www.ubicom.com

Ubicom-~
SX Cross Assembler
User’s M anual

Lit. No.: UM02-04

SASM Cross Assembler User’s Manual Rev. 1.3 © 2000 Ubicom, Inc. All rights reserved.

Revision History www.ubicom.com

Revision History

REVISION RELEASE DATE SUMMARY OF CHANGES
10 July 14, 1999 Initial Release
11 May 15, 2000 Updated to reflect latest SX devices
12 August 30, 2000 qula_tted to support SASM vl. 45.5 and higher
revisions
13 December, 2000 Updated to describe the improved macro lan-

guage provided by SASM v1.46, including
minor revisions 1.47 and 1.48.

©2000 Ubicom, Inc. All rights reserved. No warranty is provided and no liability is assumed by
Ubicom with respect to the accuracy of this documentation or the merchantability or fitness of the
product for a particular application. No license of any kind is conveyed by Ubicom with respect to its
intellectual property or that of others. All information in this document is subject to change without
notice.

Ubicom products are not authorized for use in life support systems or under conditions where failure
of the product would endanger the life or safety of the user, except when prior written approval is
obtained from Ubicom.

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respective companies.

Ubicom, Inc., 1330 Charleston Road, Mountain View, CA 94043 USA
Telephone: +1 650 210 1500, Web site: hhtp://www.ubicom.com

SX Cross Assambler 1.3 2 ©2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Contents

contents

Chapter 1 Overview

11 INtrOdUCHION ..ot 9
1.2 Main FEaIUNES . .. it e e 9
1.3 INVOKING SASM .o 9
131 CompilerMode ... 11
1.3.2 Extensionsfor Various Tool Environments. 11
133 Output Format 11
134 Display HElpMessage e 11
1.35 Caselndependent Symbols i 12
1.3.6 Lising File 12
1.3.7 Target ProCeSSOr . ..o 12
1.3.8 QUIBE MESSA0E ..ottt 13
1.3.9 RadiX ..o 13
1.3.10 Default TabWidth 13
1.3.11 Brror Level 14
1312 Disable Full Pathnamesin MAPFile 14
14 SOUrCEFIIES ..o 14
15 OUPULFILES ..o 14

Chapter 2 Program Structure

2.1 SOUICE PIOgIaM .ttt 15
22 Assembler SourceLineFormat 38
221 Label . 38
222 MNEMONIC . .ttt e e e e e e 39
223 Operand 39
224 CoMMENt .. 39
225 CoNStaNtSo 39
226 Charactersor String Constants, 39
2.2.7 NUMENC CoNStaNtS oo 39
2.3 SYMbBOIS . . 41
231 Symbol Names 41
2.3.2 Symbol Types ... 41
233 User-Defined Symbols.o 41
234 Reserved Symbols 42
24 EXPrESSIONS . ..ottt et e e 42
24.1 Arithmetic Operatorst e e 42
24.2 Well-Defined EXPressionso e 45

© 2000 Uhicom, Inc. All rights reserved. 3 SASM Cross Assembler User’s Manual Rev. 1.3

Contents

www.ubicom.com

Chapter 3
31

Chapter 4

4.1
4.2

4.3
4.4

4.5

4.6

SASM Assembler Directive

INtrodUCLION 47
311 FREQ, BREAK, WATCH, CASE, NOCASE (SXKey Compatibility) . 49
3.1.2 DEVICE or FUSES or PROCESSOR - Define Device Type and

FUSE BITS . o 50
3.1.3 DS-DefineMemory Spaceo 54
314 DW - DefineDatainMemory, 54
3.15 END - Endof SourceProgram, 54
3.1.6 EQU or GLOBAL- Equate a Symbol to an Expression 55
3.1.7 ERROR - Emit aUser-defined Error Message 55
3.1.8 ID - SetanID String in ProgramMemory 56
3.19 IF.ELSE.ENDIF - Conditional Assembly 56
3.1.10 IFDEF.ELSE.ENDIF - Conditional Assembly 57
3111 IFNDEF.ELSE.ENDIF - Conditional Assembly 57
3112 INCLUDE - Insert External SourceFile 58
3.1.13 LIST - Control thelist fileformat 58
3.1.14 LPAGE - Insert Page EjectinListingFile 59
3.1.15 ORG-Set Program Origint 59
3.1.16 RADIX - SetdefaultradiX0 59
3.1.17 REPT-ENDR - Repeat CodeBlockcoiiin... 60
3.1.18 RESET - Set Reset Vector Addresso oo 61
3.1.19 RES or ZERO - Reserve StorageinMemory 61
3.1.20 SET or =- Set aSymbol Equal toan Expresson 62
3.1.21 SPAC - Insert Linesin ListingFile 62
3.1.22 TITLE or STITLE - DefineProgramHeading 62
M acr os
INErOTUCTION . . o e e 63
Macro Definition 64
421 MACRODIIECHIVE . . oot e e 64
4.2.2 ENDM Directivet e e 65
4.2.3 EXITM DIreCtive . .. oot e e e e 65
424 LOCAL DIirective e 65
4.25 Local Labelsand Macros 66
Formal Parameters 66
MaCIO INVOCALION . . . ot 67
44.1 Actual Valuesof Parameters ... 67
442 ToKeNPastingoi i 67
443 QUOLING .« ottt e e e e e 67
EXample MacroS 68
451 RenameanInstruction i 68
4.5.2 Mix a Parameter withanOpcode coiiiiiinn.n. 68
45.3 AssertioNn Checkingovvv i 69
Errorsand Macrosot 70

SASM Cross Assembler User’s Manual Rev. 1.3 4 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Contents

Chapter 5 Assembler Output Files

51 INtrodUCION . ..o 71
52 Object FIe(HEX Or OBJ) . ..ottt e e e e 71
53 Listing Fle (LST) .ot 71
54 CrossReference Listingt 73
55 Symbol Fle (SYM) ..o 73
56 MapFIe(MAP) .. o 74
57 ErrorFIe(ERR) ... 74
5.8 EIrOr MEBSSagES . .o ot e 74

Appendix A Assembler Output Files

Al Logical OperationSottt et e 75
A.2 Arithmeticand Shift Operations. i 75
A3 BitWISEOPEratioNS ot 76
A4 DaaMovement Operationscvu ittt et 76
A5 Control Transfer Operations.cv it e e e 76
A.6 System Control OPErationS.ottt 77
A7 MUti-BYte INStrUCtiONS. oo e 77

Appendix B Object File Format

B.1 General Information About All Formatscooiiiiiinian... 79
B.1.1 Fileregister AddressMap.t 79
B.1.2 ProgramMemory Map 79
B.1.3 ID Stringand FUSEWOIdSt 80
B.1.4 Device Type Codeo 80
B.1.5 Frequency andBreak i 80
B.1.6 Sample Program 81
B.2 Intel HEX FileFormat e 82
B.21 INHX8M: Merged 8-bit Intel Hex FileFormat 82
B.2.2 INHX16: 16-bit Intel Hex FileFormat. 83
B.2.3 INHX8S: Split 8-bit Intel Hex FileFormat 83
B.3 BinaryFleFormat e 84
B4 IEEE-695 FleFormat.o 84
B.4.1 Target DeVviCe . . .ot 84
B.4.2 SYMbOIS ... 84
B.4.3 SX Program Address Spaceso oo 85
B.4.4 Assembly-Time Environment. 85
B.4.5 LineNUMDErS. 85

Appendix C SX52INST.SRC Sample Source

Appendix D Error Message

© 2000 Ubicom, Inc. All rights reserved. 5 SASM Cross Assembler User’'sManua Rev. 1.3

www.ubicom.com Contents

© 2000 Uhicom, Inc. All rights reserved. 6 SASM Cross Assembler User’s Manual Rev. 1.3

www.ubicom.com Contents

List of Tables

Table1-1
Table 2-1
Table 3-1
Table 3-2
Table 3-3

(@] 0] L0 1013 W11 010107 Y/ 10
(O00] 015 r= K] DI e == 10 o R 40
ASSEMDIE DITECHIVES ...ttt e e s be e e e sab e e e e s sbr e e e s s enbeea s 47
FUSE/FUSEX Bit Settings for SX18/20/28ACooeeieeieeee et 50
FUSE/FUSEX Bit Settings for SX48/52BDcccooiiienieieeeseeseeee e 52

© 2000 Ubicom, Inc. All rights reserved. 7 SX User’'sManual Rev. 3.1

Contents www.ubicom.com

SX User'sManual Rev. 3.1 8 © 2000 Uhicom, Inc. All rights reserved.

WWW.ubicom.com

Chapter 1

Overview

1.1 Introduction

ThisUser'sManual describesthe SASM Cross Assembler for the SX communications controllersfrom
Scenix.

The manual explains how to invoke and use SASM. Topics include program structure, directives,
macros and file outputs. A summary on the SX basic instruction set is aso given.

SASM Cross Assembler is a software development tool that accepts the SX symbolic assembly
language as input and translates it into object codes under the MS-DOS operating system on the IBM
PC or compatible systems.

1.2 Main Features

e Trandates programs (source code) written in SX Assembly language to machine executable code
(object code) on IBM PC or compatibles running MS-DOS version 3.0 or higher.

* Generates object code for SX communications controllers including the SX18/20/28AC, and
SX48/52BD devices using four different formats: three Intel hex formats (INHX8M, INHX16,
INHX8S) binary format, and IEEE695 format.

e Provides MACRO and conditional assembly capabilities.
» Supports Hex, Decimal (default) and Octal source and listing formats.

1.3 Invoking SASM

Use an editor of your choice to create an ASM source file. Assemble this source file by typing the
following at the command prompt of the directory where SASM.EXE resides:

SASM [optiong] filef.asm] [Enter]

where file = source file name

SASM Cross Assembler User’s Manual Rev. 1.3 9 © 2000 Uhicom, Inc. All rights reserved.

Chapter 1 Overview

www.ubicom.com

Tables 1-1 shows the summary of options specified at the command prompt.

Table 1-1 Options Summary

Opt Arguments Description Default
IC SX|PARALLAX Compiler Mode PARALLAX
/E Extensions for NONE
various tool
environments
/F [INHX8M|INHX8S|INHX16|INHX32|BIN16| Output Format INHX8M
|EEEG95]
/Hor/[? Display Help Message
/l Turn on case sensitivity Symbols Off
/L NONE | PAGE | NOPAGE Listing File NOPAGE
/P [SX18|SX18AC|PINS18|SX20|SX20AC| Processor Type SX18AC
PINS20|SX 28|SX28A C|PINS28|SX 48|
SX48AC|PINSA8|SX52|SX52A CIPINS52|]
1Q [message number] Quiet awarning msg None
/R [HEX|BIN|DEC|OCT|D|B|OJH] Radix DEC
/T [TABWIDTH] Tab Width 8
W [011]2] Warning Level 1
1z Disable path
NOTES: 1. Toeliminate comments (e.g. crossing page boundary) fromthelist files, set warning

to ahigher level. For example, set /W to 2.

e /W Owill include all comments and warning errors.

e /W 1 will include warning errors.

e /W 2 will include errors only.

It isrecommended to set the processor type inside the main program rather than on
the command line. That is, include the following linein the ASM file:

DEVICE SX18AC
OR
DEVICE PINS18

Version 1.45.5 or higher of SASM defaults to /I /CPARALLAX /FINHX8M /
PSX18/RDEC /T8 /W1 /LNOPAGE'. The /F, /L', /P, /Q', and */R' options may
also be specified in the source file with the "LIST" directive.

SASM Cross Assembler User’s Manual Rev. 1.3

10

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 1 Overview

1.3.1 Compiler Mode

Command: /C
Arguments: SX|PARALLAX

Description The assembler can handle two sets of mnemonics. This option chooses the specific
collection of mnemonics to be recognized. It may take any of the values "SX', or
"PARALLAX".

Default: ‘/C PARALLAX’

1.3.2 Extensions for Various Tool Environments

Command: /E
Arguments. NONE | NOHAU

Description '/E NOHAU' can be used to cause the format of the logged error messages to use '#
characters to delimit the fields, and to write the error log to a file name “cmperr.log' in
the current directory regardless of the name of the sourcefile.

Default: ‘/E NONE

1.3.3 Output Format

Command: /F
Arguments. [INHX8M|INHX8S|INHX16[INHX32|BIN16||EEE695]

Description The assembler can generate a binary file, several formats of hex files, or an IEEE-695
format object file. This option chooses the output format. It may take any of the values
"BIN16', 'INHX16', 'INHX8M', 'INHX8S, 'INHX32', or 'IEEE695'.

Default: ‘/F INHX8M’

1.3.4 Display Help Message

Command: /H or /?

Arguments:

Description Display the help screen and exit.
Default:

© 2000 Uhicom, Inc. All rights reserved. 11 SASM Cross Assembler User'sManua Rev. 1.3

Chapter 1 Overview www.ubicom.com

1.3.5 Case Independent Symbols

Command: /I

Arguments. Turn on case sensitivity

Description Thisoptionis*“on” by default and there is no documented option to turn it “off”.
Default: On

1.3.6 Listing File

Command: /L
Arguments. Use /L NONE' to disable the listing.

Description This option takes a keyword indicating whether alisting file is desired, and whether it
has page headers and form feeds. Use "/L PAGE' to produce a listing with page headers
and form feeds. By default there are 55 total lines per page, which can be modified with
the LIST directive. Use /L NOPAGE' to produce alisting alisting with no page headers
or form feeds.

Default: /L NOPAGE'

1.3.7 Target Processor

Command: /P

Arguments. [SX 18|SX 18A C|PINS18|SX 20|SX 20A C|PINS20|SX 28|SX 28A C|PINS28|SX 48|
SX48ACJPINSA8|SX 52|SX 52A C|PINS52]]

Description This option selects the default target processor, which may be over ridded by the
DEVICE directive. Choose one of "SX18', 'SX18AC', 'PINS18', "SX20', 'SX20AC,
"PINS20', "SX28', 'SX28AC', 'PINS28, "SX48, SX48AC, "PIN48, 'SX52,
"SX52AC', or "PINS52'.

Default: ‘/P SX18AC

SASM Cross Assembler User’'s Manual Rev. 1.3 12 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 1 Overview

1.3.8 Quiet Message
Command: /Q

Arguments. message number

Description Individual warning and comment messages may be disabled (quieted) with this
command line option. Use this option multiple times to quiet more than one warning
message. The message number appearsin the warning or comment, or can be found in
the appendix to this manual.

This option may be set within the assembly file with the Q= option of the LIST
directive. This may be more convenient when several messages are involved.

If the message number is negative, then those messages are enable if they are presently
quiet.

Note that the /W option supersedes the /Q option.
Default: No messages are quiet by default.

1.3.9 Radix
Command: /R
Arguments. [HEX|BIN|DEC|OCT|D|B|OJH]

Description This option selects the default radix used to interpret numeric constants which do not
specify aradix. Choose one of ‘'DEC', 'BIN', 'OCT', 'HEX', ‘D', 'B', 'O, or H'".

Default: 'IRDEC

1.3.10 Default Tab Width

Command: /T
Arguments: [TABWIDTH]

Description This option sets the assumed width of atab character, and may be set to any positive
integer less than 20.

Default: T8

© 2000 Uhicom, Inc. All rights reserved. 13 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 1 Overview www.ubicom.com

1.3.11 Error Level
Command: /W
Arguments: [0[1]2]

Description This option controls the number of comments, warnings, and error messages which
appear. Set it to O for lots of output, 1 for warnings and errorsonly, or 2 for errors only.

Default: W1

1.3.12 Disable Full Pathnames in .MAP File

Command: /Z
Arguments:

Description By default the fully-qualified pathname of each filewill be storedinthe . MAPfile. This
command-line option forces only the filename without the path to be stored.

Default: Thefull path to each fileis stored.

1.4 Source Files

The sourcefileisthefileto be assembled. SASM assumes all sourcefilesto have . ASM extensions. If
not, the entire filename, including extension, has to be provided at the command line.

1.5 Output Files

SASM Assembler outputs different files with the following extensions:

HEX - Intel 8-bit merged Hex file (* Default file format)

OBJ - Binary object fileif /F BIN isused

HXH/HXL - Address/Data pairsfor high-order and low-order 8 bits (only when INHX8S format
is selected as output)

LST - Program listing file

SYM - Symbol file used for defining watch variables and setting break point at |abel
address. Used for symbolic or source-level debugging.

MAP - Map file used for source-level debugging

ERR - Error messagefile

SXE - |EEEG95 output file format if /F IEEEG95 option is used

SASM Cross Assembler User’s Manual Rev. 1.3 14 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Chapter 2

Program Structure

2.1 Source Program

The structure of a source program consists of one or more statements and comments. Each statement
can be a combination of mnemonics, directives, macros, symbols, expressions and/or constants.

Example of an assembly program:

BRI kR R O kR R SRR Rk kO b O R Rk I O kR R R I O

; Copyright © [11/21/1999] UWbicom Inc. Al rights reserved.

; Sceni x, Inc. assumes no responsibility or liability for

; the use of this [product, application, software, any of these products].
; Ubi com conveys no license, inplicitly or otherw se, under

; any intellectual property rights.

; Information contained in this publication regarding (e.g.: application,

; inplenentation) and the like is intended through suggestion only and nay
; be superseded by updates. Ubi com nmakes no representation

; or warranties with respect to the accuracy or use of these information,
; or infringement of patents arising fromsuch use or otherw se.

BRIk I ok O kI R R S S R R R b o O R R R R S kb O S R R I b ok S kR Rk S R

; Filenane: vpg UART_1 04.src

Aut hor s: Chri s Fogel kl ou
Appl i cations Engi neer
Ubi com I nc.

Pr ogram Descri ption:

Virtual Peripherals Guidelines:
Exanpl e source code, running at 50MHz, with just a transmt
and receive UART. The code inplenments UART in software for baud rates of
1200, 2400, 4800, 9600, 19200, 57600 bps depending on the rate selected, it can
be selected to work at interrupt rate of 4.32us.

Interface Pins:

rs232RxPi n equ ra.2 ; UART receive input
rs232TxPi n equ ra.3 ; UART transmt out put
rts_pin equ ra.0 ; UART 1 RTS i nput
cts_pin equ ra. 1 ; UART 1 CTS out put

BRI b O o O O O I o O Rk O o S O O O O O O O
1

SASM Cross Assembler User's Manual Rev. 1.3 15 © 2000 Ubicom, Inc. All rights reserved.

