
February 2014 DocID025767 Rev 1 1/73

UM1717
User manual

STM32F0x2xx USB Full Speed Device Library

Introduction

The STM32F0x2xx USB Full Speed Device Library (STSW-STM32092) is a firmware and
application software package that includes examples based on a set of six classes (Audio,
CCID, CDC, HID, MSC and DFU), for easy development of applications using USB full
speed transfer types (control, interrupt, bulk and isochronous).

The STM32F072xx and STM32F042xx devices embed the following new features:

• The LPM (Link Power Management) to introduce a new power-save state, L1(Sleep),
with fast entry and exit times compared to traditional L2 state (Suspend)

• Analog USB Phy Transceiver with BCD (Battery Charging Device)

• Integrated CRS (Clock Recovery System) to get precise-enough clock for USB without
any external resonator component (Crystal) just using the USB traffic as timing
reference.

This new USB FS Device Library is a STM32F0x2xx devices-dedicated and is the result of
merging the current USB FS Device Library (V4.0.0) and the USB OTG Host and Device
Library (V2.1.0) ensuring a full API compatibility.

It is built with a reduced footprint to provide optimum solution for low memory STM32
products.

This document describes all the components, including examples for the following types of
devices:

Human Interface Device HID:

– HID mouse and Custom HID examples

Audio:

– Audio device Example for streaming audio data

Communication Device (CDC):

– VCP USB-to-RS232 bridge to realize a virtual COM port.

BULK:

– Mass Storage Demo based on the micro SD

Device Firmware Upgrade:

– DFU for firmware downloads and uploads

CCID: Integrated Circuits Cards Interface devices (New development)

– USB CCID device

Composite examples:

– CDC-HID and HID-MSC.

All the examples are developed and validated on the STM32072B-EVAL evaluation board
and can be easily tailored to any other hardware.

