

Introduction to Assembly Language
Programming with the Scenix SX

Microcontroller
Educational Tutorial for the SX University Program

Version 1.2

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect,
Parallax will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization
(RMA) number, write the number on the outside of the box and send it back to Parallax. Please include your name, telephone
number, shipping address, and a description of the problem. We will return your product, or its replacement, using the same
shipping method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund.
Parallax will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product
has been altered or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decided
to use the name BASIC Stamp on your web page or in printed material, you must state that "BASIC Stamp is a registered
trademark of Parallax, Inc." Other brand and product names are trademarks or registered trademarks of their respective
holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and
any costs or recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not
responsible for any personal damage, including that to life and health, resulting from use of any of our products. You take full
responsibility for your BASIC Stamp application, no matter how life-threatening it may be.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax,
and communicate with other customers. Access information is shown below:

 E-mail: sxtech@parallaxinc.com
 Ftp: ftp.parallaxinc.com - ftp.stampsinclass.com - ftp.sxtech.com
 Web: http://www.parallaxinc.com - http://www.stampsinclass.com - http://www.sxtech.com

Table of Contents

Unit I. Getting Started... 7

About This Course...7
Start at the Beginning..8
Problem #1 ..9
Problem #2 ..10
Watch Your Language ...10
The Working Environment..11
Is That It? ..11
The Development Cycle ...12
Number Systems...13
Other Places, Other Bases..14
Say What You Mean ..15
Size Matters..15
The Hardware Connection..15
Summary..16
Exercises ..16
Answers ...17

Unit II. Your First Program ... 19

First Step..19
Lock and Load ..20
So What? ...21
Inside the Program..21
Registers ..22
Elementary Debugging ..23
Stopping the Debugger..26
Summary..27
Exercises ..27
Answers ...28

Unit III. Simple Flow Control .. 29

Running?..29
More Interesting?..30
What's Wrong? ...31
Other Forms of JMP...32
Local Labels..33
Another Way to INC ..33
Stopping the Processor ..34
About the Watchdog..34
Summary..36
Exercises ..37
Answers ...38

Unit IV. Variables and Math ...39

An Example.. 40
Assignment .. 42
Performing Math... 43
Two's Compliment Numbers .. 44
More Carry Tricks ... 45
Try It!.. 45
A Few More Functions ... 46
Programmed Delays.. 48
Logical Functions .. 49
Summary ... 52
Exercises ... 52
Answers... 53

Unit V. Advanced Flow Control ..55

Comparing ... 56
Using Call and Return.. 57
Tables ... 61
Math Functions... 63
Division.. 64
Summary ... 66
Exercises ... 66
Answers... 68

Unit VI. Low-Level Programming ..73

Port Control.. 73
Analog Capabilities.. 75
Register Banking... 75
Program Pages ... 78
Reading Program Storage.. 79
Summary ... 79
Exercises ... 80
Answers... 81

Unit VII. Interrupts..83

The Real-Time Clock Counter... 83
RTCC Delays .. 85
RTCC Interrupts ... 85
Periodic Interrupts .. 87
A Clock Example ... 88
External Interrupts via RTCC.. 90
Port B Multi-Input Wakeup .. 90
Port B Interrupts... 93

Summary..94
Exercises ..94
Answers ...95

Unit VIII. Virtural Peripherals... 101

Using a Virtural Peripheral.. 101
Mixing Virtural Peripherals.. 103
Summary.. 104
Exercises .. 104
Answers ... 105

Appendix A. Instruction Summary.. 115
Appendix B. Hardware... 123

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 7

Unit I. Getting Started
Unit I from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

Back in 1943, the chairman of IBM predicted that one day there would be a world-wide market for five
computers. Today, computers are everywhere. Sure, there are PCs in many homes, but the real computer
invasion isn't in the home PC. Instead, people buy computers in just about every electronic device they own.
Today your television, your phone, your microwave oven, and your car all have computers (some have several
computers).

These computers may not be as obviously powerful as your desktop PC, but they are designed to control the
real-world. An integral part to designing electronic equipment today (for fun or for profit) is understanding how
these devices work and how you can use them in your own creations.

Why use these microcontrollers? Often a microcontroller can replace a large number of other components. For
example, consider a phone answering machine. Do you really need a microcontroller to do the job? No. If fact,
many old fashioned answering machines did not use microcontrollers. Instead they had a circuit to detect a
ringing phone. The ringing would activate a timer chip (or in a really old machine a timing cam on a motor). This
timer would trip a relay that would take the phone off the hook. Then another timer would start the tape player
that played the outgoing message. When the outgoing message finished (based on time, or sensing a clear piece
of tape at the end of the tape), another timer would start a regular tape recorder for a preset time to record the
call.

Instead of three timers today's answering machine uses a microcontroller. With just a few external parts, the
microcontroller can operate the entire system with ease. But there is much more. A microcontroller can also
sense if someone is really talking on the other end of the line. It can accept Touch-Tone commands to allow
remote control. It can even store and playback voice digitally instead of using tapes. Try making a sophisticated
remote control without a microcontroller.

So our microcontroller phone machine is much more powerful than its ancestors. It also costs less.
Microcontrollers are now quite inexpensive - even if you don't account for the number of parts it can replace.
Fewer parts also make devices smaller, cheaper, and less prone to failure.

About This Course
This course is all about incorporating these powerful little computers - microcontrollers - into your own designs.
Particularly, we will use the Scenix SX microcontroller along with the SX-Key development system from Parallax.
The SX is an inexpensive yet very powerful microcontroller. The SX-Key allows you to program the SX and also
debug your programs in real-time. In the past, hardware like the SX-Key was very expensive (thousands of
dollars) and was only available to well-stocked labs. However, the SX-Key is quite affordable (only a few hundred
dollars, depending on options).

Unit 1. Getting Started

Page 8 • Introduction to Assembly Language with the Scenix SX Microcontroller

To get the most out of this course, you should already be familiar with elementary hardware design. You should
understand how LEDs work, for example, and understand basic electronic laws (like Ohm's law). This course will
focus on designing programs to run the microcontroller and thereby control electronic circuits. Although you
usually think of programs as software, when a program is inside a microcontroller it is often known as firmware -
a cross between hardware and software.

The labs in this course are best performed with the SX-Tech Board available from Parallax. However, you can
also wire up your own version of these circuits on any solderless breadboard (See Appendix B).

The SX chip is a very powerful chip, but is also useful as a learning tool. Unlike some microcontrollers, the SX
uses electrically erasable memory to store programs. That means that you can write a program, try it, and then
reprogram the chip immediately to run a different program (or a corrected version of the same program). This
coupled with the powerful SX-Key tools provides an ideal environment for learning and experimentation.

Start at the Beginning
If you are not familiar with the way a computer operates internally, it can seem like black magic. It seems as
though the little chips can do practically anything, no matter how complex. However, beneath this complexity is
a surprise. The microcontroller operates very simply. This simplicity means that you - the programmer - have to
take great pains to create these complex behaviors. Programming requires logical thought and attention to
detail.

All programs operate by using a program, or a stored sequence of instructions. These instructions tell the
computer what to do. When the computer first starts, it looks at these instructions in sequence. Some
instructions read inputs. Others control outputs. Still other instructions do some sort of processing.

The Scenix SX uses a Harvard-style architecture. This means that it has one area where it remembers
instructions and another area where it remembers data (including inputs and outputs). This is a common
architecture for microcontrollers (although some computers utilize a Von Neumann architecture where data and
instructions mix together).

Suppose you started a new job at a factory that makes radios. The plant manager gave you the following
instructions:

1. Put an empty crate at the base of the conveyor belt
2. Flip the big red switch on to start the conveyor belt
3. Watch for completed radios to come off the conveyor belt and into the crate. For each radio, click

your handheld counter.
4. When the counter reaches 10, flip the switch again to stop the conveyor belt
5. Move the crate and replace it with a new empty crate
6. Reset the counter in your hand
7. Go back to step 2

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 9

This is exactly like a computer program. It is a sequence of steps. It has inputs (you deciding that a radio came
off the conveyor belt). It has outputs (you flip the big red switch, for example). It also has processing in the
form of counting and making decisions. In fact, this is just the kind of job a computer excels at.

Problem #1
There is a slight problem. Outside of Star Trek computers don't understand ordinary instructions like this. How
do you instruct the computer to perform these steps? Every computer, from the smallest microcontroller to the
largest supercomputer, stores its instructions in the form of numbers. Even worse, computers store these
numbers using base 2 arithmetic (binary, a subject covered later in this unit). That means that a computer
program looks like a series of 1's and 0's. This is called machine language, and is the basis of every computer
program.

Of course, base 2 numbers are not easy for humans to understand, so people usually write the numbers in a
more manageable system. However, even then it is hard to comprehend a program written only in numbers. For
this reason, engineers typically use some more convenient method of expressing programs.

The most common way to program microcontrollers is using assembly language. This is a short hand method
that allows abbreviations to stand in for the 1's and the 0's. You might use instructions like ADD or JMP (jump).
In the old days you'd manually convert this shorthand into 1's and 0's, but today a special program known as an
assembler does it for you. Of course, the microcontroller can't run this program, but your PC can. This is often
called cross assembling - using one computer to assemble (convert from shorthand instructions to 1's and 0's)
code for another computer. The short hand abbreviations, by the way, are known as mnemonics.

Many people find it daunting to program using these low-level instructions. Even though mnemonics are easy to
read, they still represent the machine language, which is very simple. For example, the typical microcontroller
can't directly multiply and divide numbers. Instead they calculate these operations using addition and
subtraction. For this reason, some programmers turn to high level languages like Basic or C - languages you
might be familiar with from other computer systems.

If Basic and C are available for microcontrollers, why use assembly language or machine code? The answer is
efficiency. Microcontrollers generally have limited amounts of memory. Also, you often need them to perform as
fast as possible. A program that uses a high level language will often consume more memory than a well-written
assembly program. It may also run more slowly.

If you do use Basic or C, you can count on the major portion of the language to run on your PC. This is similar to
cross compiling. You write you C program on the PC and the PC converts your program into machine language.
Parallax makes a successful product known as the Basic Stamp that uses the PC to convert Basic code into a
quasi-machine language. The Basic Stamp then executes a program that interprets this quasi-machine language
to perform the programming steps.

Tip: Different types of microcontrollers have different machine languages. However, most people find that if they
learn one microcontroller’s language, others are relatively easy to learn.

Unit 1. Getting Started

Page 10 • Introduction to Assembly Language with the Scenix SX Microcontroller

Problem #2
The next problem is what to do with the 1's and 0's once you have them. Somehow, you have to move these 1's
and 0's into the computer. Older microprocessors used an external memory chip but modern processors have
memory on board that you program with a special device known as a programmer. Some microcontrollers
require ultraviolet light to erase the memory but the SX is instantly reprogrammable so you don't need to wait
for a special light to erase the part.

In a Harvard architecture microcontroller, you can’t change the program code while the microcontroller is
running. Many microcontrollers can’t even read data from their program storage while executing a program.
However, the SX has a special feature that allows you to read data from the program’s memory while running.
This can be useful for storing constants, for example.

Watch Your Language
In this course, you'll use assembly language to program the SX. However, if you are familiar with Basic or C
you'll find parallel code examples to help you visualize the assembly code.

The Parallax Basic Stamp uses a particular variant of Basic known as PBasic. The Basic code will mimic the
Stamp's language so you can apply the same concepts with the Stamp. There are several variants of the Basic
Stamp and one of them has a SX microcontroller in it. However, you must program the Stamp using PBasic --
you can't use machine language. On the other hand, you might wonder why you'd want to use machine
language if you could use Basic. The truth is, Basic is great, but some jobs require the speed and capabilities you
can only get with machine code.

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 11

Figure I.1 – The SX-Key Editor

The Working Environment
Figure I.1 shows the main screen of the SX-Key. Looks like a common text editor, and at this point it is. You can
enter assembly language code in the window. When you want to test or run your program you can use the Run
menu to check your syntax or program the SX chip. To just check your code for simple errors, use the
Run|Assemble menu. You can also use Run|Run to execute the code (assuming you have the chip connected to
the SX-Key hardware).

Tip: The assemble command only checks for simple syntax errors. Logic errors are up to you to find (with help
from the debugger).

Is That It?
The real power of the SX-Key is not entering code. The impressive part is when your code doesn't work. Then
you can use the Run|Debug command.

The debugger (see Figure I.2) allows you to watch the SX execute your program one step at a time and examine
its internal workings. If you are using the SX-Blitz, you can only program the SX – the Blitz does not support
debugging.

Unit 1. Getting Started

Page 12 • Introduction to Assembly Language with the Scenix SX Microcontroller

The Development Cycle
As you might imagine, such powerful tools greatly simplify programming. However you still need a plan. There is
an old saying: “People don't plan to fail, they fail to plan.” This is especially true when programming.

Earlier you read that programs read input, process it, and produce output. This is not a bad place to start when
designing your software. Complex projects may require more rigorous design techniques, but many times this
simple approach is enough. However, nearly every program (especially those for microcontrollers) will follow this
model. Identifying your inputs, outputs, and processing is a solid first step towards realizing your design.

The next step depends on your background, experience, and personal preferences. You might start by making a
list of instructions similar to the assembly line steps mentioned earlier. Some people prefer to draw the steps of
their programs using boxes like a flowchart.

Figure I.2 – The SX-Key Debugger in Action

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 13

Once you have an idea of what your program will look like you can make your first pass at entering the program
into the SX-Key editor using the assembly language instructions you’ll learn in the following units. Your first
attempt at running the program might work, but it isn't very likely. When things don't go as planned you'll turn
to the debugger for a better understanding of your program's operating.

Even if your program works you may still want to use the debugger to study its operation. Sometimes you will
see improvements you missed when thinking about the program in the abstract.

Number Systems
When normal people count they use base 10 or decimal. However, computers like to use binary or base 2.
Programmers have to switch between the two and often use other systems as well.

When you say 138 (in decimal) you really mean:

1×100+3×10+8×1

Decimal digits range from 0 to 9.

Binary numbers are similar, but they use only two digits: 0 and 1. The binary number 1001 is really:

 1×8+0×4+0×2 +1×1 = 9.

You can see how easy it is easy to convert from binary to decimal. Just remember that each digit is worth
double what the digit to the right of it is worth.

Example:

10011110 = 2+4+8+16+128 = 158

Going the other way is a little more difficult. The trick is to determine which binary digit (known as a bit) is the
largest necessary to represent the number. Consider the decimal number 122. The right-most bit in any binary
number is always worth 1. The next bit is worth 2 then 4, 8, 16, 32, 64, 128, and so on.

Since 128 is bigger than 122, that bit can't be in the equivalent binary number. By convention, the right-most bit
is considered bit 0 and the other bits are numbered sequentially from right to left. So the bit with the value of
128 is bit 7.

However, bit 6, with a value of 64, will have a 1 in the answer since 64 is less than 122. Since 122-64=58 you'll
still have to account for this amount. The next bit's value is 32 and 32 is less than 58, bit 5 will also have a 1.
The remainder is 58-32=26.

Bit 4 is worth 16 and so it will also be a 1 leaving 10. Bit 3 (8) will also contain a 1 leaving 2. Now consider bit 2.
It has a value of 4 but this is greater than the remaining value and so it will contain a 0. The next bit is worth 2

Unit 1. Getting Started

Page 14 • Introduction to Assembly Language with the Scenix SX Microcontroller

so it will be a 1 and it leaves a remainder of 0. Therefore, all the bits to the left (in this case, only bit 0) will have
a zero value.

So the answer is that 122 = 1111010. You can check your work by reversing the conversion. In other words:

 1×64+1×32+1×16+1×8+0×4+1×2+0×1 = 122.

It should be obvious, but you can add as many zeros as you like to the left of a binary number (or any number
for that matter). So 1111010 and 01111010 and 0000000001111010 are all the same number.

Other Places, Other Bases
Since most people use decimal you have to use it sometimes. But many times it is easier to use other notations
that are easier to convert to binary. The most common alternate base is hexadecimal or base 16.

Hexadecimal (commonly known as hex) uses 16 digits -- 0 to 9 and A-F. You can find the values in table I.1.
Notice that to convert between binary and hex you can simply use the table. So F3 hex is 11110011 binary.

In hexadecimal each digit is worth 16 times more than the one before. So F3 hex is:

 15×16+3×1=243
And 64 hex is:

 6×16+4×1=100.

Hex Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Table I.1 – Hexadecimal Digits

Tip: Many calculators, including the CALC program in Windows, can convert between bases automatically.

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 15

Say What You Mean
With these different ways of writing numbers, it is easy to get confused. Even the SX-Key assembler can't
magically guess which number system you are using. That’s why it is important to specify exactly what kind of
number you are writing.

To specify the number system in use, you write numbers with special prefixes. A number that begins with a $,
for instance, is a hex number. Binary numbers begin with a % character. Since decimal numbers are the most
common numbers, they don't have a prefix.

Tip: Not all assemblers use this naming convention. For example, some assemblers use suffixes to indicate the
number type. Others use different prefixes. However, the SX-Key assembler you will use in this course will use
the prefixes as indicated.

Size Matters
Another concern with numbers is how many bits they occupy. The SX uses an 8-bit word size for data. This is
often called a byte. The problem with bytes is that they can only hold numbers from 0-255. What if you need
bigger numbers? Or negative numbers? Then you'll need to resort to special techniques found in unit VI.

Remember, by convention, you number bits starting at the right-most bit. So the right-most bit is always bit 0.
The left-most bit in a byte is bit 7. This is somewhat confusing because bit 7 is actually the eighth bit (because
you started counting at 0 instead of 1).

Incidentally, although the SX uses an 8-bit word for data, its instructions are 12 bits wide. Since the Harvard
architecture separates code and data, this isn’t a problem, as it would appear to be.

The Hardware Connection
Of course, as nice as the SX-Key is, it is only a means to an end -- programming the actual SX chip!

The SX is an especially speedy processor. It can run at speeds up to 100MHz and can execute most instructions
in a single cycle (10nS per instruction). In a real project, you must supply a crystal or a ceramic resonator for
speeds greater than 4MHz. However, when working with the SX-Key it provides the clock (you can change the
clock speed using the Run|Clock menu).

The SX comes in an 18-pin package and a 28-pin variant. The 18-pin device has 12 I/O pins and the 28 pin
device sports 20 I/O pins. Both devices have 2K of program storage and about 136 bytes of data storage
(although future devices may have different amounts of memory). There is also a surface mount-only, 20-pin
device that is about the same as the 18-pin SX. When you write a 1 to an output pin, it generates (roughly) 5V.
If you write a 0 to the pin, it outputs 0V. On input, the pins recognize voltages above a threshold (typically 1.4V)
as a 1 and below the threshold as a 0. You can make any pin an input or an output and you can even switch
them during program execution.

Unit 1. Getting Started

Page 16 • Introduction to Assembly Language with the Scenix SX Microcontroller

Obviously, your choice of parts will often hinge on how many I/O pins you need. If you want to use, for
example, 4 pins to drive an LCD display, and 8 pins to connect to a keypad, you won’t have anything left over
for other work if you use the 18-pin SX. However, for this course you may also be constrained by the experiment
board you are using since it may only have a socket for one device or another.

You can find the hardware details of the SX in the official data sheet. However, you'll also read more about the
SX hardware in the remaining units of this course.

Summary
The old saying goes: ”The mightiest oak begins as a tiny acorn.” In a similar vein, the simple functions of a
microcontroller can build complex systems if you know how to use them.

To understand low-level computers like microcontrollers you have to speak their language -- or at least the
shorthand assembly language and hex codes that most people use to represent the arcane machine language.

This unit -- by necessity -- covers these fundamentals. By now you should be itching to really use some
hardware. You'll get your chance in the next unit.

Exercises
1. Convert the following numbers to decimal:
 (a) $27
 (b) %101110
 (c) $F1
 (d) $AA

2. Convert the following numbers to hexadecimal:
 (a) 100
 (b) 200
 (c) 17
 (d) %10110110
 (e) %1000001

3. Answer True or False to the following statements:

(a) Programs consist of a series of steps.
(b) All computers us a Harvard architecture.
(c) A Harvard architecture computer uses separate memory for programs and data.

