
© 2000 Ubicom, Inc. All rights reserved. - 1 -

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.
Application Note 24
November 2000
In-Field Programming Using the SX
In-System Programming Capability
1.0 Introduction
With minimal custom hardware and software, the In-Sys-
tem Programming (ISP) feature of Ubicom’s SX commu-
nications provides the capability to update firmware in the
field and allows production line programming. Users that
have designed SX devices in their products can provide
customer upgrades without the need for a site visit.

2.0 Ubicom’s ISP
Ubicom ISP mode of programming requires just two of
the SX device pins (OSC1 and OSC2). Once the chip is
placed into ISP mode, data is streamed serially into and
out of the device through the use of command op codes.
The reader is urged to read SX In-System Programming
Specifications for complete details of ISP mode. This
appnote describes the additional hardware and software
that may be used to implement ISP programming in an
embedded design using Ubicom’s SX family of devices.

3.0 Additional Hardware for ISP
In a typical SX design, a high-speed oscillator circuit is
used to operate the device. This usually consists of a
crystal/resonator oscillator with a feedback resistor and
two load capacitors. Additional hardware is required if in-
field ISP capability is desired. This hardware must be
able to provide the signal levels and timing required for
ISP, but must not interfere with the execution of the nor-
mal oscillations when the system is running. At high fre-
quencies (e.g., 50 MHz), any significant changes in
capacitance could cause the normal oscillations to shift in
frequency, attenuate, or even stop.

3.1 Additional Hardware Requirements
The additional hardware must minimally provide:

• Between +12VDC to +12.5VDC (regulated) for the pro-
gramming voltage (Vpp)

• Capabilities to switch Vpp “on” and “off” at a relatively
fast rate

• Capability to “unload” the ISP circuit from the oscillator
circuit during normal program execution

• One unidirectional line to control the OSC1 pin
• One bi-directional line to read/write the data and com-

mands on the OSC2 pin

• An external storage/control device that provides the re-
quired ISP control program and application firmware.

It is also desirable to provide these additional capabili-
ties:

• A programming current (Ipp) of greater than 10 mA
• A means to “enable” ISP mode
• Additional control/status lines to control and monitor

the status of the ISP
Although the 10 mA programming current exceeds the
Ubicom ISP specification, the higher current alleviates
the need to provide the +5V signal that is normally speci-
fied for entering ISP mode (refer to In-System Program-
ming Specifications Manual) therefore reducing hardware
costs. A mechanism to prevent erroneously entering into
ISP mode must also be implemented. Additional control
and status lines provide more flexibility to the external
monitoring/control device (as will be shown in the follow-
ing example).

4.0 An Example of In-Field ISP
Ubicom has successfully implemented an In-Field ISP
design with customer’s end product in mind. This design
uses low-cost hardware on an embedded system with
the SX device being used in the system. A PC program is
used to implement the ISP control. The PC parallel port is
used as an interface. The software provides the ISP sig-
naling directly over the parallel cable with no requirement
for additional external hardware. Users of the end prod-
uct can obtain firmware updates (e.g., from the cus-
tomer’s Internet site) and upgrade their product without
adding or removing any of the normally-installed cables.

Figure 1 shows the example circuit. From a functional
view, the circuit provides:

• A momentary pushbutton that “enables” ISP mode
• Means to switch the OSC1 voltage between Vpp, 0V,

and “float”
• Means to change the OSC2 pin between input, output,

and “float”
• Means to optionally monitor the ISP enable pushbutton
The momentary pushbutton switch enables the ISP cir-
cuitry, but only after the user presses the button and only
www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability AN24
when the STOBE and INIT lines from the parallel port are
in the correct state. Since the PC software sets the paral-
lel port lines, the pushbutton is always disabled until ISP
mode is “allowed”. When the PC software prompts the
user to push the button, the STROBE and INIT lines both
set low. Pushing the button clocks a low signal through
the flip-flop which enables the ISP circuitry. Additionally, a
high signal is clocked onto the PRGEN line which may
optionally be used to disable other circuitry while the ISP
is active. The RESET signal is provided by the CPU reset
hold-off circuit (not shown) and provides an initial state
for the flip-flop.

