
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 40
November 2000
Eight UART Virtual Peripheral
Implementation
1.0 Introduction
The UART Virtual peripheral uses the SX communica-
tions controller to provide asynchronous data communi-
cation through the RS-232 interface. This Virtual
Peripheral enables the SX communications controller act
as a Universal Asynchronous Transmitter and Receiver. .
The Virtual Peripheral has been developed using the SX
Evaluation Board and has been tested using the SX-Key
of Parallax Inc. and SX-IDE of Advanced Transdata Inc..

Unlike other MCU’s that add functions in the form of addi-
tional silicon, the SX Series uses its industry-leading per-
formance to execute functions as software modules, or
Virtual Peripheral. These are loaded into a high-speed
(20ns access time) on-chip flash/EEPROM program
memory and executed as required. In addition, a set of
on-chip hardware Peripherals is available to perform
operations that cannot readily be done in software, such
as comparators, timers and oscillators.

2.0 Description of UART Virtual Peripheral
The data transmission is performed at a pre-determined
baud rate. This is done by over sampling the data to be
transmitted. A divide ratio is calculated by dividing this
sampling rate by the required baud rate. The data is then
inverted before it is sent at RS-232 levels through a line
driver.

The 8 UART Virtual Peripheral works simultaneously at
different baud rates. As data has to be sent on 8 the
UART's simultaneously at different Baud rates it is nec-
essary that the user checks that transmit flag of the par-
ticular UART is reset before he sends any data on it, so
that data corruption by overwriting of transmit buffer is
prevented. As the Virtual Peripheral is configured to send
data on all the 8 UART's simultaneously, a significant
amount of time is saved when compared to the sequen-
tial type of operation. At the occurrence of every interrupt
the Virtual Peripheral checks for any data that is to be
received on all of the of 8 UART's. If there is data to be
received, indicated first by the start flag, a bit of the byte
to be received is put into the receive buffer at every pass
of the receive ISR routine. Once the complete byte of
data(8 bits) is received, a receive flag for the particular
UART is set which can be checked in the main loop to
pick up the byte from a required UART.

2.1 Program Description
A multithreading concept is used in this Virtual Peripheral
to realize the UART. Whenever an RTCC interrupt occurs
the program jumps into the interrupt service routine,
which contains the interrupt multitasker. The multitasker
has a number of threads normally within 24. In the cur-
rent implementation for the UART Virtual Peripheral, we
are using 4 threads and at every occurrence of the inter-
rupt, the interrupt control jumps to one of the threads.
Each thread services 2-UART's and each thread exe-
cutes once every 4 interrupts. Before sending any byte,
the user must take care to check whether the transmit
flag is cleared and then he must set the transmit flag
before he calls the "sendbyte" routine. This Virtual
Peripheral features the capability to send strings that are
stored in the area allocated for strings.

Note:In the ISR multithreader, there are only four threads.
Other user Virtual Peripheral modules can be included
within the present four threads or new threads can be add-
ed and the "num" value should be changed accordingly.
www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
2.2 Interrupt Service Routine Flowchart for Thread n
where n=1,2,3,4

Figure 1. Interrupt Service Routine

Start

rs232Tx2n-1Flag

Decrement
Tx2n-1Divide

Is Tx2n-1Divide=0

Reload
Tx2n-1Divide

Is

Transmit 1 bit
of data on UART

Decrement
Tx2n-1Count

Is

clear
rs232Tx2n-1Flag

1

No

Yes

Yes

Yes

No

No

0

1

Tx2n-1Divide=0

 Tx2n-1Count=0

Figure 2-2. Interrupt Service Routine (continued)

Is Rx2n-1Count=0

1

If

start bit

Rx2n-1Count=9

Load
Rx2n-1Divide

Decriment
Rx2n-1Divide

if

Rx2n-1Divide=0

Load
Rx2n-1Divide

Receive Bit on
 UART2n-1

Decriment
Rx2n-1Count

Is Rx2n-1Count=0

Set
Rs232Rx2n-1Flag

No

No

No

No

Yes

Yes

Yes

Yes

2

© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
Figure 2-3. Interrupt Service Routine (continued)

