
May 2012 Doc ID 022846 Rev 1 1/18

AN4058
Application note

Audio and waveform generation using the DAC
 in STM32F0xx microcontroller families

Introduction
This application note gives examples for generating audio output signals using the Digital to
Analog Converter (DAC) peripheral embedded in the STM32F0xx microcontroller family.

A digital to analog converter, DAC, is a device that has the opposite function to an analog to
digital converter, it converts a digital word to a corresponding analog voltage.

The STM32 DAC module is a 12-bit word converter, with one output channel for supporting
mono audio.

The DAC can be used in many audio applications such as: security alarms, Bluetooth
headsets, talking toys, answering machines, man-machine interfaces, and low-cost music
players.

STM32 DAC can also be used for many other analog purposes, such as analog waveform
generation and control engineering.

The application note is organized in two main sections:

● Section 1 describes the main features of the STM32 DAC module.

● Section 2 presents two examples.

– In the first example, DAC is used to generate a sine wavefom.

– In the second example, the DAC is used to generate audio from .WAV files.

www.st.com

http://www.st.com

Contents AN4058

2/18 Doc ID 022846 Rev 1

Contents

1 DAC main features . 5

1.1 Data format . 5

1.2 Dedicated timers . 5

1.3 DMA capabilities . 6

1.4 DMA underrun error . 7

1.5 Buffered output . 7

2 Application examples . 9

2.1 Using the DAC to generate a sine waveform . 9

2.1.1 Description . 9

2.1.2 Digital Sine waveform pattern preparation . 9

2.1.3 Fixing the sine wave frequency . 11

2.2 Using the DAC to implement an audio wave player 12

2.2.1 Description . 12

2.2.2 Audio wave file specifications . 13

2.2.3 .WAV file format . 13

2.3 Audio wave player implementation . 13

3 Conclusion . 16

4 Revision history . 17

AN4058 List of tables

Doc ID 022846 Rev 1 3/18

List of tables

Table 1. Digital and analog sample values of the Sine wave . 10
Table 2. Document revision history . 17

List of figures AN4058

4/18 Doc ID 022846 Rev 1

List of figures

Figure 1. DAC data format . 5
Figure 2. STM32F0xx DAC trigger channel . 5
Figure 3. DAC interaction without DMA . 6
Figure 4. DAC interaction with DMA . 7
Figure 5. Non buffered channel voltage (with and without load) . 8
Figure 6. Buffered channel voltage (with and without load) . 8
Figure 7. Sine wave model samples . 9
Figure 8. Sine wave generated with ns = 10 . 11
Figure 9. Sine wave generated with ns = 255 . 11
Figure 10. Flow of data from MicroSD Flash memory to external speakers . 12
Figure 11. Wave Player flowchart . 14
Figure 12. CPU and DMA activities during wave playing process . 15

AN4058 DAC main features

Doc ID 022846 Rev 1 5/18

1 DAC main features

1.1 Data format
The DAC accepts data in 3 integer formats: 8-bit, 12-bit right aligned and 12-bit left aligned.
A 12-bit value can range from 0x000 to 0xFFF, with 0x000 being the lowest and 0xFFF
being the highest value.

Figure 1. DAC data format

1.2 Dedicated timers
In addition to the software and External triggers, the DAC conversion can be triggered by
different timers.

TIM6 is a basic timer and is basically designed for DAC triggering.

Each time a DAC interface detects a rising edge on the selected Timer Trigger Output
(TIMx_TRGO), the last data stored in the DAC_DHRx register is transferred to the
DAC_DORx register.

Figure 2. STM32F0xx DAC trigger channel

ai18300

MS30315V1

TIM6_TRGO

TIM3_TRGO

SWTRIGx

TIM15_TRGO

TIM2_TRGO

external trigger

Tr
ig

ge
r

se
le

ct
or

 x

TSELx[2:0] bits

DAC Channel 1 Trigger

DAC main features AN4058

6/18 Doc ID 022846 Rev 1

1.3 DMA capabilities
The STM32 microcontrollers have a DMA module with multiple channels. The DAC channel
is connected to an independent DMA channel. In the case of STM32F0xx Microcontrollers,
the DAC channel is connected to the DMA channel 3.

When DMA is not utilized, the CPU is used to provide DAC with the pattern waveform.
Generally the waveform is saved in a memory (RAM), and the CPU is in charge of
transferring the data from RAM to the DAC.