Once the ISP circuitry is enabled, the PC software uses
data bits D0 and D2 to control the voltage on the SX
OSC1 pin. The PC uses the following truth table:

D2 D0 OSC1

0 0 “float”

0 1 pulled low

1 0 pulled high to Vpp

1 1 unused

After the user presses the pushbutton to enable the ISP
circuitry, the PC software uses the parallel port INIT sig-

Figure 4-1. SX-ISP Hardware Schematic

SERIAL_ISP.DSN

SX ISP Interface

A

1 1Friday, November 05, 1999

Scenix
Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

VCC

VCC

VCC

12.3V
Nominal

Optional active high output that
an beused to disable other circuitry on
theboard when ISP is
a tive

NOTES:

1. Vcc (+5V) and GND are not shown but are required for U1, U2,
and U3. The 74HCT244 has Vcc on pin 20 and GND on pin 10. The
74HCT125 and the 74HCT74 have Vcc on pin 14 and GND on pin 7.

2. Only one pin of pins 18 through 25 of the DB25 parallel port
connector need be connected to ground.

RESET/ from the
PUreset hold-
offcircuit (not
shown)

PP0

PP2

C1
100pF

C3
100pF

C4
100pF

C2
100pF

S1
BUTTON

U2B
74HCT125

5 6

4

U1A

74HCT244

A1
2

A2
4

A3
6

A4
8

G
1

Y1
18

Y2
16

Y3
14

Y4
12

R12 47

R14
10K

R4

1K

R2
100K

R10
100

R13
39K

R5
10K

R6

100

R7 3K

R11 100

R9
39K

R8
10K

Q1
2N3904

R16

39K

Q4
2N3904

U2A
74HCT125

2 3

1

R15
39K

P1

DB25 MALE to computer parallel port

13
25
12
24
11
23
10
22
9

21
8

20
7

19
6

18
5

17
4

16
3

15
2

14
1

R1 100K

Q3
2N3904

Q2
2N3906

R3

100

J1

4-pin programming header (optional)

1
2
3
4

U3A
74HCT74

D
2

CLK
3

Q
5

Q
6

PR

4

CL

1

OSC2

INIT/

SELECT

STROBE/ RESET/

SELECTIN/

PAPEROUT

D0

Vpp

OSC1

STROBE/

D0

D2
INIT/

SELECT

PAPEROUT

D2

SELECTIN/

OSC1
OSC2
Vcc

PRGEN
© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN24 In-Field Programming Using the SX In-System Programming Capability
nal to change the direction of the data stream on the SX
OSC2 pin as follows:

INIT OSC2

0 output

1 input

When OSC2 is in the output state, the PC software uses
the SELECT line to read the data stream from the CPU.
When OSC2 is in the input state, the PC software uses
the SELECTIN line to write data to the CPU.

The PAPEROUT pin is provided as a means for the PC
software to determine the state of the pushbutton during
various states of programming the CPU. The current PC
software does not use this function.

4.1 Vpp
If a source of +12VDC is available on the user circuit,
providing the required source for Vpp may be as simple
as adding an adjustable voltage regulator tuned to
+12.3V. If the higher voltage is not available, it may be
possible to generate the required source from the logic
supply voltage (Vcc). A boost circuit may be used to
increase the voltage to the Vpp level. The topology of the
boost circuit is highly dependent on the characteristics of
the available Vcc. Options include (but are not limited to)
simple voltage multiplier circuits, analog boost circuits,
and “off-the-shelf” boost ICs such as those provided by
Maxim and National Semiconductor.

5.0 SXISP Software
The SXISP software provides Windows 95/98 users with
a simple, single-window interface for programming the
SX28AC and SX52BD devices. The window consists of
several frames and buttons that allow the user to pro-
gram the SX program memory, read the contents of the
program memory, and verify that the contents of the pro-
gram memory are equal to a specified file.

Files used for programming are in INTEL HEX format and
follow the structure of the assembled output of the SX
assembler.

Refer to Section 10.0 for instructions on operating the PC
software.

5.1 User Interface
SXISP presents a simple dialog interface subdivided into
several frames. A set of command buttons serves to ini-
tiate the three primary functions: Programming, Verifying
and Reading the SX device.