www.st.com

http://www.st.com

Contents UM1717

2/73 DocID025767 Rev 1

Contents

1 Reference information . 6

1.1 Glossary . 6

2 USB device library overview . 7

2.1 Main features . 7

3 USB device library folder structure . 8

4 USB low level driver . 9

4.1 USB low level driver architecture . 9

4.2 USB low level driver files . 9

4.3 USB driver programming manual . 10

4.3.1 Low level driver structures . 10

4.3.2 Programming device drivers . 10

5 USB device library . 14

5.1 USB device library overview . 14

5.2 USB device library description . 15

5.2.1 USB device library flow . 15

5.2.2 USB device library process . 17

5.2.3 USB device data flow . 18

5.2.4 USB device library configuration . 19

5.2.5 USB control functions . 19

5.3 USB device library functions . 19

5.4 USB device class interface . 22

5.5 USB device user interface . 23

5.6 USB device classes . 24

5.6.1 HID class . 25

5.6.2 Mass storage class . 26

5.6.3 Device firmware upgrade (DFU) class . 31

5.6.4 Audio class . 38

5.6.5 Communication device class (CDC) . 43

5.6.6 CCID (Specification for Integrated Circuit(s) Cards Interface Devices) . 47

DocID025767 Rev 1 3/73

UM1717 Contents

3

5.6.7 Adding a custom class . 53

5.7 Application layer description . 54

5.8 Starting the USB library . 55

5.9 USB examples . 55

5.9.1 USB mass storage example . 55

5.9.2 USB human interface example . 56

5.9.3 USB firmware upgrade example . 56

5.9.4 USB virtual com port (VCP) example . 57

5.9.5 USB audio example . 58

5.9.6 USB CCID example . 59

5.9.7 USB Composite examples . 62

5.9.8 Custom HID example . 65

6 Frequently-asked questions . 69

7 Revision history . 72

List of tables UM1717

4/73 DocID025767 Rev 1

List of tables

Table 1. List of terms . 6
Table 2. USB low level file descriptions. 10
Table 3. USB_Device_dev struct size . 11
Table 4. Standard requests . 16
Table 5. USB device core files . 20
Table 6. usbd_core (.c, .h) files functions . 20
Table 7. usbd_ioreq (.c, .h) files functions . 21
Table 8. usbd_req (.c, .h) functions . 21
Table 9. USB device class files . 24
Table 10. usbd_hid_core (.c, .h) files functions . 26
Table 11. SCSI commands. 27
Table 12. usbd_msc_core (.c, .h) files functions . 28
Table 13. usbd_msc_bot (.c, .h) files functions . 28
Table 14. usbd_msc_scsi (.c, .h) functions. 29
Table 15. Disk operation functions . 31
Table 16. DFU states . 32
Table 17. Supported requests . 34
Table 18. usbd_dfu_core (.c, .h) files functions . 34
Table 19. usbd_dfu_mal (.c, .h) files functions . 35
Table 20. usbd_flash_if (.c,.h) files functions . 37
Table 21. Audio control requests . 40
Table 22. usbd_audio_core (.c, .h) files functions . 40
Table 23. usbd_audio_xxx_if (.c, .h) files functions . 41
Table 24. Audio player states . 42
Table 25. usbd_cdc_core (.c, .h) files functions . 44
Table 26. Configurable CDC parameters . 45
Table 27. usbd_cdc_xxx_if (.c, .h) files functions . 46
Table 28. Variables used by usbd_cdc_xxx_if.c/.h . 46
Table 29. usbd_ccid_core(.c,.h) files functions. 48
Table 30. usbd_ccid_if.c(.c,.h) files functions . 49
Table 31. usbd_ccid_cmd(.c,.h) files functions. 50
Table 32. Summary of supported Class Specific Requests . 53
Table 33. Document revision history . 72

DocID025767 Rev 1 5/73

UM1717 List of figures

5

List of figures

Figure 1. USB device library organization overview . 7
Figure 2. Folder structure. 8
Figure 3. Driver architecture overview . 9
Figure 4. Driver files. 9
Figure 5. USB device library architecture . 14
Figure 6. USB device library file structure . 14
Figure 7. USB device library process flowchart . 18
Figure 8. USB device data flow . 18
Figure 9. BOT Protocol architecture . 27
Figure 10. DFU Interface state transitions diagram . 33
Figure 11. USB Audio Block Diagram . 39
Figure 12. CCID Class Driver Architecture . 48
Figure 13. Folder organization . 54
Figure 14. USBD_Initf unction example. 55
Figure 15. Configuration 1a: Two different hosts for USB and USART . 58
Figure 16. Configuration 1b: One single Host for USB and USART . 58
Figure 17. Configuration 2: Loopback mode (for test purposes) . 58
Figure 18. CCID State machine . 60
Figure 19. Device descriptor of a composite device with single interface function 63
Figure 20. Device descriptor of a composite device with single interface function 63
Figure 21. Architecture of the HID MSC composite example. 64
Figure 22. Standard Interface Association Descriptor . 65
Figure 23. Custom HID topology . 67
Figure 24. Data OUT format . 68
Figure 25. Data IN Format . 68

Reference information UM1717

6/73 DocID025767 Rev 1

1 Reference information

1.1 Glossary

Table 1 gives a brief definition of acronyms and abbreviations used in this document.

Table 1. List of terms

Term Meaning

API Application Programming Interface

ADC Analog-to-Digital Conversion

CCID Integrated Circuit(s) Cards Interface Devices

CDC Communication Device Class

DAC Digital-to-Analog Conversion

DCD Device Core Driver

DFU Device Firmware Upgrade

FS Full Speed (12 Mbps)

GUI Graphical User Interface

HID Human Interface Device

Mbps Megabit per second

MSC Mass Storage Class

PID USB Product Identifier

SOF Start Of Frame

VID USB Vendor Identifier

USB Universal Serial Bus

DocID025767 Rev 1 7/73

UM1717 USB device library overview

72

2 USB device library overview

The following figure gives an overview of the USB device library.

Figure 1. USB device library organization overview

The USB device library is mainly divided into many layers with the applications being
developed on top of theme.

2.1 Main features

The USB device library is:

– Compatible with the FS USB modes

– Fully compliant with the Universal Serial Bus Revision 2.0 Specification.

– Built with a reduced footprint in order to provide optimum solution for low memory
STM32 products.

Built following a generic and easy-to-use architecture

– Able to add further specific vendor classes.

– Supports multi-interface applications (composite devices)

USB device library folder structure UM1717

8/73 DocID025767 Rev 1

3 USB device library folder structure

Figure 2 illustrates the tree structure of the USB device library folder.