Chapter 2 Program Structure www.ubicom.com

BRI kR I kR R R Rk R Ik Rk I R
)

; Target SX
; Uncomment one of the following lines to choose the SX18AC, SX20AC, SX28AC, SX48BD, SX52BD.

BRIk I ok bk O R R R R Rk Ik R b S kR R Rk bk O S Rk i kR R Gk Ik kO
)

: SX18_20
: SX28AC
SX48_52

BRIk I ok kR R R R Rk I R b S R R kI kR R R Ik ki b I O Rk
)

;. Assenbl er Used
; Uncomment the following line if using the Parallax SX-Key assenbl er. SASM assenbl er
; enabl ed by default.

BRIk I ok kIR R O ok O R R R R Ik kO O R kR I Rk kO R Rk S O b O R

; SX_Key

BRIk I ok kIR R O O ok O R R Ik kO O R Rk kS kO R I Rk kO Rk O R

; Uncomment one of the following to run the uart vp at the required baud rate
Rk 2 R S I R Ik R R Rk S O

: baud1200 ;baud rate of 1.2 Kbps

: baud2400

: baud4800 ;baud rate of 4.8 Kbps
baud9600 ;baud rate of 9.6 kbps
: baud1920 ; baud rate of 19.2kbps
: baud5760 ;baud rate of 57. 6kbps

BRIk I ok b b O SRk I R R I ok R R R b o S Rk kT bk Sk b R Rk kb S kR R R I b S b O S R
)

; Assenbl er directives

; H gh speed external osc, turbo node, 8-level stack, and extended option reg.
; SX18/ 20/ 28 - 4 pages of program nenory and 8 banks of RAM enabl ed by default.
; SX48/52 - 8 pages of program nenory and 16 banks of RAM enabl ed by default.

BRI S O S
1

| FDEF SX_Key ; SX-Key Directives

| FDEF SX18_20 ; SX18AC or SX20AC device directives for SX-Key
devi ce SX18L, oschs2, t ur bo, st ackx_opti onx

ENDI F

| FDEF SX28AC ; SX28AC device directives for SX-Key
devi ce SX28L, oschs2, t ur bo, st ackx_opt i onx

ENDI F

| FDEF SX48_52 ; SX48/ 52/ BD device directives for SX-Key
devi ce oschs2

ENDI F

freq 50_000_000

ELSE :SASM Directives
| FDEF SX18_20 : SX18AC or SX20AC device directives for SASM
devi ce SX18, oschs2, t ur bo, st ackx, opti onx

SASM Cross Assembler User’s Manual Rev. 1.3 16 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

ENDI F
| FDEF SX28AC ; SX28AC device directives for SASM
devi ce SX28, oschs2, tur bo, st ackx, opti onx
ENDI F
| FDEF SX48 52 ; SX48BD or SX52BD device directives for SASM
devi ce SX52, oschs2
ENDI F
ENDI F
id " 1UART_VP ;
reset resetEntry ; set reset vector

EE o S Ik Ik O bk O R R Rk b Sk O kb R Rk R O o kb O R R R O O bk R Rk
)

; Macro: _bank
; Sets the bank appropriately for all revisions of SX

; This is required since the bank instruction has only a 3-bit operand, it cannot
; be used to access all 16 banks of the SX48/52. FSR 7 (SX48/52bd production

; release) needs to be set appropriately, depending on the bank address being

; accessed. This nmacro fixes this.

; So, instead of using the bank instruction to switch between banks, use _bank
; instead.

B Rk b ok R R S ok b S Sk S b S R R Rk kO Rk kR Rk S ok kR Rk kb S R R Rk kR
1

_bank macro 1
noexpand
bank \1
| FDEF SX48_52
IF\1 & %40000000 ; SX48BD and SX52BD (production rel ease) bank instruction
expand
setb fsr.7 ;modifies FSR bits 4,5 and 6. FSR 7 needs to be set by
;software
noexpand
ELSE
expand
clrb fsr.7
noexpand
ENDI F
ENDI F
endm

EE S I kR O R O O R R O R I O R
)

; Macro: _node
; Sets the MODE register appropriately for all revisions of SX

; This is required since the MODE (or MOV M #) instruction has only a 4-bit operand.

; The SX18/ 20/ 28AC use only 4 bits of the MODE register, however the SX48/52BD have
; the added ability of reading or witing sone of the MODE registers, and therefore
; use 5-bits of the MODE register. The MW MWinstruction nodifies all 8-bits of
; the MODE register, so this instruction nmust be used on the SX48/52BD to nake sure
; the MODE register is witten with the correct value. ; This macro fixes this.

© 2000 Uhicom, Inc. All rights reserved. 17 SASM Cross Assembler User'sManua Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

; So, instead of using the MODE or MOV M# instructions to | oad the Mregister, use
; _node i nstead.

BEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREESEESES

_nmode nmacro 1

noexpand
| FDEF SX48_52
expand
nov w, #\ 1 ;1 oads the Mregister correctly for the SX48BD and SX52BD
nmov m w
noexpand
ELSE
expand
nov m #\ 1 ;loads the Mregister correctly for the SX18AC, SX20AC
;and SX28AC
noexpand
ENDI F
endm

EEE S I I O R R O O O R

;| NCP/ DECP macros for increnenting/decrenenting pointers to RAM
; used to conmpensate for inconpatibilities between SX28AC and SX52BD

EE S I S O O R O R O O

I NCP macro 1 ; Increnents a pointer to RAM
inc \1
| FNDEF SX48 52
setbh \1.4 ; I f SX18 or SX28AC, keep bit 4 of the pointer =1
ENDI F ; to junp from $1f to $30,etc
endm
DECP nmacro 1 ; Decrenents a pointer to RAM
| FDEF SX48 52
dec \1
ELSE
clrb \1.4 ; |f SX18 or SX28AC, forces rollover to next bank
dec \1 ; if it rolls over. (skips banks with bit 4 = 0)
setbh \1.4 ; Eg: $30 ---> $20 ---> $1f ---> $if
ENDI F ; AND: $31 ---> $21 ---> $20 ---> $30
endm

B S Rk b o S R Rk O kO R O R Rk kO b o R R S b S ok R R S kb S R Rk

; Error generating macros

; Used to generate an error nessage if the label is intentionally noved into the
; second page

; Use for | ookup tables.

B I Rk I b o S R R b S ok O R R R Rk kR Sk kS Rk Ik O R R R S o b R R

tabl eStart macro O ; CGenerates an error nessage if code that MJST be in
; the first half of a page is noved into the second half
if $ & $100
ERROR "Must be located in the first half of a page.

SASM Cross Assembler User’s Manual Rev. 1.3 18 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

endi f
endm
t abl eEnd macro O ; CGenerates an error nessage if code that MJST be in

; the first half of a page is noved into the second half
if $ & $100
ERROR ‘Must be located in the first half of a page.’

endi f

endm

BRIk I ok kR R I Rk O R S R R Rk R S b O S kR R R Ik kR Rk kO b R
)

R R R Menmory Organi zation----------------cooommmm o
BRIk I ok b b R R R O S R R R i S kR R Rk bk O S R R I i kO i b S R R I R

BRIk o ok kR R O S R R R b i S R R Rk b O S R R O kO i O R Rk O b o

R R Data Menory address definitions-------------------------~-~----
; These definitions ensure the proper address is used for banks 0 - 7 for 2K SX devi ces
; (SX18/20/28) and 4K SX devi ces (SX48/52).

BRIk S ok O kIR R O b ok O R R R R Rk b b R Rk S kb S R Rk I b O S R
’
* k k%

| FDEF SX48_52

gl obal _org = $0A
bank0_org = $00
bankl org = $10
bank2_org = $20
bank3_org = $30
bank4_org = $40
bank5_org = $50
bank6_org = $60
bank7_org = $70
ELSE

gl obal _org = $08
bank0_org = $10
bankl org = $30
bank2_org = $50
bank3 org = $70
bank4_org = $90
bank5 org = $BO
bank6_org = $DO0
bank7_org = $FO
ENDI F

BRIk I o O kR Rk I R S S IR R R R S o O R R R S kR Rk kb R S Rk I b Rk
1

e R G obal Register definitions----------------------------
; NOTE: d obal data menory starts at $0A on SX48/52 and $08 on SX18/20/ 28.

BRI I o O R R ok R R S b Sk S b R S R kO b kR R I kR R R I ok R R S b S b O b R R
1

org gl obal _org

© 2000 Uhicom, Inc. All rights reserved. 19 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure

www.ubicom.com

flagsO equ

rs232RxFlag equ
i srTenpO equ
| ocal TenpO equ
| ocal Tenpl equ
| ocal Tenp2 equ

gl obal _org + 0O

VP. RS232 Receive

stores bit-w se operators like flags
and function-enabling bits (semaphores)

flags0.0;indicates the reception of a bit fromthe UART

gl obal _org + 1

gl obal _org + 2

gl obal _org + 3

gl obal _org + 4

Interrupt Service Routine's tenp register.
Don't use this register in the minline.
tenporary storage register

Used by first |level of nesting

Never guaranteed to maintain data
tenporary storage register

Used by second | evel of nesting

or when a routine needs nore than one
tenporary gl obal register.

tenporary storage register

Used by third | evel of nesting or by
main | oop routines that need a | oop
counter, etc.

BRIk I ok kR kI R R R b ok O R R Rk o O R R Sk R Rk O b S ok R R R kO kb Sk R Rk I

RAM Bank Regi ster definitions-------------------------.

BRIk I ok Sk R SRk I R S A R R R R b o S R R R R S R R O kS Rk kR S b ok R R Rk kb O O R
)

BRI S Rk O b ok S R R Rk O kO b o O R R R IR S kb S b S R R O kb o R Rk o
)

;. Bank

0

B I Rk I bk S R R R Rk Sk b S Ok S kO b R R R Rk S S o kR R R o kO S R kb o kR
1

EE S I S R O O O R O

EE S I O R O R O S
1

;used by send_string to store the address in nenory

routines

org bank0_org

bank0 = $
; Bank 1

org bankl_org
bank1 = $
r s232TxBank = $; UART bank
rs232Txhi gh ds 1 ;hi byte to transmit
rs232Txl ow ds 1 ;low byte to transmit
rs232Txcount ds 1 ;nunmber of bits sent
rs232Txdi vi de ds 1 ;xmit timng (/16) counter
rs232Txfl ag ds 1
r s232RxBank = $
rs232Rxcount ds 1 ;nunber of bits received
rs232Rxdi vi de ds 1 ;receive timng counter
rs232Rxbyt e ds 1 ;buffer for incomng byte
string ds 1
rs232byte ds 1 ;used by seri al
hex ds 1
Mul ti pl exBank = $

SASM Cross Assembler User’s Manual Rev. 1.3

20

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

isrMultiplex ds 1

EE I I kR R R O bk O R O R S kR O O kI b R
)

;. Bank 2

EE I S Sk kO R R S bk O O R O R R S R Rk kR Rk Ik O b Sk

org bank2_org

bank?2 = $

EE I I kR R R O O R b O R Rk R R R O kR SRk I O i O

; Bank 3

EE I I kR R R Ik R R O R Rk O R I kR R
)

org bank3_org

bank3 $

EE I S kS O R R O O I R O O O O R Rk O O kR Rk
)

;. Bank 4

EE I I kR R R O bk O R R R O R S O R R R R I kR R ko
)

org bank4_org

bank4 $

EE I I kR R O R R R b O O R R R R R O O
)

; Bank 5

EE I I kO R R O kR O O R Rk O R R R kR R I R

org bank5_org

bank5

$

R O ok O o I O O O O O I O

; Bank 6

IEEEEEEEEEE SRS EEEEEEEEEEEEEEEEREEEEEEEEEEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
1

org bank6_org

bank6

$

R R O O
1

; Bank 7

R O O O I O O S O O O O O O O
1

org bank7_org

bank7 = $

| FDEF SX48 52

B I R b S S R R S Ok R IR S e o S O S R R S R I O S R O S S S S R R
1

; Bank 8

© 2000 Ubicom, Inc. All rights reserved. 21 SASM Cross Assembler User's Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

EE I I kS kR kR R I kIR b O kR IR I kb O R R R I b Sk R
)

org $80 ; bank 8 address on SX52

bank8

$

EE I I kS R R R O O I R O O O O R R S Rk O Sk R I R
)

; Bank 9

EE I I kR R R O bk O R O R Rk O R R I I kR R I R
)

org $90 ;bank 9 address on SX52

bank9 = $

EE I I kR O I R R O O O R R R R O
)

;. Bank A

EE I I kO R R O O kb O O R R I R Rk O O R R R I

org $A0 ; bank A address on SX52

bankA = $

EE I I kO R O kR O R O I kR R kb

; Bank B

EE I I kR R R I kR O O R R O O R R S Rk I O kR O
)

org $BO ; bank B address on SX52

bankB

$

R R S o o Ok O O O S O O
1

; Bank C

R O S O O O O O S O O O O O o O O
1

org $Q0 ; bank C address on SX52

bankC = $

B S R T b S S S S S S S R R S S O R S o S R R R R S S R S o S S R R
1

; Bank D

R O Sk O Ok O
1

org $DO0 ; bank D address on SX52

bankD $

B S R T b S S R R b S Sk S IR S S o S A S o S R S S S R O Sk R R S
1

;. Bank E

R R O S O O I S O O O O O O O O O O
1

org $EO ; bank E address on SX52

bankE

$

SASM Cross Assembler User’'s Manual Rev. 1.3 22 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

EE I I kS kR kR R I kIR b O kR IR I kb O R R R I b Sk R
)

; Bank F

EE I I kI kR R R O kR IR R b O R Rk kb O kR R Ik kR i O S
)

org $FO ; bank F address on SX52

bankF $

ENDI F

BRI kR O R SRR R S O R S R Rk O Sk Sk O

e R TR Port Assignment-----------------------------------

BRI kR R I kR R I kR R Ik kO i b S Rk O b O
)

RA | atch equ %9©0001000 ; SX18/ 20/ 28/ 48/ 52 port A latch init

RA_DDI R equ 241110111 ; SX18/ 20/ 28/ 48/ 52 port A DDIR val ue

RA LVL equ 290000000 ; SX18/ 20/ 28/ 48/ 52 port A LVL val ue

RA_PLP equ 290001100 ; SX18/ 20/ 28/ 48/ 52 port A PLP val ue

RB | atch equ 290000000 ; SX18/ 20/ 28/ 48/ 52 port B latch init;initial value after
;reset

RB_DDI R equ 241111111 ; SX18/ 20/ 28/ 48/ 52 port B DDI R val ue; 0=Qut put, 1=I nput

RB_ST equ 941111111 ; SX18/ 20/ 28/ 48/ 52 port B ST val ue; O=Enabl e, 1=Di sabl e

RB_LVL equ 290000000 ; SX18/ 20/ 28/ 48/ 52 port B LVL val ue; 0=CMOS, 1=TTL

RB_PLP equ 290000000 ; SX18/ 20/ 28/ 48/ 52 port B PLP val ue; O=Enabl e, 1=Di sabl e

RC | atch equ %9©0000000 ; SX18/ 20/ 28/ 48/ 52 port Clatch init;initial value after
;reset

RC DD R equ 241111111 ; SX18/ 20/ 28/ 48/ 52 port C DDl R val ue; 0=Qut put, 1=I nput

RC_ST equ %41111111 ; SX18/ 20/ 28/ 48/ 52 port C ST val ue; 0=Enabl e, 1=Di sabl e

RC_LWVL equ 290000000 ; SX18/ 20/ 28/ 48/ 52 port C LVL val ue; 0=CMCS, 1=TTL

RC_PLP equ %©0000000 ; SX18/ 20/ 28/ 48/ 52 port C PLP val ue; O=Enabl e, 1=Di sabl e

| FDEF SX48_52

RD | at ch equ 290000000 ; SX48/52 port D latch init;initial value after reset

RD_DDI R equ %41111111 ; SX48/52 port D DDl R val ue; 0=Cut put, 1=I nput

RD_ST equ %41111111 ; SX48/ 52 port D ST val ue; O=Enabl e, 1=Di sabl e

RD_LVL equ 290000000 ; SX48/ 52 port D LVL val ue; 0=CMOS, 1=TTL

RD_PLP equ 290000000 ; SX48/52 port D PLP val ue; O=Enabl e, 1=Di sabl e

RE_| at ch equ 290000000 ; SX48/52 port E latch init;initial value after reset

RE_DDI R equ 241111111 ; SX48/52 port E DDl R val ue; 0=Cut put, 1=I nput

RE_ST equ %41111111 ; SX48/ 52 port E ST val ue; O=Enabl e, 1=Di sabl e

RE_LVL equ %90000000 ; SX48/ 52 port E LVL val ue; 0=CMOS, 1=TTL

RE_PLP equ 290000000 ; SX48/52 port E PLP val ue; O=Enabl e, 1=Di sabl e

ENDI F

BRI R O I S O R O I R I O O O
1

e Pin Definitions------mmmmmmm e

BRI O R O I R O O

rs232RTSpin equ ra.0 ; UART RTS i nput
rs232CTSpin equ ra. 1 ; UART CTS out put
rs232Rxpin equ ra.2 ; UART receive input

© 2000 Uhicom, Inc. All rights reserved. 23 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

rs232Txpi n equ ra.3 ; UART transmit out put

BRI R R O kR SRR R S kR O O R R O S R Rk O kO i R R O
)

e Program constant S----------nmmmmmm
BRIk I ok bk O R O S R R R i O R R R I bk O S R R R Rk O kR Rk Ik kO b O

_enter equ 13 ; ASCIl value for carriage return
_linefeed equ 10 ; ASCIl value for a line feed

BRI kR R I kR R S kI Rk ki R R
)