Rs232Tx2nFlag

Decrement
Tx2nDivide

Is Tx2nDivide=0

Reload
 Tx2nDivide

Is Tx2nCount=0

Transmit 1 bit of
data on UART

Decrement
Tx2nCount

Is Tx2nCount=0

Clear
rs232Tx2nFlag

3

Yes

Yes

Yes

No

No

No

0

1

2

Figure 2-4. Interrupt Service Routine (continued)

Is Rx2nCount=0

Is
start bit

Rx2n-1Count=9

Load
Rx2nDivide

Decriment
Rx2nDivide

is
Rx2nDivide=0

Load
Rx2nDivide

Receive Bit
on UART2n

Decriment
Rx2nCount

Is
Rx2nCount=0

Set
Rs232Rx2nFlag

END

No

No

No

No

Yes

Yes

Yes

Yes

3

© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
3.0 Different Sections of UART Virtual
Peripheral
This documentation provides a brief overview of different
sections involved in "8-UART Virtual Peripheral Using SX
Communications Controller".

The four sections of the 8-UART Virtual Peripheral mod-
ule mentioned below can be inserted in a main source
code at appropriate locations to meet the requirements of
realization of the UART Virtual Peripheral.

• Equates Section
• Bank Section
• Initialization Section
• Interrupt Section

3.1 Equates Section
This section gives the equates section of the 8 UART Vir-
tual Peripheral module and it also defines the output pins

for the 8 UART Virtual Peripheral. The value of UARTDi-
vide, UARTStDelay and pin declarations are made here.

The values of the constants are as follows:

UARTfs = 230400

Num = 4

Int Period = 217

UARTDividen = UARTfs/(UARTBaudn * Num)

UARTStDelayn = UARTDividen + (UARTDividen/2)+1

Where n=1,2,3,4,5,6,7,8

Where Num is the number of times the ISR thread in
which the Virtual Peripheral is present is called in the
Interrupt service routine multitasker (ISR multiplexer
which is 4 in our case).

The pins on which the input and output data are received
and sent are defined in this section. Port Ra, Rb and Rc
are used for the external interface.

The Pins are configured as follows:

rs232Rxpin1 equ ra.2 ;UART1 receive input

rs232Txpin1 equ ra.3 ;UART1 transmit output

rs232Rxpin2 equ rb.2 ;UART2 receive input

rs232Txpin2 equ rb.3 ;UART2 transmit output

rs232Rxpin3 equ rb.4 ;UART3 receive input

rs232Txpin3 equ rb.5 ;UART3 transmit output

rs232Rxpin4 equ rb.6 ;UART4 receive input

rs232Txpin4 equ rb.7 ;UART4 transmit output

rs232Rxpin5 equ rc.0 ;UART5 receive input

rs232Txpin5 equ rc.1 ;UART5 transmit output

rs232Rxpin6 equ rc.2 ;UART6 receive input

rs232Txpin6 equ rc.3 ;UART6 transmit output

rs232Rxpin7 equ rc.4 ;UART7 receive input

rs232Txpin7 equ rc.5 ;UART7 transmit output

rs232Rxpin8 equ rc.6 ;UART8 receive input

rs232Txpin8 equ rc.7 ;UART8 transmit output

The baud rates for each of the UART's are decided by
using the IFDEF statements, depending on the baud rate
selected. The Baud rate is equal to the number that rep-
resents it in the commented statement.