The project is composed of three main directories, organized as follows:

1. Libraries: contains the STM32 USB low-level driver, the standard peripherals libraries,
the device libraries.

2. Projects: contains the workspaces and the sources files for the examples given with
the package.

3. Utilities: contains the STM32 drivers relative to the used boards (SD card, buttons,
joystick, etc). This folder contains also the related directory which includes a set of
sources files that implement the Audio Low Layer Drivers.

Figure 2. Folder structure

DocID025767 Rev 1 9/73

UM1717 USB low level driver

72

4 USB low level driver

4.1 USB low level driver architecture

Figure 3. Driver architecture overview

The low level driver can be used to connect the USB core with the high level stack. The
user may develop an interface layer above the Low level driver to provide the adequate
APIs needed by the used stack.

4.2 USB low level driver files

Figure 4. Driver files

USB low level driver UM1717

10/73 DocID025767 Rev 1

4.3 USB driver programming manual

4.3.1 Low level driver structures

The low level driver does not have any exportable variables. A global structure
(USB_CORE_HANDLE) which keeps all the variables, state and buffers used by the core to
handle its internal state and transfer flow, should be used to allocate in the application layer
the handle instance for the core to be used.

The global USB core structure is defined as follows:

typedef struct USB_Device_handle
{
 DCD_DEV dev;
}
USB_DEVICE_HANDLE, USB_CORE_HANDLE;

4.3.2 Programming device drivers

Device initialization

The device is initialized using the following function:

DCD_Init (USB_CORE_HANDLE *pdev)

Endpoint configuration

Once the USB core is initialized,The upper layer may call the low level driver to open or
close the active endpoint to start transferring data. The following two APIs are used:

Table 2. USB low level file descriptions

Mode Files Description

Common

usb_core.c/h
This file provides the interface
functions to USB cell registers

usb_reg.h

This file implements the
hardware abstraction layer, it
offers a set of basic functions
for accessing the USB-
FS_Device peripheral registers

usb_bsp_template.c

This file contains the low level
core configuration (interrupts,
GPIO).

This file should be copied to the
application folder and modified
depending on the application
needs.

Device

usb_dcd.c/h
This file contains the device
interface layer used by the
library to access the core.

usb_dcd_int.c/h
This file contains the interrupt
subroutines for the Device
mode.

DocID025767 Rev 1 11/73

UM1717 USB low level driver

72

uint32_t DCD_EP_Open (USB_CORE_HANDLE *pdev ,

uint8_t ep_addr,

uint16_t ep_mps,

uint8_t ep_type)

uint32_t DCD_EP_Close (USB_CORE_HANDLE *pdev,

uint8_t ep_addr)

Device core structure

The DCD_DEV structures contain all the variables and structures used to keep in real-time
all the information related to devices, the control transfer state machine and also the
endpoint information and status.

typedef struct _DCD

{

 uint8_t device_config;

 uint8_t device_state;

 uint8_t device_status;

 uint8_t device_old_status;

 uint8_t device_address;

 uint32_t DevRemoteWakeup;

 uint32_t speed;

 uint8_t setup_packet [8];

 USB_EP in_ep [EP_NUM];

 USB_EP out_ep [EP_NUM];

 USBD_Class_cb_TypeDef *class_cb;

 USBD_Usr_cb_TypeDef *usr_cb;

 USBD_DEVICE *usr_device;

 uint8_t *pConfig_descriptor;

 }

DCD_DEV , *DCD_PDEV;

Note: The USB_Device_dev struct size depends on the Endpoint number specified in the EP_NUM
define in the usb_conf.h file. The minimum size (when EPU_NUM=1) is 128 bytes. This
size is increased by 80 bytes when you add a new endpoint, the table below summarizes
the USB_Device_dev size in term of EP_NUM.

Table 3. USB_Device_dev struct size

Size of
USB_Device_dev

(Bytes)

EP_NUM

(n#0)

128 EPU_NUM = 1 (n=0)

208 EPU_NUM = 2 (n=1)

288 EPU_NUM = 3 (n=2)

368 EPU_NUM = 4 (n=3)

...