5.2 Program (or Hex) File Selection
When programming or verifying the SX device, a pro-
gram (hex) file must be selected. There are four separate
controls to assist the user in selecting the desired file:
File name text box (upper left corner of frame), file list
box (lower left corner of frame), folder list box (upper
right) and drive list box (lower right). First, select the
appropriate drive; click on the down arrow for a drop-
down list and click on the desired drive. This will initiate a
refresh of the folder list box, showing the folders on the
selected drive. Click on the folder where the program hex
file exists (double clicking expands the tree view of sub

folders). Clicking on a folder causes a refresh of the file
list box, showing a list of .SXH and .HEX files in that
folder. Click on the desired program hex file; the file text
box will be updated with the specified program file name.

If a special file (one which does not have the .SXH or
.HEX file extension) is desired, select the appropriate
drive and folder location and type the full file name in the
file text box at the upper left corner of the frame.

5.3 Chip Type Selection
If the target SX device is a 28-pin, 2K program word
device, select the SX28AC radio button in the Chip Type
frame. Else, if the target is a 52-pin, 4K program word
device, click on the SX52AC radio button.

5.4 Parallel Port Selection
The prototype board must be attached to parallel port on
the host computer via a standard DB-25 cable. If the host
computer has more than one parallel port, note which
port the prototype board was attached to (i.e. LPT1,
LPT2 or LPT3). Select the parallel port device for SXISP
to use by clicking on the appropriate radio button.

5.5 Program Time Configuration
SXISP allows the user to configure the minimum times
for

These values equate to the number of milliseconds that
SXISP will repetitively send the respective ISP command
to the SX device. Note that the Ubicom SX Device Pro-
gramming Specification clearly states the minimum times
for reliable erasure and programming. Take care when
altering these values to be less than those specified by
Ubicom as programming failures may occur. SXISP will
do a read-back-verify step for each word programmed in
order to limit failures.

6.0 Programming the SX Device
To program the SX Device, the following parameters
must be configured:

SXISP will configure the port and board appropriately, in
preparation for the SX device entering ISP mode. A sta-
tus dialog is displayed and the user is then prompted to
press the switch/button on the prototype. Once the button
is pressed and the user clicks the Continue button on the

1. Erasing the device.
2. Programming the FUSEX and FUSE words.
3. Programming a data word

1. Select the program hex file containing the code to be
programmed.

2. Select the SX Chip Type – either an SX-28 or an SX-
52.

3. Select the appropriate parallel port to which the pro-
totype board is attached.

4. Optionally set the minimum program times for Era-
sure, FUSEX and FUSE word writes and program
data word writes.

5. Click on the Program button.
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability AN24
SXISP Status dialog, the SX device is placed into ISP
mode.

If SXISP is unable to set the device into ISP mode, an
error message will appear. In this case, ensure the fol-
lowing:

Once the SX device is successfully placed into ISP
mode, the device will first be erased. In the Status dialog,
a count from 0 to 100 percent of the word locations
erased, indicates the erase progress. An error count also
appears showing the number of erase commands that
failed.

If errors occur during the erase process, it does not nec-
essarily mean that the erasure failed. The number of
acceptable errors can depend upon the erase time speci-
fied and the device type. The only definitive way to know
if the erase failed is during the program phase; If there
are frequent failures during the program phase, it is likely
that the erase phase failed.

Once the device is erased, the next step is to program
the FUSEX and FUSE words respectively. It should take
a bit longer to program these words and several retries
may be involved depending on the program times speci-
fied. SXISP will continue to try to program the word until it
successfully reads and verifies the value.

The next phase it to program each data word. The status
dialog will display the progress, i.e. words programmed
and number of errors. In this phase, an error indicates
that a word or words was unsuccessfully programmed. It
is likely that the program will not run as intended or may
not run at all. The device should be reprogrammed. If
errors persist on subsequent programming attempts, try
increasing the erase time.

When each word is programmed, the user is prompted
again to press the button on the prototype board and
click the Continue button. The SX device is then taken
out of ISP mode and is reset.

7.0 Verifying an SX Device
To verify an SX Device, the following parameters must be
configured:

The SXISP Status dialog is displayed and the user is
prompted to press the button on the prototype board.
Once the button is pressed and the user clicks the Con-
tinue button on the status dialog, the SX device is placed
into ISP mode.