For example, if ' uart1baud1920 ' is uncommented it
implies that UART-1 has a baud rate of 19200bps, simi-
larly ' uart2baud9600 ' implies UART-2 is to be config-
ured for a baud rate of 9600bps.
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
3.2 Bank Section
This section describes the use of the banks in the 8 UART Virtual Peripheral implementation. 5 banks are used in the 8
UART Virtual Peripheral module (BANK1 to BANK5). BANK1 and BANK2 are used for defining all the variables of the
8 transmit routines of the UART and BANK3 and BANK4 are used for defining all the variables of the 8 receive routines
of the UART.

All the flags are defined in the global register Bank.
org global_org

;-----------------------------VP: RS232 Transmit ---

flags0 equ global_org + 0

rs232Tx1Flag equ flags0.0 ;indicates the Uart1 tx

rs232Tx2Flag equ flags0.1 ;indicates the Uart2 tx

rs232Tx3Flag equ flags0.2 ;indicates the Uart3 tx

rs232Tx4Flag equ flags0.3 ;indicates the Uart4 tx

rs232Tx5Flag equ flags0.4 ;indicates the Uart5 tx

rs232Tx6Flag equ flags0.5 ;indicates the Uart6 tx

rs232Tx7Flag equ flags0.6 ;indicates the Uart7 tx

rs232Tx8Flag equ flags0.7 ;indicates the Uart8 tx

;-------------------------------- VP: RS232 Receive --------------------------------------

flags1 equ global_org + 1

rs232RxFlag1 equ flags1.0 ;indicates the reception of a bit from the UART1

rs232RxFlag2 equ flags1.1 ;indicates the reception of a bit from the UART2

rs232RxFlag3 equ flags1.2 ;indicates the reception of a bit from the UART3

rs232RxFlag4 equ flags1.3 ;indicates the reception of a bit from the UART4

rs232RxFlag5 equ flags1.4 ;indicates the reception of a bit from the UART5

rs232RxFlag6 equ flags1.5 ;indicates the reception of a bit from the UART6

rs232RxFlag7 equ flags1.6 ;indicates the reception of a bit from the UART7

rs232RxFlag8 equ flags1.7 ;indicates the reception of a bit from the UART8

org bank1_org

bank1 = $

rs232TxBank1234 = $;UART bank

rs232Txhigh1 ds 1 ;hi byte to transmit

rs232Txlow1 ds 1 ;low byte to transmit

rs232Txcount1 ds 1 ;number of bits sent

rs232Txdivide1 ds 1 ;xmit timing (/16) counter

rs232Txhigh2 ds 1 ;hi byte to transmit

rs232Txlow2 ds 1 ;low byte to transmit

rs232Txcount2 ds 1 ;number of bits sent

rs232Txdivide2 ds 1 ;xmit timing (/16) counter

rs232Txhigh3 ds 1 ;hi byte to transmit

rs232Txlow3 ds 1 ;low byte to transmit

rs232Txcount3 ds 1 ;number of bits sent

rs232Txdivide3 ds 1 ;xmit timing (/16) counter

rs232Txhigh4 ds 1 ;hi byte to transmit

rs232Txlow4 ds 1 ;low byte to transmit

rs232Txcount4 ds 1 ;number of bits sent

rs232Txdivide4 ds 1 ;xmit timing (/16) counter

org bank2_org

bank2 = $

rs232TxBank5678 = $;UART bank

rs232Txhigh5 ds 1 ;hi byte to transmit
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
rs232Txlow5 ds 1 ;low byte to transmit