 Unit 1. Getting Started

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 17

Answers
1. (a) 39 (b) 46; (c) 241; (d) 170
2. (a) $64; (b) $C8; (c) $11; (d) $B6; (e) $41
3. (a) True; (b) False; (c) True

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

Unit 1. Getting Started

Page 18 • Introduction to Assembly Language with the Scenix SX Microcontroller

 Unit 2. Your First Program

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 19

Unit II. Your First Program
Unit II from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

By now, you are probably ready to jump in and start a project. Good, because that's exactly what you will do in
this unit. You should have a PC running the SX-Key software connected to an SX-Tech board. If you don’t have
an SX-Tech board you can use any other similar development board with some LEDs connected to port B so that
they turn on when you output a 0 from the SX (see Figure II.1). Connect an LED at least to two adjacent pins on
the SX’s B port. If you are industrious, wire 8 LEDs, one to each pin on the B port. You can also save some time
if you use LEDs that have internal dropping resistors. These are available from a variety of sources and then you
don’t have to add the resistor to the circuit. Just wire the LED to 5V and the SX pin.

470
SX Pin

5V

Figure II.3 – LED Circuit

To start with, you'll enter a program into the SX-Key editor, download it to an SX processor, and execute it.
You'll see exactly what each part of the program means later in this Unit. For now, just concentrate on getting
familiar with the steps involved and your hardware setup.

First Step
If you haven't already, install the SX-Key software as instructed in the manual. The manual will also tell you how
to start the program, and you should do so now. The initial screen is blank and you can enter your program here
(you can also, of course, load an existing program from disk).

What to enter? That's the problem! For now, enter the following simple program exactly as shown. Note that
each line except the one containing start_point is indented with a tab. This is a common practice in assembly
language – placing labels (like start_point) in the first column, and placing commands to the right at least one
tab.

Unit 2. Your First Program

Page 20 • Introduction to Assembly Language with the Scenix SX Microcontroller

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 mov rb,#0 ; make all port b outputs = 0
 sleep ; go to sleep

By default the SX-Key software is not case sensitive, but you can set it to be if you like (this makes things harder
though, so you probably should not do so).

It is a good idea to save your program from time to time. If Windows freezes or crashes for some reason, you’ll
be glad you saved. Certainly you should save your work before you try to run the code on the SX.

When you finish entering the program, select Run|Assemble from the SX-Key menu. If you entered everything
with out any mistakes, you'll see “Assembly Successful” In the status bar. Otherwise, you'll see an error message
and the cursor will jump to the line containing the error. Fix the error and try again.

At this point, the only thing the SX-Key software is doing is checking your program for syntax errors. It is still
possible (and even likely) to make logical errors that the assembler can't catch. Think about a word processing
program's spell checker. It can tell you if you spell 2 as “tew”, but it can't warn you if you spelled it as “too” or
”to”. The assembler has the same problem. It can tell if you've made an obvious mistake, but it can't decide if
you're program works as you expect it to operate.

Lock and Load
Once your program assembles correctly, you can download it to the SX chip. The most obvious way to do this is
to use Run|Program. This assembles the program again and, if the assembly has no errors, loads the machine
code to the SX chip. You can find more about the hardware setup in Appendix B. Of course, if you are using the
SX-Tech board, you can also refer to its instructions for the hardware and software setup instructions.

However, you may find it better to use the Run|Run menu item. This works just like the Program command, but
it also starts the program running. If you've already used the Program command, you can just use the Run
command again, or select Run|Clock to start running.

Either way you start running you should see the LEDs connected to port B light up. Not very exciting, but it is a
start. At this point you know your hardware is working and your software is configured correctly.

Tip: Once you program the SX the chip retains the program until you reprogram it.

 Unit 2. Your First Program

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 21

If you are guessing what the program is doing, you might wonder why the LEDs light up when the pins outputs
a zero. This may seem counterintuitive, but it is a common practice. Although the SX can sink and source a
considerable amount of current, many chips can sink more than they can source. Because of this, designers
often wire LEDs and other loads so that they turn on with a 0 logic level.

So What?
On the face of it, this seems unimpressive. You can make LEDs light up with no external circuitry at all, right? So
add the following line of code right before the line that has sleep in it:

 mov rb,#$AA ; make every other port b output = 1

Now when you run the program, you’ll see some lights on and some lights off. Is that correct behavior? After all,
the program first turned all the lights on. Then it turned some of them off. Why can’t you see all the lights turn
on before some of them turn back off? The answer is that the SX chip is running each instruction in 20nS! You’d
have to have some pretty good eyes to see those LEDs light up for 20nS.

However, if you could make the SX run instructions one at a time, you could see it. In fact, that is something the
debugger can do. Before you dive into the debugger, however, let’s take a look at what is happening inside this
simple program.

Inside the Program
The easiest way to figure out what this simple program is doing is to examine it line by line. Along the way,
you’ll see some key concepts that you’ll deal with in every program you write. The first two lines begin with the
device keyword. This is not really an SX command. Instead, it is a directive to the assembler. Most keywords
have some equivalent machine language value. However, directives don’t generate machine code, they simply
give the assembler instructions. In this case we want the assembler to know that we are writing a program
where the SX should configure itself to look like a PIC16C55 (an older processor) and a high-speed oscillator
(oscxt5). The second line informs the assembler that we want to use several special modes that the SX
supports. The assembler will use this information to burn the SX configuration fuses. These fuses control the
chip’s hardware settings and are not part of the actual program. Normally, you will want to replace the
pic16c55 directive with either sx28l (for 28-pin devices) or sx18l (for 18-pin chips). However, until you learn
about banking in unit 6, it is better to stick with the 16c55 emulation.

The next line contains a reset directive. This informs the assembler where the program is to start executing.
You might think that it would be logical for the program to start at the beginning, but you’ll see later that this is
not always the case. The name after the directive, start_point, is a user-defined label. This label can be any
identifier you want and locates a spot in the program.

Tip: Labels and other identifiers can contain up to 32 characters. The first character must be a letter or an
underscore. The other characters can be letters, underscores, or digits. You can’t use reserved words (like sleep
and reset) as an identifier.

Unit 2. Your First Program

Page 22 • Introduction to Assembly Language with the Scenix SX Microcontroller

The next line specifies the clock frequency in Hertz. This doesn’t really do anything for the SX chip, but it helps
the debugger determine what clock frequency you want to use. If you don’t specify a freq directive, the default
is 50MHz. You can also change the clock frequency for running programs using the Run|Clock menu. The
assembler allows you to add underscores in any number like this to make it more readable. So you may see a
similar line written like this:

 freq 50_000_000

The next line contains the final directive, org (which stands for origin). This directive instructs the assembler to
begin generating code at a particular address. In this case, you want to start at the beginning so the org is 0.

The next 3 lines (or 4 if you’ve added the line of code that turns off some LEDs) are the actual program. The
things up to this point were simply directives to the assembler. The first program line starts with the
start_point label. This is so the reset directive can refer to it. Notice that the label appears first on the line.
The remainder of the line is the actual instructions for the microcontroller.

Registers
The data memory of the SX consists of a small number of byte-sized registers. Although there are well over 100
registers in the SX, your program can only work with 32 of them at a time. In a later unit, you’ll learn about
banking which allows you to get to all the registers, but for now, suffice it to say that there are 32 registers.
Register $08 to $1F are available for you to store data. However, registers $00 to $07 are special because they
control the SX chip as your program executes.

For example, register $05 corresponds to the SX’s port A. When you read a value from register $05 (known to
the assembler as the ra register), you are actually reading the digital signals present on port A’s input pins. If
you write to the ra register, you will alter the digital signals that appear on port A’s output pins. You can also
use $06 (rb) or $07 (rc). For the 18-pin device (which has no port C) you can use register $07 for data storage
if you wish.

This leads to another problem: How do you know which pins are inputs and which are outputs. Initially, all pins
are set as inputs. However, your program can change this at any time by storing a special value into the port’s
direction register. To access the port’s direction register you put an exclamation point in front of the register
name. Writing a 0 to the direction register makes the corresponding bit an output. A 1 makes it an input.

Now the three lines of the program make more sense. The first line uses the mov (move) instruction. This
instruction moves a zero into the port B direction register (!rb). Notice that the 0 has a # character in front of it.
This marks it as a constant. Without this #, the instruction would move the contents of register 0 into !rb. You
can add a base (or radix) specifier after the #, so #$FF is a hex constant and #%1011 is a binary constant.

 Unit 2. Your First Program

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 23

The second line uses the same instruction, but now the destination register is rb instead of !rb. This writes the
data out to the port. Since all the pins are outputs, each pin will now have a 0V level. This causes the LED to
light.

If you added the extra line of code, it writes $AA to the ports. This is the same as %10101010 so it alternates
the LEDs. The final line, sleep, shuts the processor down in low power mode. You will rarely use this in a real
program – at least, not in this way – most microcontrollers never just stop. Later, you’ll see that you might want
to sleep until some external event or time period wakes you up, but in this case the processor just sleeps forever
– something almost unheard of for a microcontroller.

One other item you might notice in the program is the comments. These start with a semicolon and continue to
the end of the line. You can use comments anywhere you want to make notes about the program’s operation.
This is a good idea in case anyone else has to read your work. It might even help you when you need to review
your code 6 months down the road and you can’t remember how things worked.

Tip: Another use for comments is to temporarily remove a line from your program. Just put a semicolon in front
of the line you want to “delete” and then you can restore it by simply removing the semicolon.

If you were a PBasic programmer, you might like to think of this program as similar to this:
 DIRL = $FF
 OUTL = $00
 END

Notice that PBasic uses a direction register just like the SX. However, the bit meaning is the opposite. In a Basic
Stamp program, direction bits of 0 set input pins, and a 1 sets the output pins.

Taken one piece at a time, this program isn’t very complicated at all. However, there is an even better way to
understand what it is doing: use the debugger.

Elementary Debugging
Once your program is running, you might like to try executing it with the debugger to see how it works
(assuming you are not using the SX-Blitz which does not support debugging). This will also give you practice
using the debugger, something you are sure to need before long. To start, use the Run|Debug command. This is
similar to the Run|Run command but it also loads a special debugging program into the SX chip. Normally, you
don’t know this program is present. However, you do have to have some free memory for the debugger or it
won’t work. In fact, the following requirements are necessary for debugging to work:

• No external clock (the SX-Key supplies the clock)
• Use the RESET directive
• No watchdog timer (covered later)
• 2 free instructions in the first bank of program memory
• 136 free instructions in the last bank of memory
• A FREQ directive, unless you want to run at 50MHz, in which case FREQ is optional

Unit 2. Your First Program

Page 24 • Introduction to Assembly Language with the Scenix SX Microcontroller

After you press Run|Debug you’ll see the usual programming windows. Then you’ll see three windows open up.
The Registers window contains the contents of the SX registers and a dump of the machine code you are
executing. The Code window shows your source code (and the machine code to the left of that). Finally, the
Debug window gives you a remote control to start and stop your program in a variety of ways.

The first thing you will notice is that your program starts at the top of memory, not at your starting point. That is
because the SX always starts at its topmost address. Since you told the SX it should pretend to be a 16c55, this
program begins at address $1FF (this will vary in other modes, but will always be the highest possible address).
At this address is a JMP instruction that the assembler wrote for you – based on the information in the RESET
directive. This instruction jumps to a different address and determines the starting address of your program.

In Figure II.2 you’ll notice that the Register window has the first 16 SX registers on the left-hand side of the
screen. You’ll notice the RA, RB, and RC registers, as well as the user registers $08 to $0F. The display is in
hex, but directly to the right of each value is the same value in binary. The other registers (in hex only) are on
the right-hand side of the Register window.

The center of the screen shows the machine language dump of your program. Notice that some instructions you
write in your program actually generate more than one machine language instruction. For example, the line that
reads:
 mov !rb,#0

Really generates:
 mov w,#0
 mov !rb,w

The W register (which appears near the top of the register window) is a special register often known as the
accumulator. Practically all math operations occur in the W register.

There is no instruction to move a constant into the !rb register, so the assembler automatically used the W
register. This can lead to program bugs if you don’t keep it in mind. For example, consider this:
 mov w,#$AA
 mov !rb,#0
 ; Now w has 0 in it even though you think it has $AA in it!

 Unit 2. Your First Program

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 25

Figure II.4 - The Debugger

Unit 2. Your First Program

Page 26 • Introduction to Assembly Language with the Scenix SX Microcontroller

The remote control has buttons that you can use to study your program:

• Hop – Executes one assembly language instruction (remember, this might be more than one machine
instruction)

• Jog – Executes assembly instructions in slow motion letting you see the results as your program run
slowly – press Stop to end Jog mode

• Step – Executes one machine language instruction
• Walk – Similar to Jog mode, but steps machine language instructions instead of assembly language

instructions
• Run – Runs your program at full speed. The debugger can’t examine registers until you press Poll or

Stop
• Poll – This button only becomes active while running. It causes the debugger to freeze the processor

momentarily, read the registers so you can view them, and resume program execution
• Stop – End a Jog, Walk, or Run command (only active when these commands are running)
• Reset – Starts the program over

As you step through your program, you’ll see a highlight to indicate what instruction your program is executing.
Also, registers that change value will appear in red.

Stopping the Debugger
This is a short program, so it is easy to step through it. However, this is not always the case. Many times, the
area of your program you want to examine will be buried in the middle of a long program. Perhaps that piece of
code only runs when an external event triggers it, or after a time delay. In this case, you’ll want to set a
breakpoint.

Simply put, a breakpoint is a stop sign in your program. When the SX tries to execute the line of code the
breakpoint is on, the debugger takes control and the programs pauses execution. You can resume execution
using the Debug remote control, either running the program or stepping through it.

The debugger supports one breakpoint at a time. To set a breakpoint, just click on the line you want to stop at
(either in the Register or Code windows). The line will turn red. Now if you press Run (be sure to press Reset
first if you’ve already run the program) the program execution will halt at the breakpoint. Setting a new break
point, clears any existing ones. If you want to clear all breakpoints, just click on the red line that already has a
breakpoint.

 Unit 2. Your First Program

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 27

You can also add a breakpoint in your assembly language program so that you’ll always have a breakpoint set
when you start debugging. You do this by adding a BREAK directive in your program like this:

 mov !rb,#0
 break
 mov rb,#$FF

By the way, if you try to set a BREAK before a sleep instruction it won’t work. If you have to do this, just use a
NOP instruction after the break. NOP stands for no operation and the instruction does absolutely nothing but
waste time. You may have to use this same trick when debugging code that loops to the same address using
jmp.

Summary
So far you’ve read about four instructions, mov, sleep, nop, and jmp. There is more to learn about the mov
instruction, but even then it is obvious you need more instructions to write any sort of useful programs. Still,
even this small set of instructions allows us to control the output bits of the SX. In the next unit, you’ll learn
more about jumps and labels and build more functions into this simple program.

Exercises
1. Since each bit in the direction register stands for a different pin, it makes sense to specify the value for

the direction register (and often for the port register itself) in binary. Rewrite the first example program
in this unit to use binary numbers instead of hexadecimal numbers.

2. The JMP instruction transfers control to a different address. Can you replace the SLEEP instruction
with a JMP back to the top of the program? Predict how this will affect the LEDs.

3. The problem with the program in this unit is that the LEDs change so fast, you can’t see them without
the debugger. Can you reduce the speed of the SX so you can visualize the LEDs when running without
the debugger?

Unit 2. Your First Program

Page 28 • Introduction to Assembly Language with the Scenix SX Microcontroller

Answers
1. Change #0 to #%00000000 and #$AA to #%10101010
2. Change the sleep command to this:

 jmp start_point
The LEDs now change rapidly over and over. You can’t really see the lights change, but you’ll notice
that the lights that turn off appear somewhat dimmer than the ones that are on at all times.

3. Using Run|Clock, you can reduce the clock speed to 400kHz. However, this is still not slow enough to
see the LEDs change. Probably the best way to see what the program is doing is to use the Jog or Walk
commands in the debugger.

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

 Unit 3. Simple Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 29

Unit III. Simple Flow Control
Unit III from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

In the previous unit, you wrote and debugged a simple program. This program started at address 0, executed a
simple set of instructions, and then went to sleep. While this was good to start with, it is clear that most
microcontrollers don’t execute a few commands and then stop – they run all the time, monitoring inputs and
manipulating outputs.

In this unit, you’ll extend the simple program from last time so that it does more interesting things. Along the
way, you’ll read about a few more simple SX instructions.

Running?
As you ran the last unit’s program in the debugger, you may have notice that the PC register changed every
time you executed a step. If you noticed a little more, you might have realized that the number in PC matched
the address of the current machine language instruction. That’s because PC is the program counter. This is a
special register that tells the SX which instruction it will execute next.

Do you remember the first instruction you saw in the debugger? It was a JMP that the assembler automatically
put in at the default reset address so that our program could start where we wanted it to start. Of course, you
can also write your own JMP instructions to control the flow of execution in your own program. This is similar to
using a goto statement in Basic or C.

In the last unit’s exercises, you changed the sleep instruction to a JMP to cause the program to restart at the
beginning instead of stopping. However, the solution presented isn’t as efficient as it could be. Here’s the entire
solution:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 mov rb,#0 ; make all port b outputs = 0
 mov rb,#$AA ; change port b outputs
 jmp start_point

Unit 3. Simple Flow Control

Page 30 • Introduction to Assembly Language with the Scenix SX Microcontroller

What’s wrong here? Nothing is actually wrong. However, the code as written keeps storing 0 in the direction
register (!rb). There is no reason to do this. Once the direction register is set, there is no reason to keep setting
it again. It doesn’t hurt anything to reset it, but it wastes time that you could use to do something else.

The solution is simple. Just add another label to the line following start_point. Call it again. Then you can
jump to again instead of start_point. So:

start_point mov !rb,#0 ; make all of port b outputs
again mov rb,#0 ; make all port b outputs = 0
 mov rb,#$AA ; change port b outputs
 jmp again

Another way to make the program a bit more readable is to use the CLR instruction. The CLR instruction can
set any normal register or the W register to 0. You can’t use it with the !rb register though. This is also more
efficient since using MOV to clear a normal register requires two instructions as opposed to a single instruction
for CLR. Here is the code:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb ; make all port b outputs = 0
 mov rb,#$AA ; change port b outputs
 jmp again

More Interesting?
To make the program more interesting, you’ll need a few more instructions. Consider the INC (increment)
instruction. The INC instruction adds 1 to a register. Since the port B pins look like a register (the rb register),
you can increment it just like any other register.

Change your code to look like this:

start_point mov !rb,#0 ; make all of port b outputs
again clr rb
 inc rb ; change port b outputs
 jmp again

What should this do? You’d like the program to cycle the lights in a binary pattern. So first all lights are on, then
the LED on pin 0 turns off. Then it turns back on and the LED on pin 1 turns off. Just like counting in binary
where on LEDs represent a 0.

That’s what you’d like the code to do, but it won’t work. Try it. When you run the code, the LEDs seem to stay
on all the time. If you single step through the code, you’ll see something a bit different. Use the debugger to
determine what’s wrong with the program (even if you’ve already figured it out) and then read the next section.

 Unit 3. Simple Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 31

What’s Wrong?
As you probably realized, the problem is that jumping to again makes the program reset the rb register to 0. To
fix this problem, move the again label to the next line like this:

start_point mov !rb,#0 ; make all of port b outputs
 clr rb
again inc rb ; change port b outputs
 jmp again

Now the program works as you’d expect. If you have an oscilloscope, you might find it interesting to watch the
port B pins. Bit 0 of port B will generate pulses of a certain width based on the system clock. Bit 1 will emit
pulses twice as long. Bit 2 will create pulses 4 times as long, and so on. Using the timings for each instruction
provided in the SX data sheets, you can actually calculate these times. The inc instruction requires 1 clock cycle
(20nS at 50MHz) and the jmp requires 3 cycles (60nS at 50MHz). So the pin will change every 80nS. For
practical purposes, you’ve created a square wave oscillator and a divider – all in software.

It is worth noting that the SX has two ways it can execute instructions: compatibility mode, and turbo mode. In
compatibility mode, the SX requires more time to execute each instruction. For example, in compatibility mode,
an inc requires 4 clock cycles. This make the SX compatible with programs written for PIC microcontrollers (from
Microchip) that require the slower execution rate. All the programs in this tutorial use the turbo clause in the
device statement, and therefore require about a quarter of the time to execute as they do in compatibility
mode. For new programs you’ll always want to enable turbo mode so you can get the best possible
performance.

When programming microcontrollers, it is often necessary to compute the number of instructions that will
execute so you can precisely set times. Sometimes you want to do this to set a time delay. Other times you’ll be
setting a frequency, as in this case. When you are fine-tuning your delays, you might find the nop instruction –
the one that does nothing – useful. You first saw this instruction in the last unit. It simply wastes 1 clock cycle.

