can use a 28-pin device and just ignore the extra pins. 
 
With any project, you should start with a design. Figure VII.1 shows the pin out for the buffer device (the Stamp 
Serial Input Buffer or SSIB). Notice that there are two input channels. The SSIB reads from these two channels 
and stores characters in a 16-byte buffer (each channel has its own buffer). 
 
Each channel has an associated handshaking line. If the buffer for a channel fills up the SSIB deasserts the 
handshaking line and reasserts it when the buffer has more room. Of course, if you are sure the Stamp will 
empty the buffer faster than the device will fill it, you can ignore these handshaking lines. 
 
On the Stamp side the SSIB uses 3 pins. One pin receives data from the SSIB. The other two pins act as 
handshake lines. If the Stamp asserts CHANA, the SSIB sends data from channel A to the Stamp. CHANB selects 
data from the B channel. If neit her line is active the SSIB sends no data to the Stamp. Of course, if you are only 
using one channel you can connect 2 pins to the SSIB instead of 3. 
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In its default configuration, the SSIB uses 9600 baud communications on each channel. However, you can 
change a few configuration parameters to alter this for each port individually. See Table VII.1) for the available 
configuration options - you can change several parameters here including the polarity of each port. 
 

SSIB
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16
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RESET
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TX
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Figure VII.1 – The SSIB Pin Out (18-pin Version) 

 

Inside the SSIB 
The SSIB code (see the Listings at the end of this unit) takes advantage of the SX's high clock speed. 
Although the SX in use can clock up to 50MHz, this is overkill for this application. Even at 10MHz, 
there is plenty of time to do all the tasks required. Running more slowly allows the SX to draw less 
power. Remember, many processors divide their external clock, but the SX does not. So an SX 
running at 10MHz is comparable to some other processors running at 40MHz! A processor that 
divides by 4 would have to run at 200MHz to match a 50MHz SX. Almost all of the code executes in 
response to a high-speed periodic interrupt that occurs every 13uS. 
 
The first thing the interrupt service routine (ISR) does is transmits any pending serial bits. Next, the 
serial receivers execute (first channel A, then channel B). Notice that the receivers are essentially 
copies of each other, but each receiver has private variables. 



  Unit 7. The SSIB 
 
 
 
 
 

 I/O Control with the SX Microcontroller • Page 87 
 
 

 



Unit 7. The SSIB 
 
 
 

Page 88 • I/O Control with the SX Microcontroller 
 
 
 

After servicing all 3 serial channels, the ISR turns its attention to managing the circular buffers for 
each channel. If a transmission is already in progress, the ISR simply exits. Otherwise, the ISR 
examines each channel's handshaking line. If the line is active, the code examines the corresponding 
circular buffer. If any characters are waiting, the ISR moves a waiting character into the transmit 
register so that on the next interrupt the character will be sent to the Stamp. 
 

Parameter Description Default Value 
XBAUDRATE Baud rate to Stamp 19200 
BAUDRATE_A Baud rate to device A 9600 
BAUDRATE_B Baud rate to device B 9600 
INVSEND Use inverted mode to Stamp if 1 0 
INVRCVA Use inverted mode to device A if 1 0 
INVRCVB Use inverted mode to device B if 1 0 
BUFFERLIM Minimum free space before 

asserting handshake 
2 

 
Table VII.1 - SSIB Configuration 

 
Compared to the ISR, the main code (beginning at the start_point label) is anticlimactic. Of course, 
the first few lines initialize the program, setting up the I/O pins and the periodic interrupt. 
 
Once the chip is running, the main loop (at mainloop) simply waits for an incoming character, and 
moves it to the correct queue. The enqueue and get_byte routines (along with enqueue1 and 
get_byte1) handle the mechanics of reading each byte and placing it in the circular buffer. Previous 
examples did the buffering in the ISR. However, with two channels, I decided to move the buffering 
to the main program (which has practically nothing to do anyway). 
 