rs232Txcount5 ds 1 ;number of bits sent

rs232Txdivide5 ds 1 ;xmit timing (/16) counter

rs232Txhigh6 ds 1 ;hi byte to transmit

rs232Txlow6 ds 1 ;low byte to transmit

rs232Txcount6 ds 1 ;number of bits sent

rs232Txdivide6 ds 1 ;xmit timing (/16) counter

rs232Txhigh7 ds 1 ;hi byte to transmit

rs232Txlow7 ds 1 ;low byte to transmit

rs232Txcount7 ds 1 ;number of bits sent

rs232Txdivide7 ds 1 ;xmit timing (/16) counter

rs232Txhigh8 ds 1 ;hi byte to transmit

rs232Txlow8 ds 1 ;low byte to transmit

rs232Txcount8 ds 1 ;number of bits sent

rs232Txdivide8 ds 1 ;xmit timing (/16) counter

org bank3_org

bank3 = $

rs232RxBank1234 = $

rs232Rxcount1 ds 1 ;number of bits received

rs232Rxdivide1 ds 1 ;receive timing counter

rs232Rxbyte1 ds 1 ;buffer for incoming byte

rs232byte1 ds 1 ;used by serial routines

rs232Rxcount2 ds 1 ;number of bits received

rs232Rxdivide2 ds 1 ;receive timing counter

rs232Rxbyte2 ds 1 ;buffer for incoming byte

rs232byte2 ds 1 ;used by serial routines

rs232Rxcount3 ds 1 ;number of bits received

rs232Rxdivide3 ds 1 ;receive timing counter

rs232Rxbyte3 ds 1 ;buffer for incoming byte

rs232byte3 ds 1 ;used by serial routines

rs232Rxcount4 ds 1 ;number of bits received

rs232Rxdivide4 ds 1 ;receive timing counter

rs232Rxbyte4 ds 1 ;buffer for incoming byte

rs232byte4 ds 1 ;used by serial routines

org bank4_org

bank4 = $

rs232RxBank5678 = $

rs232Rxcount5 ds 1 ;number of bits received

rs232Rxdivide5 ds 1 ;receive timing counter

rs232Rxbyte5 ds 1 ;buffer for incoming byte

rs232byte5 ds 1 ;used by serial routines

rs232Rxcount6 ds 1 ;number of bits received

rs232Rxdivide6 ds 1 ;receive timing counter

rs232Rxbyte6 ds 1 ;buffer for incoming byte

rs232byte6 ds 1 ;used by serial routines

rs232Rxcount7 ds 1 ;number of bits received

rs232Rxdivide7 ds 1 ;receive timing counter

rs232Rxbyte7 ds 1 ;buffer for incoming byte

rs232byte7 ds 1 ;used by serial routines

rs232Rxcount8 ds 1 ;number of bits received

rs232Rxdivide8 ds 1 ;receive timing counter
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
rs232Rxbyte8 ds 1 ;buffer for incoming byte

rs232byte8 ds 1 ;used by serial routines

org bank5_org

bank5 = $

MultiplexBank = $

isrMultiplex ds 1

3.3 Initialization Section
This provides the initialization part of the UART Virtual
Peripheral. This has to be included before the main loop
starts with the initialization of all other ports and registers.

_bank rs232TxBank ; select rs232 bank

mov w,#UARTDividen ;load TxDivide with UART baud rate

mov rs232TxDividen,w

where n = I,2,3,4,5,6,7,8

This initialization is done to send the data at the required
baud rate. The value of UARTDivide symbolizes the
number of times the interrupt has to be serviced before a
bit is transmitted. For example if we are transmitting data
at the rate of 9600bps, the value of UARTDivide is 6, this
means that every one bit should be transmitted once in 6
times of the occurrence of the respective isrThread.
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
3.4 Interrupt Section
The flow of the interrupt service routine is shown in Figure 2-1.

The interrupt service routine of the UART Virtual Peripheral module with a "retiw" value of -217 at an oscillator fre-
quency of 50MHz runs every 4.32us.

;***

org INTERRUPT_ORG ; First location in program memory.

;***

;***

;----------------------------------- Interrupt Service Routine -------------------------------

; Note: The interrupt code must always originate at address $0.

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 and an oscillator frequency of 50MHz, this

; code runs every 4.32us.

;***

org $0

interrupt ;3

;***

; Interrupt

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For example:

; With a retiw value of -217 and an oscillator frequency of 50MHz, this code runs

; every 4.32us.