128 + n*80 EPU_NUM = n

USB low level driver UM1717

12/73 DocID025767 Rev 1

In this structure, device_config holds the current USB device configuration and
device_state controls the state machine with the following states:

/* EP0 State */

#define USB_EP0_IDLE 0

#define USB_EP0_SETUP 1

#define USB_EP0_DATA_IN 2

#define USB_EP0_DATA_OUT 3

#define USB_EP0_STATUS_IN 4

#define USB_EP0_STATUS_OUT 5

#define USB_EP0_STALL 6

In this structure, device_status defines the connection, configuration and power status:

/* Device Status */

#define USB_UNCONNECTED 0

#define USB_DEFAULT 1

#define USB_ADDRESSED 2

#define USB_CONFIGURED 3

#define USB_SUSPENDED 4

USB data transfer flow

The DCD layer offers the user all APIs needed to start and control a transfer flow using the
following set of functions:

uint32_t DCD_EP_PrepareRx (USB_CORE_HANDLE *pdev,

 uint8_t ep_addr,

 uint8_t *pbuf,

 uint16_t buf_len);

uint32_t DCD_EP_Tx (USB_CORE_HANDLE *pdev,

 uint8_t ep_addr,

 uint8_t *pbuf,

 uint32_t buf_len);

uint32_t DCD_EP_Stall (USB_CORE_HANDLE *pdev,

 uint8_t epnum);

uint32_t DCD_EP_ClrStall (USB_CORE_HANDLE *pdev,

 uint8_t epnum);

The DCD layer of the USB Low Level Driver has one function that must be called by the
USB interrupt :

uint32_t DCD_Handle_ISR (USB_CORE_HANDLE *pdev)

The usb_dcd_int.h file contains the function prototypes of the functions called from the
library core layer to handle the USB events.

USB driver structure definition

typedef struct _USBD_DCD_INT

{

uint8_t (* DataOutStage) (USBCORE_HANDLE *pdev , uint8_t epnum);

uint8_t (* DataInStage) (USB_CORE_HANDLE *pdev , uint8_t epnum);

uint8_t (* SetupStage) (USB_CORE_HANDLE *pdev);

DocID025767 Rev 1 13/73

UM1717 USB low level driver

72

uint8_t (* SOF) (USB_CORE_HANDLE *pdev);

uint8_t (* Reset) (USB_CORE_HANDLE *pdev);

uint8_t (* Suspend) (USB_CORE_HANDLE *pdev);

uint8_t (* Resume) (USB_CORE_HANDLE *pdev);

}USBD_DCD_INT_cb_TypeDef;

In the library layer, once the USBD_DCD_INT_cb_TypeDef structure is defined, it should
be assigned to the USBD_DCD_INT_fops pointer.

Example:

USBD_DCD_INT_cb_TypeDef *USBD_DCD_INT_fops = &USBD_DCD_INT_cb;

USB device library UM1717

14/73 DocID025767 Rev 1

5 USB device library

5.1 USB device library overview

Figure 5. USB device library architecture

The USB device library is based on the generic USB low level driver and developed to work
in Full speed mode. It is composed of two main modules: the USB Library core and the USB
Class.

The USB Library core module includes three main blocks: USB device core, USB requests
and USB I/O requests. It implements the USB device library machines as defined by the
revision 2.0 Universal Serial Bus Specification. This module functionalities are covered by
the files under "Core" folder within the USB device library firmware package (see Figure 6).

The USB class module is the class layer built in compliance with the protocol specification.

Figure 6. USB device library file structure

DocID025767 Rev 1 15/73

UM1717 USB device library

72

5.2 USB device library description

5.2.1 USB device library flow

Handling control endpoint 0

The USB specification defines four transfer types: control, interrupt, bulk and isochronous
transfers.

The USB host sends requests to the device through the control endpoint (in this case,
control endpoint is endpoint 0). The requests are sent to the device as SETUP packets.
These requests can be classified into three categories: standard, class-specific and vendor-
specific.

Since the standard requests are generic and common to all USB devices, the library
receives and handles all the standard requests on the control endpoint 0.

The library answers requests without the intervention of the user application if the library has
enough information about these requests. Otherwise, the library calls user application
defined callback functions to accomplish the requests when some application actions or
application information are needed. The format and the meaning of the class-specific
requests and the vendor specific requests are not common for all USB devices.