The queuing logic implements a 16-byte circular buffer that is more sophisticated than early versions 
you’ve examined. The tricky part of the code computes how much of the buffer is free. If this number 
is less than or equal to the BUFFERLIM constant, the SSIB turns off the inbound handshaking line 
for that channel. If the device in question can respond to handshake requests quickly, you could set 
BUFFERLIM to 1. However, many devices can still send a character or two before they respond to a 
handshake. In that case, you can set BUFFERLIM to a higher value. 
 

Using the SSIB 
Using the SSIB is easy with the Basic Stamp. You can find a summary of the SSIB’s pins in Table 
VII.2. Figure VII.2 shows a sample test circuit. In this schematic, the Stamp at IC1 is receiving data 
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from the Stamp at IC2 (which stands in for two external devices). IC3 is the SSIB.  
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Figure VII.2 – Test Circuit for the SSIB 

 
The device connected to the SSIB’s RES1 and RES2 terminals is a 10MHz ceramic resonator with 
capacitors. This three-terminal device has a ground lead in the center. The other two terminals are 
interchangeable. If you are simply testing the circuit you can use the SX-Key or SX-Blitz to generate 
the 10MHz clock automatically (it senses the FREQ directive in the program). You could also use a 
10MHz crystal with some extra capacitors, but a ceramic resonator is less expensive and just as good 
in this application. The SX data sheets show how to use a crystal if you want to try one. 
 
The listing at the end of this unit shows the code that reads data from the SSIB. Instead of actually 
performing other processing, the program does simulated work in the form of a SLEEP statement. 
Notice that the Stamp reads data from the same pin regardless of which channel it wants to read. 



Unit 7. The SSIB 
 
 
 

Page 90 • I/O Control with the SX Microcontroller 
 
 
 

However, the Stamp’s SERIN command uses a different handshaking line to select the channel it 
wants. In this case, using pin 12 selects channel A and pin 13 selects channel B. Regardless, the 
Stamp reads the data from pin 14. 
 
The simulator Stamp at IC2 (see the listings) just writes bytes out of each serial port periodically. Of 
course, the two Stamps won't be synchronized, so only the buffer allows this arrangement to work. If 
you set the first Stamp to read more often than the simulator writes, the buffer should never 
overflow. If you send bytes more often than you read, the SSIB buffers will fill. In this case, the SSIB 
will use the outbound handshaking lines to hold off the simulator. 
 
 

Pin Name Function 
1 N/C Not connected 
2 TX Transmit data to Stamp 
3 Vss Ground 
4 RESET Pull low to reset; high for normal 

operation 
5 Vss Ground 
6 CHANNEL_B Input for channel B 
7 HANDSHAKE_A Optional handshake for device A 
8 CHANNEL_A Input for channel A 
9 HANDSHAKE_B Optional handshake for device B 
10-13 N/C Not connected 
14 Vdd +5V 
15 RES1 Connection to 10MHz resonator 
16 RES2 Connection to 10MHz resonator 
17 READ_A Signal to read from channel A 
18 READ_B Signal to read from channel B 

Table VII.2 – SSIB Pinout 
 

About Inverted Mode 
The Stamp and the SSIB can perform serial I/O in standard mode, or in inverted mode. The mode selection 
affects the polarit y of the signal line, of course, but it also changes the polarity of the handshaking lines. In 
standard mode, the handshake lines must go low to enable data transmission. This works well, because the SSIB 
has internal pull up resistors to hold the lines high in the absence of other input.  
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If you use inverted mode, be aware that the handshake lines will be enabled until the Stamp program 
or other device wakes up and explicitly inhibits transmission. This can cause problems when the 
Stamp misses some characters at the beginning or receives an erroneous byte right after resetting. A 
sleeping Stamp may also trigger data transmission since its I/O pins turn off every few seconds for a 
few milliseconds. 
 
When you have a choice, use standard mode. You can set each channel independently. Another 
partial solution would be to use an extra Stamp pin to reset the SSIB (by pulling RESET low) after the 
Stamp program has control. 
 