;***

;***

;--VP:VP Multitasker--------------------------------

; Virtual Peripheral Multitasker : up to 16 individual threads, each running at the

; (interrupt rate/16). Change then below:

;Input variable(s): isrMultiplex: variable used to choose threads

;Output variable(s): None, executes the next thread

;Variable(s) affected: isrMultiplex

;Flag(s) affected: None

;Program Cycles: 9 cycles (turbo mode)

;***

 _bank Multiplexbank ;

 inc isrMultiplex ; toggle interrupt rate

 mov w,isrMultiplex ;

;***

; The code between the tableStart and tableEnd statements MUST be completely within the first

; half of a page. The routines it is jumping to must be in the same page as this table.

;***

tableStart ; Start all tables with this macro

 jmp pc+w ;

 jmp isrThread1 ;

 jmp isrThread2 ;

 jmp isrThread3 ;

 jmp isrThread4 ;

tableEnd ; End all tables with this macro.

;***

;VP: VP Multitasker

; ISR TASKS

;***

isrThread1 ; Serviced at ISR rate/4

;***

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) These routines send

; and receive RS232 serial data, and are currently configured (though modifications can be
© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
; made) for the popular "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

;

; The VP below has 8 UARTS implemented - UART1 to UART8 can work at independent

; Baud Rates.

;

; RECEIVING: The rs232Rx1flag & rs232Rx2flag are set high whenever a valid byte of data has

; been received and it is the calling routine's responsibility to reset this flag once the

; incoming data has been collected.

;

; TRANSMITTING: The transmit routine requires the data to be inverted and loaded

; (rs232Txhigh+rs232Txlow) register pair (with the inverted 8 data bits stored in

; rs232Txhigh and rs232Txlow bit 7 set high to act as a start bit). Then the number of bits

; ready for transmission (10=1 start + 8 data + 1 stop) must be loaded into the rs232Txcount

; register. As soon as this latter is done, the transmit routine immediately begins sending

; the data. This routine has a varying execution rate and therefore should always be

; placed after any timing-critical virtual peripherals such as timers,

; adcs, pwms, etc.

; Note: The transmit and receive routines are independent and either may be removed for each

; of the UARTs. The initial "_bank rs232TxBank" & "_bank rs232RxBank" (common)

; instruction is kept for Transmit & Receive routines.

;

; Input variable(s): rs232TxLow1, rs232TxHigh1, rs232TxCount1

; rs232TxLow2, rs232TxHigh2, rs232TxCount2

; rs232TxLow3, rs232TxHigh3, rs232TxCount3

; rs232TxLow4, rs232TxHigh4, rs232TxCount4

; rs232TxLow5, rs232TxHigh5, rs232TxCount5

; rs232TxLow6, rs232TxHigh6, rs232TxCount6

; rs232TxLow7, rs232TxHigh7, rs232TxCount7

; rs232TxLow8, rs232TxHigh8, rs232TxCount8

;

; Input Flag(s): rs232Tx1Flag, rs232Tx2Flag, rs232Tx3Flag, rs232Tx4Flag

; rs232Tx5Flag, rs232Tx6Flag, rs232Tx7Flag, rs232Tx8Flag

;

; Output variable(s): rs232Rx1byte, rs232Rx2byte, rs232Rx3byte, rs232Rx4byte

; rs232Rx5byte, rs232Rx6byte, rs232Rx7byte, rs232Rx8byte

;

; Variable(s) affected : rs232Txdivide1, rs232Txdivide2, rs232Txdivide3, rs232Txdivide4

; rs232Txdivide5, rs232Txdivide6, rs232Txdivide7, rs232Txdivide8,

; rs232Txcount1, rs232Txcount2, rs232Txcount3, rs232Txcount4

; rs232Txcount5, rs232Txcount6, rs232Txcount7, rs232Txcount8

; rs232Rxdivide1, rs232Rxdivide2, rs232Rxdivide3, rs232Rxdivide4

; rs232Rxdivide5, rs232Rxdivide6, rs232Rxdivide7, rs232Rxdivide8,

; rs232Rxcount1, rs232Rxcount2, rs232Rxcount3, rs232Rxcount4

; rs232Rxcount5, rs232Rxcount6, rs232Rxcount7, rs232Rxcount8

;