; UART Constants val ues

BRIk I ok kR R I Rk O R S R R Rk R S b O S kR R R Ik kR Rk kO b R
)

intPeriod = 217
UARTf s = 230400
Num =4

| FDEF baud1200
UARTBaud = 1200
ENDI F

| FDEF baud2400
UARTBaud = 2400
ENDI F

| FDEF baud4800
UARTBaud = 4800
ENDI F

| FDEF baud9600
UARTBaud = 9600
ENDI F

| FDEF baud1920
UARTBaud = 19200
ENDI F

| FDEF baud5760

UARTBaud = 57600
ENDI F
UARTDI vi de = (UARTf s/ (UARTBaud* Num))
UARTSt Del ay = UARTDI vi de +(UARTDI vi de/ 2) +1
| FDEF SX48_52

B R S O

; SX48BD/ 52BD Mbde addresses
; *On SX48BD/ 52BD, nost registers addressed via node are read and wite, with the
; exception of CWP and WKPND whi ch do an exchange with W

B R I R S R O
1

B e R Timer (read) addresses--------------------~-~-~-~-~-~-~-~-~-~---

SASM Cross Assembler User’'s Manual Rev. 1.3 24 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

TCPL_R equ $00 ; Read Tiner Capture register |ow byte
TCPH_R equ $01 ; Read Tiner Capture register high byte
TR2ZCM._R equ $02 ;Read Timer R2 | ow byte

TR2CVH_ R equ $03 ;Read Tinmer R2 high byte

TRICM._R equ $04 ;Read Timer Rl | ow byte

TR1ICVH R equ $05 ;Read Tinmer Rl high byte

TCNTB_R equ $06 ; Read Tiner control register B
TCNTA_R equ $07 ; Read Tiner control register A

R e R TR Exchange addresses---------------------“--~-------------

CwP equ $08 ; Exchange Conpar at or enabl e/ status register with W
VKPND equ $09 ; Exchange MWJ/ RB Interrupts pending with W

VWKED R equ $0A ;Read MWJ RB Interrupt edge setup, 1 = falling, 0 = rising
WKEN_R equ $0B ; Read MWJ RB Interrupt edge setup, O = enabled, 1 = disabled
ST_R equ $0C ;Read Port Schmitt Trigger setup, 0 = enabled, 1 = disabled
LVL_R equ $0D ;Read Port Schmitt Trigger setup, 0 = enabled, 1 = disabled
PLP_R equ $0E ;Read Port Schmitt Trigger setup, O = enabled, 1 = disabled
DDIR R equ $OF ;Read Port Direction

B R Timer (wite) addresses-----------commmmmmm oo
CLR_TMR equ $10 ; Resets 16-bit Tiner

TRRCML_W equ $12 ;Wite Tinmer R2 | ow byte

TRRCVH W equ $13 ;Wite Timer R2 high byte

TRICM._W equ $14 ;Wite Tiner RL | ow byte

TR1ICVH W equ $15 iWite Tiner RL high byte

TCNTB_W equ $16 ;Wite Tiner control register B

TCNTA W equ $17 ;Wite Tiner control register A

B e T Port setup (wite) addresses---------------------
VWKED W equ $1A i Wite MWY RB Interrupt edge setup, 1 = falling, 0 = rising
VWKEN_W equ $1B ;Wite MWJ RB Interrupt edge setup, 0 = enabled, 1 = disabled
ST _W equ $1C ;Wite Port Schnitt Trigger setup, 0 = enabled, 1 = disabled
LVL_W equ $1D ;Wite Port Schnitt Trigger setup, 0 = enabled, 1 = disabled
PLP_W equ $1E ;Wite Port Schnitt Trigger setup, 0 = enabled, 1 = disabled
DDl R W equ $1F ;Wite Port Direction

ELSE

BRI O R O I O
1

; SX18AC/ 20AC/ 28AC Mode addresses
; *On SX18/20/28, all registers addressed via node are wite only, with the exception of
; CMP and VWKPND whi ch do an exchange with W

B S S S R S O O R
1

CcwP equ $08 ; Exchange Conparator enabl e/status register with W
VKPND equ $09 ; Exchange MWJ/ RB Interrupts pending with W

© 2000 Uhicom, Inc. All rights reserved. 25 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

WKED W equ $0A i Wite MWJY RB Interrupt edge setup, 1 = falling, 0 = rising
WKEN_W equ $0B iWite MWJY RB Interrupt edge setup, O = enabled, 1 = disabled
ST_W equ $0C i Wite Port Schmitt Trigger setup, 0 = enabled, 1 = disabled
LVL_W equ $0D i Wite Port Schnmitt Trigger setup, 0 = enabled, 1 = disabled
PLP_W equ $0E ;Wite Port Schnmitt Trigger setup, 0 = enabled, 1 = disabled
DDl R W equ $OF ;Wite Port Direction

ENDI F

BRIk I ok bk O kR R O Rk I R i O R I Ok R Rk O kO Sk Ik O i R R
)

R R R Program nenory ORG defines-----------------
BRIk ok bk O R R O S R R R i o kR R Rk b O S R R S kO i R S O
;

| NTERRUPT_ORG equ $0 ; Interrupt nust always start at |ocation zero
RESETENTRY_ORG equ $1FB ; The programw |l junp here on reset

SUBRQUTI NES_ORG equ $200 ; The subroutines are in this |location

STRI NGS_ORG equ $300 ; The strings are in the |location $300

PAGE3_ORG equ $400 ; Page 3 is enpty

MAI NPROGRAM_ORG equ $600 ; The main programis in the | ast page of program nenory

BRIk I ok bk O IR R O b ok R R R R R Rk b O R R Rk S kb S R Rk I i O I R
)

org I NTERRUPT_ORG ; First location in program nmenory.

BRIk S ok bk O R R R S O ok R R R o S Ok R R Rk Ik b O I kR I kR Rk kR R b O
)

BRIk I ok O kR kI R R R ok O R R R O Rk R O kR Rk kb Rk O i b O I R

B R Interrupt Service Routine--------------------
; Note 1: The interrupt code nmust always originate at address $0.

; Interrupt Frequency = (Cycle Frequency / -(retiw value))

; For exanple: Wth a retiw value of -217 and an oscillator frequency

; of 50MHz, this code runs every 4. 32us.

; Note 2: Mode Register 'M is not saved in SX 28 but saved in SX 52 when an Interrupt

; occurs. If the code is to run on a SX 28 and 'M register is used in the | SR

; then the 'M register has to be saved at the Start of ISR and restored at the

; End of ISR

BRI S S S
1

org $0
i nterrupt ;3

BRI S S S R I O O O

7 Interrupt
; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For exanple:
; Wth a retiw value of -217 and an oscillator frequency of 50MHz, this code runs

; every 4.32us.
IR S R RS S R EEE SRR RS SRR SR EEREEREREEREREEEEEEEEEEEEEEEEEEEEEEEEEEE SRR
;

B o S S
1

e i R VP: VP Multitasker-----------commmmmomn
; Virtual Peripheral Miultitasker : up to 16 individual threads, each running at the

; (interrupt rate/ 16). Change them bel ow

; Input variable(s): is rnultiplex: variable used to choose threads

SASM Cross Assembler User’s Manual Rev. 1.3 26 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

; Qutput variable(s): None, executes the next thread
; Variable(s) affected: isrmultiplex
; Flag(s) affected: None

; Program Cycles: 9 cycles (turbo node)
BRI R o R R I R I R I R I R R I R R S

__bank Mul ti pl exbank ;
inc i srivultiplex ; toggle interrupt rate
nmov w, i srvul tipl ex ;

BRIk I ok kR R O O kR IR I S bk R Rk O S Rk bk O kR R R I b kO Rk

; The code between the tabl eStart and tabl eEnd stat enents MJST be conpletely within the first

; half of a page. The routines it is junping to nust be in the same page as this table.
Rk o R S I R R I R O Rk S S

tabl eStart ; Start all tables with this macro
jmp pct+w ;
j mp i srThreadl ;
j mp i srThread2 ;
j mp i srThread3 ;
jmp i srThread4 ;
j mp i srThreadl ;
jmp i srThr ead5 ;
j mp i srThr ead6 ;
jmp i srThread7 ;
jmp i srThreadl ;
jmp i srThread8 ;
jmp i sr Thread9 ;
jmp i sr Threadl10 ;
jmp i srThreadl ;
jmp i srThreadll ;
jmp i srThread12 ;
jmp i srThreadl3 ;
t abl eEnd ; End all tables with this nmacro.

BRI o S S O I S
1

;VP: VP Multitasker
;| SR TASKS

B o S O R O O S O
1

i srThreadl ; Serviced at ISR rate/4

BRI o S S O
1

; Virtual Peripheral: Universal Asynchronous Receiver Transmtter (UART)
; These routines send and receive RS232 serial data, and are currently

; configured (though nodifications can be made) for the popul ar

; "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

; RECEIVING The rs232Rxflag is set high whenever a valid byte of data has been
; received and it is the calling routine's responsibility to reset this flag

; once the inconing data has been coll ected.

; TRANSM TTING The transnmit routine requires the data to be inverted

© 2000 Ubicom, Inc. All rights reserved. 27 SASM Cross Assembler User's Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

; and | oaded (rs232Txhi gh+rs232Txl ow) register pair (with the inverted 8 data bits
; stored in rs232Txhi gh and rs232Txl ow bit 7 set high to act as a start bit). Then
; the nunmber of bits ready for transm ssion (10=1 start + 8 data + 1 stop)

; must be | oaded into the rs232Txcount register. As soon as this latter is done,

; the transmit routine i mMmedi ately begi ns sending the data.

; This routine has a varying execution rate and therefore shoul d al ways be

; placed after any timing-critical virtual peripherals such as tiners,

; adcs, pwrs, etc.

; Note: The transmit and receive routines are independent and either nmay be

; renoved, if not needed, to reduce execution tine and nenory usage,

; as long as the initial "BANK serial" (conmmon) instruction is kept.

; I nput variable(s) : rs232Txl ow (only high bit used), rs232Txhi gh, rs232Txcount
; Qut put variabl e(s) : rs232Rxflag, rs232Rxbyte

; Variabl e(s) affected : rs232Txdivide, rs232Rxdivide, rs232Rxcount

; Fl ag(s) affected : rs232Rxfl ag

; Variabl e(s) affected : Txdivide

; Program cycl es: 17 worst case

; Variabl e Length? Yes.

BRI R S ok O kR Rk S R e b S R R R S o S R R R S o R R R O b S ok O R R R Sk S Sk O o b S R R R o
1

rs232Transm t

_bank r s232TxBank ;2 switch to serial register bank
decsz rs232Txdi vi de ;1 only execute the transnit routine
jnmp 1rs232TxQut i1
nov w, #UARTDI vi de ;1 |l oad UART baud rate (50MHz)
nov rs232Txdi vi de, w i1
t est rs232Txcount ;1 are we sending?
snz i1
jmp 1 rs232Tx0ut i1
1t xbit clc ;1 yes, ready stop bit
rr rs232Txhi gh ;1 and shift to next bit
rr rs232Txl ow 1
dec rs232Txcount ;1 decrenent bit counter
snb rs232Txl ow. 6 ;1 output next bit
clrb rs232TxPi n 1
sb rs232Txl ow. 6 1
setb rs232TxPin 01,17

1 rs232TxQut

B o S S R O O R O I R R O
1

e T VP: RS232 ReceiVe----------mmmmmm oo
; Virtual Peripheral: Universal Asynchronous Receiver Transmtter (UART)

; These routines send and receive RS232 serial data, and are currently

; configured (though nodifications can be made) for the popul ar

; "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

; RECEIVING The rx_flag is set high whenever a valid byte of data has been
; received and it is the calling routine's responsibility to reset this flag
; once the inconming data has been coll ected.

; Cut put variable(s) : rx_flag, rx_byte

; Variabl e(s) affected : tx_divide, rx_divide, rx_count

; Fl ag(s) affected : rx_flag

SASM Cross Assembler User’s Manual Rev. 1.3 28 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

Chapter 2 Program Structure

; Program cycl es:
; Vari abl e Length?

23 wor st case
Yes.

BRIk I ok bk O kR R S Rk I R R R R R ko kR R Rk ki b O
)

rs232Recei ve

__bank
sb
clc
snb
stc

t est

sz

jp

crxbit decsz

snz
setb
1 rs232RxQut

r s232RxBank
rs232RxPi n

rs232RxPi n
rs232Rxcount

1rxbit
w, #9

rs232Rxcount , w
w, #UARTSt Del ay

rs232RxDi vi de, w

rs232Rxdi vi de
1 1s232RxQut
w, #UARTDI vi de

rs232Rxdi vi de, w

rs232Rxcount
rs232Rxbyt e

rs232RxFl ag

PR R RRPRPRREPREPRPRRRERPRREPEPRRRERREN

get current rx bit

currently receiving byte?

if so, junp ahead

in case start, ready 9 bits
skip ahead if not start bit
it is, so renew bit count
ready 1.5 bit periods (50Miz)

m ddl e of next bit?

yes, ready 1 bit period (50MHz)

last bit?

i f not

then save bhit

if so,

23 then set flag

B R O O

; Virtual Peripheral:

; I nput vari abl e(s)

; Qut put vari abl e(s):
; Vari abl e(s) affected:

; Fl ag(s) affected:

PUT YOUR OMN VPs HERE

BRI o S R O I O R kO

. jmp
;srThr ead2
| j mp
i,srThr ead3
| j mp
i,srThr ead4
| j mp

7 cycles until mainline programresunes execution

Serviced at ISR rate/ 16

7 cycles until mainline programresunes execution

Serviced at ISR rate/ 16

7 cycles until mainline programresunes execution

Serviced at ISR rate/ 16

7 cycles until mainline programresunes execution

Serviced at ISR rate/ 16

© 2000 Ubicom, Inc. All rights reserved.

29 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

jmp i srQut ; 7 cycles until mainline programresunmes execution
i srThread6 ; Serviced at | SR rate/ 16
jmp i srQut ; 7 cycles until mainline programresunmes execution
i srThread7 ; Serviced at | SR rate/ 16
j mp i srQut ; 7 cycles until nainline programresunes execution
i srThread8 : Serviced at ISR rate/ 16
j mp i srQut ; 7 cycles until nminline programresunes execution
i srThread9 : Serviced at ISR rate/ 16
jnmp i srQut ; 7 cycles until mainline programresunes execution
i srThread10 ; Serviced at ISR rate/ 16
jnmp i srQut ; 7 cycles until mainline programresunes execution
i srThreadll ; Serviced at ISR rate/ 16
jnp i srQut ; 7 cycles until mainline programresunes execution
i srThread12 ; Serviced at ISR rate/ 16
jnmp i srout ; 7 cycles until mainline programresunes execution
i srThreadl3 ; Serviced at | SR rate/ 16
; This thread nmust reload the isrMiltiplex register
_bank Mul ti pl exbank
nov i srMultipl ex, #255 ; reload isrMiltiplex so isrThreadl will be run on
; the next interrupt.
jnmp i srout ; 7 cycles until mainline programresunes execution
; This thread nust reload the isrMiltiplex register
; since it is the last one to run in a rotation.
i srQut

B I ok S S R R I S R R R S O R S S S R R S S R S S S R R R S S O S S R R o O R
1

; Set Interrupt Rate

ER R I O S O S b O o O O O S kO O kO O I

i srend
nmov w, #-i nt peri od ;refresh RTCC on return
; (RTCC = 217-no of instructions executed in the | SR)
retiw ;return fromthe interrupt

B O O O O Rk O o S O O O O
1

; End of the Interrupt Service Routine

BEEEEEEE SRS S EEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEDEEEEEEEEEEEEEEEEEEEEEEES

BEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEREESEEEEEEE]
1

; RESET VECTOR

BEEEEEEEEEEEEEEEEEEEESEEEEEEEEREEEEEEEEEEEEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
1

SASM Cross Assembler User’s Manual Rev. 1.3 30 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

BRI kR I kR R R Rk R Ik Rk I R

R R R L Reset ENtry--------cccmemocmmmcmeccccce e ce e

BRIk I ok bk O kR R S Rk I R R R R R ko kR R Rk ki b O
)

org RESETENTRY_ORG

resetEntry ; Program starts here on power-up
page _resetEntry
jmp _resetEntry

BRIk I ok O kR R O O kR SRR R O R O O Ik O kS Rk kb O

--- UART Subroutines--------------------------------

BRIk I ok O kR R R R Rk I kb I O R R Rk b O S R R Rk O kR R R R kO R R

org SUBRCUTI NES_CORG

BRIk I ok kR R O O kR IR R S R O R O S R R Ik kR Rk kO
)

; Functi on . gethyte
; I NPUTS : NONE
; QUTPUTS . Received byte in rs232Rxbyte

; Get byte via serial port and echo it back to the serial port
R Rk o I R I R I R O Rk O R R I S

get byte jnb r s232RxFl ag, $;o wait till byte is received
clrb r s232RxFl ag ; reset the receive flag
_bank rs232RxBank ; switch to rs232 bank
mv rs232byt e, rs232Rxbyt e ; store byte (copy using W
retp

B O S R R I R S
1

; Functi on . sendbyte
; I NPUTS :'W - the byte to be sent via RS-232
; QUTPUTS : Qutputs The byte via RS-232

; Send byte via serial port

BRI O R O I I R O R O O

sendbyt e nov | ocal TenpO, w
_bank rs232TxBank
Twai t t est rs232Txcount ; wait for not busy
sz
jmp Twai t ;
not w ; ready bits (inverse |ogic)
nov rs232Txhi gh, w ; store data byte
setb rs232Txl ow. 7 ; set up start bit
nov w, #10 ; 1 start + 8 data + 1 stop bit
nmov rs232Txcount , w
retp ; leave and fix page bits

BRI O R O I O O O O R
1

; Functi on : sendstring

© 2000 Uhicom, Inc. All rights reserved. 31 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

Care shoul d be taken that the srings are | ocated within program
nmenory | ocations $300-$3ff as the area
I NPUTS : 'W -the address of a null-ternminated string in program menory
QUTPUTS : CQutputs the string via RS-232
Send string pointed to by address in Wregister

BRIk I ok bk O R R R R Rk I R R o O R R R Ik bk O kR SRR R O kR I R kO Rk
)

sendstring _bank rs232TxBank
nmov | ocal Tenpl, w ; store string address

11 oop
nmov w, #STRI NGS_ORG>>8 ; With indirect addressing
nov m w
nmov w, | ocal Tenpl ; read next string character
i read ; using the node register
t est w ; are we at the last char?
snz ; if not=0, skip ahead
j mp :out ; yes, leave & fix page bits
cal | sendbyt e ;. not 0, so send character
_bank r s232TxBank
inc | ocal Tenpl ; point to next character
jnmp ;1 oop ; loop until done

s out nov w, #$1F ; reset the node register
nov m w
retp

BRIk I ok S R SRk I ke b S R R R S o R R R Rk kO kb Rk kR R b ok S ok O R R S S b O R
1

; Function . uppercase
; I NPUTS : byte - the byte to be converted
; QUTPUTS : byte - converted byte

; Convert byte to uppercase.