Customizing the Period 
If you want to modify the timing used to generate the baud rates, you’ll need to understand how the code 
handles different speeds. To ensure accuracy, the interrupt rate needs to be quite a bit faster than the period of 
a single bit. At 9600 baud, for example, a single bit is slightly longer than 104uS. You need to interrupt at least 4 
times faster (26uS). Faster would be even better. If you don’t interrupt quickly enough, you can miss a start bit. 
The Nyquist theorem says you must sample twice as fast, but to make sure you have enough time to work with 
a detected start bit, you’ll want to go as fast as you can. 
 
By default the SSIB runs at 10MHz. This causes the RTCC register to increment every 100nS. Causing 
an interrupt every 130 cycles makes the sampling rate 100nS*130 = 13uS; fast enough to 4x 
oversample a 19200 baud rate signal (52uS per bit). 
 
The transmit code assumes that the baud rate divider will be a power of two. The define for 
baud9600, for example, is 3 indicating that the divisor for 9600 baud is 2 to the 3rd power, or 8. At 
13uS per cycle, this works out to 104uS per bit – about 9615 baud. This is about 0.2% error – 
perfectly acceptable. 
 
You might want to adjust the clock frequency to take advantage of an existing oscillator, operate at 
higher baud rates, or accommodate more channels. There are three things to consider: 
 

1. The clock frequency 
2. The interrupt period 
3. The baud rate divider 

 
Of these, the interrupt period is easiest to set incorrectly. Remember the RTCC keeps counting even 
after an interrupt occurs. The more often interrupts occur, the less time is available for the main 
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program. If you interrupt too frequently, the main code can’t execute at all. As a practical 
consideration, you’ll want to keep the interrupt period greater than about 80. 
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Suppose you wanted to use a 25MHz clock. This makes each RTCC count worth 40nS (1/25000000). 
If you want to sample a 9600 baud signal 8 times per bit, you need 13uS interrupts (as calculated 
above; this is the same as 13000nS). Therefore, the interrupt period is 13000/40 or 325. 
Unfortunately, it is difficult to program the single-byte RTCC register for 325 counts. 
 
You might be able to work around this with prescaling or using a software prescaler. However, an 
easier method is simply to sample the signal more often. If you decide to check the bit 32 times 
instead of 8, you need roughly 3.3uS which requires an interrupt period of 3300/40 or about 82. 
 
So to use a 25MHz clock, you can set the interrupt period to 82 and the baud rate number to 5 (2 to 
the 5th power is 32). The actual time will be 40 * 82 * 32 = 104960nS or 104.96uS. Reversing the 
calculations, the actual bit period will be equivalent to 9527 baud; about 0.7% error. Using 81 shoots 
past the desired baud rate (9645 baud) but yields a smaller error (about 0.5%). In practice, either 
value will work. 
 
Since the baud rate divisor number is a power of 2, it is easy to figure other baud rates. In the above 
example, since 5 sets 9600 baud, 4 will be 19200, 6 sets 4800, and 7 would be 2400. Since the 
divisor is a bit number, you can’t exceed 7. To reach 1200 baud you’d need to change the clock or 
the interrupt period.  

Further Experiments 
Using this set up, you can try several other scenarios. For example, try setting the simulator to 
output at 2400 baud, but keep the Stamp channel at 9600. Then try reading one port at 9600 and 
the other at 2400. 
 
You can change the periodic interrupt rate if you recalculate the baud rates. Just be careful to leave 
enough time in between interrupts to run the main program. Depending on the baud rates, clock 
speed, and interrupt period, you could accommodate more than just two input lines. 
 

Summary 
Why design chips like the SSIB? Creating functional modules allows designers that don't have your 
tools to still create powerful systems. With the low-cost of the SX chip there is no reason you can't 
add more than one to most designs. Even when designing with the SX, chips like the SSIB can let you 
distribute the workload among several processors for even more power. 
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 The SSIB Code 
; SSIB - by Al Williams, AWC http://www.al-williams.com/awce 
; v2.0 
 
; Use SX28L instead of sx18l for SX-Tech board 
   device sx18l,oscxt5,turbo,stackx_optionx 
  reset start_point 
  freq 10000000    
 