In PBasic, by the way, you’d use a program similar to this:

DIRL=%11111111 'all outputs
OUTL=b1
Loop:

b1=b1+1
OUTL=b1

GOTO Loop

One thing to consider is what happens when some of the pins in port B are inputs (which they are not in this
case). That could pose a problem since the increment instruction reads the port, increments the value it finds,
and then writes the new value back to the port. When some pins are inputs, the instruction will read the input
pins correctly and they will reflect the external stimulus placed on the SX chip. When you increment that, you
may or may not get what you expect.

Unit 3. Simple Flow Control

Page 32 • Introduction to Assembly Language with the Scenix SX Microcontroller

As an example, suppose that bit 7 was an input. When you write 0 to the port, that has no effect on bit 7. If port
B’s pin 7 has a logic low applied to it, the first INC instruction will work as you’d expect. It would read a 0 and
write a 1 to the output. However, if the pin were high, the INC instruction would read a %10000000 and write
%10000001. This probably wouldn’t hurt anything, there are cases where this is a problem. Always be wary of
using instructions that read, modify, and write on I/O port registers.

Other Forms of JMP
The jmp instruction, by the way, has two other forms that you can use. One is that you can use the W register
(the accumulator) as the destination address. Just write:

 JMP W

This is useful when you want to use a calculation to determine where to jump. The other form of JMP isn’t a
JMP at all. The ADD allows you to add the W register to the PC register. This causes a jump over a certain
number of instructions. Of course, the ADD instruction really just adds the W register to any other register. It
just so happens that changing PC is effectively a jump. For example, consider this:

CLR 8 ; clear register 8
MOV W,#2
ADD PC,W
INC 8
INC 8
INC 8
BREAK ; what is in reg 8 now?
INC 8

When the debugger hits the breakpoint, register 8 contains 1 because changing PC causes the first two INC
instructions to not execute. The assembler allows you to write this instruction as JMP PC+W to make your
program easier to read.

Tip: Since the 2 in this example is a constant, you really could use a regular JMP instruction to skip these two
instructions. One way, of course, would be to label the target of the JMP. However, you can also use the special
label $ which means the current address. So you could write jmp $+3 instead. Why +3 instead of +2? Since $
refers to the current address, you have to add 1 just to get to the next instruction. Adding 2 would only skip 1
instruction.

The real value to using ADD to perform a jump is when you compute the offset at run time. This allows you to
create data and jump tables as you’ll see later in this tutorial.

 Unit 3. Simple Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 33

In this example, using 8 as a register number is confusing. Remember, it isn’t a constant because it didn’t start
with a #. However, it is much nicer to name your variables in a meaningful way. The assembler provides you a
couple of ways to do this that you’ll read about in the next unit.

Of course, sometimes you want to jump only if some condition is true of false. For example, you might want to
jump only when the user presses a button, or when a sensor reads a certain value. You’ll find out how to do that
in Unit V.

Local Labels
One challenge when you are programming is coming up with new names for every label. The SX-Key assembler
lets you create local labels that begin with a colon. These labels are only valid in between normal (or global)
labels. Because the local labels are only valid within global labels, you can define the same label more than once
without confusion. Consider this:

top mov w,#0 ; top is a global label
:loop . ; the first loop
 .
 .
 jmp :loop ; goes to first loop
ok mov w,#9 ; ok is a global label
:loop . ; the second loop
 .
 .
 jmp :loop ; jumps to second loop

You never have to use local labels. However, using them can make your life easier and your code more
readable. The alternative is to generate unique labels for every address of interest in your program.

Another Way to INC
Sometimes you’d like to increment the value in a register, but you don’t want to return the value to that register.
In this case you can use a special form of the mov instruction:

 mov w,++8

This leaves the result in the W register and does not change register 8. This allows you to use the register in
other calculations without disturbing it.

In general, math operations always have these two forms. For example, the opposite of incrementing is
decrementing (dec). This instruction subtracts one from a register. You can write it as:
 dec 8
or:
 mov w,--8

Unit 3. Simple Flow Control

Page 34 • Introduction to Assembly Language with the Scenix SX Microcontroller

The first form subtracts one from register 8 updating the value. The second form does the subtraction but leaves
the result in W without changing the original value.

Tip: Basic has no exact analog to inc and dec (other than x=x+1 or x=x-1). However, in C, you can think of
inc and dec as the ++ and – operators, respectively.

Stopping the Processor
In the early examples, the program used the sleep instruction to halt the processor. This might not seem very
practical, but there are a few places where it can come in handy. For example, imagine a microcontroller that
dials an emergency phone number. The signal to begin could be applying power to the circuit. The program
would dial the number and then go to sleep, waiting for another power cycle to run again.

However, the main reason you’ll use the sleep instruction is to put the processor in low-power mode until some
external event occurs or some time period elapses. External events usually take the form of interrupts, a topic
that will wait until Unit VII. However, you can wake up at a predetermined time by using the watchdog timer.
The main purpose of the watchdog timer is to reset the processor in the case of a malfunction. However, you
can also use it as a timer to set a wake up time.

About the Watchdog
To enable the watchdog, add the watchdog setting to the device statements near the beginning of the
program. Notice that turning on the watchdog will prevent the debugger from operating correctly, however. The
idea behind the watchdog is that your program should use the clr instruction to zero the !WDT register
periodically. This indicates that the program is working. If you fail to clear this register after a certain period of
time, the processor resets.

Tip: The usual purpose of the watchdog timer is to reset the processor in case of a failure. It is usually best to
have a single point in your program that clears the watchdog timer (WDT). That way the chances of your
program crashing and still clearing the timer are remote. If your program stops behaving correctly, the watchdog
timer will restart it.

How long is that period? The SX has an internal oscillator for the watchdog that nominally runs at 14kHz and the
watchdog times out after 256 counts. So the timeout period is about 18mS. So if you issues a CLR !WDT
instruction at least once every 18mS, you won’t get a watchdog reset.

For timing purposes, this might not be long enough, however. The SX allows you to further scale the watchdog
timer by setting bits in the !OPTION register. In particular, bit 3 of this register is set to 1 if you want to use
the prescaler with the watchdog timer. Bits 2, 1, and 0 set the divide rate (see table III.1). The highest divide
rate is 1:128 so the maximum time out is about 2.3 seconds.

 Unit 3. Simple Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 35

Bit 2 Bit 1 Bit 0 Divide Rate
0 0 0 1:1
0 0 1 1:2
0 1 0 1:4
0 1 1 1:8
1 0 0 1:16
1 0 1 1:32
1 1 0 1:64
1 1 1 1:128

Table III.1 – Watchdog Timer Prescale Values

How can you set a single bit in a register? You can use SETB to set a bit to 1 and CLRB to clear a bit to 0. So to
turn on the watchdog prescaler and set the divide rate to 1:32 you could write:
 setb !option.3
 setb !option.2
 clrb !option.1
 setb !option.0

The advantage to doing this is that you don’t disturb the rest of the register. However, it is also possible to
observe that the defaults for the remaining bits of the !option register should be 1’s. So if you knew you wanted
1’s in the other positions, you could write:
 mov !option,#$FD

The !option register defaults to all 1’s anyway, so if you want the maximum time out value, you don’t need to
do anything but enable the watchdog timer. Consider this program:

 device pic16c55,oscxt5
 device turbo,stackx_optionx, watchdog
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
agn mov w,#$FF
 xor 8,w ; invert bits
 mov rb,8
 sleep

Unit 3. Simple Flow Control

Page 36 • Introduction to Assembly Language with the Scenix SX Microcontroller

This program will cause the LEDs to flicker so that you can actually see them. The only problem is that you don’t
know which LEDs will be on and which will be off initially. The program uses the xor instruction to exclusive-or
the contents of register 8 with the constant $FF. You’ll read more about xor in the next unit, but for now just
realize that these two instructions will flip all the bits in register 8. That is to say that all 0s in register 8 will
become 1s and all 1s will become 0s. You can, by the way, replace the mov and xor instructions with the not
instruction which also flips the register bits and takes less time to execute. For now, however, leave the code as
it is because the next until will use the $FF constant to demonstrate some important ideas.

The last thing the program does is to store register 8’s contents into port B. Since the code just flipped all the
bits, all the LEDs that were on will turn off and all the ones that were off will turn on. Then the SX goes to sleep.
However, since the watchdog is on (notice the watchdog clause in the second device line) the processor will
reset in about 2.3 seconds. This will then flip the bits in register 8 again, reversing the state of the LEDs. Don’t
forget that you can’t debug this program because it uses the watchdog. You’ll have to use the Run | Run
command to see the program work.

Earlier, you read that programs that use the watchdog must use clr !wdt to reset the timer. This program,
however, doesn’t clear the watchdog. Why? Because this program deliberately wants the watchdog timer to
reset – that is how the program delays long enough for the LEDs to blink.

Of course, it would be nice to know that the reset was from the watchdog timer. You can do this by examining
the bits in the status register. In particular, bit 4 will be 0 if the watchdog triggered a reset. If bit 3 is a 0, then
a sleep instruction was active at the time. If you knew how to test these bits (a topic coming up shortly) you
could initialize register 8 to a known value when a real reset occurred and not initialize it when a watchdog reset
occurred.

Using the watchdog for timing is a bit unusual, but perfectly legitimate. In later units you’ll find two other ways
to make time delays: programmed loops and using the real time clock. These will be easier, because you’ll be
able to use the debugger when you employ these methods. Another advantage: when the processor resets,
there is a brief time that all pins return to the input state until your program sets the direction register. The
other methods for generating a time delay allow your program to stay in control of the processor at all times.

Summary
This unit covers a lot of instructions including:

•• jmp – Jumps to a new program location
•• sleep – Stops the processor
•• inc – Adds 1 to a register (also use mov w, ++r to put result in w)
•• dec – Subtracts 1 from a register (or use mov w, --r)
•• nop – Does nothing for 1 clock cycle
•• setb – Sets a bit in a register
•• clrb – Clears a bit in a register
•• clr – Sets a register, w, or the watchdog timer to zero
•• not – Inverts bits in a register

 Unit 3. Simple Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 37

•• xor – Exclusive-ors the bits in a register (more in the next unit)
•• add – Adds w to a register (more in the next unit)

You also read about the PC register, and parts of the !option and status register. In the next unit, you’ll find
out even more about arithmetic and variables, paving the way for more powerful programs.

Exercises
1. If you have access to an oscilloscope, add some nop instructions to the programs that blink the LEDs

and examine the results.
2. Modify the watchdog program so that the LEDs blink at one half of the original rate (about 1.15

seconds).
3. What if you wanted to stop the watchdog LED program without using sleep and without triggering a

watchdog reset? Modify the code so that it halts and does not reset. This will result in a steady pattern
of LEDs lighting.

Unit 3. Simple Flow Control

Page 38 • Introduction to Assembly Language with the Scenix SX Microcontroller

Answers
1. Here is an example of the solution:

start_point mov !rb,#0 ; make all of port b outputs
 clr rb
again inc rb ; change port b outputs
 nop ; add more nops if you want
 jmp again

2. To modify the rate of blinking, you’ll change the watchdog timer prescaler value. One way to do this is
to place mov !option, #$FC near the beginning of the program. You can also use setb and clrb to
set and clear the individual bits in the !option register.

3. Replace the sleep instruction with:
halting clr !wdt
 jmp halting

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 39

Unit IV. Variables and Math
Unit IV from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

The SX uses its registers as data storage. In the examples from previous units, we have simply referred to
registers by their numbers. Remember, the first seven or eight registers (depending on the exact processor
type) have special names (like rb, status, or !option) and functions.

The special names of these registers help you remember what they do. How can you use meaningful names for
registers that you use?

Suppose you want to use register 8 as a variable in your program. There are several ways you can do so. First,
you can set up an equate in one of two ways. Near the top of the program you could write:

Myvar EQU 8

Or:

Myvar = 8

Now you can replace all the occurrences of 8 with Myvar. You can use this method to define any constant even
if it is not a register number. The assembler simply replaces every occurrence of Myvar with 8.

The other way to define a variable is by reserving space for it using the DS directive. The DS directive usually
has a label in front of it, and has the number of bytes to reserve following it. So to replace the above equates
with a DS directive you could write:

 org 8
Myvar ds 1

The confusing part about this is that the org directive can refer to the data space or the program space,
depending on the context. In this case, the 8 refers to the data memory. Before you start writing program steps,
you'll want to write another org directive to set the beginning of your program (often location 0).

It is perfectly normal to specify several variables one after another. For example, consider this code that declares
a byte variable named Abyte and two bytes named Tbytes:

 org 8
Abyte ds 1
Tbytes ds 2

Unit 4. Variables and Math

Page 40 • Introduction to Assembly Language with the Scenix SX Microcontroller

When you use a variable name in your program, the name of a multi-byte variable refers to the first byte of the
variable. So consider this statement:

mov w,Tbytes

This loads the first byte of the variable into w. On the other hand, look at this line:

mov w, Tbytes+1

This line of code will access the second byte. Is this any different than the following program snippet?

 org 8
Abyte ds 1
Tbytes ds 1
Tbyte1 ds 1

No. There is no difference except that using this form, you can use Tbyte1 instead of Tbytes+1. Of course,
you can still use Tbytes+1; the assembler does not care.

An Example
Remember the blinker programs in the last unit? Here it is again:

 device pic16c55,oscxt5
 device turbo,stackx_optionx, watchdog
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0

start_point mov !rb,#0 ; make all of port b outputs
agn mov w,#$FF

 xor 8,w
 mov rb,8
 sleep

Here is the same program using symbolic variable names:

 device pic16c55,oscxt5
 device turbo,stackx_optionx, watchdog
 reset start_point
 freq 50000000 ; 50 Mhz

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 41

 org 8 ; data start
outval ds 1

ledport = rb
flipmask equ $FF

 org 0 ; code start

start_point mov !ledport,#0 ; make all of port b outputs

; changed to use single
; instruction to xor with
; constant

agn xor outval,#flipmask
 mov ledport,outval
 sleep

Notice that you can use equates to redefine the standard symbols. This program uses both = and EQU. This is
often a matter of personal choice. However, once you define a symbol with EQU you can’t change it later during
assembly. Defining a symbol with = allows you to change it later. In this program, like most simple programs,
the symbol values don’t change at all, so you can use either method.

Tip: When you define a symbol for a constant (like flipmask) it still requires the # character to precede it.
Without it, the assembler will think you are defining a register number.

Another way to use an equate is to define a name for a particular bit. You can specify bits in SX assembly
language using a period after the name of the register and then the bit position. For example, the least-
significant bit in register rb is rb.0. The most significant bit is rb.7. Using an equate you can define a
meaningful name to bits:

LEDpin equ rb.0

Using names for the registers and constants make the program much more readable. It also allows you to easily
change things if you want. For example, it would be simple to change this program to blink LEDs on port A
instead of B. It would also be no trouble to change the register from register 8 to another register, if you wanted
to do so.

Unit 4. Variables and Math

Page 42 • Introduction to Assembly Language with the Scenix SX Microcontroller

Assignment
In Basic or C, you can assign one variable to another. The SX can do this too using the mov instruction. For
example:

 org 8
byte1 ds 1
byte2 ds 1

 org 0
 mov byte1,#$AA
 mov byte2,byte1

This piece of code will put $AA in byte1 and then put the contents of byte1 into byte2.

Tip: The SX machine language does not really have an instruction that moves one register to another. That
means the assembler generates a two-part instruction for the second mov instruction in this program. The two
instructions are actually:

 mov w,byte1
 mov byte2,w

So this one line of code does destroy the w register. This can also lead to inefficiencies. For example, consider
this:

 mov byte2, byte1
 mov byte3, byte1

This code unnecessarily loads the w register twice. A better way to do this would be:

 mov byte2, byte1
 mov byte3, w

Or:

 mov w, byte1
 mov byte2, w
 mov byte3, w

Both of these take 3 instructions (instead of 4) and execute more quickly than the first example.

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 43

The only problem is with multi-byte variables. The SX only deals with bytes. That means that if you want to work
with larger quantities, you’ll have to break up the operations byte by byte. For example, you’d need two mov
instructions to copy a two-byte variable to another two-byte variable.

For now, stick to bytes. However, bytes can only store numbers ranging from 0 to 255 (or –128 to 127). So if
you need numbers larger than this, you’ll have no choice but to resort to larger variables.

Performing Math
In the last unit, you saw that the add instruction can add the w register and another register. You can leave the
result in w or in any register you like. You can also add a literal to a register, or two registers together.
However, these are two instruction sequences that destroy the w register in the process. Here are some
examples:

 org 8
avar ds 1
bvar ds 1

 org 0
 .
 .
 .
 add w,avar ; w=w+avar
 add avar,w ; avar=w+avar
 add avar,#10 ; avar=avar+10 (w destroyed)
 add avar,bvar ; avar=avar+bvar (w destroyed)
 add bvar,avar ; bvar=avar+bvar (w destroyed)

The byte-size of these operations can lead to a problem. What happens if the answer is larger than 8 bits? For
example, if w contains $FF and you add w to a register that contains $10, what happens? The answer is that
the SX truncates the result. However, to let you know that this has happened, it sets the carry flag (bit 0) in the
status register. This is true regardless of the destination of the answer. Another bit in the status register (bit 2)
is set whenever the answer is zero. You can use status.0 and status.2 to refer to the carry and zero flags, or
you can use the symbolic names, C and Z.

Later in this unit, you’ll learn how to examine these flag bits and use them to perform multi-byte math. You
should be aware that not all operations affect these flag bits in the same way. For example, the inc and dec
instructions (covered in the last unit) add or subtract 1 from a register. However, they do not set the carry flag.
They do, however, set the zero flag. The SX data sheet tells you which flags each instruction affects.

The opposite of adding, of course, is subtracting. The sub instruction can subtract w from any register. The
result remains in the register. If you want to put the result in w, you can use this form of the mov instruction
(where R is the register you want to use):

Unit 4. Variables and Math

Page 44 • Introduction to Assembly Language with the Scenix SX Microcontroller

 mov w,R-w ; w=R-w

You can also subtract two registers or a literal from a register. However, both of these are really two machine
language instructions and destroy W. So:

 sub avar,W
 sub avar,#100 ; avar=avar-100 (w destroyed)
 sub avar,bvar ; avar=avar-bvar (w destroyed)

The carry flag (bit 0 of status) has reversed meaning for sub. Suppose you subtract 100 from 30. The carry
flag will be clear to indicate that the subtraction underflowed. However, if you subtract 30 from 100, carry will be
set indicating that the subtraction yielded the correct result. Subtracting also affects the zero flag.

If you can add and subtract, you might wonder about multiplying and dividing. Simple microcontrollers like the
SX can only add and subtract. However, using some techniques you’ll see in the next unit, you can decompose
multiplication and subtraction into multiple additions and subtractions.

Two’s Compliment Numbers
If the carry flag is clear after subtraction, does that mean that the answer is incorrect? Not necessarily. Any
microcontroller, including the SX, can handle negative numbers by using two’s compliment arithmetic. The idea
is simple. Treat the topmost bit (bit 7, in this case) as a sign bit. If the bit is 0, then the number is positive. If
the bit is 1, then the number is negative. To represent a negative number, invert it and add 1. Obviously, to find
out what number a negative number is, you’d subtract 1, and invert it again.

Consider what happens if you subtract 60 from 40. The correct answer, of course, is negative 20. The SX,
however, returns %11101100 ($EC). If you invert this number (%00010011) and add 1 (%00010100) you’ll find
the result is in fact 20. You can also make up new negative numbers. Suppose you want to add –5 to 10. First,
find the binary representation of 5 (%00000101) and invert it (%11111010). Next add 1 to get %11111011 ($FB
or 251). If you add 10 to 251, you get 261. But the SX does not get 261! It truncates the result to 5 (the bottom
8 bits of $105). Of course, 10 + -5 is 5, so the answer is correct.

These operations, by the way, are easy to perform on the SX. The not instruction will invert bits and inc or dec
will add or subtract 1. So handling these negative numbers is not too difficult even at run time.

The downside to two’s compliment math? It limits the numbers you can represent. For a byte, the numbers
between 0 and $7F represent 0 to 127 and the numbers from $80 to $FF represent –128 to –1.

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 45

More Carry Tricks
Suppose you need larger numbers, say 0 to 999. You’ll need to use more than 1 byte. A two-byte number can
hold from 0 to 65535, plenty of room for this job. The problem is, how do you do math with these larger
numbers.