Figure 3. DAC interaction without DMA

When using the DMA, the overall performance of the system is increased by freeing up the
core. This is because data is moved from memory to DAC by DMA, without needing any
actions by the CPU. This keeps CPU resources free for other operations.

MS30316V1

DAC

RAM

(Pattern Table 1)
(Pattern Table 2)

Channel 1
Output

DAC Triggers

CPU

AN4058 DAC main features

Doc ID 022846 Rev 1 7/18

Figure 4. DAC interaction with DMA

1.4 DMA underrun error
When the DMA is used to provide DAC with the pattern waveform, there are some cases
where the DMA transfer is faster than the DAC conversion. In this case, DAC detects that a
part of the pattern waveform has been ignored and was not converted. It then sets the "DMA
underrun Error" flag.

The underrun error can be handled using a shared IRQ channel with the triggering Timer or
by a dedicated interrupt when DAC is not triggered by TIM6.

1.5 Buffered output
To drive external loads without using an external operational amplifier, the DAC channel has
an embedded output buffer which can be enabled and disabled depending on the user
application.

When the DAC output is not buffered, and there is a load in the user application circuit, the
voltage output will be lower than the desired voltage. Enabling the buffer, the voltage output
and the voltage desired are similar.

MS30317V1

DAC

DMA

RAM

(Pattern Table 1)
(Pattern Table 2)

Channel 1
Output

DAC Triggers

CPU

DAC main features AN4058

8/18 Doc ID 022846 Rev 1

Figure 5. Non buffered channel voltage (with and without load)

Figure 6. Buffered channel voltage (with and without load)

ai18309

DAC
DAC_Channel_1

DOR = 0xFFF


DAC
DAC_Channel_1

DOR = 0xFFF
 3.3V

R = 5.1K

GND

1.2 V1.2 V

3.3 V

3.3 V3.3 V

ai18310

DAC
DAC_Channel_1

DOR = 0xFFF


DAC
DAC_Channel_1

DOR = 0xFFF
 3.3V

R = 5.1K

GND

3.3 V3.3 V

3.3 V

3.3 V3.3 V

AN4058 Application examples

Doc ID 022846 Rev 1 9/18

2 Application examples

2.1 Using the DAC to generate a sine waveform

2.1.1 Description

This example describes step by step how to generate a sine waveform.

A sine waveform is also called a sine tone with a single frequency, it is known as a pure tone
or sinus tone. The sine tones are traditionally used as stimuli in determining the various
responses of the auditory system.

2.1.2 Digital Sine waveform pattern preparation

To prepare the digital pattern of the waveform, we have to do some mathematics. Our
objective is to have 10 digital pattern data (samples) of a sine wave form which varies from 0
to 2*PI.

Figure 7. Sine wave model samples

The sampling step is (2*PI)/ ns (number of samples).

The result value of sin(x) is between -1 and 1, we have to recalibrate it to have a positive
sinewave with samples varying between 0 and 0xFFF (which corresponds to the range from
0 V to 3.3 V).

ai18311

0
1000
2000
3000
4000
5000

0 2 4 6 81 3 5 7 9

ySineDigital

0
0.805
1.611
2.147
3.223
4.029

ySineAnalog(Volt)

ySineDigital x  x 2
ns
------ 

  1+ 
 sin 

  0xFFF 1+ 
2

--------------------------------- 
 =

Application examples AN4058

10/18 Doc ID 022846 Rev 1

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on the DAC channel pin are determined by the following
equation:

Note: For right-aligned 12-bit resolution: DAC_MaxDigitalValue = 0xFFF

For right-aligned 8-bit resolution: DAC_MaxDigitalValue = 0xFF

So the analog sine waveform ySineAnalog can be determined by the following equation:

The table is saved in the memory and transferred by the DMA, the transfer is triggered by
the same timer that triggers the DAC.

DACOutput VREF
DOR

DAC_MaxDigitalValue
---=

Table 1. Digital and analog sample values of the Sine wave

Sample

(x)

Digital Sample Value

ySineDigital (x)

Analog Sample Value (Volt)

ySineAnalog(x)

0 2048 1.650

1 3251 2.620

2 3995 3.219

3 3996 3.220

4 3253 2.622

5 2051 1.653

6 847 0.682

7 101 0.081

8 98 0.079

9 839 0.676

ySineAnalog x  3.3Volt
ySineDigital x 

0xFFF
-------------------------------------=

AN4058 Application examples

Doc ID 022846 Rev 1 11/18

2.1.3 Fixing the sine wave frequency

To fix the frequency of the sinewave signal, you have to set the frequency of the Timer
Trigger output.