; Port Assignment: Bit variables 
; 
int_period      EQU 130     
XBAUDRATE EQU 19200  ; baud rate to stamp 
BAUDRATE_A EQU 9600  ; Channel A baudrate 
BAUDRATE_B EQU 9600  ; Channel B baudrate 
; Non inverted modes are best because 
; the internal pull up resistors will stop all devices 
; from talking, setting any of the below to 1 
; makes the handshaking reverse which means 
; devices are free to send until the SSIB and/or 
; Stamp wakes up which may cause you problems 
INVSEND EQU 0     ; inverted/true to Stamp 
INVRCVA EQU 0     ; inverted/true to Chan A 
INVRCVB EQU 0     ; inverted/true to Chan B 
BUFFERLIM EQU 2     ; space free in buffer before h/s off 
 
rx_pin   EQU   rb.2                    ;UART receive input 
rx_pin1   EQU rb.0 
tx_pin    EQU   ra.3                    ;UART transmit output 
enablepin equ ra.0 
enablepin1 equ ra.1 
rxen_pin equ rb.1   ; handshake for buffer A 
rxen_pin1 equ rb.3   ; handshake for buffer B 
; 
  org 8 
head  ds 1 
head1  ds 1 
tail  ds 1 
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tail1  ds 1 
byte        ds    1 
tmpvar ds 1 
flags       DS    1             ;program flags register 
spare7  EQU flags.7    
rx_flag1       EQU flags.6   
rx_flag           EQU   flags.5     ;signals when byte is received 
spare4  EQU flags.4 
spare3  EQU flags.3 
spare2  EQU flags.2 
spare1  EQU flags.1 
spare0  EQU flags.0 
  watch byte,8,uhex 
  watch head,8,uhex 
  watch tail,8,uhex 
  watch rx_flag,1,uhex 
 
  org     10h                   ;bank3 variables 
serial          =       $                 ;UART bank 
; 
tx_high         ds      1                 ;hi byte to transmit 
tx_low          ds      1                 ;low byte to transmit 
tx_count        ds      1                 ;number of bits sent 
tx_divide       ds      1                 ;xmit timing (/16) counter 
rx_count        ds      1                 ;number of bits received 
rx_divide       ds      1                 ;receive timing counter 
rx_byte         ds      1                 ;buffer for incoming byte 
rx_count1 ds 1 
rx_divide1 ds 1 
rx_byte1 ds 1 
 
; baud rate bit # 
baud2400 = 5 
baud9600 = 3 
baud19200 = 2  
; above 19.2K may not be reliable 
; without adjusting int speed (see text) 
 
IF XBAUDRATE=2400 
baud_bit        = baud2400                      ;for 2400 baud 
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start_delay     =       (1<<baud2400)+(1<<(baud2400-1))+1  
ENDIF 
 
IF BAUDRATE_A=2400 
bauda   = 1<<baud2400 
ENDIF 
 
IF BAUDRATE_B=2400 
baudb   = 1<<baud2400 
ENDIF 
 
IF XBAUDRATE=9600 
baud_bit        = baud9600    
start_delay     =  (1<<baud9600)+(1<<(baud9600-1))+1   
ENDIF 
 
IF BAUDRATE_A=9600 
bauda            =    1<<baud9600             
ENDIF 
 
IF BAUDRATE_B=9600 
baudb  = 1<<baud9600 
ENDIF 
 
IF XBAUDRATE=19200 
baud_bit        = baud19200 
start_delay     =       (1<<baud19200)+(1<<(baud19200-1))+1 
ENDIF 
 
IF BAUDRATE_A=19200 
bauda   = 1<<baud19200 
ENDIF 
 
IF BAUDRATE_B=19200 
baudb   = 1<<baud19200 
ENDIF 
 
 
; bit and a half for receiver alignment 
baud15a  = 3*bauda/2 
baud15b  = 3*baudb/2 
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  org $50 
scan  ds 1     ; buffer A 
bufmod  equ $F 
 
  org $70        ; buffer B 
scan1  ds 1 
 
 
 