The library does not handle any of the requests in these categories. Whenever the library
receives a request that it does not know, the library calls a user-defined callback function
and passes the request to the user application code. All SETUP requests are processed
with a state machine implemented in an interrupt model.

An interrupt is generated at the end of the correct USB transfer. The library code receives
this interrupt. In the interrupt process routine, the trigger endpoint is identified. If the event is
a setup on endpoint 0, the payload of the received setup is saved and the state machine
starts.

Transactions on non-control endpoint

The class-specific core uses non-control endpoints by calling a set of functions to send or
receive data through the data IN and OUT stage callbacks.

Data structure for the SETUP packet

When a new SETUP packet arrives, all the eight bytes of the SETUP packet are copied to
an internal structure USB_SETUP_REQ req, so that the next SETUP packet cannot
overwrite the previous one during processing. This internal structure is defined as:

typedef struct usb_setup_req

{

 uint8_t bmRequest;

 uint8_t bRequest;

 uint16_t wValue;

 uint16_t wIndex;

 uint16_t wLength;

} USB_SETUP_REQ;

USB device library UM1717

16/73 DocID025767 Rev 1

Standard requests

All the requests specified in the following table of the USB specification are handled as
standard requests in the library. The table lists all the standard requests and their valid
parameters in the library. Requests that are not in this table are considered as non-standard
requests.

Table 4. Standard requests
S

ta
te

b
m

R
eq

u
es

tT

L
o

w
 b

yt
e

 o
f

H
ig

h
 b

yt
e

o
f

L
o

w
 b

yt
e

 o
f

H
ig

h
 b

yt
e

o
f

w
In

d
ex

w
L

en
g

th

Comments

GET_STATUS

A, C 80 00 00 00 00 2 Gets the status of the Device.

C 81 00 00 N 00 2
Gets the status of Interface, where N is the

valid interface number.

A, C 82 00 00 00 00 2
Gets the status of Endpoint 0 OUT

direction.

A, C 82 00 00 80 00 2 Gets the status of Endpoint 0 IN direction.

C 82 00 00 EP 00 2 Gets the status of Endpoint EP.

CLEAR_FEATURE

A, C 00 01 00 00 00 00 Clears the device remote wakeup feature.

C 02 00 00 EP 00 00
Clears the STALL condition of endpoint EP.

EP does not refer to endpoint 0.

SET_FEATURE

A, C 00 01 00 00 00 00 Sets the device remote wakeup feature.

C 02 00 00 EP 00 00
Sets the STALL condition of endpoint EP.

EP does not refer to endpoint 0.

SET_ADDRESS D, A 00 N 00 00 00 00
Sets the device address, N is the valid

device address.

GET_DESCRIPTOR

All 80 00 01 00 00
Non-

0
Gets the device descriptor.

All 80 N 02 00 00
Non-

0
Gets the configuration descriptor; where N

is the valid configuration index.

All 80 N 03 LangID
Non-

0

Gets the string descriptor; where N is the
valid string index. This request is valid only

when the string descriptor is supported.

GET_CONFIGURATION A, C 80 00 00 00 00 1 Gets the device configuration.

SET_CONFIGURATION A, C 80 N 00 00 00 00
Sets the device configuration; where N is

the valid configuration number.

GET_INTERFACE C 81 00 00 N 00 1
Gets the alternate setting of the interface
N; where N is the valid interface number.

SET_INTERFACE C 01 M 00 N 00 00

Sets alternate setting M of the interface N;
where N is the valid interface number and

M is the valid alternate setting of the
interface N.

DocID025767 Rev 1 17/73

UM1717 USB device library

72

Note: In column State: D = Default state; A = Address state; C = Configured state; All = All states.
EP: D0-D3 = endpoint address; D4-D6 = Reserved as zero; D7= 0: OUT endpoint, 1: IN
endpoint.

Non-standard requests

All the non-standard requests are passed to the class specific code through callback
functions.

– SETUP stage

The library passes all the non-standard requests to the class-specific code with the
callback pdev->dev.class_cb->Setup (pdev, req) function.

The non-standard requests include the user-interpreted requests and the invalid
requests.

User-interpreted requests are class- specific requests, vendor-specific requests or the
requests that the library considers as invalid requests that the application wants to
interpret as valid requests (for example, the library does not support the Halt feature on
endpoint 0 but the user application wants so).