B o S O I S O O O S O

upper case nov w, # a' ;if byte is | owercase, then skip ahead
nov w, r s232byt e-w
sc
retp
nov w,# a' -'A ; change byte to uppercase
sub rs232byte, w
retp ;leave and fix page bits

B o S R O S O R O

; Functi on . sendhex
; I NPUTS :'W - the byte to be output
; QUTPUTS : Qutputs the hex byte via RS-232

; Qut put a hex nunber

B R O O R O O O R S O

sendhex nov | ocal Tenpl, w
swap wr eg
and w, #$0f
cal l hext abl e
cal | sendbyt e
nov w, | ocal Tenpl
and w, #$0f

SASM Cross Assembler User’s Manual Rev. 1.3 32 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

cal | hext abl e
cal | sendbyt e
retp

BRIk I ok bk O R O S R R R i O R R R I bk O S R R R Rk O kR Rk Ik kO b O
)

; Functi on : get hex

; I nputs . None

; QUTPUTS : Received HEX value is in 'hex' register.

; This routine returns with an 8-bit value in the Wand in the hex
; register. It accepts a hex nunber fromthe term nal screen and

; returns. Remenber to wite a pronpt to the screen before calling get_hex

BRIk I ok bk O I IR R O b ok S R R R Rk b O kb O kR Ok Rk Ik O i b S R R R
)

get hex _bank r s232RxBank 02
nmov w, #_ent er hex
cal | @endstring
cal | :getval i dhex
nmov w, rs232byte ; send the received (good) byte
cal | sendbyt e
swap | ocal Tenp2 ; put the nibble in the upper nibble
nmov w, | ocal Tenp2
nov hex, w ; of hex register
cal l :getval i dhex
nov w, r s232byt e ; send the second received byte
cal | sendbyt e
nov w, | ocal Tenp2
and w, #$0f
or w, hex
nmov hex, w
retp

:getval i dhex

1ghl clr | ocal Tenp2
j nb rs232Rxfl ag, $; get a byte fromthe terninal
clrb rs232Rxfl ag
nov rs232byt e, rs232Rxbyt e
cal | upper case ; uppercase it.
11 oop nov w, | ocal Tenp2 ; get the value at tenp (index)
cal | hext abl e
xor w, rs232byt e
snz ; conpare it to the received byte
ret
inc | ocal Tenp2 ; if they are equal, we have the
jb | ocal Tenp2. 4, : ghl ; upper nibble. Continue if not.
jmp 11 oop
ret
hext abl e add pc, w
retw ‘0
retw 1
retw ‘2
retw '3
retw "4

© 2000 Uhicom, Inc. All rights reserved. 33 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

retw "5
retw '6'
retw e
retw '8
retw ‘9
retw "A
retw 'B
retw 'C
retw 'D
retw =
retw "F

BRIk I ok O kR R R b ok kO R IRk Rk b O O kb O R Rk O kR R I b R Ik O
)

org STRI NGS_ORG ; This | abel defines where strings are kept in program space.
; all the followi ng strings nust be within the same hal f page of
; the program nenory for send string to work, and they nust be
; preceded by this |abel.

BRI R S ok bk O Rk I R I S kR Ik Rk R Rk Ik kb b o R Rk O b S bk b R O Rk O bk S R Rk I
)
BRIk I ok kR kI R R R b ok O R R Rk o O R R Sk R Rk O b S ok R R R kO kb Sk R Rk I
)

L R String Data------------------------------~-~-~-~-~-~----

BRIk I ok Sk R SRk I R S A R R R R b o S R R R R S R R O kS Rk kR S b ok R R Rk kb O O R
)

VP RS232 Transmt

_hello dw 13,10, ' Yup, The UART works!!!' 0O
_hi t Space dw 13,10,"'Hit Space...',0
_ent er hex dw 13, 10,"' Enter Hex Value',O

org PAGE3_ORG
IR SRR SRS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR I I I I O
;

e e Main Program ----------c-mmm o
; Program executi on begi ns here on power-up or after a reset

BRI o S S O O O
1

org MAI NPROGRAM ORG

_resetEntry

BRI
1

B Initialize all port configuration -----------mmommmmmon

B o S O I S O O
1

_nmode ST_W ;point MODE to wite ST register

nov w, #RB_ST ;Setup RB Schmitt Trigger, 0 = enabl ed, 1 = di sabl ed
nov I'rb, w

nov w, #RC_ST ; Setup RC Schmitt Trigger, 0 = enabl ed, 1 = di sabl ed
mov 'rc,w

| FDEF SX48_52

nov w, #RD_ST ; Setup RD Schmitt Trigger, 0 = enabl ed, 1 = di sabl ed
nov Ird, w

nov w, #RE_ST ; Setup RE Schmitt Trigger, 0 = enabl ed, 1 = di sabl ed
mov lre,w

SASM Cross Assembler User’s Manual Rev. 1.3 34 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

ENDI F
_node LVL_W ;point MODE to wite LVL register
nmov w, #RA LVL ;Setup RA CMOS or TTL levels, 1 = TTL, 0 = CMO3S
nov lra,w
nmov w, #RB_LVL ; Setup RB CMOS or TTL levels, 1 = TTL, 0 = CM3S,0, 1
;= TTL, 2..7 = CMOS
nmov I'rb,w
nov w, #RC_LVL ; Setup RC CMOS or TTL levels, 1 = TTL, 0 = CMOS
nov lrc,w
| FDEF SX48_52
nov w, #RD_LVL ;Setup RD CMOS or TTL levels, 1 = TTL, 0 = CMOS
nmov I'rd, w
nov w, #RE_LVL ;Setup RE CMOS or TTL levels, 1 = TTL, 0 = CMOS
nov lre,w
ENDI F
_nmode PLP_W ;point MODE to wite PLP register
nov w, #RA_PLP ; Setup RA Weak Pull-up, O = enabled, 1 = disabled
nmov lra,w
nov w, #RB_PLP ; Setup RB Weak Pull-up, O = enabled, 1 = disabled
nmov I'rb,w
nov w, #RC_PLP ; Setup RC Weak Pull-up, 0 = enabled, 1 = disabled
mov 'rc,w
| FDEF SX48_52
nov w, #RD_PLP ; Setup RD Weak Pul | -up, 0 = enabled, 1 = disabled
nov Ird, w
nov w, #RE_PLP ; Setup RE Weak Pul | -up, 0 = enabled, 1 = disabled
mov 're,w
ENDI F
_nmode DDIR W ;point MODE to wite DD R register
nov w, #RA DDI R ;Setup RA Direction register, 0 = output, 1 = input
nov l'ra,w
nov w, #RB_DDI R ;Setup RB Direction register, 0 = output, 1 = input
nov I'rb, w
nov w, #RC_DDI R ;Setup RC Direction register, 0 = output, 1 = input
nov 'rc,w
| FDEF SX48 52
nov w, #RD_DDI R ;Setup RD Direction register, 0 = output, 1 = input
nmov I'rd, w
nov w, #RE_DDI R ;Setup RE Direction register, 0 = output, 1 = input
nmov lre,w
ENDI F
nov w, #RA | at ch ;Initialize RA data |atch
nov ra,w
nov w, #RB_| at ch ;Initialize RB data | atch
nmov rb,w
nov w, #RC_| at ch ;Initialize RC data | atch
nov rc,w
| FDEF SX48_52
nov w, #RD_| at ch ;Initialize RD data | atch
nov rd, w
nov w, #RE_| at ch ;Initialize RE data | atch
nov re, w
ENDI F

R O R I R S O O
1

L Clear all Data RAMlocations -----------------------~-----

© 2000 Uhicom, Inc. All rights reserved. 35 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure

www.ubicom.com

BRI kR I kR R R Rk R Ik Rk I R
)

| FDEF SX48_52

:zeroRantl r ind

clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr

ELSE
clr
: zer oRansb fsr.4

setb

clr

incsz

j
ENDI F

w, #$0a
fsr,w

fsr
:zeroRam

bankO
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$la
$1b
$lc
$1d
$le
$1f

fsr

fsr.3
ind

fsr

. zer oRam

)

1
1
1
1
1
1

l

; SX48/ 52 RAM cl ear routine
;reset all ramstarting at $0A

;clear using indirect addressing
;repeat until done

;clear bank O registers

SX18/ 20/ 28 RAM cl ear routine

;reset all ram banks
;are we on |ow half of bank?
;1f so, don't touch regs 0-7

To clear fromO08 - d obal Registers

;clear using indirect addressing
;repeat until done

BRI S S O O S

; Initialize progranmi VP registers

B R S O
1

_bank
nmov
nmov

r s232TxBank
w, #UARTDi vi de
rs232TXdi vi de, w

l

l

sel ect rs232 bank
| oad Txdivide with UART baud rate

B o S I R O S R O O O I
1

; Setup and enable RTCC interrupt,

WREG r egi ster, RTCC WDT prescal er

B S R O O S O O O R
1

RTCC_ON =
RTCC_ | D =
RTCC I NC_EXT =

940000000

%©1000000

%90100000

1
1
1
1
1

Enabl es RTCC at address $01 (RTWhi)

; *WREG at address $01 (RTWIo0) by default

Di sabl es RTCC edge interrupt (RTE_IE hi)

; *RTCC edge interrupt (RTE_IE | 0) enabled by

def aul t
Sets RTCCincrenent on RTCC pin transition (RTS hi)

SASM Cross Assembler User’s Manual Rev. 1.3

36 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

;*RTCC increment on internal instruction (RTS |0)

is default
RTCC_FE = 990010000 ;Sets RTCC to increment on falling edge (RTE_ES hi)
;*RTCC to increnent on rising edge (RTE_ES o) is
;defaul t
RTCC_PS_ON = 290000000 ; Assigns prescaler to RTCC (PSA | 0)
RTCC PS _OFF = 290001000 ; Assigns prescaler to WDT (PSA hi)
PS_000 = %90000000 ;RTCC = 1:2, WOT = 1:1
PS_001 = %90000001 ;RTCC = 1:4, WOT = 1:2
PS_010 = %90000010 ;RTCC = 1: 8, WOT = 1: 4
PS 011 = %90000011 ; RTCC = 1:16, WDOT = 1:8
PS_100 = %90000100 ; RTCC = 1: 32, WDOT = 1:16
PS_101 = %90000101 ; RTCC = 1: 64, WDOT = 1:32
PS_110 = %90000110 ; RTCC = 1:128, WDOT = 1:64
PS_111 = %90000111 ; RTCC = 1:256, WDOT = 1:128
OPTI ONSETUPequRTCC_PS_OFF ;the default option setup for this program
nmov w, #OPTI ONSETUP ;setup option register for RTCC i nterrupts enabl ed
nmov loption,w ;and no prescal er.

j mp @i nLoop

BRIk I ok kR kI R R R b ok O R R Rk o O R R Sk R Rk O b S ok R R R kO kb Sk R Rk I
)

e MAI N PROGRAM OODE - - = = - = = = = === = s = o e e o mee oo o oee o

BRIk I ok O kR SRk I R O A R R R R b o S R R R S R R O kS R R R I Rk Sk R R O R
)

mai nLoop
nov w, #_hi t Space ; Send pronpt to terminal at UART rate
cal | @endstring
11 oop
cal | @et byt e
cjne rs232Rxbyte,# ',:loop ; just keep | ooping until user
; hits the space bar
nov w, #_hello ; When space bar hit, send out string.
cal l @endstring
jmp 11 oop

BRI o S S
1

END ; End of program code

B o S S O S O O S I O O
l

© 2000 Uhicom, Inc. All rights reserved. 37 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

2.2 Assembler Source Line Format
The general format for a program source line is as followed:

[<Lablel>] <Mnemonic> [<Operand>] [<Comment>]

221 Label

The optional label field, if present, begins at column one of the source line, and is terminated by the
first white space (a space, tab, or end-of-line character). A label may be the only field in a statement.
Labels are generally used as a symbolic reference to program memory locations in the source code.

A label consists of 1 to 32 characters. It must begin with aletter, and underscore (*_"), or colon (:"), and
may contain any combination of letters, digits, and underscores. A user-defined label may not be a
reserved word.

A label may define asymbolic name for a program address, adata address, amacro, or an arbitrary 32-
bit value. If used as a program address, a label may be either global or local. A global label must be
unique in the entire program. A local label is written with an initial colon (*:*) character, and must be
unique over the set of lines extending from the immediately preceding global label to the next global
label. Local labels will appear in the symbol table concatenated to the name of the immediately
preceding global label.

For example:

count equ $30
org $100
reset mai n

mai n nmov count, #10

| oop cal bl i nk
dj nz count, : |l oop
sl eep

bl i nk ;define a blink function here
ret

This routine defines labels ‘count’, 'main’, 'main:loop’, and 'blink’. The label 'count’ refers to a data
address. The global label 'main’ refers to the program address $100 and is also the reset vector. The
global label 'blink' is a function which blinks a light (whose implementation is left as an exercise for
the reader). The local label ":loop' may be used again in other sections of the code, allowing for
convenient nicknames for loops and other locations private to the implementation of afunction.

Labels for program locations refer to the entire 12-bit address of the labeled instruction. Since the
CALL and JMP instructions can only use 8 and 9 bits of the address, the assembler will silently
truncate the target address to fit in the instruction. If possible, the assembler will generate awarning if
the target address is not in the same page as set by the most recent PAGE instruction. To avoid PAGE
mismatches automatically, a label may often be used in conjuction with an '@" symbol, which will
cause the required PAGE instruction to be inserted. For example,

SASM Cross Assembler User’s Manual Rev. 1.3 38 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

call @ abel
isassembled identicaly to

page | abel
cal | | abel

The same capability is available for any instruction which takes an 8-bit or 9-bit target address.

2.2.2 Mnemonic

The mnemonic field begins after the first white space in the source line and is terminated by the next
white space. The field may contain an instruction mnemonic, assembler directive or macro.

2.2.3 Operand

The operand field begins immediately after the first white space following the mnemonic field and
ends at the next white space. The field may contain one or more constants or expressions separated by
commeas.

224 Comment

The comment field begins immediately after the first white space following the operand field, or the
mnemonic field for those mnemonics that do not require any operands. This is an optional field
containing printable characters. Anything to the right of a semicolon (;) is treated as a comment and
will be ignored by the assembler.

2.2.5 Constants

Constants are strings or numbersthat SASM interprets as afixed numeric value. SASM supports radix
form character, hexadecimal, decimal, octal and binary. SASM uses decimal asthe default radix which
helps determine what value will be assigned to constants in the object file when they are not explicitly
specified by a base descriptor.

2.2.6 Characters or String Constants

String constants always begin with asingle or double quote, and end with amatching single or double
guote. SASM converts the characters between the quotes to ASCII values. For example:

MOV W#H A
RETW # A

2.2.7 Numeric Constants

A numeric constant in SASM consists of an arbitrary number of alphanumeric characters. The actual
value of the constant depends on the radix you select to interpret it. Radices available in SASM are

© 2000 Uhicom, Inc. All rights reserved. 39 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

binary, octal, decimal, and hexadecimal, as shown below. If no radix is given, SASM uses the default
radix as specified by the /R command-line option, or decimal if no /R option is present.

Hexadecimal numbers must always start with adecimal digit (0-9) if thetrailing “H” notation is used.
If necessary, put aleading O at the left of the number to distinguish it between hexadecimal numbers
that start with aletter (A- F). The hexadecimal digits A through F can be either upper-case or lower-
case. Constants can be optionally preceded by a plus or minus sign.

Any numeric constant may contain embedded underscore characters which are silently discarded
during the conversion of the constant. Such underscores are useful to group digits of along constant
for easier reading. Thisfeature improves both readability of large numeric constants and compatibility
with Parallax SXKey which also supports this notation.

For example, the number ten million may be represented by 10 000 000" which iseasier to read at a
glance than "10000000".

Note that aleading underscore will cause the constant to be treated as a symbol which is probably not
what was intended. Also, mixing an underscore into aleading or trailing radix specification character
will probably cause unexpected behavior.

The formats for declaring a constant are shown in Tables 2-1. The Radix descriptor is caseinsensitive.
Also, either single-quote and double-quote characters may be used where single-quotes are shown in
Table 2-1.

Table 2-1 Constants Declaration

TYPE SYNTAX EXAMPLE
Binary <binary digits>B 01000001B
B'<binary digits> B'01000001
B"<binary digits> B"01000001
%<binary digits> %11111011
Octd <octa digits>O 1010
O'<octal digits> 0101
Q'<octal digits> Q101
Decimal <digits>D 65D
D'<digits> D'65
D"<digits> D"65
Hexadecimal <digit><hex digits>H 41H
<digit><hex digits>X 41X
H'<hex digits> H' 41
X'<hex digits> X"'41
Ox<hex digits> 0x41
$<hex digits> $41
Character ‘<character>’ ‘A

SASM Cross Assembler User’s Manual Rev. 1.3 40 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

2.3 Symbols

A symbol represents a value, which can be a variable, an address label or an operand to an assembly
instruction or directive.

2.3.1 Symbol Names

Symbol names are user-defined or predefined combination of letters (both uppercase and lowercase),

digits and special characters. They are represented by a string of 1-32 aphanumeric characters with

thefirst character being'A'to 'Z','a'to'z," ', @or "". Valid charactersfor SASM are asfollows:
ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijkl mnopgrstuvwxyz

123456789 @!_

NOTE: SASM accepts upper and lower case characters, and is case sensitive.