The addb and subb instructions will add or subtract a bit – which could be the carry bit – from a register.
Consider this simple program:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8 ; data start
counter ds 2

 org 0 ; code start

start_point clr counter
 clr counter+1 ; clear both bytes
again
 ; do a 16-bit add
 add counter,#1
 addb counter+1,status.0
 jmp again

Here, the code is adding 1 to the 16-bit variable counter. It also adds the carry bit to the top 8 bits of the
counter. Since the carry bit will only be set when the counter overflows, the count will be correct. You can do
the same thing with subtraction by using subb instead of addb.

By using more registers and more addb or subb instructions, you can manipulate numbers of arbitrary size. A
24-bit number (3 bytes) can hold up to around 16 million. A 32-bit number (the same size the Pentium PC uses;
4 bytes) can hold numbers of around 4 billion in value.

Try It!
Enter the code above and step through it. You’ll quickly get tired of watching register 8 cycle endlessly upwards.
The Jog command helps, but it still takes a while to get to the interesting part of the code. This is a good time to
learn a few extra features of the debugger. First you can click on the box for register 8 and change the value of
the register. So if you plug in $FE (or %11111110) in the register 8 box, you’ll be much closer to seeing the roll
over! This works for all of the registers visible in the debugger.

Unit 4. Variables and Math

Page 46 • Introduction to Assembly Language with the Scenix SX Microcontroller

Another annoyance is that you have to know that the counter variable is actually in registers 8 and 9. An easier
way to observe the contents of memory is to use a watch directive. This is a statement in your program that
tells the debugger to display a piece of memory with a name, and to format it so that it is meaningful. You
specify the memory location, the size of the variable, and the format you want. For this program, try adding this
line somewhere in your file:

 watch counter,16,UDEC

This will show the 16-bit variable at location counter as an unsigned decimal number. You can find a list of all
the format codes in Table IV.1.

Format Code Appearance
UDEC Unsigned decimal
SDEC Signed decimal
UHEX Unsigned hex
SHEX Signed hex
UBIN Unsigned binary
SBIN Signed binary
PSTR Fixed-length string of ASCII characters
ZSTR String of ASCII characters terminated with a zero

Table IV.2 - Watch Format Codes

Tip: ASCII (American Standard Code for Information Interchange) is a way to represent text characters as a 7 or
8 bit number. For example, in ASCII, an A is $41, a blank is $20, etc.).

A Few More Functions
You’ll often use the carry for a variety of functions. Earlier in this tutorial, you read that you can use setb and
clrb to set and reset a bit. Since the carry bit is just a bit in the status register, you can use these instructions
to affect the carry.

However, this is a frequently used function, so the assembler provides other instructions to do it so you can type
less. In particular, clc clears the carry (clz clears the zero flag) and stc sets the carry (stz sets the zero flag).

The real trick is to control your program’s flow based on these flags. There are several ways to do this. First of
all, the generic jb instruction will execute a jump if the specified bit is set. So to jump to lbl1 if the carry flag is
set, you could write:

 jb status.0,lbl1

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 47

Of course, using jb you can specify any bit. However, the carry and zero bits are very common bits to test, so
the assembler also allows you to use the jc and jz instructions to test for the carry or zero conditions. You can
also use jnb (or jnc or jnz) to jump when the bit is clear instead of set.

By performing a subtraction and then testing the carry and zero flags, you can easily write programs that can tell
if one number is greater than, less than, or equal to another number. For example, suppose you wanted to know
if variable x was greater than variable y:

 mov w,x
 mov w,y-w
 jnc x_greaterthan_y

This works because subtracting x from y will only be negative (that is, cause an underflow) if x is greater than
y. Remember that carry is clear on an underflow when subtracting.

Tip: You might consider computing x-y and changing the jnc to jc. That would also work, but it would jump if x
were greater than or equal to y. To see why, work out the case where x is equal to y. Of course, you can use jz
to test for equality and jnz to test for inequalities. See Table IV.2 for a summary of possible results when
subtracting two numbers.

Carry Zero Meaning
0 0 a<b
X (don’t care) 1 a=b
1 0 a>=b

Table IV.3 - Results When Computing A-B

Testing for equality with zero is a very common operation, so the assembler lets you write it in a special way.
You can use test. The test instruction sets the zero flag based on any register (including the w register).

Another common function relating to zero testing is to increment or decrement a register and jump if the result
is zero. You can use djnz (to decrement) or ijnz (to increment) for this purpose.

Here is another LED flasher that uses djnz to blink the LEDs a total of ten times:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8 ; data start
counter ds 1
pattern ds 1

 watch counter,8,udec

Unit 4. Variables and Math

Page 48 • Introduction to Assembly Language with the Scenix SX Microcontroller

 watch pattern,8,ubin

 org 0 ; code start

start_point mov !rb,0 ; all outputs
 clr rb ; all low
 mov counter,#10 ; 10 times
again
 mov rb,pattern
 not pattern
 djnz counter,again
 sleep

Notice that the blinking code executes 10 times because the counter variable starts with 10, and reduces by 1
until it reaches zero. This is a powerful idea and often used in computer programs. Code like this is known as a
loop because it executes in a loop as often as you need.

In Basic or C, you’d do something like this with a for statement. In Basic, for example, I might write a loop as:

 FOR counter = 10 to 1 step –1 ' Do the work
 NEXT

Of course, you’d usually see this reversed, with counter ranging from 1 to 10. You could do this too, but it
takes a few more assembly language instructions:

 inc counter ; assume counter was set to 0 at beginning
 mov w,#10

sub w,counter-w
 jnz again

In the next unit, you’ll se a series of compare instructions that can perform this type of logic in one assembly
language instruction (but they just write the same sort of code you see above).

Programmed Delays
Another important use of loops is in developing programmed delays. In the previous unit, you saw how to use
the watchdog timer as a crude timing device. However, this is not the ideal way to generate a time delay. The
watchdog timer makes it hard to debug your program since the SX-Key can’t debug your code with the
watchdog set. Also, the watchdog can’t generate arbitrary delays, and you lose control of the program while
waiting for the delay.

However, if you know your clock speed, and the number of cycles each instruction takes, you can compute loops
that will cause the appropriate delay. For example, suppose you wanted to generate a 1kHz tone. A 1kHz tone

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 49

cycles every 1mS (1/1000 = .001) so to make a 1kHz square wave, the SX needs to turn a pin on, wait for
500uS (half of 1mS), turn the pin off, wait another 500uS, and then start over.

Assume you have a piezoelectric speaker connected to pin 7 of port B (a piezo speaker has a high-impedance
and you can drive it directly from the SX’s output pins). If you could toggle pin 7 at this rate, you’d hear a 1kHz
tone coming from the speaker.

The problem is that 500uS is an eternity for the SX. At 50MHz, each instruction cycle (in turbo mode) takes
20nS. So to pause 500uS you’ll need 25000 instructions cycles! Consider this simple loop:
 clr delay
wloop djnz delay,wloop

Studying the SX data sheet, you can find that the djnz instruction takes 4 cycles every time it has to jump, and
2 cycles if it doesn’t have to jump. The clr instruction takes 1 cycle. So the total number of cycles in this loop is
256 * 4 + 3 or 1027, a far cry from the 25000 you need. Of course, you could use a 16-bit delay, but this is hard
to calculate since the total time through the loop varies depending on the carry flag’s status. Instead, it is usually
simpler to place this loop inside another loop. Dividing 25000 by 1027 you’ll find you need about 24 repeats of
this loop to get to 25000. So:

 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop

Of course 24 * 1027 = 24648, not exactly the right answer. However, the outer loop adds 95 cycles to the total
loop (see if you can calculate that number). That brings the total delay to 24743 (a 1.02% error). For many
purposes, this is not a problem. If you needed a more exact figure, you could reduce the number of cycles in the
inner loop and increase the count in the outer loop until you get as close as necessary. You can also adjust the
timing of the loops by adding nop instructions inside the loop to stretch it out.

Logical Functions
Since microcontrollers and other computers work with binary, it isn’t surprising that they contain many
operations designed to operate on the bits of word. Like other operations, these work on the w register and an
arbitrary register with the result going to the register of your choice. You can also use a register and a constant,
or two registers, but if you do, you will generate more than one machine language instruction and destroy the w
register in the process. The main logical functions include and, or, and xor.

What do these functions do? They simply examine the two values you supply bit by bit and generate an output
bit base on the corresponding input bits. Take and, for example. If you use and on %10101010 and
%11110000, the result is %10100000. Why? Because and only outputs a 1 if both input bits are 1. The or
instruction outputs a 1 if either input bit is 1. The xor instruction outputs a 1 if either input is a 1, but not if both
inputs are a 1. You can find a summary of these operations in Table IV.3.

Unit 4. Variables and Math

Page 50 • Introduction to Assembly Language with the Scenix SX Microcontroller

Truth Table Instruction
Input Input Output

Move to W Form

0 0 0
0 1 0
1 0 0

And

1 1 1

and w,R

0 0 0
0 1 1
1 0 1

Or

1 1 1

or w,R

0 0 0
0 1 1
1 0 1

Xor (exclusive or)

1 1 0

xor w,R

0 1 Not
1 0

mov w,/R

RL (rotate left) n/a mov w,<<R
RR (rotate right) n/a mov w,>>R

Table IV.4 – Logical Instructions

You’ve already seen that you can use not to invert the bits in a register (including the w register). You can also
rotate or shift bits left or right by using rl (left) and rr (right). Unlike the other logical instructions, these
commands operate on a single register (or the w register in the case of not). When you shift a register left,
each bit is replaced by the bit prior to it. So bit 7 gets the value of bit 6, bit 6 gets the value of bit 5, and so on.
Bit 0 gets the value of the carry flag and the carry flag’s value gets set to the original value of bit 7. Shifting
right is the reverse process, where bit 7 gets the carry flag value, and bit 0 shifts into the carry flag.

Tip: When you shift left, you multiply the number by 2. Shifting right is the same as dividing by 2.

By combining shifts and addition you can perform many multiplications in an efficient way. For example, suppose
you want to multiply a number by 10 (not an uncommon thing to do). One way would be to add the number to
itself 10 times in a loop. While that would work, a more efficient way would be to realize that multiplying by 10
is the same as multiplying by 8 and then multiplying by 2. Since 8 and 2 are both powers of 2, you can do those
multiplications using shifts.

Here is an example of both styles of multiplication:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 51

 org 8 ; data start
value ds 1
result ds 1
result2 ds 1
counter ds 1
 watch value,8,udec
 watch result,8,udec
 watch result2,8,udec

val = 21

 org 0 ; code start
start_point ; multiply by 10 2 different ways
 mov value,#val
; first a loop
 mov counter,#10
 clr result
 mov w,value
mloop add result,w
 djnz counter,mloop
; ok answer is in result
 nop
 mov value,#val
; now do shift add
 clc
 rl value ; value = value *2
 mov result2,value
 clc
 rl value
 clc
 rl value ; value = value *8
 add result2,value

; same answer in result2

 sleep

Tip: Don’t forget to clear the carry before rotating if you are using rotation for a multiply or divide. The carry bit
shifts into the word which can throw off your results if you don’t clear it first.

Of course, if you can’t decompose your multiplication into something you can do with rotates, you’ll have to look
at the techniques covered in the next unit. Unfortunately, there is no easy way to combine divisions. You can
divide by 2, 4, 8, or any power of two, but there isn’t an easy way to divide by 10 or other arbitrary numbers.

Unit 4. Variables and Math

Page 52 • Introduction to Assembly Language with the Scenix SX Microcontroller

Summary
Wow! This unit covers a lot of ground. You learned about ADD, SUB, ADDB, SUBB, lots of bit operations, and
even some conditional jumps. Using these instructions you can do lots of different things including simple math,
controlling the number of times a piece of code executes, and comparing numbers. These are the building blocks
that allow your microcontroller to make decisions.

Remember in Unit I you read that a computer reads inputs, does processing, and generates outputs. The
instructions in this chapter are the core that you will use to do the processing parts.

Exercises
1. Change the counter program to use inc instead of add. Do you still need addb? If you do, which bit

should you add?
2. Change the counter to use a 32-bit count instead of two bytes. Test your changes using the debugger.
3. Write the program that generates a 1kHz tone on a speaker connected on pin 7 of port B. Note: don’t

hook a regular speaker directly to the SX output pins. Instead, use a piezoelectric speaker designed for
direct IC drive. If possible, measure the output with an oscilloscope or frequency counter.

 Unit 4.Variables and Math

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 53

Answers
1. If you use inc, but remember that inc does not set the carry flag. However, it does set the zero flag. If

you increment a number and get a zero, then it stands to reason that an overflow occurred. The correct
code would look like this:

inc counter
addb counter+1,status.2 ; status.2 is zero flag

2. This is just a matter of changing the ds statement to reserve 4 bytes instead of 2 and adding two more

addb instructions immediately following the one that is there:
 add counter,#1
 addb counter+1,status.0
 addb counter+2,status.0
 addb counter+3,status.0

3. Here is one possible solution:
 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8 ; data start
delay ds 1
delay1 ds 1
 org 0 ; code start
start_point
 mov !rb,#$7F ; speaker output only
loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
 jmp loop

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

Unit 4. Variables and Math

Page 54 • Introduction to Assembly Language with the Scenix SX Microcontroller

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 55

Unit V. Advanced Flow Control
Unit V from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

In the last unit, you learned how to control the flow of execution based on conditions. Instructions like jz, jc,
and djnz allow you to jump when some condition is met. There are other ways that you can control the flow of
your program, however, and you’ll read about these in this unit. In addition, you’ll read about ways to perform
integer multiplication and division using several techniques.

Skipping
All of the jump instructions you read about in the last unit are not really machine language instructions. Instead,
they are multi-instruction constructs that the assembler provides for your convenience. The SX actually only
performs conditional tests as skips. The idea is to execute an instruction that, depending on the condition, will
either execute the next instruction or skip if. It the next instruction is a jmp then you have an equivalent of the
jump instructions you found in the last unit.

There are two things to consider here. First, the skipped instruction need not be a jmp. This can lead to faster,
more efficient code in some cases. The second issue, however, is that skips only skip one machine language
instruction. Many of the instructions you use are really assembly instructions and they consist of more than one
machine language instruction (see Table V.I).

For example, some mov instructions require two words. Consider this bit of code:

 skip
 mov 8,#100

The skip instruction is supposed to cause the SX to skip the next instruction no matter what. However, it causes
it to skip the next machine language instruction. There is no machine language instruction that corresponds to a
mov of a constant (or literal) to a register (other than w). So the assembler really generates:

 skip
 mov w,#100
 mov 8,w

The net result is that the program moves w – whatever happens to be in it – to register 8 without loading 100
into it first. Not what you expected. For this reason, you must be very careful when using skips.

You won’t have much call to use the unconditional skip instruction. What you usually want is an instruction that
skips on some condition. There are six skip instructions of this sort. The sb and snb instructions skip if a
specified bit is set or clear. The assembler also provides special shorthand instructions for testing the carry (sc
and snc), and the zero flag (sz and snz).

Unit 5. Advanced Flow Control

Page 56 • Introduction to Assembly Language with the Scenix SX Microcontroller

Instruction Words
ADD (without W) 2
ADDB 2
AND (without W) 2
CJA 4
CJAE 4
CJB 4
CJBE 4
CJE 4
CJNE 4
CSA 3
CSAE 3
CSB 3
CSBE 3
CSE 3
CSNE 3
DJNZ 2
IJNZ 2
JB 2
JC 2
JNB 2
JNC 2
JNZ 2
JZ 2
LCALL 1-4
LJMP 1-4
LSET 0-3
MOV (some forms) 2
MOVB 4
OR (without W) 2
RETW (with multiple values) varies
SUB (without W) 2
SUBB 2
XOR (without W) 2

Table V.5 - Multi-word Instructions

Comparing
Of course, a very common thing to do is to test two values and based on the result jump to some location. You
saw this in the last unit done with a subtraction and a jump instruction. The assembler allows you to use special
multi-instruction compares as a shorthand notation for doing this. You can find a list of these in Table V.2. These
instructions require three pieces of information: a register, a register or a constant, and a jump address.

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 57

Instruction Use Basic Equivalent Skip Form
CJA A,B,LBL Jump if above if A>B then LBL CSA
CJAE A,B,LBL Jump if above or equal If A>=B then LBL CSAE
CJB A,B,LBL Jump if below If A<B then LBL CSB
CJBE A,B,LBL Jump if below or equal If A<=B then LBL CSBE
CJE A,B,LBL Jump if equal If A=B then LBL CSE
CJNE A,B,LBL Jump if not equal If A<>B then LBL CSNE

Table V.6 - Compare Instructions

These compare instructions are very similar to a Basic or C if command. The only difference is that the
comparison can only be between two variables or a variable and a constant. You’ll find the equivalent Basic
syntax in Table V.2.

You can also do a compare and skip the next instruction if the comparison is true. Just like any skip instruction,
however, you have to be careful not to try to skip a multi-word instruction (see Table V.1). Table V.2 shows the
corresponding skip and jump instructions.

Using Call and Return
You’ll often find yourself doing the same things several times in one program. For example, if you want to add
two 16-bit numbers, it is a good bet that you need to do it in more than one place.

The SX knows that you will want to write code that you can reuse and so it provides CALL and RET instructions.
These instructions implement the same sort of functions that GOSUB provides in Basic (or functions in C).

In the last unit, there is a program that generates a 1kHz tone from a speaker connected to pin 7 of port B. But
suppose you needed a program that did the following:

1. Make a 1 second beep on the speaker
2. Wait for you to push a button connected to port B, pin 0
3. Beep for 1 second again
4. Return to step #2

You can find the circuit required for this example in Figure V.1. The code in the last unit that made the 1kHz
tone looks like this:

loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
 jmp loop

Unit 5. Advanced Flow Control

Page 58 • Introduction to Assembly Language with the Scenix SX Microcontroller

Since each loop requires about 500uS, you will need to execute the loop 2000 times to generate a 1 second
tone. That simply requires another loop. However, it seems a waste to have to duplicate this code in two
different parts of the program. That is where the call instruction is useful. You can make a subroutine out of the
beep code and then call it from different parts of your program.

To create a subroutine, you simply assign the code a label. Other parts of your program will use this label (along
with call) to execute the subroutine. When the subroutine code executes a ret (return) instruction, execution
resumes with the instruction after the call. Consider the tone code rewritten as a subroutine:

beep mov second,#$DO ; 2000 is $7D0
 mov second+1,#$07

loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
; repeat 2000 times
 djnz second,loop
 djnz second+1,loop
 ret ; go back to wherever

Now the main part of the code can simply use call beep anywhere it wants a one second beep to occur. It is
perfectly acceptable to have more than one entry point into the subroutine. For example, if you wanted to set
the second variable in your main program, you could call loop instead of beep (although you’d probably want
to give it a better name). You could also get a half beep like this:

 mov second,#$E8 ; 3E8
 mov second+1,#$03
 jmp loop

Subroutines can call other subroutines, but the SX can only handle 8 levels of nesting subroutines. That is, if
subroutine A calls subroutine B, and subroutine B calls subroutine C, and so on, the SX will get confused when
subroutine H calls subroutine I.

Tip: This in no way limits the number of subroutines you can have in a program. It simply limits the number of
subroutines you can have active at one time.

To help you understand the idea of nested subroutines and the limit on nesting, think about an elevator that can
hold 8 people. Each time you execute a call instruction, you are putting someone else on the elevator. Each
time a ret instruction (or a retw instruction; see below) executes, someone gets off the elevator. If you execute
8 call instructions in a row without returning, the elevator becomes full and you can’t add any more people until

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 59

someone gets out of the elevator. However, over the course of the day many people might ride the elevator
(some more than once, even). As long as no more than 8 at a time ride, everything works.

Figure V.5 – A Speaker and Switch connected to the SX

Here is the tone program:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8
second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1

 org 0
start_point mov !rb,#$7F ; make speaker output
 call beep
; wait for input button
bwait jb rb.0,bwait
 call beep
 jmp bwait

; subroutine

beep mov second,#$d0 ; 2000 is $7D0

5V

B0

B7

10K

Piezo

Unit 5. Advanced Flow Control

Page 60 • Introduction to Assembly Language with the Scenix SX Microcontroller

 mov second+1,#$07

loop not rb ; toggle bits
 mov delay1,#24
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
; repeat 2000 times
 djnz second,loop
 djnz second+1,loop
 ret ; go back to wherever

Tip: What if you wanted to use this subroutine in a program that already used labels like oloop, loop, and
wloop? To prevent conflicts, try to use local labels (like :oloop, :loop, and :wloop) in your subroutines.