; Flag(s) affected: rs232Tx1Flag, rs232Tx2Flag, rs232Tx3Flag, rs232Tx4Flag

; rs232Tx5Flag, rs232Tx6Flag, rs232Tx7Flag, rs232Tx8Flag

; rs232Rx1Flag, rs232Rx1Flag, rs232Rx3Flag, rs232Rx4Flag

; rs232Rx5Flag, rs232Rx6Flag, rs232Rx7Flag, rs232Rx8Flag

;

; Program cycles: 32 worst case for Tx, 33 worst case for Rx

; Variable Length? Yes.

;***

;---------------------------------------VP: RS232 Transmit---------------------------------------

rs232Transmit1

_bank rs232TxBank1234 ; switch to serial register bank
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
 sb rs232Tx1Flag ; Is data there for UART1,

 jmp :rs232TxOut1 ; then execute the Tx routine otherwise don't.

 decsz rs232TxDivide1 ; enter Tx routine until Divide val becomes zero

jmp :rs232TxOut1 ; i.e don't enter the Tx routine

mov w,#UARTDivide1 ; If Divide val becomes 0 & enters the Tx routine,
; then again load the

mov rs232TxDivide1,w ; Divide val for not to enter the Tx routine 'Divide'
; times for next bit

test rs232TxCount1 ; If count becomes Zero then also don't enter

snz ;

jmp :rs232TxOut1;

; after all barriers then only it will come here

:txbit clc ; i.e Txflag = hi, Divide=0, count != 0

rr rs232TxHigh1 ; right shift Tx data

rr rs232TxLow1 ; right shift rs232TxLow which contains start bit

dec rs232TxCount1 ; decrement bit counter

snb rs232TxLow1.6 ; if the bit in viewing window is hi

clrb rs232TxPin1 ; Then make transmit pin lo

sb rs232TxLow1.6 ; if the bit in viewing window is lo

setb rs232TxPin1 ; Then make transmit pin hi

IFNDEF sendString ; If not sendstring

 test rs232TxCount1 ; test count

snz ; if zero

clrb rs232Tx1Flag ; then clear the Tx flag & come out

ENDIF

:rs232TxOut1

;***

rs232Receive1

 sb rs232RxPin1 ; get current rx bit

 clc ; if bit is zero clear the carry

 snb rs232RxPin1 ; other wise

 stc ; set the carrry

_bank rs232RxBank1234

test rs232RxCount1 ; test the Rx count

sz ; If zero then only load the Rxcount

jmp :rxbit ; if so, jump ahead

mov w,#9 ; in case start, ready 9 bits

sc ; if not start bit don't load the count

mov rs232RxCount1,w ; it is, so load bit count

mov w,#UARTStDelay1 ; ready 1.5 bit periods (50MHz)

mov rs232RxDivide1,w ; load fresh Divide value

:rxbit decsz rs232RxDivide1 ; If Divide value is not zero after dec

 jmp :rs232RxOut1 ; then don't go into Rx routine

mov w,#UARTDivide1 ; If yes, load fresh Divide val for next bit

mov rs232RxDivide1,w ;

dec rs232RxCount1 ; dec the count

sz ; check for Rxcount value

rr rs232RxByte1 ; if zero rotate the buf to save the received bits

snz ; check for Rxcount value

setb rs232Rx1Flag ; if zero set the Rx flag to indicate the

 ; complete reception of the byte

:rs232RxOut1

Note:The above code implemented for one UART is similar for the remaining 7 UART's. There are 2 UARTS inserted in
each isrThread. In isrThread4 the "isrMultiplexer" value is reset to 255 as shown below
© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
mov isrMultiplex,#255 ; reload isrMultiplex so isrThread1 will be run on the

; next interrupt.

jmp isrOut ; cycles until mainline program resumes execution

; This thread must reload the isrMultiplex register

; since it is the last one to run in a rotation.