 
 
  org 0 
isr  bank    serial                   
:transmit   clrb    tx_divide.baud_bit       
     inc     tx_divide                
     STZ                              
  SNB     tx_divide.baud_bit       
  test    tx_count                ; are we sending? 
  JZ      :receive                ; if not, go to :receive 
  clc                             ; yes, ready stop bit 
  rr      tx_high                 ; and shift to next bit 
  rr      tx_low                  ; 
  dec     tx_count                ; decrement bit counter 
IF INVSEND 
  movb tx_pin,tx_low.6 
ELSE 
  movb    tx_pin,/tx_low.6        ; output next bit 
ENDIF 
; 
:receive 
IF INVRCVA 
    movb c,/rx_pin 
ELSE 
              movb    c,rx_pin            ;serial receive 
ENDIF 
                test    rx_count            ;waiting for stop bit? 
                jnz     :rxbit              ;if not, :rxbit 
                mov     w,#9                ;in case start, ready 9 
                sc                          ;if start, set rx_count 
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                mov     rx_count,w               
                mov     rx_divide,#baud15a  ;ready 1.5 bit periods 
:rxbit          djnz    rx_divide,rxdone    ;8th time through? 
                mov  rx_divide,#bauda 
                dec     rx_count            ;last bit? 
                sz                          ;if not, save bit 
                rr      rx_byte                  
                snz                         ;if so, set flag 
                setb    rx_flag                  
rxdone 
 
 
:receive1 
IF INVRCVB 
     movb c,/rx_pin1 
ELSE 
                movb    c,rx_pin1           ;serial receive (B) 
ENDIF 
                test    rx_count1           ;waiting for stop bit? 
                jnz     :rxbit1             ;if not, :rxbit1 
                mov     w,#9                ;in case start, ready 9 
                sc                          ;if start, set rx_count 
                mov     rx_count1,w              
                mov     rx_divide1,#baud15b      ;ready 1.5 bit periods 
:rxbit1         djnz    rx_divide1,rxdone1       ;8th time through? 
                mov  rx_divide1,#baudb 
                dec     rx_count1                ;last bit? 
                sz                               ;if not, save bit 
                rr      rx_byte1                 
                snz                              ;if so, set flag 
                setb    rx_flag1                 
rxdone1 
 
 
; 
; check for circ buffer send 
  test    tx_count          
  jnz     end_int               ; busy? 
  cje head,tail,end_int1 ; nothing to send 
; are we allowed to send? 
IF INVSEND 
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  jnb enablepin,end_int1 
ELSE 
  jb enablepin,end_int1 
ENDIF 
  mov fsr,tail 
  add fsr,#scan 
  mov w,ind 
;send byte 
  bank serial 
  not     w                ;ready bits (inverse logic) 
  mov     tx_high,w        ; store data byte 
  setb    tx_low.7         ; set up start bit 
  mov     tx_count,#10     ;1 start + 8 data + 1 stop bit 
  inc tail 
  and tail,#bufmod ; circularize 
IF INVRCVA 
  setb rxen_pin 
ELSE 
  clrb rxen_pin 
ENDIF 
; if transmitting why check alt channel? 
  jmp end_int 
 
end_int1 
; are we allowed to send alt channel? 
IF INVSEND 
  jnb enablepin1,end_int 
ELSE 
  jb enablepin1,end_int 
ENDIF 
  mov fsr,tail1 
  add fsr,#scan1 
  mov w,ind 
;send byte 
  bank    serial 
  not     w                 ;ready bits (inverse logic) 
  mov     tx_high,w         ; store data byte 
  setb    tx_low.7          ; set up start bit 
  mov     tx_count,#10      ;1 start + 8 data + 1 stop bit 
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  inc tail1 
  and tail1,#bufmod ; circularize 
IF INVRCVB 
  setb rxen_pin1 
ElSE 
  clrb rxen_pin1 
ENDIF 
 
 
end_int mov     w,#-int_period           
  retiw                           ;exit interrupt 
 