A few notes about this program are in order. For one thing, this is the first program in this tutorial that reads
some input. The switch is connected in such a way that bit 0 of port B will read a 0 when you push the switch.
The jb instruction tests for this – if the bit is a 1, it just loops to bwait.

Buttons are mechanical devices, and as such they exhibit bounce. That means that when you press the switch,
the SX may see the switch open and close many times for a few microseconds until the switch firmly closes. The
same thing happens when you release the switch – the button seems to turn on and off rapidly until it finally
settles in the off position. In this program, this is no big deal because the tone forces a one second wait before
the SX reads the switch again. However, if you were rapidly reading the button, you’d need to take this
mechanical bounce into account.

If you run this program and hold the button down, the tone will continue until you release the button. That’s
because the program does not wait for you to release the button before continuing.

Often subroutines want to return some data (perhaps a status code) in the w register. To accommodate this
common task, the SX provides the retw instruction. The retw instruction returns a constant in the W register.
So:

 retw #$FF

is the same as:

 mov w,#$FF
 ret

Of course, retw, is only a single instruction so it executes faster and requires less space.

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 61

Tables
One important use of retw is to generate tables. Suppose you wanted to find the square of a number between
0 and 10. You know that multiplication is difficult to do, so it makes sense to simply store the values in a table
and read them out instead of doing the actual calculations. Here is a subroutine that does this:

; square a number from 0 to 10 in the W register
; return result in the W register
square jmp PC+W
 retw #0
 retw #1
 retw #4
 retw #9
 retw #16
 retw #25
 retw #36
 retw #49
 retw #64
 retw #81
 retw #100

When the main program calls the square routine, it jumps to a different return instruction depending on the
value in W. The retw instruction loads the correct value into W and returns to the caller. This is simple,
efficient, and very fast. It is also so common, that the assembler lets you write multiple values on the same line.
So you could replace the square routine with two lines of assembly:

square jmp PC+W
 retw #0, #1, #4, #9, #16, #25, #36, #49, #64, #81, #100

The generated machine language code is exactly the same in either case, so there is no difference in using
either method. It is a matter of personal preference.

Unit 5. Advanced Flow Control

Page 62 • Introduction to Assembly Language with the Scenix SX Microcontroller

Indirection
When you access the SX’s registers, you need to know the address you want to use. Early in this tutorial, you
used numeric addresses (like 8 or 9), but soon you saw the advantage to using symbolic names (like status or
counter). However, sometimes you don’t know the exact address you want to access. For example, suppose
you wanted to clear all the user memory in the SX. You could write:

 clr 8
 clr 9
 clr 10
 clr 11
 .
 .
 .

However, that seems wasteful. It would be nice if you could use a loop to index through the different registers.
That is the purpose of the special FSR (File Select Register) and IND (Indirect) registers. The IND register is
not an ordinary register. Instead it is an alias for another register somewhere in the SX. Where? Whichever
address is in FSR.

Here is a simple example:

R1 EQU 10 ; register 10 is R1
R2 EQU 11 ; register 11 is R2
 mov R1,#100
 mov R2,#200
 mov FSR,#10 ; store address 10 in FSR
 mov w,IND
; W now contains 100
 inc FSR ; go to next address
 mov w,IND
; W now contains 200
 mov FSR,#R1
 mov w,IND
; W contains 100 again
 clr IND ; R1 is now 0!

Notice that you can write to IND as well as read from it. IND is a complete alias for whatever register number
you store in FSR.

Tip: You’ll usually want to load a constant number into FSR. In the previous example, for instance, if you used:
mov FSR,R1 this would load the contents of R1 (100) into FSR – probably not what you meant.

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 63

Here is a bit of code that will clear all the user registers in a loop:

 mov FSR,#8
 :loop clr ind
 inc FSR
 jnb FSR.5,:loop

This takes advantage of the fact that when FSR reaches $20 (that is, bit 5 is set for the first time) the looping is
done. You could just as easily compare FSR with $20 or use some other scheme to break out of the loop.

This technique is not just for clearing memory. When programming, you’ll often want an array of data (for
example, the last 4 samples from a sensor, or the last 8 bytes read from a serial port). Using indirection is the
way to efficiently code arrays, lists, and other data structures.

Math Functions
Armed with the ability to loop and test, you can tackle arbitrary multiplication and division problems with ease. A
simple-minded approach to multiply, for example, 9 by 7 is to add 9 to itself 7 times. However, with a little
knowledge of binary numbers, you can write a smarter algorithm.

Remember how you learned to multiply in grade school? You’d write your problem out and multiply the results
digit by digit, moving to the left with each digit. Then you’d add all the partial results up to find the correct
answer. The computer can do this too. As a bonus, the SX uses binary so each partial result can only be the
original number shifted to the left some number of places or 0. Think about multiplying %1001 by %101 (9 by
5).

 1001
X 101

 001001
 000000
+ 100100

 101101 = 32 + 8 + 4 + 1 = 45

Performing multiplication in this fashion is known as Booth’s algorithm (an algorithm is just a fancy name for a
set of program steps). Here is a bit of SX code that will multiply the byte in register V1 by the byte in register
V2:

 clr V3 ; zero result
 mov ctr,#8 ; 8 bits
mloop rr V2 ; load bit 0 of V2 into carry bit

Unit 5. Advanced Flow Control

Page 64 • Introduction to Assembly Language with the Scenix SX Microcontroller

 jnc noadd ; skip on no carry
 add V3,V1 ; add to result
noadd rl V1 ; shift V1 over 1 place
 djnz ctr,mloop ; go 8 times

Of course, the result (V3) is a byte, so you can’t multiply numbers that will require an answer larger than 255.
You can easily extend this algorithm to handle more bits.

Division
You can use a similar algorithm to do division. If you remember your high-school math, dividing requires a
divisor, a dividend, and produces a quotient. So when computing 20 divided by 5, 20 is the dividend and 5 is the
divisor. The result, 4, is the quotient. Since 5 goes into 20 evenly, there is a remainder of 0.

When you perform division on paper, you reduce it to a series of subtractions. You also have to shift your
position to keep track of what digit you are examining. The SX can do the same thing in binary. Since binary
only has 1s and 0s, it is easy to tell if one number will “go into” another; simply see if the first number is smaller
or equal to the second number.

Consider these program steps (or algorithm, if you prefer):

1) Set the quotient to 0
2) Shift the divisor to the left until the topmost bit is a 1
3) Remember how many shifts you performed in step 2 and add 1 to this count
4) Shift the quotient to the left (multiply by 2)
5) Compare the dividend and the divisor; if the dividend is greater than or equal to the divisor, subtract

the divisor from the dividend and add 1 to the quotient
6) Shift the divisor to the right
7) Subtract 1 from the count and if not zero, return to step 4

Suppose you want to divide 20 by 5. After performing steps 1 to 3, you’ll have a divisor of 160 and a count of 6.
Here is the looping part of the algorithm right after performing step 6:

Dividend Divisor Quotient Counter Comments
20 160 0 6 Shifted out 5 zeros; no subtraction
20 80 0 5 No subtraction
20 40 0 4
0 20 1 3 Subtracted
0 10 2 2
0 5 4 1

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 65

What about a division with a remainder? If you replace 20 in the above table with, for example, 22 you’ll find
that the dividend column has a 2 in it after the subtraction. Since the divisor never goes below 2, the answer is
the same. However, the dividend column winds up with the remainder (2).

Here is a simple division program written for the SX:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8
dividend ds 1
divisor ds 1
quotient ds 1
counter ds 1
 watch dividend,8,udec
 watch divisor,8,udec
 watch quotient,8,udec
 watch counter,8,udec

 org 0
start_point

mov dividend,#20
 mov divisor,#5
 call divide
 break
 nop
 sleep

; subroutine

divide clr counter ; assume not dividing by zero
 clc
:loop rl divisor
 inc counter
 jnc :loop
; restore divisor so top bit is 1
 rr divisor
; counter has number of bits in quotient
 clr quotient
:dloop

Unit 5. Advanced Flow Control

Page 66 • Introduction to Assembly Language with the Scenix SX Microcontroller

 test counter
 jz :done
 clc
 rl quotient
 cjb dividend,divisor,:dloop1
 sub dividend,divisor
 inc quotient
:dloop1
 dec counter
 clc
 rr divisor
 jmp :dloop
:done
 ret ; go back to wherever

One thing this program does not do is test for divide by zero, which is an error. It would be simple to add a test
instruction to set the zero flag if divisor was zero and jump to an error routine.

Summary
In this unit you’ve read about instructions that compare two values and make a decision based on the result.
This type of flow control is crucial to implementing advanced multiplication and division algorithms (as well as for
many other programming tasks). This unit also brought up subroutines (via the call and ret instructions) and
ways to use subroutines to implement tables of constants. You can also create tables using the indirection
registers (fsr and ind) that allow you to access registers without hard coding their addresses.

At this point in the tutorial, you have all the tools necessary to write some powerful programs. In the next three
units you’ll learn how to access all of the SX memory and how to further control the hardware. In addition, you’ll
work with interrupts and virtual peripherals.

Exercises
1. The example program in this unit beeps when the button is pressed for a short time. However, if the

button remains depressed, the tone continues. Alter the program so that after the tone, the program
waits until you release the button. Be sure to take steps to combat bounce.

2. Count the number of times the button is pressed. After 10 times, put the processor to sleep.
3. In earlier units, there is a blinker program that uses sleep and the watchdog timer to pause in between

flashes. However, this precluded initializing the LEDs to a known state because the program could not
tell the difference between the first reset and a reset after the sleep instruction timed out. Recall that
the status register’s bit 4 is 0 when a watchdog timeout occurs. Change the program to initialize port B
to $AA in the event of a hard reset. The original program is below for your reference.

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 67

 device pic16c55,oscxt5
 device turbo,stackx_optionx, watchdog
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8
pattern ds 1

 org 0

start_point mov !rb,#0 ; make all of port b outputs
 xor pattern,#$FF
 mov rb,pattern
 sleep

4. Connect buttons (as shown in Figure V.1) to Port B pins 0, 1, 2, and 3. Connect a piezoelectric speaker

to port B pin 7. Construct a program that plays a different tone for 500mS each time you press a
button. With more buttons, this could be the basis for a child’s organ or a musical annunciator.

Unit 5. Advanced Flow Control

Page 68 • Introduction to Assembly Language with the Scenix SX Microcontroller

Answers
1. Here is the main code:

start_point mov !rb,#$7F ; make speaker output
 call beep
 ; wait for input button
bwait jb rb.0,bwait
 call beep
bwait1 jnb rb.0,bwait1
; wait for bounce to complete
 clr delay
:dwait djnz delay,:dwait
 jmp bwait

The delay allows time for the button to quit bouncing – the time is arbitrary and might require adjustment
depending on the kind of switch you use.

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 69

2. Here is an excerpt from the solution:

 org 8
second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1
presses ds 1

 org 0
start_point mov !rb,#$7F ; make speaker output
 call beep
 clr presses
 ; wait for input button
bwait jb rb.0,bwait
 call beep
 inc presses
 cje presses,#10,halt
bwait1 jnb rb.0,bwait1
; wait for bounce to complete
 clr delay
:dwait djnz delay,:dwait
 jmp bwait

halt sleep

Of course, it would be just as legitimate to store 10 in the presses variable and decrement it. This would be
somewhat more efficient because you could test the zero flag after decrementing the variable, thus saving a
step.

3. The solution is to simply test for the bit 4 being clear:

 device pic16c55,oscxt5
 device turbo,stackx_optionx, watchdog
 reset start_point
 freq 50000000 ; 50 Mhz

 org 8
pattern ds 1

 org 0

Unit 5. Advanced Flow Control

Page 70 • Introduction to Assembly Language with the Scenix SX Microcontroller

start_point mov !rb,#0 ; make all of port b outputs
; check for real reset
 jnb status.4,agn
 mov pattern,#$AA
agn xor pattern,#$FF
 mov rb,pattern
 sleep

You could make an argument for setting pattern to $55 instead of $AA since the very next instruction
will invert the bits, but either way the result is acceptable.

4. There are several ways you could complete this exercise, depending on your personal preferences. The
tricky part is realizing that since each tone takes a different amount of time, you have to adjust the
number of cycles to get 500mS. For example, a 1kHz tone has 500uS cycles, so you need 1000 cycles
to get 500mS. However, a 2kHz tone has 250uS cycles and therefore requires 2000 cycles to maintain
the same duration. Here is one solution:

 device pic16c55,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
second ds 2 ; counter for 1 second tone
delay ds 1
delay1 ds 1
tone ds 1 ; tone constant
 org 0
start_point mov !rb,#$7F ; make speaker output
 ; wait for input button
bwait jnb rb.0,bp0
 jnb rb.1,bp1
 jnb rb.2,bp2
 jb rb.3,bwait
; tone 3
 mov tone,#48
 mov second,#$01
 mov second+1,#$01

bp call beep
 jmp bwait

bp2 mov tone,#24

 Unit 5. Advanced Flow Control

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 71

 mov second,#$FD
 mov second+1,#$01
 jmp bp

bp1 mov tone,#12
 mov second,#$FA
 mov second+1,#$03
 jmp bp

bp0 mov tone,#6
 mov second,#$F4
 mov second+1,#$07
 jmp bp

; subroutine
beep
loop not rb ; toggle bits
 mov delay1,tone
oloop clr delay
wloop djnz delay,wloop
 djnz delay1,oloop
 djnz second,loop
 djnz second+1,loop
 ret ; go back to wherever

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

Unit 5. Advanced Flow Control

Page 72 • Introduction to Assembly Language with the Scenix SX Microcontroller

 Unit 6. Low-Level Programming

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 73

Unit VI. Low-Level Programming
Unit VI from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

In the previous units you’ve written programs that do simple input and output. However, the SX has many
powerful I/O features that you can use if you know how they work. Besides input and output capabilities, the SX
has more program and data storage than previous programs have used. To access this extra memory, you’ll
need to understand a special technique called banking.

Port Control
The SX has three I/O ports: ports A, B, and C. Of course, the 18-pin device doesn’t have a port C, but otherwise
is exactly the same as its large-package cousins. Port A only has 4 pins. Ports B and C have 8 bits each. You can
read and write the pins on a port by accessing the corresponding data register (ra, rb, or rc). You’ve also seen
that you can change the direction of each bit by changing the control register for the port (!ra, !rb, or !rc).

However, the control register gives you much more control over the ports than just the direction. Using the
control register you can set other options including the threshold voltage for each pin and set if the pin uses a
Schmitt trigger input or a normal logic-level input. You can also elect to turn on an optional pull up resistor on
each pin.

How can a single control register have this much capability? It can’t. The trick is that the control register has
multiple personalities determined by the M or mode register. By default, the M register (a 4-bit register)
contains $F, which makes the control registers direction registers. When you write a 0 to the control register, it
makes the corresponding bit an output, and a 1 makes the bit an input.

If you set the mode register to $E, for example, the control register selects which pins have pull up resistors
connected internally. Each bit that is a zero will set a pull up resistor on. Pull up resistors prevent input pins from
assuming random states if there is no external circuitry driving the pin. You can set pull up resistors on any of
the three ports, by setting M to $E and then accessing the !ra, !rb, or !rc registers.

You can use the mov instruction to load the M register with the contents of another register or a literal. You can
also use the mode instruction to load a literal into M. Table VI.1 shows the effects of the control registers for
different values of M (note that this table does not show settings that pertain to interrupts, a topic covered in
the next unit).

Unit 6. Low Level Programming

Page 74 • Introduction to Assembly Language with the Scenix SX Microcontroller

Mode !ra !rb !rc SX Name
$F Direction Direction Direction TRIS_
$E Pull up Pull up Pull up PLP_
$D Threshold Threshold Threshold LVL_
$C N/A Schmitt Schmitt ST_

Table VI.1 – Mode Settings

If you set a threshold bit to 0, the SX will read the input through a CMOS-compatible buffer. This buffer will treat
levels below 30% of the supply voltage (say 1.5V if the supply is 5V) as a 0. Anything above 70% of the supply
voltage (3.5V) will be a 1. Voltages in between will result in an unpredictable bit, although practical experience
shows that the threshold is about 50% of the supply voltage (but Scenix does not specify this).

When the threshold bit is 1, the input uses a TTL-compatible buffer. Using a TTL compatible buffer treats a 0 as
.8V or less and a 1 as anything over 2V. For most modern logic circuits, this is acceptable, but interfacing with
certain devices may require one setting or the other. Also, when mixing analog circuitry with the processor, you
might want to adjust the thresholds to read a particular voltage level.

Ports B and C can use a Schmitt trigger input if you set a zero into the Schmitt register. A Schmitt trigger uses
different thresholds depending on the situation. Imagine you are trying to set the temperature of your swimming
pool to a particular temperature (say 25 degrees Celsius). You turn on your water heater, and watch the
thermometer. When the temperature gets to 25, you turn the heater off. However, the pool loses heat quickly so
almost immediately, the temperature drops again and you turn on the heater again. Soon you are turning the
heater on and off every few seconds, never able to attain 25 degrees for more than a split second.

A Schmitt trigger uses hysteresis to battle this sort of problem. The idea is that the Schmitt trigger will use one
threshold to recognize 0 to 1 transitions and another threshold to identify 1 to 0 transitions. A Schmitt trigger
might see a voltage rising from .8 to .9V and output a logic 1 (5V). However, it might require that the voltage
drop below .5V before returning to the zero state. This prevents a noisy or slow rising signal from causing
multiple changes on the output. The SX’s Schmitt triggers use 15% and 85% of the supply voltage as trip points.
Once the signal rises above 85% of the supply voltage (4.25V for a 5V supply), the input reads a 1. It will
continue to read a 1 until the input drops below 15% (.75V).

This can be important when dealing with inputs from real-world sensors, or noisy inputs from long lines. You can
also use it to “square up” a signal – for example, reading a digital input from a charging capacitor. Of course,
using the Schmitt trigger option overrides the threshold settings for the pin.

Tip: Be sure you know the state of the M register before you use the control registers. A common mistake is to
set the M register to some value other than $F, use the control register, and then later try to access the control
register to set direction bits. The M register stays at the last value you set until a reset occurs.

 Unit 6. Low-Level Programming

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 75

Analog Capabilities
The SX has one more special capability on port B. Pin 1 and 2 of port B can function as an analog comparator.
You can read the comparator’s output in software and you can cause pin 0 of port B to reflect the comparator’s
output as well.

To enable the comparator, you simply set the M register to 8 and write a value to !rb. A value of $C0 will turn
the comparator function off. To turn it on, write either $40 or $00 to !rb. If you use $00, the comparator will
operate, and pin 0 will act as a comparator output. If you use $40, pin 0 will be free for normal I/O, but the
comparator will still function.

To read the state of the comparator, make sure M contains 8 and write to the !rb register. When you write to
the comparator register (that is, M is equal to 8 and you perform a mov to !rb) the SX does a little trick behind
your back. Instead of simply moving the data to the comparator register, it actually exchanges the W register
with the comparator register. This is true even if you write:

 mov !rb,#0

Because this is really the same as writing:

 mov W,#0
 mov !rb,W

So after writing to the comparator register, the W register contains the previous contents. You should only
examine bit 0, the comparator status bit, after you’ve already enabled the comparator with another instruction.
If bit 0 is high, then the voltage on B2 is higher than the voltage on B1. If it is low, then the opposite condition
is true.

Why would you want a comparator input? Maybe you want the SX to compare the voltage from a potentiometer
and a thermocouple. Perhaps you want to divide down your battery voltage and compare it to a known
reference so you can detect when your battery is low.

Register Banking
Earlier, you read that the SX has over 100 registers. That might seem odd, because the debugger is only
showing 32 registers. If you examine the SX instruction set, you’ll also see that there is only room for 5 bits of
data to specify a register. So how can 5 bits refer to over 100 registers? The answer is banking.

Your program does have access to 136 memory locations (not including the special registers like ind, fsr, ra,
etc.). However, it can only work with 32 registers at one time. The first 8 registers (register 0 to 7) are the
special registers and you can always access them. The registers from 8 to 15 are also always accessible – the SX
doesn’t use them for anything, so you can do what you want with them. This accounts for 16 registers. The
other 16 (registers $10-$1F) are available for you to use as you wish. However, there are really 8 sets of these
registers. Which set of 16 you are using depends on the FSR register.