SXISP will first read and compare the FUSEX word, then
the FUSE word and the each data word in the SX flash
and compare it to its corresponding word in the program
hex file. If any mismatches are detected, the error count
on the status dialog is incremented to reflect the discrep-
ancy. SXISP also reads and verifies the 16 words after
the last word of program memory.

When each word is read and verified, the user is
prompted again to press the button on the prototype
board and click the Continue button. The SX device is
then taken out of ISP mode and is reset.

8.0 Reading the SX Device
To read an SX Device, the following parameters must be
configured:

The SXISP Status dialog is displayed and the user is
prompted to press the reset button on the prototype
board. Once the reset button is pressed and the user
clicks the Continue button on the status dialog, the SX
device is placed into ISP mode.

SXISP will first read the FUSEX word, then the FUSE
word and then each word of the SX program flash. The
contents of the flash is displayed on the SXISP window
within the EEPROM Contents frame.

After each word is read the user is prompted again to
press the reset button on the prototype board and click
the Continue button. The SX device is then taken out of
ISP mode and is reset.

The FUSEX, FUSE and data words are displayed in 3-
digit hexadecimal format, 16 words per line. Each line of
data words is preceded by the address of the first data
word in the line. Addresses are displayed in hexadecimal
format as well. The contents also include the 16 extra
words past the last word of program memory.

1. The prototype board has been powered up.
2. The cable is properly connected to the prototype

board and also to the appropriate parallel port on
the host computer.

3. The parallel port setting on the SXISP window prop-
erly reflects the parallel port in use.

4. There are no other devices, such as printers, exter-
nal disk or tape drives, software dongles or commu-
nication devices attached to the parallel port.

5. The specified parallel port is properly configured in
the host computer BIOS.

6. The specified parallel port is properly configured in
Windows. In Control Panel, System, Device Man-
ager, Ports, ensure that the specified parallel port
exists in the list and that an exclamation point encir-
cled in yellow does not appear over the port device
icon in this list.

1. Select the program hex file containing the code to
be compared to the existing code burned into the
SX flash.

2. Select the SX Chip Type – either an SX28AC or an
SX52BD.

3. Select the appropriate parallel port to which the pro-
totype board is attached.

4. Click on the Verify button.

1. Select the SX Device Type or Chip Type – either an
SX28AC or an SX52BD.

2. Select the appropriate parallel port to which the pro-
totype board is attached.

3. Click on the Read button.
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN24 In-Field Programming Using the SX In-System Programming Capability
9.0 Errors and Troubleshooting
SXISP makes every effort to detect errors and report the
cause and possible solution in a pop-up message box or
in the message area of the SXISP Status dialog. If at any
time during a program cycle, execution seems unusually
slow or frequent errors are occurring, the user can click
the Cancel button on the SXISP Status dialog to abort
the cycle.

When frequent errors occur during programming, first try
cycling power to the prototype board, double-check the
cable connection between the prototype board an the
PC’s parallel port and ensure that another process on the
host Windows PC has not taken control of your parallel
port.

10.0 SXISP Dynamic Link Library Exported
Function Descriptions
10.1 Introduction
This section includes manual pages for the Application
Programming Interface (API) of the SXISP 32-bit Win-
dows® dynamic link library (DLL) for use on a Windows
95 or Windows 98 platform. This DLL will not function on
a Windows NT platform nor does it support the UNI-
CODE or “wide” character set at this time.

Note:The “USHORT” or “short” data type definition de-
scribes a 16-bit integer value ranging from 0 to 65,535.
This corresponds to the “Integer” data type in Microsoft Vi-
sual Basic. LPSTR indicates a 32-bit pointer to a null-ter-
minated string of characters. In Visual Basic, this data
type is a “String”. All function arguments from Visual Basic
should be passed by value (“ByVal”).

10.2 High-Level Interface
The high-level API provides the easiest facility for pro-
gramming an SX device. Just three functions program
the three basic operations of Programming, Verifying and
Reading a device.