2.3.2 Symbol Types

Each symbol has atype that describes the characteristics and information associated with it. The way
you define a symbol determinesits type. SASM supports four symbol types:

DATA: A user-defined symbol that represents a data variable defined by EQU directive
VAR: A user-defined symbol that represents a data variable defined by SET directive

ADDR: A user-defined symbol that represents a code address or program counter
location

RESV: A predefined symbol used internally by SASM

2.3.3 User-Defined Symbols

Symbols are used in both label and operand fields in the source statement. Symbols are defined in the
label field as either the current program address or asthe resulting value of an EQU or SET expression.
These values can then be used symbolically in operand fields. All symbols must be defined at some
point in the source code by appearing in the label field. A symbol may begin with a colon character, in
which case it is appended to the most recently defined symbol not beginning with a colon to form the
name which appears in the symbol table. This can be used to define locally-scoped labels within a
larger region of code.

© 2000 Uhicom, Inc. All rights reserved. 41 SASM Cross Assembler User'sManua Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

2.3.4 Reserved Symbols

The assembler hasinternally defined the following reserved symbols

= DS RES DwW FREG
EQU ORG END SET WATCH
ENDM EXI T™M | F | FDEF BREAK
| FNDEF ELSE ENDI F EXPAND CASE
NCEXPAND LI ST DEVI CE | D NOCASE
RESET SPAC ZERO LOCAL ERROR
LPAGE MACRO RADI X TI TLE

STI TLE | NCLUDE SUBTI TL LI ST

PROCESSOR

W M R PC

RA RB RC RD

RE RL RR SB

SC SZ ADD AND

CLC CLR CLZ DEC

I NC JwP MOV NCP

NOT RET SNB SNC

SNZ SUB VDT XOR

BANK CALL CLRB DATA

MCODE PAGE RETI RETP

RETW SETB SKI P SWAP

TEST DECSZ | NCSZ | READ

MOVSZ RETI W SLEEP OPTI ON

2.4 Expressions

Expressions are used in the operand field of the source statement and may contain constants, symbols
or any combination of constants and symbols separated by operators.Expressions are calculated with
32-bit arithmetic.

To handle referencesto single bits within afile register, expressions may include a bit number ranging
from 0to 7. The DOT operator allows a bit number to be added to an expression or extracted from an
expression. The bit number zero is indistinguishable from an expression without a bit number. The
DOT operator may be used as a unary operator to extract a bit number, and the ’+' operator may be
used as a prefix to discard a non-zero bit position silently.

2.4.1 Arithmetic Operators

The arithmetic operators available in expressions are listed in the following table. Operators are
grouped by precedence, with earlier groups in the table at a higher precedence than later. Within each
group, precedence is strictly left to right.

Parenthesis may be used to modify the precedence arbitrarily, and may be nested to any required depth.

SASM Cross Assembler User’'s Manual Rev. 1.3 42 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

Note that some operators are not useful without parenthesis due to their actual precedence. For
example, the bit position operator (".") isat arelatively high precedence which allows expressions such
as 3.2+5to evaluate to 8.2 which makes sense. If the intended result is 3.7, then the expression should
be written as 3.(2+5).

All arithmetic is performed in 32-bit two’s-complement integers, and intermediate results may be
saved in the symbol table with 32 significant bits along with a 3-bit bit position. For consistency with
the processor datasheet, an unspecified bit position is equivalent to bit zero. Of course, operand values
are truncated as appropriate to fit the instructions with which they are used.

OPERATOR DESCRIPTION EXAMPLE [VALUE]

Magic Values

$ Current Program Counter

% Current repetition counter

Parenthesis

O Grouping (10+5)/5 [3]

Unary

+ Unary Plus +14 [14]

- Unary Minus -14 [-14]

~ Unary One's Complement ~1 [Oxfffffffe]
Bit Position Z [2]

! Logical Not 1(3==5) [TRUE]

II Absolute Value I(-42) [42]

Bit Number
FR.BIT 3.2

Multiplication and Division

* Multiplication 3*4 [12]
/ Division 3/4 [Q]
I Modulus 10//8 [2]
& Bitwise And 10&3 [2]
A Bitwise Exclusive Or 103 [9]
<< Left Shift 10<<3 [80]
>> Right Shift 10>>3 [1]

© 2000 Uhicom, Inc. All rights reserved. 43 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 2 Program Structure

www.ubicom.com

>< Bit Reversal $2001 >< 12 [$3000]
Addition and Subtraction

+ Addition 6+8 [14]

- Subtraction 6-8 [-2]

| Bitwise Inclusive Or 103 [11]
Logical Relations

== Logical Equal 3== [FALSE]
I= Logical Not Equal 3I=5 [TRUE]
< Less than 3<5 [TRUE]
> Greater than 3>5 [FALSE]
<= Less than or equal 3<=5 [TRUE]
>= Greater than or equal 3>=5 [FALSE]
| Logical Or (x==y)|I(x!=y) [TRUE]
&& Logical And (x==y)&&(x'=y) [FALSE]

The unary ‘|| operator takes the absolute value of an expression. It is at the same precedence as the
other unary operators, i.e. as high as possible. A warning is generated if the value has a bit position,
and the bit position of the result is set to zero.

The binary >< operator bit-reverses an expression. Thevalueto itsleft isreversed across as many least
bits as specified on itsright. It has the same precedence as multiplication and division, i.e. higher than
addition and lower than DOT. The higher-order bits are preserved. A warning is generated if either
value has a non-zero bit position, and the bit position of the result is set to zero. For example,

$2001 >< 13
evaluates to $3000.

The unary plus operator forces the bit position of a value to zero. This is useful to convert a bit
referenced symbol to the address of itsfile register.

The unary DOT operator extracts the bit position of avalue and returnsit as avalue with abit position
of zero. Thisis useful to extract just the bit position from a bit referenced symbol.

For example,
copy = $30 + + Z ; $33
copyc = copy . . C ; $33
copydc = copy . . DC : $33. 1
copyz = copy . . Z ; $33. 2
copypd = copy . . PD ; $33. 3
copyto = copy . . TO ; $33. 4
SASM Cross Assembler User’s Manual Rev. 1.3 44 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 2 Program Structure

copypa0 = copy . . PAO ; $33.5
copypal = copy . . PAl ; $33. 6
copypa2 = copy . . PA2 ;$33.7

arranges symbols for a copy of the STATUS register at an offset in bank $30, and assigns names to
some similar bits in the copy.

2.4.2 Well-Defined Expressions

Some of the directives require well-defined expressions. These are expressions that can be evaluated
on the first pass. This means any symbols used in the expression must be defined on an earlier linein
the sourcefile.

For example:
I en equ 4 ;length of an array
org $30
var a ds 1 :byte variabl e
varb ds I en ;array of |en bytes

Each of the expressions above must be well-defined during pass 1. The value of 'len’ given to the EQU
directive must be known so that the symbol can be defined. The argument to the ORG directive must
be known so that subsequent symbols can be defined. The argument to the DS directive must be known
so that the actual value of varb and any subsequent symbols will be known.

© 2000 Ubicom, Inc. All rights reserved. 45 SASM Cross Assembler User’'sManua Rev. 1.3

Chapter 2 Program Structure www.ubicom.com

SASM Cross Assembler User’s Manual Rev. 1.3 46 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Chapter 3

SASM Assembler Directive

3.1 Introduction

Directives are assembler commands that appear in the source code but are not trandlated directly into
opcodes. They are used to control the program counter, allocation, and format listing outputs. Tables 3-
1 shows a summary of directives.

Table 3-1 Assembler Directives

Directive Description Syntax
BREAK No effect (SXKey compatibility) BREAK
CASE No effect (SXKey compatibility) CASE
DEVICE Define device type and fuse options DEVICE setting { setting, ... }
DS Define memory space by incrementing the Symbol ds 1

program memory address Symbolsds 3
DW Define 16-bit datain program memory DW data, { data... }
END Mark the End of source code END
EQU Equate a symbol to an expression. Thesym- | Symbol EQU expression
bol cannot be reassigned
EXPAND or Specifies whether to expand the macro EXPAND or
NOEXPAND | instructionsin thelist file NOEXPAND
FREQ No effect (SXKey compatibility) FREQ expression
__FUSE Define FUSE and FUSEX WORDsasexplicit | FUSE expression
__ FUSEX expression values. Not recommended for use. | _ FUSEX expression
FUSES Synonym for DEVICE FUSES setting ...
GLOBAL Synonym for EQU label GLOBAL expression
ID Define an ID string up to 8 characters ID ‘string’
IF Conditional assembly |F expression
{ELSE} { ELSE}
ENDIF ENDIF
SASM Cross Assembler User’s Manual Rev. 1.3 47 © 2000 Uhicom, Inc. All rights reserved.

Chapter 3 SASM Assembler Directive

www.ubicom.com

Table 3-1 Assembler Directives

Directive Description Syntax
IFDEF Conditional assembly |FDEF symbol
{ELSE} { ELSE}
ENDIF ENDIF
IFNDEF Conditional assembly IFNDEF symbol
{ ELSE} { ELSE}
ENDIF ENDIF
INCLUDE Insert external sourcefile INCLUDE ‘file
LIST Control thelist format, set certain LIST { P=processor} { R=radix}
command-line options { F=format}
{L=NONE|PAGE|NOPAGE}
{X=ON|OFF} {C=cols}
{N=lines}
LPAGE Insert page gect in listing file LPAGE
MACRO Definesamacro Label MACRO {argument, ...}
{ EXITM } { EXITM }
ENDM ENDM
NOCASE No effect (SXKey compatibility) NOCASE
ORG Set program origin ORG expression
PROCESSOR | Synonym for DEVICE PROCESSOR setting ...
RADIX Set default radix RADIX=[BIN|OCT|DEC|HEX]
RADIX=[B|O|D|H]
REPT Repesat block of program code a specified REPT count
ENDR number of times ENDR
RESET Define reset vector (starting location) of RESET label
program
RES Reserve storage in memory RES expression
SET or = Set a symbol equal to an expression. The Symbol SET expression
symbol can be reassigned to new value Symbol = expression
SPAC Insert linesin listing SPAC expression
STITLE Synonym for TITLE STITLE Title Text'
SUBTITLE' Set alisting subtitle SUBTITLE 'Subtitle Text
TITLE Define program heading TITLE ‘file
SASM Cross Assembler User's Manual Rev. 1.3 48 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

Chapter 3 SASM Assembler Directive

Table 3-1 Assembler Directives

Directive Description Syntax
WATCH No effect (SXKey compatibility) WATCH {arguments}
ZERO Synonym for RES ZERO expression

3.1.1 FREQ, BREAK, WATCH, CASE, NOCASE (SXKey Compatibility)

Syntax:

Description:

Example:

[<label>] FREQ <expression> [<comment>]
[<label>] BREAK [<comment>]

[<label>] WATCH <operands> [<comment>]
[<label>] CASE [<comment>]

[<label>] NOCASE [<comment>]

Ignore the directive and any operands. These directives have a particular meaning
to the Paralex SXKey assembler, but is unsupported by SASM. For better
portability of code originally written with SXKey, SASM will ignorethisdirective.
Note that SASM does not make any attempt to validate the operands expected by
SXKey.

The value of the expression on the FREQ directive gives the intended clock
frequency in integer Hz. The frequency is preserved in the output file for possible
use by device programming and debugging tools. Use of the FREQ directive
declares a symbol named _ SX_FREQ as the 32-bit frequency value. In addition,
the output file will contain a 32-bit value at locations $1014 (high 16-bits) and
$1015 (low 16-bits) holding the frequency or zero if no FREQ directive was
assembled. DEVICE or FUSES or PROCESSOR- Define Device Type and Fuse
Bits

If the BREAK directive appears, the symbol _ SX_BREAK will be defined asits
address. In addition, the BREAK addressis also found at $1017 in the output file.
The BREAK directive may only be assembled once in a single program.

FREQ 20000000
loopinc fr
BREAK
jmp loop

© 2000 Uhicom, Inc. All rights reserved. 49 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.2 DEVICE or FUSES or PROCESSOR - Define Device Type and Fuse Bits
Syntax: [<lable>] DEVICE <settings> [, settings...] [<comment>]
FUSE <settings>
[<lable>] PROCESSOR <settings> [, settings... | [<comment>]
Description: Specifies the device type and fuse bits of both FUSE and FUSEX words to SASM
assembler.
Example: DEVICE PINS28, BANK S8, OSCHS
DEVICE TURBO, STACHKX, OPTIONX, CARRY X, PROTECT

There are different fuse settings for different device types.

NOTE: When using the SX18/20/28AC devices with the SX-1SD Debugger, the fuse bitsthat se-

lect the program memory size must be set to BANK S8 (2K program memory).

Tables 3-2, and Tables 3-3 show the FUSE/FUSEX hit settings for the SX18/20/28AC and SX48/
52BD devices:

Table 3-2 FUSE/FUSEX Bit Settings for SX18/20/28AC

Option Bits Description Function Default
PINS18/SX18AC | SX18AC Specifies device type PINS18
PINS20/SX20AC | SX20AC
PINS28/SX28AC | SX28AC
PINS48/SX48BD | SX48BD
PINS52/SX52BD | SX52BD
BANKS1 1 page, 1 bank Configure memory size BANKS8
BANKS2 2 page, 1 bank (should not be changed
BANK$4 4 pages, 4 banks unless to reduce the amount
BANKS8 4 pages, 8 banks of program memory)

OSCLP1 Ext Osc - LP1 Specifies external OSCRC
OSCLP2 Ext Osc - LP2 crystal / resonator

OSCXT1 Ext Osc - XT1 or external RC

OSCXT2 Ext Osc - XT2 oscillator

OSCHS1 Ext Osc - HS1

OSCHS2 Ext Osc - HS2

OSCHS3 Ext Osc - HS3

OSCRC Ext Osc - RC

OSC4AMHZ Int RC Osc - 4MHz Specifiesinterna 4AMHz
OSC1IMHZ Int RC Osc - IMHz oscillator speed

OSC128KHZ Int RC Osc - 128kHz

OSC32KHZz Int RC Osc - 32kHz

SASM Cross Assembler User’s Manual Rev. 1.3

50 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

Chapter 3 SASM Assembler Directive

Table 3-2 FUSE/FUSEX Bit Settings for SX18/20/28AC

Option Bits Description Function Default

IFBD 0 = an ext feedback resistor | Internal Feedback Disable Enable
Isrequired between OSC1 internal
and OSC2 pins. feedback
1 = crystal/resonator OSC resister
can rely on into feedback
resistor between OSC1 and
OSC2 pins

BOR42 Brown-out reset at 4.2V Specifies brown-out reset Disable

BOR26 Brown-out reset at 2.6V function and threshold brownout

BOR22 Brown-out reset at 2.2V voltage

BOROFF Disable Brown-out reset

TURBO 0 = Turbo mode (1:1) Specifies turbo mode Compatible
1 = compatible mode (1:4) mode

OPTIONX 0 = 8-hit option register SpecifiesOptionregister and | 6 bits and
and 8-level stack stack extension 2-level
1 = 6-bit option register
and 2-level stack

CARRY X 1 =ignore carry flag as ADD and SUB Carry flag
input to ADD and SUB instructionsuse Carry flag as | ignored
instruction input

SYNC 0 = Enable synchronous Enable or disable isochro- Disabled
inputs nous input mode (for turbo
1 = Disable synchronous mode operation)
inputs

WATCHDOG 0 = Disable watchdog timer | Enable or Disable Disabled
1 = Enable watchdog timer | Watchdog Timer

PROTECT 0 = Code protect enabled Specified code protection Disabled
1 = Code protect disabled

© 2000 Ubicom, Inc. All rights reserved. 51

SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 3 SASM Assembler Directive

www.ubicom.com

Table 3-3 FUSE/FUSEX Bit Settings for SX48/52BD

Option Bits Descriptions Function Default
PINS18/SX18AC SX18AC Specifies device PINS18
PINS20/SX20AC SX20AC type
PINS28/SX28AC SX28AC
PINS48/SX48BD SX48BD
PINS52/SX52BD SX52BD
OSCLP1 Ext Osc - LP1 Specifiesexternal | OSCRC
OSCLP2 Ext Osc - LP2 crystal / resonator
OSCXT1 Ext Osc — XT1 Or external RC
OSCXT2 Ext Osc — XT2 circuit
OSCHS1 Ext Osc — HS1
OSCHS2 Ext Osc — HS2
OSCHS3 Ext Osc —HS3
OSCRC Ext OSC —-RC
OSC4AMHZ Int Osc —4MHz Specifiesinternal 4MHz
OSC1IMHZ Int Osc — 1MHz oscillator divider
OSC128KHZ Int Osc — 128kHz
OSC32KHZ Int Osc — 32kHz
BOR42 Brown-out reset at 4.2V Specifies brown- Disable
BOR26 Brown-out reset at 2.6V out reset brownout
BOR22 Brown-out reset at 2.2V
BOROFF Disable Brown-out reset
CARRY X 1 =ignore carry flag asinput to ADD and SUB Carry flag

ADD and SUB instruction instructions use ignored
Carry flag as input
SYNC 0 = Enable synchronous inputs Enable or Disable | Disabled
1 = Disable synchronous inputs synchronous input
mode (for turbo
mode operation)
WATCHDOG 0 = Disable watchdog timer Enable or Disable | Disabled
1 = Enable watchdog timer Watchdog Timer
PROTECT 0 = Code protect enabled Specified code Disabled
1 = Code protect disabled protection.
SASM Cross Assembler User's Manual Rev. 1.3 52 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 3 SASM Assembler Directive

Table 3-3 FUSE/FUSEX Bit Settings for SX48/52BD

Option Bits Descriptions Function Default
SLEEPCLK 0 = Enable clock operation during | Sleep Clock Dis- | Disable sleep
sleep mode able clock
1 = Disable clock operation during
sleep mode
WDRT60 60 msec Delay Reset Timer | 18.0 msec
WDRT960 1sec time-out period
WDRT006 0.25 msec
WDRT184 18.0 msec (default)

© 2000 Uhicom, Inc. All rights reserved. 53 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.3 DS - Define Memory Space

Syntax: [<label>] DS <expression>
Description: Define memory space by incrementing the data memory address during assembly.
The expression must be well-defined during Pass 1.
Example: ORG $10
Timers = $
timers low ds 1 ; $10
timers_high ds 1 ; $11
timers_accl ds 1 ; $12
timers_array ds 3 ; $13, $14, $15
3.1.4 DW - Define Data in Memory
Syntax: [<label>] DW <operand>
Description: Initialize one or more words of program memory with data. The datamay bein the
form of constants or ASCII character strings.
Example: DW 10h, 20h, 30h
or
DW ‘Thisisatest’
3.1.5 END - End of Source Program
Syntax: [<label>] END [<comment>]
Description: Mark the end of program.
Example: END ; terminate the program

SASM Cross Assembler User's Manual Rev. 1.3 54 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 3 SASM Assembler Directive

3.1.6 EQU or GLOBAL- Equate a Symbol to an Expression

Syntax: <label> EQU <expression> [<comment>]
<lable> GLOBAL <expression>[<comment>

Description: A constant value or the value of awell-defined expression is assigned
to the given label. Note that any value defined with an EQU directive is fixed and
may not be redefined.