Unit 6. Low Level Programming

Page 76 • Introduction to Assembly Language with the Scenix SX Microcontroller

Tip: Don’t forget that in an 18-pin SX, register 7 is available for use and always accessible. On other SX devices,
this register is rc.

Conceptually, the SX memory map consists of 8 32-bit pages. Each page has 32 registers in it. The first 16 are
always the same. The last 16 are not. Each register has its own address (and in the case of the shared registers,
8 addresses). You can see this graphically in Table VI.2.

When you want to access a register, you have several choices. First, if you are using FSR anyway, just put the
proper address into FSR before using IND. So if you want to access the last memory location, load FSR with
$FF. Your other option is to set the top 3 bits of FSR before you access memory. The values you want to use
are in the column headings of Table VI.2. You can store a value in FSR, of course, with a mov instruction.
However, this destroys the entire register and it also requires two machine language instructions if you are using
a literal value. Since most programs will want to load literals into FSR, there is a bank instruction. This
instruction loads the top 3 bits of a literal into the top 3 bits of FSR. This is useful because you can just name
the variable you want to access. For example:

 org $FF
last ds 1

 org 0
 bank last
 mov last,#0

You might wonder why the debugger did not show you these extra pages. In the device statement of all the
previous programs, you’ll find a pic16c55 clause. This tells the SX to only use 1 bank to simulate a different
device. If you specify sx28l (or sx18l for an 18-pin device) you’ll get the full set of registers and memory. The
current bank of registers shows up in a bright highlight compared to the inaccessible banks in the debugging
window.

 Unit 6. Low-Level Programming

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 77

 FSR=$00 FSR=$20 FSR=$40 FSR=$60 FSR=$80 FSR=$A0 FSR=$C0 FSR=$E0
$00 IND IND IND IND IND IND IND IND
$01 RTCC RTCC RTCC RTCC RTCC RTCC RTCC RTCC
$02 PC PC PC PC PC PC PC PC
$03 STATUS STATUS STATUS STATUS STATUS STATUS STATUS STATUS
$04 FSR FSR FSR FSR FSR FSR FSR FSR
$05 PORTA PORTA PORTA PORTA PORTA PORTA PORTA PORTA
$06 PORTB PORTB PORTB PORTB PORTB PORTB PORTB PORTB
$07 PORTC PORTC PORTC PORTC PORTC PORTC PORTC PORTC
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F

8 registers addressable as $08-$0F, $38-$3F, $58-$5F, $78-$7F, $98-$9F, $B8-$BF, $D8-$DF, or
$F8-$FF

$10 $10 $30 $50 $70 $90 $B0 $D0 $F0
$11 $11 $31 $51 $71 $91 $B1 $D1 $F1
$12 $12 $32 $52 $72 $92 $B2 $D2 $F2
$13 $13 $33 $53 $73 $93 $B3 $D3 $F3
$14 $14 $34 $54 $74 $94 $B4 $D4 $F4
$15 $15 $35 $55 $75 $95 $B5 $D5 $F5
$16 $16 $36 $56 $76 $96 $B6 $D6 $F6
$17 $17 $37 $57 $77 $97 $B7 $D7 $F7
$18 $18 $38 $58 $78 $98 $B8 $D8 $F8
$19 $19 $39 $59 $79 $99 $B9 $D9 $F9
$1A $1A $3A $5A $7A $9A $BA $DA $FA
$1B $1B $3B $5B $7B $9B $BB $DB $FB
$1C $1C $3C $5C $7C $9C $BC $DC $FC
$1D $1D $3D $5D $7D $9D $BD $DD $FD
$1E $1E $3E $5E $7E $9E $BE $DE $FE
$1F $1F $3F $5F $7F $9F $BF $DF $FF

Table VI.2 – SX Memory Map

Unit 6. Low Level Programming

Page 78 • Introduction to Assembly Language with the Scenix SX Microcontroller

Tip: If you organize your registers based on your usage of them, you can name your banks meaningfully. Not
only does this make your code more readable, but it will often reduce the amount of switching necessary, as
well. For example, suppose you have one bank of variables (bank $20) reserved for math calculations, and
another for external communications (bank $40). You can define two symbols, math and extcomm, so you can
write:

 bank math ; switch to math bank

Program Pages
Another place where the SX hides extra memory is in the program space. Although none of your programs have
needed it so far, the SX has 4 pages of program memory, and each page is 512 instructions (remember,
instructions on the SX are not bytes). So you can use up to 2K instructions.

However, using more than 512 instructions requires careful planning. Every jump instruction (except jmp w,
jmp pc+w, and ljmp) only take 9 bits for an address. The extra bits required come from the top 3 bits of the
status register. Instead of manually setting these bits, however, you can force the assembler to do it for you.
Just put an “@” character before the address, like this:

 JMP @FarAwayPlace

This actually produces the following instructions:

 PAGE FarAwayPlace
 JMP FarAwayPlace

The page instruction sets the status register bits to match the target address. Since using the @ sign requires
extra space, you should only use it in cases where the target address resides in a different page.

To complicate things, calling a subroutine across page boundaries is even more difficult. The call instruction only
takes 8 bits of address. The ninth bit is set to 0, and the remaining bits come from the status register just like
as with jmp. That means that a subroutine call can only occur to the first 256 instructions of a page.

This seems like a harsh restriction, but in reality, it is easy to overcome. If you can’t organize your subroutines
so that they are all in the first half of a page, just place a jmp to the subroutine (a single instruction) in the
bottom half of the page, and call that instead. Don’t forget that data tables (like the ones in Unit 5) are really
subroutines so they have the same limitation – the jmp instruction that starts the table must be in the first half
of the page so that other parts of the program can call into the table.

It is worth noting that the program counter is 11 bits long, but the pc register is only the bottom 8 bits. There is
no way to directly read the top 3 bits. The only access you have to these bits is when they are loaded from the
top 2 or 3 bits of the status register.

 Unit 6. Low-Level Programming

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 79

When you call a subroutine in a different page, you need the processor to restore the full 11-bit address to the
program counter. It is also handy to have it set the status register to the caller’s page so that it can make more
subroutine calls on its own page. That is the purpose of the retp instruction. It not only restores the full address
so that the caller can continue executing, but it also sets the top 3 bits of the return address into the top 3 bits
of the status register.

Tip: The ret instruction and the retp instruction take the same amount of space and execute at the same
speed. If there is any chance you might call a subroutine from across page boundaries, use retp. The only
exception would be if you wanted the subroutine to modify the top bits of status.

Reading Program Storage
In the last unit you saw how to use retw to form tables in program memory. There is another way you can
access program memory – the iread instruction. This instruction takes 4 cycles (unusual for an instruction that
doesn’t jump or skip). It takes the M register and the W register as an 11-bit address, reads the 12-bit word at
that address, and loads it into the M and W registers.

How do you get arbitrary data into the program memory? Use DW as in:

 org 0
start_point mov m,#SomeData>>8 ; top part of address
 mov w,#SomeData&$FF ; bottom part of address
 iread
 nop
 nop
 break
 nop
 sleep

SomeData dw $1A5

If you debug this program, the W register will contain $A5 and the M register will contain $1 at the breakpoint.

Tip: Be careful if you access the port control registers after executing iread since the M register will not contain
what you expect and that alters the control register’s function.

Summary
The techniques in this unit are not that useful for the simple programs you’ve written up to this point. But in real
life, 24 bytes of data storage and 512 instructions only go so far. The key to success with large programs is to
carefully plan and organize. If you can keep related variables in the same bank, you’ll be much happier.

Unit 6. Low Level Programming

Page 80 • Introduction to Assembly Language with the Scenix SX Microcontroller

Variables that you use in many parts of your program should be below $10 (the shared area). Of course, with
only 8 bytes shared between banks (9 on an SX18), you have to be very frugal.

Organization for code is important too. Related routines on the same page do not need long jumps. You also
need to be mindful of placing subroutines in the second half of any bank, since you won’t be able to call them
there.

If it seems odd that the SX has all these odd ways to access memory, remember that it is all in the name of
compatibility. The SX is backward compatible with other processors that do not have so much memory. The
price of having extra resources is extra complexity.

Exercises

1. Write a program to clear all 8 register banks. Be careful not to clear the first 8 registers (which are the
special function registers like pc and ind). Also, don’t clear the shared bank more than once. Can you
make the clear loop a subroutine?

2. Use org $200 to place the clearing subroutine in the above program in the first program bank. Single
step through the execution.

3. Write a program to convert Celsius temperature to Fahrenheit, using a lookup table accessed with
iread. Assume the input ranges from 0 to 29 degrees. The formula for conversion, by the way, is
F=1.8C+32.

 Unit 6. Low-Level Programming

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 81

Answers
1. Here is one possible solution:

 device sx28l,oscxt5
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz

 org 0
start_point mov fsr,#8 ; shared bank
 call clear
 mov fsr,#$10
zloop call clear
 add fsr,#$11
 jnc zloop
 nop
 break
 nop
 sleep

; subroutine clears from FSR until FSR AND $F is 0
clear clr ind
 inc fsr
 mov w,#$F
 and w,fsr
 jnz clear
 dec fsr ; back up
 ret

2. Moving the subroutine requires you to: 1) place org $200 in front of the clear routine; 2) change each
call to clear with one to @clear; and 3) change the ret instruction to a retp. Try performing each of
these steps in sequence and debugging the code before making the next change.

Unit 6. Low Level Programming

Page 82 • Introduction to Assembly Language with the Scenix SX Microcontroller

3. Here is a simple implementation:

 org 8
tempm ds 1 ; place to hold M
value ds 1 ; value to convert

 org 0
start_point mov value,#11 ; 11 degrees C
 call @convert
 nop
 break
 nop
 sleep
convert mov tempm,m
 mov m,#table>>8
 mov w,#table & $FF
 add w,value
 iread
 ; don't need M
 mov value,w
 mov m,tempm ; restore M
 ret

table dw 32,34,36,37,39,41 ; 0-5
 dw 43,45,46,48,50 ; 6-10
 dw 52,54,55,57,59 ; 11-15
 dw 61,63,64,66,68 ; 16-20
 dw 70,72,73,75,77 ; 21-25
 dw 79,81,82,84 ; 26-29

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 83

Unit VII. Interrupts
Unit VII from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

One of the great strengths of modern computers is that they can do more than one thing at a time, right? With a
Windows PC, you can surf the Web, work on an e-mail, and touch up a photo from your digital camera, all at the
same time. This sounds great except for one thing: most computers (including your Windows PC) only do one
thing at a time.

How is this possible? While it is true that most computers can only do one thing at a time, they can do one thing
very rapidly. Modern operating systems allocate small chunks of time to each active task. In this way, each task
appears to run at the same time. Also, modern computers can respond to external events – for example, a
keystroke or a mouse movement. This also helps with the illusion that the computer is performing many tasks
since the computer can handle events as they occur instead of waiting for them.

To get this sort of capability, a computer needs a way to track time and it also needs a way to stop what it is
doing in favor of another task. The SX has two features that work together in this area: the real time clock
counter (RTCC register) and interrupts. The RTCC register does just what its name implies: it increments on a
precise predetermined interval regardless of what else the processor is doing. It can also increment in response
to an external pulse input. Interrupts allow an external event or a time period to trigger a piece of your program.
Whatever the SX was doing before the event is put on hold until the event code (an interrupt service routine or
isr) completes.

In assembly language programming, interrupts have a reputation as being difficult to use. It is true that
interrupts require careful planning. However, the SX has several features that make dealing with interrupts less
troublesome than with many other similar processors.

What constitutes an event? One common event is when the RTCC register rolls over (that is, changes from $FF
to $00). You can also configure interrupts to occur on rising or falling edges on any (or all) port B pins. To use
interrupts, you must configure them first – by default no interrupts occur.

The Real Time Clock Counter
One of the most common sources of interrupts is when the RTCC register’s value changes from $FF to $00. This
indicates that 256 time periods have elapsed or 256 external events occurred. Using this interrupt, you can
receive interrupts at a regular time interval which is useful for keeping time, measuring pulse widths, generating
pulses, and other time-sensitive operations.

What causes the RTCC register to increment depends on bit 5 of the !option register (RTS). If this bit is 0, the
counter increases with each instruction cycle. If the bit is 1, then RTCC increments each time it detects a pulse
on the RTCC pin. By using the RTE bit (bit 4 of !option) you can determine if the counter responds to rising
edges (0) or falling edges (1).

Unit 7. Interrupts

Page 84 • Introduction to Assembly Language with the Scenix SX Microcontroller

By default, the RTCC register increments on each instruction cycle or external event. At 50MHz, then, the RTCC
requires 20nS * 256 = 5.12uS to roll over when counting instruction cycles. This time is too short for most
purposes (as you’ll see shortly), so you’ll often want to divide the clock cycle by some factor. You can do this by
assigning the prescaler to RTCC. This is the same prescaler the watchdog timer uses, so you have to assign it to
one use or the other. You can’t scale the RTCC count and the watchdog timer at the same time.

To assign the prescaler to RTCC, clear bit 3 of the !option register (PSA). The last 3 bits in the !option
register determine the division rate (see Table VII.1). The maximum ratio is 1:256 which at 50MHz works out to
1.3mS (.0013S). Of course, if you are using a different clock frequency all of these times will be different as well.
Obviously, if you are using an external source to drive the RTCC pin, the time between rollovers depends on the
external source.

Tip: Notice that the table does not contain a 1:1 setting. That is because a 1:1 setting is what you get when the
prescaler is working for the watchdog timer.

PS2 PS1 PS0 Ratio Roll overTime at 50MHz
0 0 0 1:2 10.24uS
0 0 1 1:4 20.48uS
0 1 0 1:8 40.96uS
0 1 1 1:16 81.92uS
1 0 0 1:32 163.84uS
1 0 1 1:64 327.67uS
1 1 0 1:128 655.35uS
1 1 1 1:256 1310.72uS (1.31 mS)

Table VII.1 – Prescaler Settings

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 85

RTCC Delays
Even without interrupts, the RTCC register can be useful. In previous units, programs used a programmed delay
to pause for a particular interval. If the RTCC is incrementing with the instruction clock, you can use it to time
your delays easily. Take a look at this subroutine:

; assume prescaler is 1:256
delay1_3ms mov rtcc,#1
; testing for zero is ok because the 256 prescaler is on
:wait mov w,rtcc
 jnz :wait
 ret

The subroutine sets rtcc to 1 (which also, incidentally, clears the prescaler). It then waits for rtcc to equal zero.
This will require 255 counts and each count requires 256 instruction cycles. Therefore, at 50MHz, the total delay
is 256*255*20nS = 1.3mS.

Don’t forget that writing to rtcc clears the prescaler. This can lead to subtle side effects. For example, you might
be tempted to use the test instruction to test the prescaler for a zero value. This won’t work because using test
is the same as moving a register into itself. While this does test for zero, it also clears the prescaler so that the
rtcc register never increments.

Another pitfall is testing for equality. If the prescaler is not set, rtcc increments on each instruction cycle. Then
it would be dangerous to test for a single value of the prescaler. Why? Because rtcc might assume that value
while you are executing another instruction. For example, suppose the subroutine above loads w with $FF at the
:wait label. With prescaling off, the next time through the loop the counter will be 3 – it was zero during the
jnz instruction!

RTCC Interrupts
To enable RTCC rollover interrupts, clear the RTI bit (bit 6) in the !option register. Once this bit is clear, the
processor will stop whatever it is doing when RTCC rolls over and execute the code starting at location 0. Of
course, up until now, your program started at location 0, but that is only because the reset directive pointed
there. You can start your program further up in memory to allow for interrupt processing.

When an interrupt occurs, the SX disables further interrupts. It also saves status, fsr, and w. The SX then
clears the top 3 bits of the status register (these bits form the top portion of jump addresses) and jumps to
address 0. All of this work is necessary so that the interrupt service routine (ISR) does not interfere with the
execution of the main program. Once the ISR is finished, it uses the reti instruction to restore control to the
main program. This also enables future interrupts.

Unit 7. Interrupts

Page 86 • Introduction to Assembly Language with the Scenix SX Microcontroller

Tip: Unlike many other processors, the SX stores its context (the w, fsr, and status registers) in special
temporary areas, not the stack. However, the chip does not service interrupts if they occur while still processing
a previous interrupt.

Perhaps the simplest way to use the rtcc interrupt is to simulate a wider real time clock. Remember that even
with the maximum prescaling in effect, rtcc rolls over every 1.3mS or so (at 50MHz). What if you wanted to
delay 100mS? Sure you could call the 1.3mS delay nearly 100 times. But if you had a 16-bit rtcc register you
could simply wait for the count to exceed 19531 (each count is worth about 5uS when the prescaler is at 1:256).

Here is a simple 100mS LED flasher based on these ideas:

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
rtcc1 ds 1

 org 0
isr inc rtcc1 ; interrupt handler
 reti

start_point
 mov !rb,#$80 ; 7 outputs, 1 input
; set RTCC to internal clock 1:256 ratio
 mov !option,#$87
loop xor rb,#$FF
 call delay100ms
 jmp loop

delay100ms clr rtcc
 clr rtcc1
:wait mov w,#$4c ; $4c4b is 19531
 mov w,rtcc1-w
 jnz :wait
:wait0 mov w,#$4b
 mov w,rtcc-w
 jnz :wait0
 ret

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 87

Periodic Interrupts
In the previous examples, the main program blinks an LED and controls the delay between flashes of the lamp.
However, the real power to interrupts is when you allow the ISR to perform a task, seemingly while the main
routine is executing. Look at this program:

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
rtcc1 ds 1

 org 0
isr inc rtcc1
 cjne rtcc1,#$4D,iout ; blink every $4D00 periods
 xor rb,#$FF
; reset time
 clr rtcc
 clr rtcc1
iout
 reti

start_point
 mov !rb,#$80 ; 7 outputs
; set RTCC to internal clock 1:256 ratio
 mov !option,#$87
loop
 jmp loop

The main program sets !rb, !option, and then does a simple jmp instruction to loop forever doing nothing. All
the work occurs in the ISR. It is interesting to note that the ISR resets the rtcc register so that the interrupt will
occur periodically. This isn’t unusual when you want the interrupt to repeat at a regular interval. Of course, the
interval will be a little longer than you

There is one problem with this, however. A complex ISR may take a different amount of time to execute
depending on the current situation. This can lead to timing errors intolerable in precise applications. For
example, in the above piece of code, the reti instruction adds a slight delay to the total time although for this
application it is negligible.

A better answer is to use the retiw instruction to end the ISR – especially if the prescaler is off. This instruction
adds the w register’s contents to rtcc. Say the processor is set so that rtcc will cause an interrupt when it rolls
over and that the prescaler is assigned to the watchdog timer. Each count of the rtcc represents 20nS
(assuming, as always, a 50MHz clock). When the interrupt begins the rtcc has already counted to 3. As the ISR

Unit 7. Interrupts

Page 88 • Introduction to Assembly Language with the Scenix SX Microcontroller

continues, the rtcc continues to increase. To accurately set the time, you have to take into consideration how
much time has already elapsed. Luckily, there is a simple answer – the rtcc register already has this
information! If you subtract the number of cycles you want between each interrupt from the number of cycles
already elapsed, you are left with the exact number of cycles required.

For example, say you want an interrupt to occur every 50 cycles (1uS). You can simply use the following two
lines of code at the end of your ISR:

 mov w,#-50
 retiw

The only catch is that your ISR, including the 3 cycle interrupt latency, must not exceed 46 cycles. If it does,
you’ll either miss the next interrupt, or you will return to the main program only to have an interrupt occur
immediately. Because of the interrupt latency you must always allow 3 cycles plus at least enough time for one
instruction to execute in the main program – figure a total of 6 cycles. However, even then your main program
will not execute very often – you should allow a more generous time slice between interrupts in most cases.

A Clock Example
A computer that knows what time it is can be very useful. You might want to count down a model rocket launch,
or time stamp readings from a sensor. With an accurate interrupt it is easy to keep the time. The hard part, is
translating the rapid stream of interrupts into numbers more meaningful to humans. Here is a simple program
that uses a 50MHz clock to the rtcc register. The ISR adds –50 to rtcc so that it generates a periodic interrupt
every 1uS. The ISR maintains two 16-bit counters to count microseconds and milliseconds.