;---

isrOut

;***

; Set Interrupt Rate

;***

isr_end

IFDEF SX_28AC

Mov w,isrTemp0 ; Restore the mode register value.

mov m,w

ENDIF

mov w,#-intperiod ;refresh RTCC on return

;(RTCC = 216-no of instructions

 ;executed in the ISR Routine)

retiw

;***
© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
4.0 Features
4.1 Baud Rate Generation Methodology and Timing
To understand the method used for generating the
required baud rate let us take an example.

Let us consider data has to be transmitted at the rate of
57600bps and the sampling frequency is 230.4KHz

The time taken for the transmission of 1 bit of data =
1/57600 sec

Data is sampled at a frequency of 4 * 57,600 bps =
230.4KHz.

If data is sent at the sample rate, then it will be transmit-
ted at a rate much faster than that required and hence
will result in a baud rate mismatch. To avoid this mis-
match we introduce a delay factor that is a ratio of the
sampling frequency and baud rate.

Hence the divide ratio UARTDivide for the above exam-
ple will be = (230400/57600) = 4

This divide ratio implies that if a bit of data is transmitted
once in 4 occurrences of the interrupt, the baud rate
matching will be taken care of.

When the concept of ISR thread is used it is necessary
that the value of UARTDivide is further divide by a value
equal to the number of times the thread servicing this
particular interrupt is called in the ISR Multitasker.

As in the interrupt routine Mentioned above if the thread
1 is being called 4 times in the Interrupt Multitasker, then
the value of UARTDivide is further divided by 4 to get a
resulting value of 1.

So the formula for UARTDivide will be :

UARTDivide = UARTfs/(UARTbaudrate*number of times
the ISR is called in the Multitasker)

This gives a value for UARTDivide of 1. Hence this value
will take care of the transmission of data at the required
baudrate.

While receiving data, the timing is controlled in the same
way as explained above. The only difference is that a
constant called UARTStDelay is introduced which is
equal to 1.5 times the bit length. Its purpose is to ensure
that the bits are sampled near the middle of each pulse
which will ensure that the data is sampled accurately.
Separate UARTDivide and UARTStDaley constants are
computed for feasibility of all the UART’s being indepen-
dent of each other.
© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

Eight UART Virtual Peripheral Implementation AN40
4.2 Circuit Design Procedure
The simplest version of the circuit requires two Port lines
of the SX for Tx & Rx (if handshake is to be used, addi-
tional port lines will be required). The circuit interface is
quite simple which involves only a driver for driving the

signals. As we intend to use the RS-232 level of commu-
nication any TTL to RS232 converter can be used. The
TX and RX lines are to be connected to the driver directly
which takes care of the level conversion.

Figure 4-1. Circuit Block Diagram

Ubicom SX @

 50MHz

RS-232

(M AX-232)

Line Driver

D-Type
 Connector

D-Type
 Connector

RS-232

(M AX-232)

Line Driver

TX1

TX3

TX 2

TX 8

RX1

RX2

RS-232

(M AX-232)

Line Driver

D-Type
 Connector

D-Type
 Connector

RS-232

(M AX-232)

Line Driver

TX1

TX 2

RX1

RX2

RX3

RX 8
© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

AN40 Eight UART Virtual Peripheral Implementation
5.0 Applications
The Applications of UART are innumerable and the use
of UART is reflected in nearly every communications
application. As UART is used for serial communication,
we are using the most widely used serial communication
standard that is the RS-232 standard.

The program written is for 8 UART’s with no handshak-
ing. The program can be modified to handle handshaking
as well.