To support semi-direct addressing mode for SX48/52BD devices and differentiate
between global registers and bank 0 registers the bank 0O registers must be defined
asthe 9-bit values $100 through $10F. In effect, SASM treats theimaginary BANK
16 asidentical to BANK 0. In addition, banks 1 through 15 may also be referred to
by addresses $110 through $1FF.

Example: COUNT EQU 1%h

3.1.7 ERROR - Emit a User-defined Error Message

Syntax: <label> ERROR "Message Text" [<comment>]]
<lable> ERROR [<passcode>] "Message Text" [<comment>]

Decription: Causes the assembler to emit an error message for this source line. This is
particularly useful to provide usage checking for complex macros.

The second form of the directive takes a symbol which specifies which pass of the
assembler emits the message, and additionally whether the message is a comment,
warning, or error. The default isa Pass 2 error.

The additional forms provide for additional message options without cluttering the
namespace with extra reserved words. Note that the first form of the ‘ERROR’
directive is supported similarly by Parallax SXKey.

Example: ERROR "message" ;Pass 2 error
ERROR P1 "message" :Pass 1 error
ERROR P1W "message" ;Pass 1 warning
ERROR P1C "message" ;Pass 1 comment
ERROR P2 "message" :Pass 2 error
ERROR P2W "message" ;Pass 2 warning
ERROR P2C "message" ;Pass 2 comment

© 2000 Ubicom, Inc. All rights reserved. 55 SASM Cross Assembler User’'sManua Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.8 ID - Set an ID String in Program Memory

Syntax:

Decription:

Example:

ID “Text”

Assigns an ID text string at the end of program memory. The string may be up to 8
characters and should be in quotes

ID ‘Demo28’

3.1.9 IFELSE.ENDIF - Conditional Assembly

Syntax:

Description:

Example:

|F <expression>
<source lines>
ELSE
<source lines>
ENDIF

ELSE is used in conjunction with IF directive to provide an alternative path. If IF
tests false, the alternative path noted by the ELSE directive is taken, providing
conditional assembly. The IF statement requires a matching ENDIF statement.

The expression must be well-defined during Pass 1.

count equ 12h

IF (count > 10h)
INC 4
ELSE
DEC 4
ENDIF

SASM Cross Assembler User’s Manual Rev. 1.3 56 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 3 SASM Assembler Directive

3.1.10 IFDEF.ELSE.ENDIF - Conditional Assembly

Syntax: |FDEF <symbol>
<source lines>
ELSE
<source lines>
ENDIF

Description: EL SE isused in conjunction with IFDEF directive to provide an alternative path. If
symbol is not defined, the alternative path noted by the ELSE directive is taken,
providing conditional assembly. The IFDEF statement requires a matching ENDIF

statement.
Example: varl equ 10h
IFDEF varl
INC 4
ELSE
DEC 4
ENDIF

3.1.11 IFNDEF.ELSE.ENDIF - Conditional Assembly

Syntax: IFNDEF <symbol>
<source lines>
ELSE
<source lines>
ENDIF

Description: EL SE is used in conjunction with IFNDEF directive to provide an alternative path.
If symbol is defined, the aternative path noted by the ELSE directive is taken,
providing conditional assembly. The IFNDEF statement requires a matching
ENDIF statement.

Example: IFNDEF varl
INC 4
ELSE
DEC 4
ENDIF

© 2000 Ubicom, Inc. All rights reserved. 57 SASM Cross Assembler User’'sManua Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.12 INCLUDE - Insert External Source File

Syntax:
Description:

Example:

[<label>] INCLUDE “<filename>" [<comment>]

To read in the specified file as source code. A path name can be provided if the file
resides in another directory.

INCLUDE “SXREG. INC”

3.1.13 LIST - Control the list file format

Syntax:

Description:

[<label>] LIST [P=<processor>]
[<label>] LIST [R=<radix>]
[<label>] LIST [F=<format>]
[<label>] LIST [L=<list>]
[<label>] LIST [X=<on/off>]
[<label>] LIST [C=<cols>]
[<label>] LIST [N=<lines>]
[<label>] LIST [Q=<msgnum>]
[<label>] LIST [W=<0|1|2>]

The LIST directive sets certain command-line options within the source file, and
allows additional control of the list file format.

The first four options mirror the command-line options /P, /R, /F, and /L,
respectively.

Use any of SX18, SX18AC, SX20, SX20AC, SX28, SX28AC, SX48, SX48BD,
SX52, SX52BD, or OLDREYV for <processor>.

Use any of BIN, B, OCT, O, DEC, D, HEX, or H for <radix>.
Use any of NONE, PAGE, or NOPAGE for <list>.

LIST X=ON is a synonym for EXPAND, and LIST X=OFF is a synonym for
NOEXPAND.

LIST C=<cols> and LIST N=<lines> sets the number of columns and lines on a
listing page, respectively.

LIST Q=<msgnum> operates like the /Q command-line option to quiet individual
warning or comment messages by number. Use a positive number to quiet the
specific message, or a negative number to reverse a quieted message.

LIST W=<0|1|2> operates like the /W command-line option to control the display
of al comments, warnings and errors. Set to 0 to display all messages, 1 for just
warnings and errors, or 2 for just errors.

SASM Cross Assembler User’s Manual Rev. 1.3 58 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 3 SASM Assembler Directive

3.1.14 LPAGE - Insert Page Eject in Listing File

Syntax: [<label>] LPAGE [<comment>]
Description: Insert aform feed at this point in the listing file.
Example: LPAGE

3.1.15 ORG - Set Program Origin

Syntax: [<label>] ORG <expression> [<comment>]

Description: Set program origin for subsequent code at the expression value. The expression
must be well-defined.

Example: ORG O
or
ORG $100

3.1.16 RADIX - Set default radix
Syntax: [<label>] RADIX=<radix> [<comment>]

Description: Set the default radix for constants to one of binary, octal, decimal, or hexidecimal.
The default default radix is decimal, unless modified by the RADIX directive, the
LIST R=<radix> directive, or the /R command-line option.

Example: RADIX=HEX
org 100

© 2000 Uhicom, Inc. All rights reserved. 59 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.17 REPT-ENDR - Repeat Code Block

Syntax:

Description:

Example:

REPT count
Codeblock
ENDR

Used to indicate a block of code to be repeated a specified number of times during
assembly.

REPT 3
Add $12,#1
ENDR

will be expanded to the following sequence during program assembly:
Add $12#1
Add $12#1
Add $12#1

Within the block, the % sign may be used to refer to the current iteration(1-n), i.e.
% equal to 1 the first time through the repeat block, % equal to 2 the second time
through the loop etc. For example:

REPT 3

Add $12,#%

ENDR

will be expaned tothe following sequence during assembly:
Add $12#1

Add $12,#2

Add $12#3

SASM Cross Assembler User’s Manual Rev. 1.3 60 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 3 SASM Assembler Directive

3.1.18 RESET - Set Reset Vector Address

Syntax: RESET <expression> [<comment>]

Description: Put the instruction opcode [JIM P <expression>] at the reset vector memory location.
The reset vector location depends on the chip’s configured memory size, and
defaults to $7FF.

Example: Define PAGESX in FUSES Reset Vector

FUSESPAGES1L Ox1FF
FUSES PAGES2 Ox3FF
FUSES PAGESA Ox7FF
FUSESPAGES8 Ox7FF

DEVICE PINS18
RESET Start
Thisisequivaent to:

ORG 1FFh
JMP Start

NOTE: The expression must evaluate to a destination address in Page 0.

3.1.19 RES or ZERO - Reserve Storage in Memory

Syntax: [<label>] RES <expression> [<comment>]
[<label>] ZERO <expression> [<comment>]

Description: The program counter will be advanced by the amount of the expression. The
expression must be well-defined during Pass 1.

Example: RES 10

© 2000 Uhicom, Inc. All rights reserved. 61 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 3 SASM Assembler Directive www.ubi com.com

3.1.20 SET or =- Set a Symbol Equal to an Expression

Syntax: [<label>] SET <expression> [<comment>]
Description: To assign the value of a well-defined expression to a label. Unlike the EQU

directive, SET can be used more than once on the same symbol; with the most
recent SET statement determining the value of the label.

To support semi-direct addressing mode for SX48/52BD devices and differentiate
between global registers and bank O registers the bank O registers must be defined
asthe 9-bit values $100 through $10F. In effect, SASM treats theimaginary BANK
16 asidentical to BANK 0. In addition, banks 1 through 15 may also be referred to
by addresses $110 through $1FF.

Example: FIVE SET 5
or
FIVE = 5

3.1.21 SPAC - Insert Lines in Listing File

Syntax: [<label>] SPAC <expression> [<comment>]
Description: Insert the number of blank lines given by the expression into the listing file.
Example: SPAC 5

3.1.22 TITLE or STITLE - Define Program Heading

Syntax: [<label>] TITLE "<string>" [<comment>]

[<label>] STITLE "<string>" [<comment>]
Description: Set up the text to be used in top line of listing file.
Example: TITLE "SAMPLEASM"

SASM Cross Assembler User’s Manual Rev. 1.3 62 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Chapter 4

M acros

4.1 Introduction

Macros enhance the capabilities of the assembly language by alowing a user to collect useful
sequences of instructions such that they may be inserted in a program easily.

These sequences may include parameters which are specified at each invocation to modify the inserted

instructions to suit a purpose.

For example, the following listing fragment shows a macro which inserts acombination of instructions
which will delay execution by a specified number of instruction cycles:

=
QOWowo~NOOUTA,WN P

When invoked as follows

12

del ay

ENDM

MACRO cycles
IF (cycles > 0)
REPT (cycl es/3)
jmp $+1 ; delay 3 cycles
ENDR
REPT
nop
ENDR
ENDI F

(cycles//3)
;delay 1 cycle

delay 7

The body of the macro isinserted in place of the invocation line, and the value 7 replaces each use of

the word "cycles' in the body.

13 m IF (7 > 0)
14 m REPT (7/3)
15 0000 OA01 m jmp $+1 ;delay 3 cycles
17 0001 OA02 m jmp $+1 ;delay 3 cycles
18 m ENDR
19 m REPT (7//3)
20 0002 0000 m nop ;delay 1 cycle
21 m ENDR
22 m ENDI F
SASM Cross Assembler User’s Manual Rev. 1.3 63 © 2000 Uhicom, Inc. All rights reserved.

Chapter 4 Macros www.ubicom.com

The macro operates by emitting as many JMP $+1 instructions as possible to use up the bulk of the
delay at a cost of one word per three cycles, then makes up the balance with NOP instructions. This
implementation expects that a count of zero on a REPT would skip the block entirely.

Macros are a powerful feature of the language, and are capable of producing complex programs from
relatively simple source code. This chapter will describe each capability of the macro language.

This chapter descibes the macro language supported by SASM versions 1.46 and later. Prior versions
used a more limited macro language which evaluated the actual parameters once at the point of
invocation and substituted a reference to that value for each formal parameter. This severely limitted
the kinds of applications of macros to those cases where each parameter was a numeric expression.
Macros designed for prior versions should work without modification except in a few rare
circumstances. Unfortunately, the converseis less likely to be true.

It should also be the case that macros which work in the Parallax SXKey assembler should work in
SASM versions 1.46 and later without modification. If portability to SXKey must be maintained then
care must be used to avoid features of SASM which are unsupported by SXKey.

4.2 Macro Definition

Before it can be used, a macro must be defined. Each macro has a name, and may include named
formal parameters, unnamed parameters, or no parameters at all.

A macro is defined with the MACRO, EXITM, and ENDM directives. The MACRO directive names
the macro and describes the paramters. The ENDM directive marks the end of the definition. An
EXITM directive may optionally appear in the body to mark a point at which alater interpolation (use
or insertion) of the macro body will be terminated. The macro body consists of al lines extending from
the MACRO directive to the next ENDM directive.

Note that macro definitions may not be nested. That is, it isnot possible to write amacro which, when
invoked, defines another macro.

A macro may be defined which invokes any macro. Such nesting is allowed to a depth of ten nested
macros. A macro may be defined which invokes itself recursively, although such a definition would
require great care to avoid infinite recursion, and is also limitted to atotal of ten nested levels.

421 MACRO Directive
The MACRO directive takes one of three forms:

<l abel > MACRO <formal 1> [, <formal2> ...] [; conment]
<| abel > MACRO <count > [; comrent]
<| abel > MACRO [; comrent]

In all forms, the label names the macro. Macro names must be unique and follow all the rules for any
symbol name. In all forms, comments may follow the declaration.

SASM Cross Assembler User’s Manual Rev. 1.3 64 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 4 Macros

In thefirst form, the macro requires a specific number of parameters, which are given symbolic names.
Every invocation must match the number of parameters used in the declaration. Formal parameter
names must follow all the rules for any symbol name.

In the second form, the macro requires aspecific number of parameters, none of which are named. Use
zero for the count to declare a macro which must not take any parameters when invoked. Every
invocation must match the specified number of parameters.

In the third form, the macro allows avariable number of parameters, none of which are named. Within
the macro body, \O will be replaced by the number of parameters actually supplied by the invocation.
(Actualy, \Oisavailablein al forms, but is not as useful if the number of formal parametersisfixed.)

42.2 ENDM Directive
The ENDM directive takes the form:
ENDM [; comment]

It smply marks the end of the macro declaration.

4.2.3 EXITM Directive
The EXITM directive takes the form:
EXITM [; comment]

If assembled, it causes an invocation to stop interpolating lines of the macro body at that point. This
is sometimes useful when building complex macros. For best results, use the EXITM directive inside
the context of an IF, IFDEF, or IFNDEF directive.

424 LOCAL Directive
The LOCAL directive takes the form:
LOCAL <label> [,<label>] ...

It declares the labels named after the directive as private symbols. Private symbols are available only
inside amacro body. These symbols are private to each invocation of the particular macro and cannot
be referenced outside of the macro body.

The private symbol is used within a macro body just like any other label. Each time the macro is
invoked, SASM will assign each private symbol a unique name of the form 220001, 7?0002, 7?0003,
and so forth. The unique name will appear in thelisting file in place of all uses of the text of the private
symbol.

© 2000 Uhicom, Inc. All rights reserved. 65 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 4 Macros www.ubicom.com

All LOCAL directives must appear immediately after the MACRO directive and before thefirst actual
line of the macro body.

425 Local Labels and Macros

A local label is any label which begins with a colon character. Outside of a macro body, such a label
is appended to the text of the last global label to form a name which must be unique in the program.

Each macro invocation provides asimilar context for local |abelsinside the macro body. Thisimplies
that code inside a macro body may not refer to alocal label declared outside of the macro. As macro
invocations nest, the effective name of thelocal label lengthens. Thereisan upper bound of about 130
characters for the name of a symbol, which is sufficient for the maximum allowed macro nesting.

4.3 Formal Parameters

Formal parameters may be declared by count or by name. If the MACRO directive has one or more
names as arguments, those names are the formal parameters. If it has a single constant expression
(well-defined in pass 1) that is the exact number of arguments required, the formal parameters are
unnamed. If the MACRO directive is not followed by either a constant expression or names of
arguments, then any number of arguments may be passed, and the formal parameters are unnamed.

If the formal parameters are named, then any occurance of aformal parameter name in the macro body
will be replaced by the exact text of the actual parameter (defined below) from the macro invocation.

Formal parameter names are case sensitive. That is, aformal parameter named "Foo" on the MACRO
directive will be matched by the string "Foo" in the body, not by "foo", "FOQO", or any other variations.

Whether or not the formal parameters are named, any occurance of a backslash ("\") followed by a
numeric constant in the current radix will be replaced by the exact text of the corresponding actual
parameter from the macro invocation. The sequence "\0" will be replaced by the number of actua
parameters available.

In order for the REPT directive to be useful to scan al arguments of a macro, the sequence "\%" will
be replaced by the exact text of the actual parameter corresponding to the current iteration of the
enclosing REPT directive.

Notethat the value after the backslash must be either 0, non-zero and positive, or the percent character.
All consecutive digits up to the first non-digit character will be used to form the parameter number.

In al cases, parameter substitution will occur at any point in the input where the reference to aformal
parameter is discovered. Parameter names are recognized when delimited by whitespace, the
beginning of aline, a comment or end of line, or one of the macro operators or quote mechanisms
described later.

Note that formal parameter substitution does not occur inside of quoted strings or comments.

SASM Cross Assembler User’s Manual Rev. 1.3 66 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 4 Macros

4.4 Macro Invocation

Once defined, amacro is used by invoking it with appropriate actual valuesto be used in place of the
formal parameters. When invoked, the macro body isinterpolated in place of theinvocation, with each
reference to aformal paramter replaced by the actual value of that parameter.

The invocation has the form:
[<label>] <macroname> <parameterl> [, <parameter2> ...] [; comment]

where the macroname must match the name of a previousy defined macro, and the number of
parameters must agree with that definition. If alabel is present, it is defined as the PC at the point of
invocation.

441 Actual Values of Parameters

The actual value of a formal parameter is the exact text of the parameter after leading and trailing
whitespace characters are removed. Parameters are separated by commas. The last parameter is
terminated by a comment or the end of the line.

If acommaor whitespace must be passed as part of an actual parameter, then the parameter value may
be enclosed in curly braces which will be removed before the value is substituted.

Grouping with curly braces does not prevent any formal parameter (of an enclosing macro) inside the
text from being recognized and substituted. Note that ordinary quotes in an actual parameter are
preserved, and also prevent formal parameter substitution. See Section 4.4.3 on Quoting, below.