The frequency of the produced sine wave is:

So, if TIMx_TRGO is 1 MHz, the frequency of the DAC sine wave is 10 kHz.

Note: To have a high quality sinewave curve, it is recommended to use a high number of samples
ns.

Figure 8. Sine wave generated with ns = 10

Figure 9. Sine wave generated with ns = 255

fSinewave
fTimerTRGO

ns
------------------------------=

ai18312

0
1
2
3
4

ySineAnalog(Volt)

time

ai18313

0
1000
2000
3000
4000
5000

0 51 102 153 204

ySineDigital

0

0.805

1.611

2.147

3.223

4.029

ySineAnalog(Volt)

255
time

Application examples AN4058

12/18 Doc ID 022846 Rev 1

2.2 Using the DAC to implement an audio wave player

2.2.1 Description

The purpose of this application demo is to provide an audio player solution for the STM32
microcontroller for playing .WAV files. The approach is optimized to use a minimum number
of external components, and offers the flexibility for end-users to use their own .WAV files.
The audio files are provided to the STM32 from a MicroSD memory card.

Figure 10. Flow of data from MicroSD Flash memory to external speakers

The audio wave player demonstration described in this section is a part of the
STM320518-EVAL demonstration firmware. You can download this firmware and the
associated user manual (UM1520) from the STMicroelectronics website www.st.com.

TIM6

DAC

DMA

CPU SPI
RAM

.WAV

AN4058 Application examples

Doc ID 022846 Rev 1 13/18

2.2.2 Audio wave file specifications

This application assumes that the .WAV file to be played has the following format:

● Audio Format: PCM (an uncompressed wave data format in which each value
represents the amplitude of the signal at the time of sampling)

● Sample rate: may be 8000, 11025, 22050 or 44100 Hz

● Bits Per Sample: 8-bit (Audio sample data values are in the range [0-255])

● Number of Channels: 1 (Mono)

2.2.3 .WAV file format

The .WAV file format is a subset of the Resource Interchange File Format (RIFF)
specification used for the storage of multimedia files. A RIFF file starts with a file header
followed by a sequence of data chunks. A .WAV file is often just a RIFF file with a single
"WAVE" chunk consisting of two sub-chunks:

1. a fmt chunk specifying the data format

2. a data chunk containing the actual sample data

The WAVE file format starts with the RIFF header: it indicates the file length.

Next, the fmt chunk describes the sample format, it contains information about: Format of
the wave audio : (PCM/...), Number of channels (mono/stereo), sample rate (number of
samples per seconds : e.g., 22050), and the sample Data size (e.g. 8bit/16bit). Finally, the
data chunk contains the sample data.

2.3 Audio wave player implementation
The Audio wave player application is based on the SPI, DMA, TIM6, and DAC peripherals.

At start up, the application first uses the SPI to interface with the MicroSD card and parses
its content, using the FatFs file system, looking for available .wav files in the USER folder.
Once a valid .wav file is found, it is read back though the SPI, and the data is transferred
using the CPU to a buffer array located in the RAM. The DMA is used to transfer data from
RAM to the DAC peripheral. TIM6 is used to trigger the DAC which will convert the Audio
digital data to an analog waveform.

Before the audio data can be played, the header of the WAV file is parsed so that the
sampling rate of the data and its length can be determined.

The task of reproducing audio is achieved by using sampled data (data contained in the
.WAV file) to update the value of the DAC output, this data is coded in 8 bits (with values
from 0 to 255),

The DAC Channel 1 is triggered by TIM6 at regular intervals specified by the sample rate of
the .WAV file header.

The .WAV files are read from the MicroSD Memory using a DosFS file system.

In the Demo code, code files handling the waveplayer demo are:

waveplayer.c

waveplayer.h

The wave player demo is called using the WavePlayerMenu_Start() function which has
the following flowchart.

Application examples AN4058

14/18 Doc ID 022846 Rev 1

Figure 11. Wave Player flowchart

(*) when DMA is transferring data from one RAM buffer, CPU is transferring data from the
MicroSD Flash memory to the other RAM buffer.

ai18315

Enable DMA,TIM6,DAC clocks

WavePlayer_menuStart()

Config DAC channel 1 to be triggered
by TIM6 TRGO

Config DMA ch3 to transfer 512 bytes
from wavBuffer1 to DAC ch1 8bit

DHR register

Enable DAC channel 1 and DMA
connection

Enable DAC channel 1 output

Parse the .wav file to Check if it is a
Valid file and Get all needed

information from the .wav header.