As this implementation contains 8 UART's which can be
configured for different baud rates, it is possible to send
messages quickly as 8 UARTs are independent of each
other. Hence it can be used in Applications where we
have 8 MCU's or peripherals operating at different baud
rates.

6.0 TESTING
6.1 Hardware Set up Required for Testing
• Sx28-52 Demo Board with extra D -Type connector

and MAX232 chip.
• Berg pins are provided for Tx-pin & Rx-pin of both con-

nectors.
• Berg pins are also provided for each port pins (i.e. RA2,

RA3, RB2, RB3, Rb4, RB5, RB6, RB7, RC0, RC1,
RC2, RC3, RC4, RC5, RC6, RC7), so that we can use
all ports alternatively with two connectors (one default
available on the board & the other wired).

• Out of the 8 UART's (16 port pins), we can test 2
UART's at a time using the 2 MAX232 drivers.

• Hyper terminal setup as per the required baud rate of
the UART used.

6.1.1 TEST1

For this test uncomment the "stringTransfer". In this test
will use "sendString" and "getbyte" routines using Exam-
ple 1.

• In this test, string stored in the specified location can be
sent to 8 hyper terminal applications running on 8 PC's
using the 8 UART Virtual Peripheral modules on the
SX28-52 Demo Board. First the message string ' Hit
spacebar ' is transmitted on the UART's. If you want to
test any UART, then connect corresponding UART port
pins Tx & Rx pins to one of the 2 MAX232 driver pins
provided on the board. For example, you want to send
string through UART 2 & 3 then connect the Tx (RB3 &
RB5) and Rx (RB2 & RB4) pins of the UART to the two
MAX232's Tx & Rx pins. Uncomment lines "setb
rs232TxFlag2" and "setb rs232TxFlag3" in Example 1
of the code. Run the program.

i.e. RB2 --- Rx1

RB3 --- Tx1

RB4 --- Rx2

RB5 --- Tx2

Observe the send message on the respective Hyperter-
minals. If you hit space bar on the hyper terminal, then
the respective UART receive the message by running
getByte1() (or the corrsponding getbyte for the UART)
for which we need to un-comment "call @getByte1" (or
the corrsponding call @getbyte for the UART). The mes-
sage " Yup,The UART works !!!" will be transmitted to the
Hyper terminal of the corresponding UART.

6.1.2 TEST2

For this test uncomment "byteTransfer". In this test we
use "getByte()" and "sendByte()" routines using Example
2.

• Get a byte from one hyper terminal and display same
on the same hyper terminal.

If you want to test this for UART2 then uncomment "call
@getByte2" and "rs232TxFlag2", and run the program.
This test can be run for all the UART's by un-commenting
the respective "call @getByte" and "rs232TxFlag" of the
UART, and connecting respective port pins to Rx & Tx
pins of MAX232. We can get a byte from more than one
UART at a time by running the respective call @getByte.
But there is one restriction, suppose getByte1 function is
running first then the function is locked until it receives a
byte on the corresponding UART. Only after the getByte1
returns, the program will continue to get a byte from the
other UART or UART's.

6.1.3 TEST3

For this test uncomment "fileTransfer". In this test we
use "getByte()" and "sendByte()" routines using Example
3.

• If you want to transfer a text file through UART1 and
display the same on the hyper terminal, then uncom-
ment "rs232TxFlag1" and "call @getByte1". Then run
the program. To transfer a file using the hyper terminal,
use the "Transfer" tool bar and choose "Send File" op-
tion, which will prompt you to choose a text file. Using
the same method, all the UART's can be tested by un-
commenting the respective "call @getByte" and
"rs232TxFlag"s.
© 2000 Ubicom, Inc. All rights reserved. - 14 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 15 - www.ubicom.com

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: Sales@ubicom.com
http://www.ubicom.com

Tel.: (650) 210-1500
Fax: (650) 210-8715

AN40 Eight UART Virtual Peripheral Implementation

Lit #: AN40-01