Invalid requests are the requests that are not standard requests and are not user-
interpreted requests. Since pdev->dev.class_cb->Setup (pdev, req) is called after the
SETUP stage and before the data stage, user code is responsible, in the pdev-
>dev.class_cb->Setup (pdev, req) to parse the content of the SETUP packet (req).

If a request is invalid, the user code has to call USBD_CtlError(pdev , req) and return to
the caller of pdev->dev.class_cb->Setup (pdev, req)

For a user-interpreted request, the user code then prepares the data buffer for the
following data stage if the request has a data stage; otherwise the user code executes
the request and returns to the caller of pdev->dev.class_cb->Setup (pdev, req).

– DATA stage

The class layer uses the standard USBD_CtlSendData and USBD_CtlPrepareRx to
send or receive data, the data transfer flow is handled internally by the library and the
user does not need to split and the data in ep_size packet.

– Status stage

The status stage is handled by the library after returning from the pdev->dev.class_cb-
>Setup (pdev, req) callback.

5.2.2 USB device library process

Figure 7 shows the different layers interaction between the low level driver, the usb device
library and the application layer.

USB device library UM1717

18/73 DocID025767 Rev 1

Figure 7. USB device library process flowchart

The Application layer has only to call one function (USBD_Init) to initialize the USB low
level driver, the USB device library, the hardware on the used board (BSP) and to start the
library. The USBD_Init function needs however the user callback structure to inform the
user layer of the different library states and messages and the class callback structure to
start the class interface.

The USB Low level driver can be linked to the USB device library through the
USBD_DCD_INT_cb structure. This structure ensures a total independence between the
USB device library and the low level driver; enabling the low level driver to be used by any
other device library.

5.2.3 USB device data flow

The USB Library (USB core and USB class layer) handles the data processing on Endpoint
0 (EP0) through the IO request layer . The following figure illustrates this data flow scheme.

Figure 8. USB device data flow

MS20017V1

USBD_CtlSendData
USBD_CtlContinueSendData
USBD_Status USBD_CtlPrepareRx
USBD_Status USBD_CtlContinueRx
USBD_Status USBD_CtlSendStatus
USBD_Status USBD_CtlReceiveStatus
USBD_GetRxCount

usbd_class_core.cusbd_req.c

usbd_class_core.c

usbd_class_core.c

USBD_GetRxCount

DCD_EP_Tx
DCD_EP_PrepareRx

DCD_EP_Tx
DCD_EP_PrepareRx

DocID025767 Rev 1 19/73

UM1717 USB device library

72

5.2.4 USB device library configuration

The USB device library can be configured using the usbd_conf.h file (a template
configuration file is available in the “Libraries\STM32_USB_Device_Library\Core\” directory
of the library).

#define USBD_CFG_MAX_NUM 1 : Indicates the number of configurations

#define USB_MAX_STR_DESC_SIZ 64: Indicates max string Descriptor Size

/**** USB_MSC_Class_Layer_Parameter *********/

#define MSC_IN_EP 0x81: MSC Interrupt IN endpoint 1

#define MSC_OUT_EP 0x01: MSC Interrupt OUT endpoint 1

#define MSC_MAX_PACKET 64: Maximum packet size of the Endpoint

#define MSC_MEDIA_PACKET 512 This indicates the size (512 Bytes) of the intermediary
buffer which is used to receive/send data from/to USB

/**** USB_HID Class_Layer_Parameter *********/

#define HID_IN_EP 0x81:HID Interrupt IN endpoint 1

#define HID_OUT_EP 0x01:HID Interrupt OUT endpoint 1

#define HID_IN_PACKET 4:Maximum packet size of the Endpoint (IN)

#define HID_OUT_PACKE 4:Maximum packet size of the Endpoint (OUT)

5.2.5 USB control functions

User applications can benefit from a few other USB functions included in a USB device.

Device reset

When the device receives a reset signal from the USB, the library resets and initializes the
application on both software and hardware.

This function is part of the interrupt routine.

Device suspend

When the device detects a suspend condition on the USB, the library stops all the
operations and puts the system in suspend state (if low power mode management is
enabled in the usb_conf.h file).

Device resume

When the device detects a resume signal on the USB, the library restores the USB core
clock and puts the system in idle state (if low power mode management is enabled in the
usb_conf.h file).