Of course, every 1000 milliseconds constitutes a second, every 60 seconds is a minute, and 60 minutes make an
hour. You could easily extend this to track days if you wanted to do so. The main program in this case doesn’t
do anything, but you could easily add whatever code you wanted.

This is a hard program to debug because single stepping it doesn’t show the correct time. You can run the
program at full speed in the debugger and press the Poll button to see the time change. You’ll also see LEDs on
port B blink and, if you connect a piezo speaker to one of the port B pins, you’ll hear your SX clock ticking.

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
minutes ds 1

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 89

hours ds 1
 watch hours,8,udec
 watch minutes,8,udec
 watch seconds,8,udec

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 xor rb,#$FF ; toggle LEDs
 inc seconds
 cjne seconds,#60,iout
; seconds roll over
 clr seconds
 inc minutes
 cjne minutes,#60,iout
; minutes roll over
 clr minutes
 inc hours
 cjne hours,#24,iout
; hour roll over
 clr hours
; could track days if we wanted to

; reset time
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

Unit 7. Interrupts

Page 90 • Introduction to Assembly Language with the Scenix SX Microcontroller

start_point
 mov !rb,#$00 ; all outputs
 clr microhi
 clr microlow
 clr seconds
 clr hours
 clr minutes
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
loop
 jmp loop

External Interrupts via RTCC
When you think of using the RTCC pin to monitor external events, you usually think of counting pulses. You can
certainly do this, of course. When you set bit 4 of !option (the RTS bit), the pin monitors pulses and uses them
to increment RTCC. If the RTE bit (bit 4 of !option) is clear, the count occurs on rising edges, otherwise the SX
detects falling edges. The prescaler is still available, so you can divide the input down if you like.

However, what if you want a single external interrupt? At first glance, it would seem that you can’t do this with
RTCC. After all, even with the prescaler assigned to the watchdog timer, you still need 256 pulses to get a single
interrupt, right?

While that seems true, there is a trick you can use to make RTCC simulate an external interrupt. Simply load the
RTCC register with $FF. Assuming the prescaler is off and the RTS bit is set, the next input pulse will cause an
interrupt. A simple but effective technique. Of course, the ISR will then reset RTCC to $FF before issuing a reti
instruction so the interrupt will be ”armed” for the next event.

Port B Multi Input Wakeup
In addition to the RTCC trick, you can configure any (or all) of port B’s pins as external interrupts. Port B has
two special registers that allow it to detect input edges. These are in effect at all times, not just when interrupts
are enabled. Like other special port registers, you access these by using !rb while the M register is set to a
special value. If M is $A, you can select which edge each pin monitors. A 1 bit in this register makes the SX
detect falling edges (that is, 1 to 0 transitions) on the corresponding pin. A 0 bit detects 0 to 1 transitions or
rising edges. When the selected edge appears on a pin, the SX sets the corresponding bit in the multi-input
wake up (MIWU) pending register (!rb with M = $9). The SX never clears this register. When your program
writes the W register into !rb and M is $9, the SX actually swaps the two values. So you can read the pending
bits and clear them at the same time.

This processing occurs at all times. Most programs just ignore this feature. However, you can use it to detect
when an edge occurred even when you aren’t using the port B interrupts. If you connect the circuit in Figure
VII.1 to several port B pins, you can try this program:

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 91

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
minutes ds 1
hours ds 1
edges ds 1

 watch hours,8,udec
 watch minutes,8,udec
 watch seconds,8,udec

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 inc seconds
 cjne seconds,#60,iout
; seconds roll over
 clr seconds
 inc minutes
 cjne minutes,#60,iout
; minutes roll over
 clr minutes

Unit 7. Interrupts

Page 92 • Introduction to Assembly Language with the Scenix SX Microcontroller

 inc hours
 cjne hours,#24,iout
; hour roll over
 clr hours
; could track days if we wanted to

; reset time
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

start_point
 mov !rb,#$FF
areset clr microhi
 clr microlow
 clr seconds
 clr hours
 clr minutes
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale

; Turn on port B pull up resistors
 mode $E
 mov !rb,#$00
; set port B pin 0 to interrupt on falling edge
 mode $ A ; select edge
 mov !rb,#$FF
 mode $9 ; enable interrupts
 mov !rb,#%0 ; clear pending
; wait for 10 seconds
wait10 cjne seconds,#10,wait10
 mov !rb,#%0 ; read pending and clear
 mov edges,w
; important: reset mode register
 mode $F
 mov !rb,#0 ; set to outputs
; flip sense of edge bits
 not edges
 mov rb,edges

loop
; active wait so ticking will occur

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 93

 jmp loop

This is more or less the same program as before, but it doesn’t produce the blinking lights and ticking effect.
Instead, it waits 10 seconds (easy to do with the clock interrupt routine) and then turns on lights that
correspond to the buttons you pushed during that 10 seconds. This is trivially easy using the MIWU feature.
Since the LEDs turn on when the port outputs a 0, the program uses the not instruction to invert the pending
bits.

Tip: This program initially sets the direction register so that all port B pins are inputs. Then, after the pause, it
sets all pins to outputs. An easy mistake to make here is to forget to set the M register back to $F before
switching to outputs. The edge detection code changes the M register, and you must change it back to $F
before accessing the direction register.

470

10K
Port B Pin

5V

Figure VII.1 – Switch/LED Circuit

Port B Interrupts
When the SX detects an edge, it can also generate an interrupt. You can set this by clearing bits in the !rb
register while M is equal to $B. When the SX detects an edge on the corresponding pin, it will generate an
interrupt. It is up to the ISR to examine the pending register and clear it for further interrupts. This interrupt is
exactly like an rtcc interrupt – it saves the SX context and starts at location 0.

It is possible to use port B interrupts and rtcc interrupts at the same time, but it can be tricky. For example, if a
pulse occurs while the ISR executes, the SX will not generate interrupts after the ISR returns until a new event
occurs. By the same token, if rtcc rolls over while the SX is processing a port B interrupt, you will miss the rtcc
interrupt. In some cases, timing is not that critical, so losing a microsecond or two isn’t that important. However,

Unit 7. Interrupts

Page 94 • Introduction to Assembly Language with the Scenix SX Microcontroller

if you require solid time accuracy you should consider only dealing with one interrupt source (port B or rtcc) in
one program.

Tip: If you need a real-time clock and edge detection, think about using the rtcc interrupt at a fast rate and
simply examine the pending bits on each timer tick (this is often known as polling). For many applications,
scanning the inputs every microsecond is good enough.

It is also possible to use the port B interrupt to wake up after a sleep instruction. If a port B interrupt occurs
after a sleep instruction, an interrupt does not occur. Instead, the processor resets with bit 3 of the status
register clear and bit 4 set. Although port B interrupts will interrupt the SX’s sleep, an rtcc interrupt will not.

Summary
Interrupts need not be difficult to use. This is especially true of the SX because the chip takes care of many
details for you. Interrupts are essential when you need to process inputs while doing something else, keep track
of time, or generate precise outputs while doing other tasks.

Interrupts, coupled with the SX’s high speed, form the basis for the virtual peripheral strategy discussed in the
next unit. Although interrupt handling requires a bit of careful design, and can be difficult to debug, they are
well worth the price.

Exercises
1. Write a program that uses a timer interrupt to track (at least) seconds. Normally, the program does

nothing. However, when you press a button connected to pin 0 of port B, the program should flash an
LED (or click a piezo speaker) every second until you push the button again. Pushing the button a third
time should resume LED flashing and so on. Use the rtcc interrupt for timing and poll the switch in the
main program.

2. Modify the above program so that the ISR samples the input switch using the MIWU capability but do
not use the port B interrupts.

3. Modify the program again so that you use both interrupts; the rtcc and the port B interrupt.
4. Which of the three programs do you think uses the best approach?

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 95

Answers
1. The solution is straightforward. Notice you can’t use the sleep instruction or else the program will just

halt.
 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi
 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

Unit 7. Interrupts

Page 96 • Introduction to Assembly Language with the Scenix SX Microcontroller

start_point
 mov !rb,#$01 ; 7 outputs, 1 in
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale

loop
; active wait so ticking will occur
 jb rb.0,loop
; button pushed
 not ticker
; debounce delay (about 1 second)
milloop0 test millihi ; wait for millhi to go to 0
 jnz milloop0
milloop1 test millihi
 jz milloop1 ; wait for nonzero
milloop test millihi
 jz milloop ; wait for zero again
 jmp loop

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 97

2. Compared to the last program, this one has a similar ISR, but a very different main program (all the
work is in the ISR). Notice that the ISR changes the M register, so it has to save and restore it to
ensure the main program’s M register does not change (of course, in this case, the main program
doesn’t care, but that will not usually be the case). To protect against bounce, the code examines the
edge pending register every 1mS.

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
microlow ds 1
microhi ds 1
millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr
 inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi

; check for key every 1ms
 mov tmp,M ; save M register
 mode $9
 clr w
 mov !rb,w ; exchange w and pending
 and w,#1 ; test low bit
 sz
 not ticker ; invert ticker
 mov M,tmp ; restore M

; roll millisecond

Unit 7. Interrupts

Page 98 • Introduction to Assembly Language with the Scenix SX Microcontroller

 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow
 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw

start_point
 mov !rb,#$01 ; 7 outputs
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
; set port B detect falling edge
 mode $A ; select edge
 mov !rb,#$FF

loop
 jmp loop

3. This version is perhaps the least satisfactory of the three. It requires switches that don’t bounce much
since it is difficult to filter multiple interrupts caused by bouncing. Also, if an rtcc event occurs during
processing for a switch closure, the time becomes inaccurate.

 device turbo,stackx_optionx
 reset start_point
 freq 50000000 ; 50 Mhz
 org 8
microlow ds 1
microhi ds 1

 Unit 7. Interrupts

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 99

millilow ds 1
millihi ds 1
seconds ds 1
ticker ds 1
tmp ds 1

 org 0
isr
; check for pending key
 mov tmp,M ; save M register
 mode $9
 clr w
 mov !rb,w ; exchange w and pending
 and w,#1 ; test low bit
 jz rtccisr
 not ticker ; invert ticker
 mov M,tmp ; restore M
 iret

rtccisr
 mov M,tmp
 inc microlow
 snz
 inc microhi
 cjne microhi,#$03,iout ; blink every $03e8 periods
 cjne microlow,#$e8,iout
; 1000 uS already!
 clr microlow
 clr microhi

; roll millisecond

 inc millilow
 snz
 inc millihi
 cjne millihi,#$03,iout
 cjne millilow,#$e8,iout
; 1000 ms!
 clr millihi
 clr millilow

Unit 7. Interrupts

Page 100 • Introduction to Assembly Language with the Scenix SX Microcontroller

 test ticker
 jz notick
 xor rb,#$FF ; toggle LEDs
notick inc seconds
iout
 mov w,#-50 ; interrupt every 1uS
 retiw
start_point
 mov !rb,#$01 ; 7 outputs
areset clr microhi
 clr microlow
 clr seconds
 clr ticker
; set RTCC to internal clock 1:1 ratio
 mov !option,#$88 ; no prescale
; set port B detect falling edge
 mode $A ; select edge
 mov !rb,#$FF
 mode $B ; enable interrupt on pin 0
 mov !rb,#$FE

loop
 jmp loop

4. It is fairly clear that program #3 would require a great deal of work to make it robust. Mixing two
interrupt sources is a risky business. Of the other two techniques, it boils down to personal taste. The
code in #1 has more portions of the program in the main loop where they will be easier to debug.
However, #2 is quite clean and keeps the processing out of the way of the main program (presumably,
you’d be doing something in the main program).

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 101

Unit VIII. Virtual Peripherals
Unit VIII from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

Most if not all microcontrollers are valuable because they communicate with the outside world in some way. As a
result, system designers spend a lot of time interfacing microcontrollers to the outside world. With old-fashioned
processors, everything required additional electronic components. Want to read a voltage? Get an A/D (analog to
digital) chip. What to talk to a PC? Get a UART (Universal Asynchronous Receiver and Transmitter) chip.

In recent years, microcontroller manufacturers have been integrating common peripheral chips directly into the
microcontroller. This allows for simpler system design and conserves the controller’s I/O capacity. The only
problem is, no microcontroller can have every possible peripheral. For one project you might need a UART. The
next project might require two A/D inputs. Still another project might require a single A/D but two UARTs.
Obviously, no matter how clever the microcontroller designers are, you will never be able to have all peripherals
built into the microcontroller.

Another problem with this approach is that you have to have different microcontrollers for different tasks. You
can’t take a microcontroller with a built-in A/D and use it in place of one that has a UART. This makes it
complicated to control your inventory of microcontrollers. Ideally, you’d like to use the same part in all of your
designs. At the least, you want the fewest number of different parts possible.

Scenix address this problem via Virtual Peripherals or VPs. VPs take advantage of the SX’s raw speed and
interrupt capability to simulate traditional peripheral devices in software instead of hardware. This has many
advantages:

1) Use one part for all designs
2) Add whatever devices you need for a particular project
3) Modify devices to meet your needs – not usually possible in hardware

A VP is simply a code module (usually an interrupt service routine or ISR) that simulates an I/O device. You can
download many VPs from Scenix’s Web site (www.scenix.com). Other VPs may be available (for free or for a
fee) from third parties. You can even write your own VPs for use in later projects or to sell to other
programmers. Some VPs do require a few external components (usually a few resistors or capacitors). Others
work completely in software.

Using a VP
When you begin designing a project around the SX, you should first see if there are any standard VPs that would
be of use to you. Scenix releases new VPs frequently, but here are few of the more useful VPs that are available
now:

• DTMF Generation – Generates TouchTones
• FSK Detection – Receives frequency shift keying data

Unit 8. Virtual Peripherals

Page 102 • Introduction to Assembly Language with the Scenix SX Microcontroller

• FSK Generation – Generates frequency shift keying
• I2C – Interface with IIC-bus chips (one VP for slave, another for master)
• SPI – Interface with SPI-bus chips (one VP for slave, another for master)
• UART – Serial I/O (up to 230.4 Kbaud)
• Multi UART – 8 serial ports each running at 19.2 Kbaud
• LCD – Drives a standard Hitachi LCD module (one VP for 4 bit, another for 8 bit)
• LED – Drives seven segment LEDs
• PWM – A variety of VPs allow you to generate pulse width modulation, useful for generating voltages,

controlling motor speeds and similar tasks
• ADC – You can actually use a few common parts to make an ADC almost completely in software
• Stepper Motor – Control stepper motors
• Timers – Common VPs can implement timers and real-time clocks
• Input – VPs exist that can debounce buttons and scan keypads

Tip: Be sure to check out the latest list at http://www.scenix.com/virtual/vp/sx_library_5.pdf.

Once you select a VP, you need to integrate it into your program. You might be tempted to use more than one
VP. You can do this (see below), but for now just pick one. As an example, suppose you wanted to build a circuit
that would dial the Parallax telephone number using TouchTones over a piezo speaker connected to Port C pin
6.

If you look on the Scenix Web site, you’ll see that there is a document file that describes the DTMF generation
VP and source code to an example program. One problem is that the example program invariably does things
you’d rather not do, so you have to cut and paste the pieces you want into your program.

The example program reads data from an RS-232 port and dials the number as instructed. For this example, you
don’t need the serial I/O VP. However, a quick examination of the example’s ISR shows that it also contains
PWM and timer VPs. Detailed examination reveals that both are necessary for the DTMF VP.

In addition to the ISR, you also have to get the variables that the routines use and several subroutines that help
you access the VP’s functions. The VP may also require specific initialization of port control registers, the
!option register, or internal variables. In the end you may have to resort to a bit of trial and error unless you
are prepared to fully comprehend what the program is doing.

Once you think you have everything you need, you might want to use the Run | Assemble command to see if
you get any assembly errors. If you don’t, then you probably have everything you need (although you may have
extra things too if you are not careful).

Often, the VP does not use the same port assignments as you’d like to use. Usually you can interchange the pin
numbers with no ill effects. However, be careful. If the VP is using, for example, port B’s interrupt capabilities,
you won’t be able to move pins to port A or C which do not have interrupts. Usually the VP will have an equate
near the top that sets the I/O definitions (PWM_pin, in this case). This is misleading, however. In addition to
changing the equate, you also have to find all the places where the VP references the ra, rb, rc, !ra, !rb, or !rc
registers and correct these lines as well.

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 103

With the VP in place, the main program is trivially simple:

; load digits
 clr i
digloop call getdigit
 mov byte,w
 cje byte,#$FF,done
 call @load_frequencies ; VP routine
 call @dial_it ; VP routine

inc i
 mov w,#20
 call @delay_10n_ms
 jmp digloop
done
 sleep

To dial again, reset the processor. The load_frequencies, dial_it, and delay_10n_ms routines are all part of
the VP (and they reside on different pages which explains the at sign prefix). The getdigit routine is a simple
lookup table that returns the phone number digits.

Mixing VPs
When you need to mix VPs, there are several areas you have to consider:

1. At what frequency must the ISRs run?
2. Port and variable conflicts
3. Conflicting uses of the !option register
4. Varying time paths through the ISR

Most of these issues are straightforward. Sometimes you can adjust parameters to resolve conflicts. For
example, if you need a UART, you can adjust its timing so that it will work with other VPs that don’t use the
same frequency. Sometimes it is more difficult and requires significant effort to rewrite the VPs code.

Another issue is varying time paths through the ISR. Some VPs depend on an exact amount of time passing
between interrupts. PWM generation, for instance, requires precise timing. If you merge a VP that requires an
exact amount of time between interrupts with another VP, you should place the time-sensitive VP’s interrupt
code before the other VP’s code. Reversing this order will upset the sensitive VP if the other VP’s ISR does not
always require the same time to execute. A few VPs use special techniques to ensure that they always require
the same amount of time to execute, but most can take varying times depending on conditions.

Unit 8. Virtual Peripherals

Page 104 • Introduction to Assembly Language with the Scenix SX Microcontroller

Summary
Using VPs you can create powerful programs easily. However, it does take a bit of experience and effort to peel
away the interesting parts of the VP examples and apply them to your program. The effort, however, is usually
far less than it would take you to duplicate the VPs features in either hardware or software.

You can mix VPs if you are careful. However, blending together VPs can often be taxing as you try to make
peace between conflicting requirements for each module.

Exercises
1. Download the DTMF generation VP and remove the portions that are unnecessary for building an auto

dial program that automatically dials a phone number when it starts.
2. Move the DTMF output to Port C pin 6.
3. Add your own code to dial a number of your choice each time the processor resets. Put the processor

to sleep after dialing. To hear the tones, you can connect a piezo speaker to the port. However, this will
probably be too rough and too weak to really dial a phone. If you want to really dial the phone, add an
RC filter (see the instructions in the VP documentation; you’ll need a 600 ohm resistor and a capacitor
around .2uF). You can then use an amplified speaker or signal tracer to increase the volume to where it
can really dial the phone.