4.4.2 Token Pasting

The token pasting operator may be used to concatenate aformal parameter to other text to form alarger
token. The token pasting operator effectively works as a zero-width space character which provides
an opportunity for the formal parameter reference to be seen, and disappears from the source text for
all further proccessing.

The notation C<token??oken> will "paste” the two tokens together into a single token. Either token
may be the name of aformal parameter or an index of a parameter in the C<\1> notation which will be
substituted by its actual value, or any other text which will be preserved. The resulting text is taken as
asingle token and must be legal at the point where it appears or a suitable error will occur.

Token pasting is useful for including an actual parameter value as part of an instruction mnemonic or
symbol name.

4.4.3 Quoting

Onamacroinvocation line, curly braceshavethe effect of collecting all the text they contain asasingle
actual parameter to the macro. The actual parameter consists of the text enclosed by the braces, which
are discarded. Note that if the invocation line is part of the body of a macro definition, any formal
parameters in that text will be substituted before the text is used as an actual parameter.

© 2000 Uhicom, Inc. All rights reserved. 67 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 4 Macros www.ubicom.com

Parameter substitution will occur at any point where the reference to a formal parameter can be
identified, except within string constants.

The notation "2token" will treat the actual value of theformal parameter named by "token" asif it were
aquoted string. Thismay be useful to use a parameter both as part of a string and as part of an operand
toaninstruction. Thisisimplemented by quoting the actual valuewith ASCII unit separator characters
(%1f), unlessit is aready so quoted.

In versions 1.48 and later, the notation "?(...)" is available to evaluate an arbitrary well-defined
expression and use its value as the text of asingle actual parameter. The value is converted to text in
the current default radix.

45 Example Macros

451 Rename an Instruction

This macro demonstrates how to rename an instruction with a new operand order and support all its
variant forms. Asasimple example, the MOV instruction is renamed PUT with reversed operands.

it equ $42
fr equ $1f
put macr o src, dst
nov dst, src ;note reversed operand order
endm
put w, fr ;mov fr,w
put fr,w ;mov ow, fr
put fr-ww ;movow, fr-w
put #lit,w ;movow, #lt

45.2 Mix a Parameter with an Opcode

This macro implements a condition around an instruction marked with the BREAK directive. Invoke
it oncein aprogram to test and break on a condition at runtime, assuming your debugger environment
supports the BREAK directive.

The first parameter should be one of a, ae, b, be, e, or ne which form part of a compare and skip
instruction. The last two parameters are the operands of that instruction.

br ki f not MACRO 3 ;choice of a, ae, b, be, e, ne
cs?? V1,12,\3
BREAK
j m $+1
ENDM

SASM Cross Assembler User’s Manual Rev. 1.3 68 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 4 Macros

testreg = $32
otherreg = $33

; BREAK i f testreg==5
br ki f not ne, testreg, #5

; BREAK i f testreg>otherreg
br ki f not be, testreg, otherreg

Note that since text substitution is used for the operand value, it is possible to pass either aliteral value
or a FR address and the appropriate instruction form will be generated to match.

Note also that this macro appliesthe breakpoint to aJMP $+1 instruction rather than aNOP instruction.
One might assume that the latter would be preferred since both occupy a single word in the program
and the NOP executes in a single cycle rather than three cycles for the IMP. Unfortunately, it is
difficult for the debugger to accurately single-step NOP instructions, and it may be impossible for a
breakpoint to be set on a NOP instruction.

4.5.3 Assertion Checking

This macro along with an associated function provides a capability similar to the standard C assert()
macro. That is, it tests a condition which must be true, and jumps to the assertion failure routine if the
conditionisfalse. An ASCII text string is constructed from the assertion parameters so that the failure
routine could announce or log the failure sensibly.

assert nmacr o src, cond, dst
| ocal ok, msg, sndnsg
cj ?? cond src, dst, ok ; token pasting
jmp sndnsg

nsg dw "HALT: ', ?src,’ ',?cond,’ ', ?dst,0

sndnsg nov w, #(nmsg>>8) ;point mwto neg
nov m w ;for use by iread
nmov w, #(neg&$ff) ;
jmp @ssert _fail ;print nmsg and halt

ok

endm

varl = $30

var2 = $31

cinitialize varl and var?2

nov var 1, #$55

nov var 2, #$aa
;later, verify varl !'= var2
assert var 1, ne, var 2

; el sewhere, define assert fail routine assert _fai
;use the iread instruction to get at the string sleep

© 2000 Uhicom, Inc. All rights reserved. 69 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 4 Macros www.ubicom.com

4.6 Errors and Macros

Errors are an expected part of program implementation. Unfortunately, when they occur within a
macro invocation, the specific cause of the error may not be obvious.

The error message contains the line number within the source file where the macro containing the
offending line was invoked. Most development environments make it easy to open the souce file
positioned to the named line. Thisis, however, probably not the best place to begin sinceit is not the
line which actually caused the error.

The error message also contains the listing line number at which the error occurred. |If the offending
lineisfound in the LST file, the listing will show the line in context along with the error message and
any formal parameters replaced by their actual values.

SASM Cross Assembler User’s Manual Rev. 1.3 70 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Chapter 5

Assembler Output Files

5.1 Introduction

When SASM is activated, you will see the following:

SASM Cross-Assembler for Scenix SX-based Microcontrollors Version xxx
Copyright (c) Advanced Transdata Corporation 1999

xxx lines compiled in xxx seconds
Xxx symbols
< error status >

For each source file submitted, the SASM will produce the following files:
HEX: object file

LST: listing file, unless the /L switch is given to suppress its output

SYM: symbol file

MAP: map file

ERR: error message file

5.2 Object File (HEX or OBJ)

The object file can be in different formats and contains data that can be loaded and executed. SASM
outputs INHX8M (Intel 8-bit Hex file) format as the default. This file will be used by the device
programmer and the debug tool for programming/debugging purposes.

The other formats. BIN16, INHX16, INHX8S, and IEEE695 are provided to support other
programmers. See Appendix B for more information on the individual object file formats.

5.3 Listing File (LST)

Thelisting file contains the source code al ong with some useful information about the output addresses
and corresponding object code. Each line from the source code will be reproduced in the listing file
and accompanied by the listing file line number, program counter and the object code (OPCODE).

SASM Cross Assembler User’s Manual Rev. 1.3 71 © 2000 Uhicom, Inc. All rights reserved.

Chapter 5 Assembler Output Files www.ubicom.com

Example
Li ne PC Opcode Sour ce
1 OFFB OFFF device sx28
2 07FF 0A10 reset start
3
4 =00000002 bl i nker equ 0000_0010b
5
6 =00000010 org $10
7 0010 OO5F start node $f
8 0011 0cC00 nov I'rb, #0
0012 0006
9 0013 0915 1 oop cal | bl i nk
10 0014 O0AO00 jmp 1 op

**¥xxxx |jisting.src(10) Line 10, Error 3, Pass 2: Synbol <start:|op>
is not defined

11

12 0015 0C02 bl i nk nmov W #bl i nker

13 0016 O0O1A6 xor rb,W; toggle rb.1
14 0017 000C ret

15 END

The body of thelisting file consists of several fields. Thefirstisaline number. Thelisting line number
counts al lines presented to the assembler. This includes the contents of included files, macro bodies,
and rept blocks. Each lineis counted even if excluded from the list file by the NOEXPAND directive.

The next field is the location in code or data address space. Thisis followed by the opcode generated
for that location. If an instruction or directive generates multiple opcode words, the rest are displayed
(up to four words per line) on additional listing lines which are not numbered.

The balance of the line contains a copy of the source text as assembled. If thisline is part of a macro
invokation, this text will include the substituted actual parameters. No substitution occurs within
comments.

Some directives display the value assigned rather than a PC address and opcode. In this case, those
two columns are replaced by the 32-bit (plus bit position if non-zero) expression value shown in
hexadecimal .

Error messages include the listing line number at which the error occurred, as well as the message
number. Theformis:

filenane.src(10) Line 123, Error 55, Pass 2: ERRCOR "user nessage"

where ‘10’ isthe line number within the file ‘filename.src’, ‘123’ isthe listing line number, ‘Error’ is
the severity, ‘55’ is the message number for use with the ‘LIST Q=" directive or ‘/Q" command line
option, and ‘2’ isthe pass number. Everything after the colon is the text of the specific error message.

In the listing file, the line number columns are filled with ‘******* g that error lines visualy stand
out from the balance of the listing.

SASM Cross Assembler User’'s Manual Rev. 1.3 72 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Chapter 5 Assembler Output Files

Although not included in the example above, the listing may also include page headers controlled by
the /L command-line option. If present, the page headers may contain optional title and sub-title text
set by the TITLE and SUBTITL directives. Thetitle line appears (if set) on every page of the listing.
The sub-title line appears (if set) on every page as well, but may be changed on subsequent pages by
including additional SUBTITL directives.

5.4 Cross Reference Listing

A cross-reference table is generated at the end of the listing file. This table contains a list of every
symbol used in the source file along with its symbol type, value and the listing line number.

For example:

Symbol Type Value Line
blink ADDR 00000015 0012
blinker DATA 00000002 0004
rb RESV 00000006 0013
start ADDR 00000010 0007
start:loop ADDR 00000013 0009

Where

DATA: A user-defined symbol that represents a data variable defined by EQU directive

ADDR: A user-defined symbol that represents a code address or program counter
location

RESV: A predefined symbol used internally by SASM

5.5 Symbol File (SYM)

The symbol fileisidentical to the cross reference portion of the listing file. It lists all symbols found
in the source file, provides information on their type, value and the specific line numbers where they
are found. The symbol is required to define watch variables and to specify breakpoint at address |abel
for some debug tools.

© 2000 Uhicom, Inc. All rights reserved. 73 SASM Cross Assembler User’s Manual Rev. 1.3

Chapter 5 Assembler Output Files www.ubicom.com

5.6 Map File (MAP)

The map file contains line correspondence between sourcefile, program counter and file number. This
fileis necessary to enable source level debugging with the emulator. The contents of the map file vary,
depending on which switch is used during compilation.

SASM generates correspondence between source file (ASM) and program counter. It enables
Emulators to load the source file to the Source Window during debugging.

5.7 Error File (ERR)

The error file contains al error messages generated during program compilation. If there is no error,
the file will not be written, and will be deleted if it previoudy existed.

5.8 Error Messages

Error messages display on the standard output from the assembler, are written to the .ERR file, and are
included in the .LST fileif generated.

Error messages include the listing line number at which the erroroccurred, as well as the message
number. Theformis:

filename.src(10) Line 123, Error 55, Pass 2: ERROR "user message”

where ‘10" isthe line number within thefile ‘filename.src’, * 123’ isthe listing line number, ‘Error’ is
the severity, ‘55 is the message number for use with the ‘LIST Q=" directive or ‘/Q" command line
option, and ‘2’ isthe pass number. Everything after the colon is the text of the specific error message.

In the listing file, the line number columns are filled with *******’ gg that error lines visually stand
out from the balance of the listing.

A complete list of the messages generated by SASM isfound in Appendix D.

SASM Cross Assembler User’s Manual Rev. 1.3 74 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Appendix A

Summary of SX Instruction Set

A.l Logical Operations

AND frW
AND W fr
AND WAt
NOT fr
NOT w
OR frW
OR W fr
OR WAt
XOR frW
XOR W fr
XOR WAt

SNNNN
N

NNNNNN

A.2 Arithmetic and Shift Operations

AND W into fr

AND frinto W

AND litera into W

One's complement of frinto fr
One's complement of W into W
OR W into fr

ORfrintoW

OR literd into W

XOR W into fr
XORfrintoW

XOR literd into W

ADD frw CDC,Z AddW tofrintofr

ADD W, fr CDC,Z AddfrtoW intoW

CLR fr Z Clearfrto0

CLR w Z Cler W toO

CLR IWDT TO,PD Clear WDT and prescaler

DEC fr Z Decrement fr

DECSZ fr - Decrement fr, kip if zero

INC fr Z Increment fr

INCSZ fr - Increment fr, skip if zero

NOP - No operation

RL fr C Rotate |eft fr into fr

RR fr C Rotate right fr into fr

SUB frwW C,DC,Z Subtract W from fr

SWAP fr - Swap nibblesin fr into fr
SASM Cross Assembler User's Manual Rev. 1.3 75 © 2000 Ubicom, Inc. All rights reserved.

Appendix A Summary of SX Instruction Set

www.ubicom.com

A.3 Bitwise Operations

CLRB fr.oit - Clear hitto 0
CLC C Clear carry
CLZ Z Clear zero
B bit - Sipif bit=1
SETB fr.oit - Sethitto 1
SNB bit - Skipif bit=0
A.4 Data Movement Operations
MOV fr, W - Move W into fr
MOV W fr Z Movefrinto W
MOV W,fr-W C,DCZ Movefr-WintoW
MOV WH It - Move litera into W
MOV W, /fr Z Move 1's complement of fr to W
MOV W,--fr Z Movefr-lintoW
MOV W, ++r Z Movefr+1into W
MOV W,<<fr C Move |eft-rotated fr into W
MOV W,>>fr C Move right-rotated fr into W
MOV W,<>fr - Move nibble-swapped fr into W
MOV WM - Move MODE into W
MQV MW - Move W into MODE
MOV M Alit - Move literal into MODE
MOV Irx,W - Move W into Port Rx control register
MOV IOPTION,W - Move W into OPTION
MOV W,--fr - Movefr-1into W, skip if zero
MOVZ W, ++r - Movefr+linto W, kip if zero
SC C Skipif carry bitis set
TEST fr Z Testif frequal to O
A.5 Control Transfer Operations
CALL addr8 - Call to address
JMP addr9 - Jump to address
JMP W Move W into PC(L)
JMP PC+W C DC,Z AddW into PC(L)
RET Return from call without affecting W
RETP - Return from call, writeto PA2:PAO
RETI - Return from interrupt
RETIW - Return from interrupt, subtract W from RTCC
RETW Hit - Return from call, moveliterd in W
XIP - Skip thefollowing instruction
SASM Cross Assembler User’s Manual Rev. 1.3 76 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Appendix A Summary of SX Instruction Set

A.6 System Control Operations

BANK n - Transfer nto FSR7:FSR5
IREAD - Read ingtruction a¢ MODE:W into MODE:W
MODE n - Transfer ninto MODE
M n - Transfer ninto MODE
PAGE n - Transfer nto PA2:PAO
SLEEP TO,PD Clear WDT and enter deep mode
A.7 Multi-Byte Instructions
Mnemonics, Operands Affects Description
add fralit frW,C,DC,Z ADD litintofr
add fr,fr2 frW,C,DC,Z ADD fr2 into fr
addb fr,froit fr,Z ADD frbit into fr
addb fr /frbit fr,Z ADD ~frbit into fr
and frit frW,Z AND litinto fr
and fr,fr2 frW,Z AND fr2 into fr
ga frAit,addr9 W,C,DC,Z JUMPIf fr > it
ca fr,fr2,addr9 W,C,DC,Z JUMPIf fr > fr2
cjae frA#it,addr9 W,C,DC,Z JUMPIf fr >=lit
cjae fr,fr2,addr9 W,C,DC,Z JUMPIf fr >=fr2
gb frAit,addr9 W,C,DC,Z JUMPIf fr <lit
cb fr,fr2,addr9 W,C,DC,Z JUMPIf fr <fr2
cjbe frAit,addr9 W,C,DC,Z JUMPIf fr <=1lit
cjbe fr,fr2,addr9 W,C,DC,Z JUMPIf fr <=fr2
ge frAit,addr9 W,C,DC,Z JUMPIf fr == it
ce fr,fr2,addr9 W,C,DC,Z JUMPIf fr==1r2
cne fr#it,addr9 W,C,DC,Z JUMPIf fr =it
cjne fr.fr2,addr9 W,C,DC,Z JUMPIf fr1=fr2
csa frAlit W,C,DC,Z SKIPif fr > lit
csa fr,fr2 W,C,DC,Z SKIPIf fr>fr2
csae frit W,C,DC,Z SKIPif fr >= it
csoe frfr2 W,C,DC,Z KIPif fr >=fr2
csb frAlit W,C,DC,Z SKIPif fr <lit
csb frfr2 W,C,DC,Z KIPif fr <fr2
cshe fralit W,C,DC,Z SKIPif fr <= it
cshe fr,fr2 W,C,DC,Z KIPif fr <=fr2
cse frAlit W,C,DC,Z SKIPif fr ==it
ce fr,fr2 W,C,DC,Z KIPif fr==1r2
csne frAlit W,C,DC,Z SKIPif fr!=1lit
cshe frfr2 W,C,DC,Z SKIPif fr!=1r2
dinz fr,addr9 fr Decrement fr, JUMPif not zero

© 2000 Ubicom, Inc. All rights reserved.

77

SASM Cross Assembler User’s Manual Rev. 1.3

Appendix A Summary of SX Instruction Set www.ubicom.com

SASM Cross Assembler User’s Manual Rev. 1.3 78 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Appendix B

Object File Format

B.1 General Information About All Formats

B.1.1 File Register Address Map

For the SX28AC, data addresses are the 8-bit values given in the datasheet, where bits 5, 6, and 7
identify the bank, and the 16 global registers are multiply mapped to the first 16 locations of every
bank.

For the SX52BD, SASM uses a 9-bit address which better describes the 256 banked registers and the
16 global locations. In this mapping, addresses $000 to $00f are the global registers, and $010 to $10f
are the banked registers (bank 1 thru 15 and then bank 0). In addition, SASM allows the user to use
addresses from $110 to $1ff as a second mapping of the first 15 banks.

B.1.2 Program Memory Map

The memory map in 1.45.5 uses some "program” memory addresses beyond the actual program
memory to store other out-of-band information such asthe ID string, and the FUSE and FUSEX words.
It would be ssmple to use additional locations for the frequency and breakpoint address.

The "program” memory map implemented in the HEX, and SXE output filesis the following:
$0000-$0fff4K Words Program FLASH
$1000-$100f 16 nibbles (8 bytes) ID string

$1010 FUSE

$1011 FUSEX

$1012 Reserved (unused by SASM)
$1013 DEVICE type code

$1014 High 16 bits of frequency
$1015 Low 16 bits of frequency
$1016 Reserved (unused by SASM)
$1017 12-bit BREAK address

where locations $1014 through $1017 are included by SASM versions 1.47 and | ater.