10.2.1 Program SX Device

Prototype:
int SxProgram(USHORT usType,

 USHORT usPort,

 LPSTR lpszHexFile,

 USHORT usEraseTime,

 USHORT usProgramTime,

 USHORT usFusexTime)

Function Arguments:

Return Value:

Function returns zero if successful, else returns
SXISP_ERROR (defined in SXISP.H).

Comments:

Function displays a status dialog during programming.
On errors, a message box is presented containing infor-
mation about the error and possible solutions.

usType SX Device Type
usPort Parallel port number (1 = LPT1, 2 =

LPT2, 3 = LPT3)
lpszHexFile Full Drive:\Path\FileName of the

program hex file
usEraseTime Number of milliseconds to send ISP

Erase commands
usProgramTime Number of milliseconds to write a

data word
usFusexTime Number of milliseconds to write the

FUSEX and FUSE words.
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability AN24
10.2.2 Verify SX Device

Prototype:
int SxVerify(USHORT usType,

 USHORT usPort,

 LPSTR lpszHexFile)

Function Arguments:

Return Value:

Function returns zero if successful, else returns
SXISP_ERROR (defined in SXISP.H).

Comments:

Function displays a status dialog during verification. On
errors, a message box is presented containing informa-
tion about the error and possible solutions.

10.2.3 Read SX Device

Prototype:
int SxRead(USHORT usType,

 USHORT usPort,

 LPSTR lpszOutFile)

Function Arguments:

Return Value:

Function returns zero if successful, else returns
SXISP_ERROR (defined in SXISP.H).

Comments:

Function displays a status dialog during read. On errors,
a message box is presented containing information about
the error and possible solutions.

The output data words are formatted as three-digit hexa-
decimal values. Each line is preceded by the program
memory address expressed as four-digit hexadecimal
values. The FUSEX and FUSE words appears in the
beginning.

Example Output:
FUSEX: FDE

FUSE: 4FA

0000: 019 21B 743 0FB 01A 216 743 0F6 C01 08B
643 A37 019 2B8 216 098

0010: 703 A1F C00 038 2B5 217 036 C00 099 643
A1F 219 93D 036 0F9 01C

0020: 2B0 C32 090 703 A37 C00 030 2B1 CFA 091
703 A37 C00 031 403 332

10.3 Mid-Level Interface
This API provides the caller with much greater control
over the programming process, affording the user inter-
face with the ability to:

Standard Return Values

Each of these functions returns a standard set of values
under certain conditions. Some functions return specific
error values that are documented where necessary. The
standard return values are:

usType SX Device Type
usPort Parallel port number (1 = LPT1, 2 =

LPT2, 3 = LPT3)
lpszHexFile Full Drive:\Path\FileName of the pro-

gram hex file

usType SX Device Type
lpszOutFile Parallel port number (1 = LPT1, 2 =

LPT2, 3 = LPT3)
lpszOutFile Full Drive:\Path\FileName of the out-

put file

1) manipulate the program image after reading it from
the program hex file.

2) manually control each step of programming an SX
device.

0 = Success
-1 = Memory Allocation Error. Fatal error - the pro-

cess heap is full. SXISP uses 4-5 kilobytes of
heap memory. Under most scenarios, this error
should not occur.
OR
A necessary object has not yet been initialized.
Fatal error – the appropriate object initialization
function was not called prior to called this func-
tion. For example, before calling SxFileGet-
Word() to read a word from the program image,
the caller must first call SxFileOpen() to read the
program hex file.

-2 = The specific intent of the function failed. For
example, SxFileClose() returns –2 if a file has
not been opened. Or, SxIspEnter() returns –2
when the SX device fails to enter ISP mode.

-3 = The object has already been initialized. This can
occur when SxIspInit() is called twice without an
intervening SxIspDone() call.
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN24 In-Field Programming Using the SX In-System Programming Capability
10.3.1 Program Hex File Management

10.3.1.1 Open Program Hex File

Prototype:
short SxFileOpen(LPSTR lpszFileName)

Purpose:

Opens the program hex file for reading – ensures that the
specified files exists. Reads the program data, parses it
and creates a program image. The program image is
saved in memory and becomes the default image for all
subsequent program operations.

Function Arguments:

Return Value:

Comments:

Only one program hex file can be used at a time. The
actual file does not remain open – it is opened, read,
parsed and then closed before returning.