Display Error

if .wav file status OK

Connect TIM6 TRGO to its update
event

Enable TIM6
(start the Transfer from RAM to DAC)

Enable DMA channel3

Configure the TIM6 frequency to have
the correct .wav sample rate

Initialize WaveDataLength with .wav
file audible data size

if WaveDataLength!= 0

Read 512 next bytes from the .wav file
and Save them in wavBuffer2 (*)

If DMA transfer from wavBuffer1 to
DAC ch1 is completed (*)

Clear DMA channel3 flag

Decrement the WaveDataLength by 512
and if WaveDataLength < 512 then

WaveDataLength = 0

Disable DMA , Config DMA to transfer 512
bytes from wavBuffer2 to DAC ch1 8bit

DHR register, and enable DMA

Read 512 next bytes from the .wav file
and Save them in wavBuffer1 (*)

If DMA transfer from wavBuffer2 to
DAC ch1 is completed (*)

Decrement the WaveDataLength by 512
and if WaveDataLength < 512 then

WaveDataLength = 0

Clear DMA channel3 flag

Disable DMA, Configure DMA transfer 512
bytes from wavBuffer1 to DAC ch1 8bit

DHR register, and Enable DMA

Disable DMA

Exit

Yes

Yes

Yes

No

No

No

AN4058 Application examples

Doc ID 022846 Rev 1 15/18

In this application, coprocessing is mandatory to permit a simultaneous Wave read (from the
external memory source) and write (in the DAC register).

Figure 12. CPU and DMA activities during wave playing process

ai18316

Transfer 512 bytes data from wavBuffur_1 to DAC
(Transfer triggered by TIM6_TRGO)

 Idle
(No activity)

CPU

DMA

TIM6_TRGO .

512 pulses

Transfer 512 byte data
from MicroSD memory in
wavBuffer_2

Decrement the WaveDataLength
counter and DMA reconfiguration

Transfer 512 bytes data from wavBuffur_2 to DAC
(Transfer triggered by TIM6_TRGO)

Transfer 512 byte data
from MicroSD memory in
wavBuffer_1

Idle
(No activity)

.

512 pulses

.

Decrement the WaveDataLength
counter and DMA reconfiguration

Conclusion AN4058

16/18 Doc ID 022846 Rev 1

3 Conclusion

The first part of this application note and both examples given in Section 2 of this document
have been provided to help you get familiar with the DAC’s main features. The first example
(in Section 2.1) shows how to generate an analog waveform, using the example of a sine
waveform.

The second example (in Section 2.2) offers a straightforward and flexible solution for using
the STM32, to play .WAV files, stored in an SPI MicroSD Flash memory.

You can use these examples as starting points for developing your own solution using the
STM32 DAC.

AN4058 Revision history

Doc ID 022846 Rev 1 17/18

4 Revision history

Table 2. Document revision history

Date Revision Changes

02-May-2012 1 Initial release

AN4058

18/18 Doc ID 022846 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 DAC main features
	1.1 Data format
	Figure 1. DAC data format

	1.2 Dedicated timers
	Figure 2. STM32F0xx DAC trigger channel

	1.3 DMA capabilities
	Figure 3. DAC interaction without DMA
	Figure 4. DAC interaction with DMA

	1.4 DMA underrun error
	1.5 Buffered output
	Figure 5. Non buffered channel voltage (with and without load)
	Figure 6. Buffered channel voltage (with and without load)

	2 Application examples
	2.1 Using the DAC to generate a sine waveform
	2.1.1 Description
	2.1.2 Digital Sine waveform pattern preparation
	Figure 7. Sine wave model samples
	Table 1. Digital and analog sample values of the Sine wave

	2.1.3 Fixing the sine wave frequency
	Figure 8. Sine wave generated with ns = 10
	Figure 9. Sine wave generated with ns = 255

	2.2 Using the DAC to implement an audio wave player
	2.2.1 Description
	Figure 10. Flow of data from MicroSD Flash memory to external speakers

	2.2.2 Audio wave file specifications
	2.2.3 .WAV file format

	2.3 Audio wave player implementation
	Figure 11. Wave Player flowchart
	Figure 12. CPU and DMA activities during wave playing process

	3 Conclusion
	4 Revision history
	Table 2. Document revision history