In al object file formats for the SX processors, the 12-bit instruction words are represented by 16-bit
wordsin thefile where the high 4 bits are set to zero. This arrangement is convenient where most tool
chains are used to dealing with files containing 8-bit bytes. In the case of the extra information at
$1010 and above, the extra four bits available in the file are used to advantage.

Unused program words are initialized to the value $0fff.

SASM Cross Assembler User’s Manual Rev. 1.3 79 © 2000 Uhicom, Inc. All rights reserved.

Appendix B Object File Format www.ubicom.com

B.1.3 ID String and FUSE Words

ThelD string is stored one nibble at atimein the low nibbles of addresses 0x1000 to 0x100f. The string
is packed high-nibble first. For example, "1234ABCD" is stored as follows:

1010: FF3 FF1 FF3 FF2
1014: FF3 FF3 FF3 FF4
1018: FF4 FF1 FF4 FF2
101C. FF4 FF3 FF4 FF4

The FUSE and FUSEX words are stored as computed from the DEVICE directive at $1010 and $1011,
respectively.

B.1.4 Device Type Code

The device type code at $1013 encodes the specific SX family chip and silicon revision described by
the DEVICE directive. Its high byte is $9B if OLDREV was specified and $AB otherwise. The low
byte is 0 through 4 corresponding to the SX18AC, SX20AC, SX28AC, SX48BD, and SX52BD,
respectively. The following table shows the encoding:

$AB0O DEVI CE SX18AC
$ABO1 DEVI CE SX20AC
$AB02 DEVI CE SX28AC
$ABO3 DEVI CE SX48BD
$AB04 DEVI CE SX52BD
$9B00 DEVI CE SX18AC, COLDREV
$9B01 DEVI CE SX20AC, COLDREV
$9B02 DEVI CE SX28AC, COLDREV
$9B03 DEVI CE SX48BD, COLDREV
$9B04 DEVI CE SX52BD, COLDREV

B.1.5 Frequency and Break

The frequency number is the 32-bit value found on the FREQ directive, or zero if no FREQ directive
was assembled. Sinceitisa32-bit value, it is broken into 2 16-bit words for storage in the object file.
The high-order 16 bits are found at $1014, and the low 16 bits at $1015. This number represents the
expected operating frequency in Hertz. A Tool vendor may use this value when configuring a device
programmer or emulator.

The Break address at $1017 contains the 12-hit program address at which the BREAK directive was
assembled, or zero if no BREAK directive was encountered. A tool vendor may use this value to
preselect a break point address.

SASM versions prior to 1.46 do not include the frequency and break information in their output files.

SASM Cross Assembler User’s Manual Rev. 1.3 80 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Appendix B Object File Format

B.1.6 Sample Program

The following tiny program is the source for all the example file formatsin the following sections.

Page 1 SASM Cross-Assenbler Version 1.48 Tue Nov 14 18:13:11 2000
Li ne PC Opcode Sour ce
1 id "Qut Denpo’
2 OFFF O0Al0 reset start
3
4 OFFB OFFF DEVI CE SX48
5 =01312D00 FREQ 20_000_000
6
7 =00000010 org $10
8 0010 005F start nmode $f
9 0011 0000 nov I'rb, #0
0012 0006
10 0013 0915 -1 oop call bl i nk
11 0014 O0A13 jmp -1 oop
12
13 0015 0002 bl i nk nmov W #%9000_0010
14 =00000016 BREAK
15 0016 O01A6 xor rb,W; toggle rb.1
16 0017 o000C ret
17 END
Cross Reference
6 synbol s
Synbol Type Val ue Li ne
__SX _BREAK ADDR 00000016 0014
__SX FREQ DATA 01312D00 0005
bl i nk ADDR 00000015 0013
rb RESV 00000006 0015
start ADDR 00000010 0008
start: | oop ADDR 00000013 0010

© 2000 Uhicom, Inc. All rights reserved. 81 SASM Cross Assembler User’s Manual Rev. 1.3

Appendix B Object File Format www.ubicom.com

B.2 Intel HEX File Formats

Intel Hex files are commonly used for file interchange with EPROM programmers. A complete Intel
Hex file contains one or more hexadecimal records. The file ends with an end of file record.

Each data record begins with a nine-character prefix and ends with a two-character checksum. Each
letter corresponds to one hexadecimal digit in ASCII representation.

Example Record :BBAAAATTHHHH..HHHCC

Definitions
: Record start character
BB Byte count — the hexadecimal number of data bytesin the record.
AAAA Load address in hexadecimal of first data byte in this record.
TT Record type. The record type is 00 for data records and 01 for the end record.
HH One hexadecimal data byte.
CcC Record checksum. Thisis the 2's complement of the summation of all the bytesin

the record from the byte count through the last byte. While the summation is calculated, it
isalways truncated to a one byte result.

Multipleformat variations exist depending on the dataword width, address bus size, and other features.
Those which are supported by SASM are described in the following sections.

B.2.1 INHX8M: Merged 8-bit Intel Hex File Format

Thisis the default hex file that will be generated by the SASM cross assembler. The file extension is
“.HEX".

Thisformat represents a sequence of 8-bit bytes. Each 16-bit program word is stored in apair of bytes
with thelow byte of each word followed by the high byte. Since the addressfield representsthe address
of abyte, each SX program addressis doubled.

Example
: 080020005F00000C0600150949
: 08002800130A020CA6010C00F2
: 021FFE00100AC7
: 08200000F40FFFOFF70FF50FBD
: 08200800F70FF40FF20FFO0FC7
: 08201000F40FF40FF60FF50FB9
: 08201800F60FFDOFF60FFFOF9C
: 10202000FBOFFFOFFFFF03AB3101002DFFFF160079
: 00000001FF

SASM Cross Assembler User’s Manual Rev. 1.3 82 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Appendix B Object File Format

B.2.2 INHX16: 16-bit Intel Hex File Format

This format will be produced if the INHX16 option is used with the LIST F directive or with the’/F
option on the command line. Thefile extensionis".HEX".

Thisformat represents a sequence of 16-bit words. Each 16-bit program word is stored in afile word,
high byte first in the hex file record. The address field identifies the SX program address directly.

Example
: 08001000005F0C00000609150A130C0201A6000C7B
: 010FFF000A10D7
: 041000000FF40FFFOFF70FF5D1
: 041004000FF70FF40FF20FFODF
: 041008000FF40FF40FF60FF5D5
: 04100C000FF60FFDOFF60FFFBC
: 081010000FFBOFFFFFFFAB0301312D00FFFF0016A1
: 00000001FF

B.2.3 INHX8S: Split 8-bit Intel Hex File Format

Thisformat will be produced if the INHX8S option is used with the LIST F directive or with the'/F
option on the command line. The output isapair of files, one with the extension ".HXL" and the other
with the extension ".HXH".

This format represents the 16-bit program words in apair of 8-bit hex files. The".HXL" file contains
thelow byte of each word. The".HXH" file containsthe high byte of each word. The addressesin each
file directly represent the SX program address.

Example
FI LE. HXH
: 08001000000C00090A0C0100BC
: 010FFFO00AE7
: 041000000FOFOFOFBO
: 041004000FOFOFOFAC
: 041008000FOFOFOFAS
: 04100C000FO0FOFOFA4
: 081010000FOFFFAB012DFFO0E3
: 00000001FF

FI LE. HXL

: 080010005F0006151302A60CA7
: 010FFFOO10E1

: 04100000F4FFF7F50D

: 04100400F7F4F2F01B

: 04100800F4F4F6F511

: 04100CO0F6FDF6FFF8

: 08101000FBFFFF033100FF1696
: 00000001FF

© 2000 Uhicom, Inc. All rights reserved. 83 SASM Cross Assembler User’s Manual Rev. 1.3

Appendix B Object File Format www.ubicom.com

B.3 Binary File Format

A binary object file contains an image of the program memory space, from SX program address $0000
through $0FFF exactly. The extra information described in section B.1.1 as appearing at $1000
through $1017 does not appear in the binary file. Unused program locations areinitialized to the value
$Offf.

The 16-bit program words appear low-byte first. The file will contain exactly 8192 bytes covering the
addresses $0000 through $OFFF regardless of the complexity of the program.

Since each program word occupies two bytes, the file offset of an SX program address is found by
doubling the address.

Thisformat is produced if the BIN16 option is used with the LIST F directive of with the’/F option
on the command line. The file extensionis".OBJ'.

Example file shown as a hex dump:

oooo: ff of ff of ff of ff Oof ff Of ff Of ff Of ff OfF
0oi1o0: ff of ff of ff Of ff Of ff Of ff Of ff Of ff OfF
0020: 5f 00 00 Oc 06 00 15 09 13 O0a 02 Oc a6 01 Oc 00 _...........
0030: ff of ff Of ff Of ff Of ff Of ff Of ff Of ff OfF
1FEO: ff Of ff Of ff Of ff Of ff Of ff Of ff Of ff Of
1FFO: ff Of ff Of ff Of ff Of ff Of ff Of ff Of 10 0a

B.4 IEEE-695 File Format

If the /F.IEEEG95 switch isgiven to SASM, the object code and debug information are writtento afile
which is compliant to the IEEE-695 standard. This output file is named after the source file with the
".SXE’ extension.

B.4.1 Target Device

SASM can generate code for either the SX18/SX20/SX28AC or the SX48/SX52BD devices. Since
there are subtle differences between these two processors, the specific device specified to SASM is
documented in the IEEE-695 file.

The very first record in the IEEE-695 file is the module begin record. One of the parameters in that
record is the target device name as an ASCII text string. One of the following strings will appear,
indicating the specific device specified in the source file (or on the SASM command line): ' SX18AC’,
"SX20AC’, 'SX28AC’, 'SX48BD’, or 'SX52BD’.

B.4.2 Symbols

SASM permits symbol table entries to be 32-bit integer values, with an additional 3-bit field to define
abit number. It was determined that some assembly-time calculations are easier if intermediate 32- bit
values can be saved.

SASM Cross Assembler User’s Manual Rev. 1.3 84 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com Appendix B Object File Format

However, the CPU architecture defines at most a 12-bit instruction address and an 8-bit data address.
Since a debugger is most interested in symbols which represent addresses of things, symbol valuesin
the |IEEE-695 files are suitably truncated.

In particular, the 32-bit integer value is truncated to 12 bits. If present, the bit number field is placed
in bits 12, 13, and 14. Bit 15 is set to zero so that the resulting 16-bit values are guaranteed to be
positive. Thefollowing bitmap shows the layout of a SASM symbol value asfound in the 16-bit entry
in the IEEE-695 file debug section:

15141312 11 0

0 bit value

B.4.3 SX Program Address Spaces

All locations described in section B.1.1 are included in the program space in the IEEE-695 file.
Regardless of the complexity of the program, locations $0000 through $1017 are written to the .SXE
file. Unused program locations are initialized to the value $Offf.

B.4.4 Assembly-Time Environment

SASM puts records in the IEEE-695 file documenting some trivia about the runtime environment at
the moment SASM is invoked. The detailed content of some of these fields will change from run to
run, making it difficult to compare the resulting .SXE files even when no source changes have been
made.

In addition, some of these fields will differ in the 16-bit DOS executable build of SASM as compared
to the Win32 build. Note that SASM has not been built for DOS since version 1.45.5.

The variable environment information includes a time stamp documenting when the assembler was
run, a copy of the command line (including the name by which SASM itself was invoked), and the
success/failure of the assembly.

B.4.5 Line Numbers

SASM will include recordsin the line number tablein the IEEE-695 file for each source line (including
macro expansions) which generates any wordsin the code segment. Line number recordswill correctly
reflect the actual source file, line number, and code offset.

© 2000 Uhicom, Inc. All rights reserved. 85 SASM Cross Assembler User’s Manual Rev. 1.3

Appendix B Object File Format www.ubi com.com

SASM Cross Assembler User’s Manual Rev. 1.3 86 © 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Appendix C

SX52INST.SRC Sample Source

; PRBO005
; SX521 NST. SRC
; Denmonstrate every mmenoni ¢ of the SX52

it equ $42
fr equ $1f
frbit equ $le. 7
fr2 equ $1d

i mm equ $f

devi ce sxb52
org $0

; SX52 Dat a Sheet
;16.0 Instruction Set Summary Tabl e

; Logi cal Qperations

and fr,w
and w, fr
and w, #lit
not fr

or fr,w
or w, fr
or w, #l it
xor fr,w
xor w, fr
xor w, #lit

; Arithnmetic and Shift Operations

add fr,w
add w, fr
clr fr
clr w
clr I wdt
dec fr
decsz fr
i nc fr
i ncsz fr
ri fr
rr fr
sub fr,w
swap fr

SASM Cross Assembler User’s Manual Rev. 1.3 87 © 2000 Uhicom, Inc. All rights reserved.

Appendix C SX52INST.SRC Sample Source www.ubicom.com

; Bitwi se Qperations

clrb frbit
sb frbit
seth frbit
snb frbit

; Data Movenent Instructions
nmov fr,w
nmov w, fr
nmov w, fr-w
nmov w, #lit
nmov w,/fr
nmov w,--fr
nmov w, ++f r
nmov w, <<fr
nmov w, >>f r
nmov w, <>fr
nmov W, m
nmovsz w,--fr
novsz w, ++f r
nmov m w
nmov m #i nm4
mov lra, w
nov loption,w
t est fr

; Program Control |nstructions
cal addr 8
jmp addr 9
nop
ret
retp
ret
retiw
retw lit,lit+1,lit+2

; System Control Instructions

bank fr

i read

page addr 12
sl eep

; Equi val ent Assenbl er Mienonics

clc

clz

jmp w
Jjnp pc+w
node i mm
not w

sc

skip

skip

SASM Cross Assembler User’s Manual Rev. 1.3 88 © 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

Appendix C SX52INST.SRC Sample Source

; Paral l ax multi-opcode instructions

add
add
addb
addb
and
and
cja
cja
cj ae
cj ae
cjb
cjb
cj be
cj be
cje
cje
cj ne
cj ne
csa
csa
csae
csae
csb
csb
csbhe
csbhe
cse
cse
csne
csne
dj nz
ijnz
ib
jc

j nb
j nc
jnz
jz

fr,#lit
fr,fr2
fr,frbit
fr,/frbit
fr,#lit
fr,fr2
fr,#lit,addr9
fr,fr2,addr9
fr,#lit,addr9
fr,fr2,addr9
fr,#lit,addr9
fr,fr2,addr9
fr,#lit,addr9
fr,fr2,addr9
fr,#lit,addr9
fr,fr2,addr9
fr,#lit,addr9
fr,fr2,addr9
fr,#lit
fr,fr2
fr,#lit
fr,fr2
fr,#lit
fr,fr2
fr,#lit
fr,fr2
fr,#lit
fr,fr2
fr,#lit
fr,fr2
fr,addr9
fr,addr9
frbit, addr9
addr 9
frbit,addr9
addr 9

addr 9

addr 9

fr,#lit
fr,fr2

fr,m

mfr
loption,fr
loption, #lit
I'ra, fr

lra, #lit
frbit,frbit
frbit,/frbit
fr,#lit
fr,fr2
fr,#lit
fr,fr2

© 2000 Ubicom, Inc. All rights reserved. 89

SASM Cross Assembler User’s Manual Rev. 1.3

Appendix C SX52INST.SRC Sample Source

www.ubicom.com

subb
subb
xor
xor
org
addr 8
org
addr 9
org
addr 12
end

fr,frbit
fr,/frbit
fr,#lit
fr,fr2
$f f

$1ff

$fff

SASM Cross Assembler User’s Manual Rev. 1.3

90

© 2000 Ubicom, Inc. All rights reserved.

WWW.ubicom.com

Appendix D

Error Message

The following table shows all error messages emitted by the current version of SASM, along with the
error numbers for use with the /Q command line option and the LIST Q= directive.

Version 1.48 and later will producethislist if both the/Q and /H switches appear on the command line,
or if the /Q switch appears with an invalid argument.

In the table, the string "--text--" represents an arbitrary text string which will depend on the context of
the message. For instance, in message 3, the name of the undefined symbol will appear.

Err

M essage

1 Bad instruction statement

2 Redefinition of symbol <--text-->

3 Symbol <--text--> is not defined

4 Symbol is areserved word

5 Missing operand(s)

6 Too many operands

7 Missing file register

8 Missing litera

9 Missing Label

10 Missing right parenthesis

11 Missing expression

12 Redefinition of MACRO label <--text-->
13 Bad expression

14 Bad argument <--text-->

15 Bad MACRO expression

16 Macro arguments do not match

17 Unmatched MACRO

18 Bad |F-EL SE-ENDIF statement

19 Unmatched EL SE

20 Unmatched ENDIF

21 File nesting error - too deep

22 If.else.endif nesting error - too deep
23 Invalid digit in numeric constant

24 Vaueisout of range

25 Bad radix value

26 Unknown microcontroller type

27 Unknown output format

28 Unknown listing parameter

29 Bad string syntax

30 Overwriting same program counter location

SASM Cross Assembler User’s Manual Rev. 1.3 91

© 2000 Ubicom, Inc. All rights reserved.

Appendix D Error Message www.ubicom.com

31 Expected an’=’ sign

32 Unexpected EOF

33 Assume valueisin HEXADECIMAL

34 Token length exceeds limit

35 lllegal character - Ignored

36 Fileregister truncated to 5 bits

37 Literal truncated to 8 bits

38 Missing RAM Bank bits

39 No destination bit

40 Destination bit can only be 0 or 1

41 Bit number out of range

42 Destination address not in selected page

43 Address exceeds memory limit

44 Address is not within lower half of memory page
45 Label must begin at column 1

46 Ignoring unknown directive

47 REPT count exceed limit

48 File register not in current bank

49 MODE register value truncated to 4-bits

50 Expected a fr.bit operand

51 Obsolete keyword: <--text--> for this device
52 Reset address not in page 0

53 Applied non bitfield operator to a bitfield value
54 Overriding earlier target device declaration

55 ERROR "--text--"

56 Source lineistoo long

57 Loca symbol "--text--" expands to more than 130 characers
58 Division by zero

59 Literal truncated to 12 bits

SASM Cross Assembler User’s Manual Rev. 1.3 92 © 2000 Ubicom, Inc. All rights reserved.