If a hex file is already loaded, the currently-loaded image
is overwritten. It is, however, recommended that a call to
SxFileClose() precede a subsequent call to SxFile-
Open().

10.3.1.2 Close Program Hex File

Prototype:
short SxFileClose(void)

Purpose:

Releases the currently-loaded program hex file image
from memory.

Function Arguments:

None.

Return Value:

10.3.1.3 Get Program Word

Prototype:
short SxFileGetWord(short sWord)

Purpose:

Fetches the specified program word from the loaded pro-
gram image.

Function Arguments:

Return Value:

The 12-bit value of the specified program word or a stan-
dard error code.

10.3.1.4 Put Program Word

Prototype:
short SxFilePutWord(short sWord, short sValue)

Purpose:

Write a program data word to the program image at the
specified location.

Function Arguments:

Return Value:

The NEW 12-bit value of the specified program word or a
standard error code.

10.3.1.5 Program Image Size

Prototype:
short SxFileGetCount(void)

Purpose:

Get a count of the number of program data words in the
program image.

Function Arguments:

None.

Return Value:

Number of program data words in the program image.

lpszFileName: The program hex file name (pointer to
null-terminated character string).
Includes Drive:\Path\Filename.Ext if
not in the current directory. The file
must exist.

-2 File does not exist or could not be read.

-2 No program hex file is currently loaded.

sWord: The address location (zero-relative) of the
word.
Non-program device words are specified
using the following values:
-1 = FUSEX
-2 = FUSE

sWord: The address location (zero-relative) of the
word.
Non-program device words are specified
using the following values:
-1 = FUSEX
-2 = FUSE

sValue: New 12-bit program data word value.
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability AN24
10.3.1.6 Calculate Checksum

Prototype:
USHORT SxFileChecksum(short sWords)

Purpose:

Calculate a 16 bit twos complement checksum of the pro-
gram image.

Function Arguments:

Return Value:

16 bit twos complement checksum value.

Comments:

The number of words to include in the checksum calcula-
tion assumes that the calculation begins with word loca-
tion zero and proceeds until sWords have been included.

10.3.2 In System Program (ISP) Mode Control

10.3.2.1 Initialize

Prototype:
short SxIspInit(short sPort, short sErase,
short sProgram, short sFusex)

Purpose:

Initialize “Isp” object in the following steps:

Function Arguments:

Return Value:

Standard error codes and:

-2 Initialization failed.

Comments:

At this time, the specific step that failed is not known.

10.3.2.2 Shut Down

Prototype:
short SxIspDone(void)

Purpose:

Stop, shut down, release, deallocate, etc. Signals com-
ponent that the caller is finished with this iteration of an
ISP event.

Function Arguments:

None.

Return Value:

-1 Not initialized.

10.3.2.3 Enter ISP Mode

Prototype:
short SxIspEnter(void)

Purpose:

Places the SX device into the In-System Programming
(ISP) mode.

Function Arguments:

None.

Return Value:

Standard error codes.

-2 The device failed to enter ISP mode.

10.3.2.4 Exit ISP Mode

Prototype:
short SxIspExit(void)

Purpose:

Reverts device from In-System Programming (ISP) mode
to normal operating mode (generates and internal reset).

Function Arguments:

None

Return Value:

Standard return codes

-2 Device was not in ISP mode.

sWords: Number of words to include in the
checksum.

1. Allocate storage for the Isp class object.
2. Load and display the status dialog
3. Load and initialize the virtual device driver (VSX-

ISPD.VXD)
4. Open the specified parallel port and configured it to

standard bi-directional mode.
5. Configure the program write timing values.
6. Instruct user to press the button on the prototype

board.
7. Enter ISP mode

sPort: Parallel port number (1 = LPT1, 2
= LPT2, 3 = LPT3)

sErase: Number of milliseconds to erase
the SX device

sProgram: Number of milliseconds to write a
program data word

sFusex: Number of milliseconds to write
the FUSEX and FUSE words
© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

AN24 In-Field Programming Using the SX In-System Programming Capability
10.3.2.5 Erase Device

Prototype:
short SxIspErase(void)

Purpose:

Erase the SX device

Function Arguments:

None.