5.3 USB device library functions

The Core layer contains the USB device library machines as defined by the revision 2.0
Universal Serial Bus Specification. The following table presents the USB device core files.

USB device library UM1717

20/73 DocID025767 Rev 1

Table 5. USB device core files

Files Description

usbd_core (.c, .h)
This file contains the functions for handling all USB

communication and state machine.

usbd_req(.c, .h)
This file includes the requests implementation listed in

Chapter 9 of the specification

usbd_ioreq (.c, .h) This file handles the results of the USB transactions.

usbd_conf.h
This file contains the configuration of the device:

vendor ID, Product Id, Strings…etc

usbd_pwr.h This file provides functions prototypes for the power
management

usbd_def.h This file provides general defines for the USB device library

usbd_usr.h This file provides user callback function prototypes USB
event management

Table 6. usbd_core (.c, .h) files functions

Functions Description

void USBD_Init(USB_CORE_HANDLE *pdev,
USBD_DEVICE *pDevice,
USBD_Class_cb_TypeDef *class_cb,
USBD_Usr_cb_TypeDef *usr_cb);

Initializes the device library and loads the
class driver and the user call backs.

USBD_Status USBD_DeInit

(USB_CORE_HANDLE *pdev)
Un-initializes the device library.

uint8_t USBD_SetupStage

(USB_CORE_HANDLE *pdev)
Handles the setup stage.

uint8_t USBD_DataOutStage

(USB_CORE_HANDLE *pdev , uint8_t epnum)
Handles the Data Out stage.

uint8_t USBD_DataInStage

(USB_CORE_HANDLE *pdev , uint8_t epnum)
Handles the Data In stage.

uint8_t USBD_Reset

(USB_CORE_HANDLE *pdev)
Handles the reset event.

uint8_t USBD_Resume

(USB_CORE_HANDLE *pdev)
Handles the resume event.

uint8_t USBD_Suspend

(USB_CORE_HANDLE *pdev)
Handles the suspend event.

uint8_t USBD_SOF

(USB_CORE_HANDLE *pdev)
Handles the SOF event.

USBD_Status USBD_SetCfg

(USB_CORE_HANDLE *pdev, uint8_t cfgidx)

Configures the device and starts the
interface.

USBD_Status USBD_ClrCfg

(USB_CORE_HANDLE *pdev, uint8_t cfgidx)
Clears the current configuration.

DocID025767 Rev 1 21/73

UM1717 USB device library

72

Table 7. usbd_ioreq (.c, .h) files functions

Functions Description

USBD_Status USBD_CtlSendData

(USB_CORE_HANDLE *pdev, uint8_t *pbuf,
uint16_t len)

Sends the data on the control pipe.

USBD_Status USBD_CtlContinueSendData
(USB_CORE_HANDLE *pdev, uint8_t *pbuf,
uint16_t len)

Continues sending data on the control
pipe.

USBD_Status USBD_CtlPrepareRx

(USB_CORE_HANDLE *pdev, uint8_t *pbuf,
uint16_t len)

Prepares the core to receive data on the
control pipe.

USBD_Status USBD_CtlContinueRx

(USB_CORE_HANDLE *pdev, uint8_t *pbuf,
uint16_t len)

Continues receiving data on the control
pipe.

USBD_Status USBD_CtlSendStatus

(USB_CORE_HANDLE *pdev)

Sends a zero length packet on the control
pipe.

USBD_Status USBD_CtlReceiveStatus

(USB_CORE_HANDLE *pdev)

Receives a zero length packet on the
control pipe.

uint16_t USBD_GetRxCount (USB_CORE_HANDLE
*pdev , uint8_t epnum)

Returns the received data length

Table 8. usbd_req (.c, .h) functions

Functions Description

void USBD_GetString(uint8_t *desc,
uint8_t *unicode, uint16_t *len)

Converts an ASCII string into Unicode one
to format a string descriptor.

static uint8_t USBD_GetLen(uint8_t *buf) Returns the string length.

USBD_Status USBD_StdDevReq

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles standard USB device requests.

USBD_Status USBD_StdItfReq

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles standard USB interface requests.

USBD_Status USBD_StdEPReq

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles standard USB endpoint requests.

static void USBD_GetDescriptor

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Get Descriptor requests.

static void USBD_SetAddress

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Sets new USB device address.