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 105

Answers
Here is the listing that satisfies the three problems in this unit:

 device sx28l,stackx_optionx
 device oscxt5,turbo

 freq 50_000_000 ; default run speed = 50MHz
 ID 'DIAL'

 reset start ; JUMP to start label on reset

;**************
; Equates for common data comm frequencies
;**************
f697_h equ $012 ; DTMF Frequency
f697_l equ $09d

f770_h equ $014 ; DTMF Frequency
f770_l equ $090

f852_h equ $016 ; DTMF Frequency
f852_l equ $0c0

f941_h equ $019 ; DTMF Frequency
f941_l equ $021

f1209_h equ $020 ; DTMF Frequency
f1209_l equ $049

f1336_h equ $023 ; DTMF Frequency
f1336_l equ $0ad

f1477_h equ $027 ; DTMF Frequency
f1477_l equ $071

f1633_h equ $02b ; DTMF Frequency
f1633_l equ $09c

;**************

Unit 8. Virtual Peripherals

Page 106 • Introduction to Assembly Language with the Scenix SX Microcontroller

; Pin Definitions
;**************
;PWM_pin equ rb.7 ; DTMF output
PWM_pin equ rc.6 ; DTMF output

;*************
; Global Variables
;*************
 org $8 ; Global registers

flags ds 1
dtmf_gen_en equ flags.1 ; Tells if DTMF output is enabled
timer_flag equ flags.2 ; Flags a rollover of the timers.
temp ds 1 ; Temporary storage register
byte ds 1 ; a byte
i ds 1 ; loop counter

;*************
; Bank 0 Variables
;*************
 org $10

sin_gen_bank = $

freq_acc_high ds 1 ;
; 16-bit accumulator which decides when to increment the sine wave
freq_acc_low ds 1
freq_acc_high2 ds 1 ;
; 16-bit accumulator which decides when to increment the sine wave
freq_acc_low2 ds 1
freq_count_high ds 1 ; freq_count = Frequency * 6.83671552
freq_count_low ds 1 ; 16-bit counter
;decides which frequency for the sine wave

freq_count_high2 ds 1 ; freq_count = Frequency * 6.83671552
freq_count_low2 ds 1 ; 16-bit counter which
;decides which frequency for the sine wave

curr_sin ds 1 ; The current value of the sin wave
sinvel ds 1 ; The velocity of the sin wave

curr_sin2 ds 1 ; The current value of the sin wave

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 107

sinvel2 ds 1 ; The velocity of the sin wave

sin2_temp ds 1 ; Used to do a temporary shift/add register

PWM_bank = $

pwm0_acc ds 1 ; PWM accumulator
pwm0 ds 1 ; current PWM output

;*************
; Bank 1 Variables
;*************
 org $30 ;bank3 variables
timers = $
timer_l ds 1
timer_h ds 1

;**************
; Interrupt
;
; With a retiw value of -163 and an oscillator frequency of 50MHz, this
; code runs every 3.26us.
;**************
 org 0
;**************
PWM_OUTPUT
; This outputs the current value of pwm0 to the PWM_pin. This generates
; an analog voltage at PWM_pin after filtering
;**************
 bank PWM_bank
 add pwm0_acc,pwm0 ; add the PWM output to the acc
 snc
 jmp :carry ; if there was no carry, then clear
 ; the PWM_pin
 clrb PWM_pin
 jmp PWM_out
:carry
 setb PWM_pin ; otherwise set the PWM_pin
PWM_out
;**************
 jnb dtmf_gen_en,sine_gen_out
 call @sine_generator1

Unit 8. Virtual Peripherals

Page 108 • Introduction to Assembly Language with the Scenix SX Microcontroller

sine_gen_out

;**************
do_timers
; The timer will tick at the interrupt rate (3.26us for 50MHz.) To set up
; the timers, move in FFFFh - (value that corresponds to the time.)
; Example:
; for 1ms = 1ms/3.26us = 306 dec = 132 hex so move in $FFFF - $0132 =
; $FECD
;**************

 bank timers ; Switch to the timer bank
 mov w,#1
 add timer_l,w ; add 1 to timer_l
 jnc :timer_out ; if it's not zero, then
 add timer_h,w ; don't increment timer_h
 snc
 setb timer_flag
:timer_out
;**************
:ISR_DONE
; This is the end of the interrupt service routine.
; Now load 163 into w and
; perform a retiw to interrupt 163 cycles from the start of this one.
; (3.26us@50MHz)
;**************
 break
; interrupt 163 cycles after this interrupt
 mov w,#-163
 retiw ; return from the interrupt
;**************

start bank sin_gen_bank ; Program starts here on power up

 ;**

; Initialize ports and registers
 ;**

; use these values for a wave which is 90 degrees out of phase.
 mov curr_sin,#-4
 mov sinvel,#-8

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 109

; use these values for a wave which is 90 degrees out of phase.
 mov curr_sin2,#-4
 mov sinvel2,#-8
 call @disable_o

 mov !option,#%00011111 ; enable wreg and rtcc interrupt
 mov !rc,#%10111111

 mov m,#$D ; make cmos-level
 mov !rc,#%10111111
 mov m,#$F

; load digits
 clr i
digloop call getdigit
 mov byte,w
 cje byte,#$FF,done
 call @load_frequencies ; load the frequency registers
 call @dial_it ; dial the number for 60ms
; and return.
 inc i
 mov w,#20
 call @delay_10n_ms
 jmp digloop
done
 sleep

; get i'th digit to dial
getdigit mov w,i
 jmp PC+W
 retw 1,8,8,8,5,1,2,1,0,2,4,$FF

org $200 ; Start this code on page 1
;**
; Miscellaneous subroutines
;**
delay_10n_ms
; This subroutine delays 'w'*10 milliseconds.
; This subroutine uses the TEMP register

Unit 8. Virtual Peripherals

Page 110 • Introduction to Assembly Language with the Scenix SX Microcontroller

; INPUT w - # of milliseconds to delay for.
; OUTPUT Returns after n milliseconds.
;***
 mov temp,w
 bank timers
:loop clrb timer_flag ; This loop delays for 10ms
 mov timer_h,#$0f4
 mov timer_l,#$004
 jnb timer_flag,$
 dec temp ; do it w-1 times.
 jnz :loop
 clrb timer_flag
 retp

;***
; Subroutine - Disable the outputs
; Load DC value into PWM and disable the output switch.
;***
disable_o
 bank PWM_bank ; input mode.
 mov pwm0,#128 ; put 2.5V DC on PWM output pin
 retp

org $400 ; This table is on page 2.
; DTMF tone table
0 dw f941_h,f941_l,f1336_h,f1336_l
1 dw f697_h,f697_l,f1209_h,f1209_l
2 dw f697_h,f697_l,f1336_h,f1336_l
3 dw f697_h,f697_l,f1477_h,f1477_l
4 dw f770_h,f770_l,f1209_h,f1209_l
5 dw f770_h,f770_l,f1336_h,f1336_l
6 dw f770_h,f770_l,f1477_h,f1477_l
7 dw f852_h,f852_l,f1209_h,f1209_l
8 dw f852_h,f852_l,f1336_h,f1336_l
9 dw f852_h,f852_l,f1477_h,f1477_l
star dw f941_h,f941_l,f1209_h,f1209_l
pound dw f941_h,f941_l,f1477_h,f1477_l

org $600 ; These subroutines are on page 3.
;************************************
; DTMF transmit functions/subroutines
;************************************

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 111

;************************************
load_frequencies
; This subroutine loads the frequencies using a table lookup approach.
; The index into the table is passed in the byte register. The DTMF table
; must be in the range of $400 to $500.
;************************************
 cje byte,#$0FF,:end_load_it
 clc
 rl byte
 rl byte ; multiply byte by 4 to get offset
 add byte,#_0_ ; add in the offset of the first digit
 mov temp,#4
 mov fsr,#freq_count_high

:dtmf_load_ loop mov m,#4 ; mov 4 to m (table is in $400)
 mov w,byte
 IREAD ; get the value from the table
 bank sin_gen_bank ; and load it into the frequency
 mov indf,w ; register
 inc byte
 inc fsr
 decsz temp
 jmp :dtmf_load_loop ; when all 4 values have been loaded,
:end_load_it retp ; return
;***
dial_it ; This subroutine puts out whatever frequencies were loaded
 ; for 1000ms, and then stops outputting the frequencies.
;***************
 cje byte,#$0FF,end_dial_it
 bank sin_gen_bank
; use these values to start the wave at close to zero crossing.
 mov curr_sin,#-4
 mov sinvel,#-8
; use these values to start the wave at close to zero crossing.
 mov curr_sin2,#-4

mov sinvel2,#-8
 enable_o ; enable the output
 mov w,#3
 call @delay_10n_ms ; delay 30ms
 setb dtmf_gen_en
 mov w,#10
 call @delay_10n_ms ; delay 100ms

Unit 8. Virtual Peripherals

Page 112 • Introduction to Assembly Language with the Scenix SX Microcontroller

 clrb dtmf_gen_en
 call @disable_o ; now disable the outputs
end_dial_it retp
;**
sine_generator1 ;(Part of interrupt service routine)
; This routine generates a synthetic sine wave with values ranging
; from -32 to 32. Frequency is specified by the counter. To set the
; frequency, put this value into the 16-bit freq_count register:
; freq_count = FREQUENCY * 6.83671552 (@50MHz)
;**
 bank sin_gen_bank
; advance sine at frequency
 add freq_acc_low,freq_count_low;2

jnc :no_carry ;2,4 ; if lower byte rolls over
 inc freq_acc_high ; carry over to upper byte
 jnz :no_carry ; if carry causes roll-over
; then add freq counter to accumulator (which should be zero,
; so move will work)
 mov freq_acc_high,freq_count_high
 ; and update sine wave
 jmp :change_sin
:no_carry
; add the upper bytes of the accumulators
 add freq_acc_high,freq_count_high
 jnc :no_change
:change_sin

 mov w,++sinvel ;1 ; if the sine wave
 sb curr_sin.7 ;1 ; is positive, decelerate
 mov w,--sinvel ;1 ; it. otherwise, accelerate it.
 mov sinvel,w ;1
 add curr_sin,w ;1 ; add the velocity to sin

:no_change

;***
sine_generator2 ;(Part of interrupt service routine)
; This routine generates a synthetic sine wave with values ranging
; from -32 to 32. Frequency is specified by the counter. To set the
; frequency, put this value into the 16-bit freq_count register:
; freq_count = FREQUENCY * 6.83671552 (@50MHz)

 Unit 8. Virtual Peripherals

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 113

;***

;advance sine at frequency
 add freq_acc_low2,freq_count_low2 ;2
 jnc :no_carry ;2,4 ; if lower byte rolls over
 inc freq_acc_high2 ; carry over to upper byte
 jnz :no_carry ; if carry causes roll-over
; then add freq counter to accumulator (which should be zero,
 mov freq_acc_high2,freq_count_high2
 ; so move will work)
 ; and update sine wave
 jmp :change_sin
:no_carry
; add the upper bytes of the accumulators

 add freq_acc_high2,freq_count_high2

jnc :no_change
:change_sin

 mov w,++sinvel2 ;1 ; if the sine wave
 sb curr_sin2.7 ;1 ; is positive, decelerate it
 mov w,--sinvel2 ;1 ; it. Otherwise, accelerate it.
 mov sinvel2,w ;1
 add curr_sin2,w ;1 ; add the velocity to sin

:no_change
 mov pwm0,curr_sin2 ; mov sin2 into pwm0
 mov sin2_temp,w
; mov the high_frequency sin wave's current value
 clc ; into a temporary register

; divide temporary register by four by shifting right
 snb sin2_temp.7

stc ; (for result = (0.25)(sin2))
 rr sin2_temp
 clc
 snb sin2_temp.7
 stc
 mov w,>>sin2_temp
; (1.25)(sin2) = sin2 + (0.25)(sin2)
 add pwm0,w

Unit 8. Virtual Peripherals

Page 114 • Introduction to Assembly Language with the Scenix SX Microcontroller

; add the value of SIN into the PWM output
 add pwm0,curr_sin
; for result = pwm0 = 1.25*sin2 + 1*sin
; put pwm0 in the middle of the output range (get rid of negative values)
 add pwm0,#128
 retp ; return with page bits intact

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

 Appendix A. Instruction Summary

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 115

Appendix A. Instruction Summary
Appendix A from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

Processor Control
Instruction Words Turbo Cycles Description
BANK x 1 1 Sets current register bank
MODE x 1 1 Sets I/O mode
NOP 1 1 No operation
PAGE 1 1 Sets current code page
SLEEP 1 1 Puts processor in low power sleep mode

Appendix A. Instruction Summary

Page 116 • Introduction to Assembly Language with the Scenix SX Microcontroller

Flow Control
Instruction Words Turbo Cycles Description
CALL 1 3 Call subroutine
CJA 4 4,6 Compare jump above
CJAE 4 4,6 Compare jump above or equal
CJB 4 4,6 Compare jump below
CJBE 4 4,6 Compare jump below or equal
CJE 4 4,6 Compare jump equal
CJNE 4 4,6 Compare jump not equal
CSA 3 3,4 Compare skip above
CSAE 3 3,4 Compare skip above or equal
CSB 3 3,4 Compare skip below
CSBE 3 3,4 Compare skip below or equal
CSE 3 3,4 Compare skip equal
CSNE 3 3,4 Compare skip not equal
DECSZ 1 1,2 Decrement skip zero
DJNZ 2 2,4 Decrement jump not zero
INCSZ 1 1,2 Increment skip zero
IJNZ 2 2,4 Increment jump not zero
JB 2 2,4 Jump if bit set
JC 2 2,4 Jump if carry set
JMP 1 3 Jump
JNB 2 2,4 Jump if bit not set
JNC 2 2,4 Jump if no carry
JNZ 2 2,4 Jump if no zero
JZ 2 2,4 Jump if zero
MOVSZ 1 1,2 Move (with optional inc/dec) skip on zero
RET 1 3 Return from subroutine
RETP 1 3 Return across page
RETW 1 3 Return literal
SKIP 1 2 Skip next instruction
SNB 1 1,2 Skip if bit clear
SNC 1 1,2 Skip if no carry
SNZ 1 1,2 Skip if not zero

Math and Logic
Instruction Words Turbo Cycles Description
ADD 1 1 Add (register + W or W + register)
ADD 2 2 Add (register + register or literal)
ADDB 2 2 Add bit

 Appendix A. Instruction Summary

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 117

AND 1 1 And (register and W, W and register, W
and literal)

AND 2 2 And (register and literal or register and
register)

DEC 1 1 Decrement
INC 1 1 Increment
NOT 1 1 Invert
OR 1 1 Or (register and W or W and register or

W and literal)
RL 1 1 Rotate left
RR 1 1 Rotate right
SUB 1 1 Subtract W from register
SUB 2 2 Subtract register from register or literal

from register
XOR 1 1 Exclusive Or register and W or W and

register
XOR 2 2 Exclusive Or register and register or

register and literal

Appendix A. Instruction Summary

Page 118 • Introduction to Assembly Language with the Scenix SX Microcontroller

Interrupt Handling
Instruction Words Turbo Cycles Description
RETI 1 3 Return from interrupt
RETIW 1 3 Return from interrupt and add W to rtcc

 Appendix A. Instruction Summary

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 119

Bit Manipulation
Instruction Words Turbo Cycles Description
CLC 1 1 Clear carry
CLRB 1 1 Clear bit
CLZ 1 1 Clear zero
MOVB 4 4 Move bit
SETB 1 1 Set bit
STC 1 1 Set carry
STZ 1 1 Set zero

Appendix A. Instruction Summary

Page 120 • Introduction to Assembly Language with the Scenix SX Microcontroller

Move/Clear/Test
Instruction Words Turbo Cycles Description
CLR 1 1 Clear register, W, or WDT
MOV 1 1 Move W to register, register to W, literal

to W
MOV 2 2 Move register to register or literal to

register
TEST 1 1 Test W or register, set flags

 Appendix A. Instruction Summary

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 121

Miscellaneous
Instruction Words Turbo Cycles Description
IREAD 1 4 Reads program memory
LCALL 1-4 3-6 Obsolete
LJMP 1-4 3-6 Obsolete
LSET 0-3 0-3 Obsolete

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

Appendix A. Instruction Summary

Page 122 • Introduction to Assembly Language with the Scenix SX Microcontroller

 Appendix B. Hardware

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 123

Appendix B. Hardware
Appendix B from Introduction to Assembly Language with the Scenix SX Microcontroller
© 1999 by Parallax, Inc. All Rights Reserved. By Al Williams, AWC

The projects in this tutorial are simple to build using common components. For the maximum
flexibility, you'll want to use a solderless breadboard. If you use the Parallax SX-Tech board you can
simply connect the circuits to the integrated breadboard.

You can also use your own breadboard if you like. The SX chip simply requires a regulated 5 volt
supply (a bench supply will work fine) and a connection to the SX-Key programmer. If you are using
an SX-Blitz, or you want to operate the circuit without the SX-Key, you’ll also need a 50MHz ceramic
resonator (Murata CST50.00MXW040 or equivalent).

To successfully complete the tutorial exercises, you only need a few common parts:

• LEDs (or 5V LEDs with integrated resistors)
• 470 ohm resistors (if not using 5V LEDs)
• Push button switches
• Non-critical pull up resistors (10K to 22K, 1/4W or 1/8W)
• A piezo electric speaker

Common Circuit
All the circuits require the SX to be connected to the programmer and the chip’s support circuitry. Again, if you
are using an SX-Tech board this is already done. If you are using the SX-Key, you only need to connect the chip
to 5V, ground, and the SX-Key. You can use an existing 5V power supply if you have one (make sure it is
regulated). If you want to build a simple 5V supply, look at figure B.1. This supply will handle about 100mA as
shown, or can handle over 1A if you use a 7805 with a heat sink in place of the 78L05 specified. You can use an
ordinary wall transformer to supply the unregulated DC input.

To ensure proper operation, you should also connect the MCLR pin to 5V either directly or through a pull up
resistor. If you use a pull up resistor you’ll be able to short the MCLR pin to ground to reset the processor. For
the ultimate convenience you could use a push button switch to make the ground connection.

Appendix B. Hardware

Page 124 • Introduction to Assembly Language with the Scenix SX Microcontroller

78L05

.33uF .01uF

7-20VDC In 5V Out (.1A Max)In Out

Gnd+

Figure B.1 A Simple 5V Supply

To connect the programmer, you can use pins with .1 inch spacing. You usually buy these in strips that you can
snap to the correct length with a pair of pliers. Insert one end into your breadboard and the SX-Key (or SX-Blitz)
will plug into the other side. If one side of the pins is too short, you can usually slide the plastic insulator with a
pair of pliers so that the pins on each side are of equal length. Table B.1 shows the pin connections necessary.

 5V Ground OSC1 OSC2 MCLR
SX18 14 5 16 15 4
SX28 15,16 5,6 18 17 4

Table B.1 SX Pin Connections

 Appendix B. Hardware

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 125

I/O Circuits
Most of the projects in the tutorial require some input or output. The I/O usually takes the form of an LED, a
push button, both an LED and a push button, or a piezo speaker. Figure B.2 shows the common LED hookup. If
you are using 5V LEDs, you don’t need the resistor as it is built into the LED. Notice that the LED is polarized;
refer to the LEDs specifications to identify which lead is which. With the LED wired as shown, you must bring the
SX pin low to light the LED.

470
SX Pin

5V

Figure B.2 An LED Circuit

Appendix B. Hardware

Page 126 • Introduction to Assembly Language with the Scenix SX Microcontroller

In unit 5, some exercises use a push button and a piezo speaker for I/O (see Figure B.3). The 10K resistor’s
value is not overly critical. Anything from 10K to 22K (or even more) should work fine. If a project calls for more
switches, you can duplicate the switch portion of the circuit for other pins. Just use a pull up resistor on the pin
and connect the switch to ground.

5V

B0

B7

10K

Piezo

Figure B.3 A Speaker and Switch Circuit

Don’t connect an ordinary speaker directly to the SX pin as the load presented by such a speaker may damage
the SX chip. Most ICs, including the SX, can directly drive a piezo speaker.

 Appendix B. Hardware

 Introduction to Assembly Language with the Scenix SX Microcontroller • Page 127

About the SX Demo Board
If you have one of the older SX Demo Boards, all the circuitry you need for these exercises is already present on
the board. In Unit 7, some of the programs use a combination switch and LED, as you will find on the SX Demo
Board (see Figure B.4). However, this circuit works best when the internal pull up resistors are turned on for the
SX pins that connect to it.

470

10K
Port B Pin

5V

Figure B.4 – Switch/LED Combination

Appendix B. Hardware

Page 128 • Introduction to Assembly Language with the Scenix SX Microcontroller

The Final Project
The final project in this tutorial is a TouchTone phone dialer. For demonstration purposes, you can hear the
tones in a piezo speaker (although they may be quite low – you may have to put your ear right up to the
speaker). If you want to really dial a phone, you’ll need two things: a filter and an amplifier.

The Scenix notes on the DTMF generation VP specifies the component values for the low pass filter. This filter
prevents high-frequency noise (an unavoidable byproduct of using PWM to generate tones) from entering the
phone lines. Connect a 620 ohm resistor to the SX output pin and a .22uF capacitor from the other side of the
resistor to ground (the Scenix data calls for 600 ohms and .2uF capacitors, but these values are close enough
and easy to obtain). This will make the tones even weaker than before, however. Some sort of amplification is
necessary if you plan to feed the tones into the phone. You can use any sort of amplified speaker, signal tracer,
or build a small amplifier from an LM386 chip (see Figure B.5) and drive an ordinary 8 ohm speaker.

Figure B.5 – A Simple Amplifier

The programs and information in this tutorial are presented for instructional value. The programs and
information have been carefully tested, but are not guaranteed for any particular purpose. The publisher and
the author do not offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any
information herein and is not responsible for any errors or omissions. The publisher and author assume no
liability for damages resulting from the use of the information in this tutorial or for any infringement of the
intellectual property rights of third parties that would result from the use of this information.

Rev1.2