Standard return codes

10.3.2.6 Increment Address

Prototype:
short SxIspIncrement(void)

Purpose:

Increment the SX device internal address pointer to the
next memory location.

Function Arguments:

None

Return Value:

Standard return codes

Comments:

After entering ISP mode, the address pointer points to
the FUSE word. The first increment then points the inter-
nal address pointer to program location zero.

The address pointer cannot be decremented nor
“wrapped” around to address location zero. To accom-
plish these tasks, the device must be taken out of ISP
mode and then placed back into ISP mode and the
address pointer incremented appropriately.

10.3.2.7 Read Word

Prototype:
short SxIspRead(short sType)

Purpose:

Read a word from the SX device

Function Arguments:

Return Value:

The 12-bit value of the specified word. Otherwise, a stan-
dard return code. Caller should test the return code to
see if it is less than zero in which case an error occurred.

-2 The device was not in ISP mode

10.3.2.8 Write Word

Prototype:
short SxIspWrite(short sType, short sValue)

Purpose:

Write a word to the SX device.

Function Arguments:

Return Value:

Standard return codes:

-2 The device was not in ISP mode.

Comments:

The Device word cannot be altered. The address pointer
is NOT incremented after the program data word is writ-
ten.

-2 Device may not have been successfully erased.
Two conditions may cause such a return value: 1)
Device does not appear to be in ISP mode, 2) At
least 50 erase command write attempts failed.
Note that in some cases, the device may have
been successfully erased if a sufficient number of
erase command were received.

-2 Pointer was not advanced – increment com-
mand could not be sent. Device may have
exited ISP mode.

sType: An identifier indicating which word is to be
read:
0 = Program Data word
-1 = FUSEX word
-2 = FUSE word
-3 = DEVICE word

The program data word is read from the
location that the internal address pointer
currently points to.

sType: An identifier indicating which word is to be
read:
0 = Program Data word
-1 = FUSEX word
-2 = FUSE word

The program data word is written in the
location that the internal address pointer
currently points to.

sValue: New word value
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability AN24
10.3.2.9 Display Message

Prototype:
short SxIspMessage(LPSTR lpszMessage, short
 sWord, short sWords, short

sErrors, BOOL bWait)

Purpose:

Displays a message string on the SX ISP Status dialog
presented by the SXISP component.

The Status dialog has four items that can be altered by
the caller: the text message, the current word (x) and the
total word count (n) (Word x of n), and the error count.

Function Arguments:

Return Value:

Standard return code or:

Non-zero positive value if the Cancel button has been
clicked by the user.

10.3.3 User-Specific API

10.3.3.1 Ubicom Application-Specific Device
Program

Prototype:
short UbicomProgram(USHORT usPort, LPSTR
lpszHexFile,

 LPSTR lpszSerialNum,

 USHORT bProtect,

 USHORT usEraseT, USHORT
 usProgramT,

 USHORT usFusexT)

Purpose:

End product program function.

Function Arguments:

Return Value:

0 Success

-1 Failed

Comments:

Function reads program hex file, calculates checksum
and inserts checksum into program image, parses serial
number and inserts serial into program image, then pro-
grams the device.

lpszMessage: The message string – null-terminated
string of characters. A NULL value is
permitted in which the text will remain
the same but the following values are to
be altered.

sWord: Current program data word that the
operation is processing (-1 if the value
should not be altered).

sWords: Total number of words to be processed.
(unchanged when sWord is -1).

sErrors: Total number of errors encountered.
bWait: Boolean flag indicating whether func-

tion should block until user clicks the
Continue or Cancel button on the SX
ISP Status dialog.

usPort: Parallel port number (1=LPT1,
2=LPT2, 3=LPT3)

lpszHexFile: Program Hex File (Path) Name
lpszSerial: Product Serial Number
bProtect: Code protect (TRUE=Code Protect

ON, FALSE=Off)

usEraseT: Erase time in milliseconds

usProgramT: Program data word write time in milli-
seconds

usFusexT: FUSEX/FUSE word write time in mil-
liseconds
© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

Lit#: AN24-02

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

 1330 Charleston Road

Mountain View, CA 94043
(650) 210 - 1500

http://www.ubicom.com

In-Field Programming Using the SX In-System Programming Capability