 
; ****** Main program begin 
 
start_point 
; want pull ups on all 
 mode $E 
 mov !ra,#0  ; pull ups on 
 mov !rb,#0  ; pull ups on 
 mode $F 
IF INVSEND 
 mov ra,#%0011 
ELSE 
 mov   ra,#%1011              ;initialize port RA 
ENDIF 
 mov   !ra,#%0011              ;Set RA in/out directions 
 mov rb,#%00001010 
 mov !rb,#%00000101 
 
warmboot 
  CLR     FSR        ;reset all ram starting at 08h 
:zero_ram   SB      FSR.4      ;are we on low half of bank? 
  SETB    FSR.3      ;If so, don't touch regs 0-7 
  CLR     IND        ;clear using indirect addressing 
  IJNZ    FSR,:zero_ram  ;repeat until done 
 
 mov     !option,#%10011111      ;enable rtcc interrupt 
 
 clr rb 
; **** 
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; Here is where the action is! 
mainloop 
 jnb rx_flag,:t1    
 call  get_byte     ; if char, copy to buffer 
 call enqueue 
:t1 
 jnb rx_flag1,mainloop 
 call    get_byte1 ; if char, copy to buffer 
 call enqueue1 
 jmp mainloop 
 
enqueue  
   ; check for buffer overrun! 
  mov w,#1 
  add w,head 
  and w,#bufmod 
  mov w,tail-w 
  jz queuefull   ; if full too bad 
       mov fsr,head 
  add fsr,#scan 
  mov ind,byte 
    inc head 
  and head,#bufmod  ; circular 
 
; calculate buffer limit 
  mov tmpvar,tail          
  cjae tail,head,:normal 
  add tmpvar,#16 
:normal 
  mov w,head 
  sub tmpvar,w 
  jz doret       ; buffer is empty? 
  add tmpvar,#-BUFFERLIM 
  jz :hshalt 
  jc doret   
 
:hshalt   ; buffer full so... 
 
 
IF INVRCVA 
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 clrb rxen_pin 
ELSE 
      setb rxen_pin 
ENDIF 
doret 
queuefull 
  ret 
 
 
enqueue1 
   ; check for buffer overrun! 
  mov w,#1 
  add w,head1 
  and w,#bufmod 
  mov w,tail1-w 
  jz queuefull1   ; if full too bad 
       mov fsr,head1 
  add fsr,#scan1 
  mov ind,byte 
    inc head1 
  and head1,#bufmod  ; circular 
 
 
; calculate buffer limit 
  mov tmpvar,tail          
  cjae tail,head,:normal 
  add tmpvar,#16 
:normal 
  mov w,head 
  sub tmpvar,w 
  jz doret       ; buffer is empty? 
  add tmpvar,#-BUFFERLIM 
  jz :hshalt 
  jc doret   
 
:hshalt  ; buffer full... 
 
 
IF INVRCVB 
 clrb rxen_pin1 
ELSE 
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      setb rxen_pin1 
ENDIF 
queuefull1 
  ret 
 
 
 
; Subroutine - Get byte via serial port 
; 
get_byte 
  bank serial 
            jnb     rx_flag,$          ;wait till byte is received 
  mov     byte,rx_byte       ;store byte (copy using W) 
  clrb    rx_flag            ;reset the receive flag 
  ret 
 
get_byte1 
  bank serial 
            jnb     rx_flag1,$        ;wait till byte is received 
  mov     byte,rx_byte1     ;store byte (copy using W) 
  clrb    rx_flag1          ;reset the receive flag 
  ret 
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The SSIB Test Program 
' Program to test SSIB 
baudrate con 32 
 
' Use the next 2 lines when using inv mode serial 
' low 12 
' low 13 
' Use next 2 lines when using non inv mode serial 
high 12 
high 13 
' Read starting numbers 
debug "sync A " 
serin 14\12,baudrate,[dec w3] 
debug "B " 
serin 14\13,baudrate,[dec w4] 
debug "Complete",cr 
 
 
top: 
w3=w3+1   ' calculate expected next numbers 
w4=w4-1 
pause 1000   ' do some "work" (pause really) 
' read numbers 
serin 14\12,baudrate,[dec w1] 
serin 14\13,baudrate,[dec w2] 
debug "A:",dec w1,cr 
debug "B:",dec w2,cr 
' see if they met our expectations 
if w1=w3 then testb 
debug "Channel A mismatch. Expected ",dec w3, " got ", dec w1,cr 
w3=w1 
testb: 
if w2=w4 then top 
debug "Channel B mismatch. Expected ",dec w4, " got ", dec w2,cr 
w4=w2 
goto top 
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Simulated Serial Devices for the SSIB 
' This program just writes out two  
' data streams to test the SSIB 
w1=0 
w2=$FFFF 
top: 
serout 15\9,84,[dec w1,","] 
serout 8\10,84,[dec w2,","] 
w1=w1+1 
w2=w2-1 
pause 5 
goto top 

 

Exercises 
 
1. If you wanted to add more serial channels to the SSIB, what points would you need to consider? 
2. Devise a scheme to buffer 32 characters instead of 16. Show code to increment and decrement the pointer 

to the buffer.  
3. Could you make the SSIB automatically detect the correct polarity of the input lines? What would be the 

plusses and minuses to doing this? 
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Answers 
1. Adding another channel to the SSIB would require more program memory and data memory for the circular 

buffer. Of course, you’d also need addition I/O pins. However, the biggest limitation to adding another 
channel would be placing more code in the ISR. Remember, if the ISR’s execution time exceeds the periodic 
interrupt rate, the code will not function properly. Also, as the ISR consumes more time it leaves less time 
for the remainder of the program. So if the ISR rate is, for example, 100uS and the ISR requires 80uS this 
leaves only 20uS for the remainder of the program. 

 
Of course, you can always move to a 28-pin device for more pins. The SSIB is not over taxing the part’s 
memory. You could solve any potential ISR problems by increasing the part’s speed so that you can execute 
more instructions in the same amount of time (of course, this increases current consumption). 

 
2. Buffering 32 characters is somewhat complex because of the SX’s banked architecture. Remember that the 

SX has 8 banks of 32 registers. However, the first 16 registers are the same in each bank. Of those 16 
registers, 7 or 8 (depending on the device type) are reserved for system functions. The remaining 8 or 9 
registers are usually used for variables that you have to frequently access so you can avoid bank switching. 

 
The current serial buffers are at addresses $50 and $70. If you try to grow these buffers arbitrarily you’ll run 
into trouble. For example, $50 + $10 = $60, but $60 is really the IND register (the same as location $00). 

 
Suppose you decided to store the buffer for the first channel in two parts, one at $50 and one at $70 (you 
can move the other buffer to another address). When you increment the head or tail variable you’ll have to 
take this into account: 

 
 inc head 
 cjne head,#$60,:nospan 
 mov head,#$70 
:nospan 
 cjne head,#$80,:doneinc 
 mov head,#$50 
:doneinc 
 
To decrement, you’d need this code: 
 
 dec head 
 cjne head,#$4F,:nospand 
 mov head,#$7F 
:nospand 
 cjne head,#$6F,:doned 
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 mov head,#$50 
:doned 
 
 
3. Detecting the state of the line would require you to sense the input lines at some point when they were idle. 

For example, on reset you could read the serial input lines and assume they are idle. Then you could invert 
or not invert your inputs as appropriate. The problem is, what happens if the lines are not idle? You could 
erroneously sample a start bit, for example, and then you’d pick the wrong polarity. 

 
 When designing a general-purpose component, you need to take great care that your devices will work 

under a variety of conditions. Therefore, this method is probably not appropriate since it could fail in certain 
cases that are likely to occur, at least for some users. 

 
 A better idea would be to reserve an otherwise unused input pin and sense it on reset. The designer using 

your chip could then tie the input high or low to set the chip’s polarity. This would be a must if you were 
not providing the source code with the part. Currently, the only way to change polarity is to recompile the 
source code. Some users won’t be able to do this, and you may be unwilling to release your source code 
anyway. 

 
 
 
The programs and information in this tutorial are presented for instructional value. The programs and 
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and 
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any 
information herein and is not responsible for any errors or omissions. The publisher and author assume no 
liability for damages resulting from the use of the information in this tutorial or for any infringement of the 
intellectual property rights of third parties that would result from the use of this information.  

 
Rev1. 
 

 