USB device library UM1717

22/73 DocID025767 Rev 1

5.4 USB device class interface

The USB class is chosen during the USB Device library initialization by selecting the
corresponding class callback structure. The class structure is defined as follows:

typedef struct _Device_cb

{

 uint8_t (*Init) (void *pdev , uint8_t cfgidx);

 uint8_t (*DeInit) (void *pdev , uint8_t cfgidx);

 /* Control Endpoints*/

 uint8_t (*Setup) (void *pdev , USB_SETUP_REQ *req);

 uint8_t (*EP0_TxSent) (void *pdev);

 uint8_t (*EP0_RxReady) (void *pdev);

 /* Class Specific Endpoints*/

 uint8_t (*DataIn) (void *pdev , uint8_t epnum);

 uint8_t (*DataOut) (void *pdev , uint8_t epnum);

 uint8_t (*SOF) (void *pdev);

 uint8_t *(*GetConfigDescriptor)(uint8_t speed , uint16_t *length);

#ifdef USB_SUPPORT_USER_STRING_DESC

static void USBD_SetConfig

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Set device configuration request.

static void USBD_GetConfig

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Get device configuration request.

static void USBD_GetStatus

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Get Status request.

static void USBD_SetFeature

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Set device feature request.

static void USBD_ClrFeature

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles Clear device feature request.

void USBD_ParseSetupRequest

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Copies request buffer into setup structure.

void USBD_CtlError

(USB_CORE_HANDLE *pdev,

USB_SETUP_REQ *req)

Handles USB Errors on the control pipe.

Table 8. usbd_req (.c, .h) functions (continued)

Functions Description

DocID025767 Rev 1 23/73

UM1717 USB device library

72

 uint8_t *(*GetUsrStrDescriptor)(uint8_t speed ,uint8_t index, uint16_t
*length);

#endif

} USBD_Class_cb_TypeDef;

– Init: this callback is called when the device receives the set configuration request; in
this function the endpoints used by the class interface are open.

– DeInit: This callback is called when the clear configuration request has been
received; this function closes the endpoints used by the class interface.

– Setup: This callback is called to handle the specific class setup requests.

– EP0_TxSent: This callback is called when the send status is finished.

– EP0_RxSent: This callback is called when the receive status is finished.

– DataIn: This callback is called to perform the data in stage relative to the non-control
endpoints.

– DataOut: This callback is called to perform the data out stage relative to the non-
control endpoints.

– SOF: This callback is called when a SOF interrupt is received; this callback can be
used to synchronize some processes with the Start of frame.

– GetConfigDescriptor: This callback returns the USB Configuration descriptor.

– GetUsrStrDescriptor: This callback returns the user defined string descriptor.

Note: When a callback is not used, it can be set to NULL in the callback structure.

5.5 USB device user interface

The Library provides user callback structure to allow user to add special code to manage
the USB events. This user structure is defined as follows:

– Init: This callback is called when the device library starts up.

– DeviceReset: This callback is called when the device has detected a reset event
from the host.

– DeviceConfigured: this callback is called when the device receives the set
configuration request.

– DeviceSuspended: This callback is called when the device has detected a suspend
event from the host.

– DeviceResumed: This callback is called when the device has detected a resume
event from the host.

The Library provides descriptor callback structures to allow user to manage the device and
string descriptors at application run time. This descriptors structure is defined as follows:

typedef struct _Device_TypeDef

{

uint8_t *(*GetDeviceDescriptor)(uint8_t speed ,
uint16_t *length);

uint8_t *(*GetLangIDStrDescriptor)(uint8_t speed ,
uint16_t *length);

uint8_t *(*GetManufacturerStrDescriptor)(uint8_t speed ,
uint16_t *length);

USB device library UM1717

24/73 DocID025767 Rev 1

uint8_t *(*GetProductStrDescriptor)(uint8_t speed ,
uint16_t *length);

uint8_t *(*GetSerialStrDescriptor)(uint8_t speed ,
uint16_t *length);

uint8_t *(*GetConfigurationStrDescriptor)(uint8_t speed ,
uint16_t *length);

uint8_t *(*GetInterfaceStrDescriptor)(uint8_t speed ,
uint16_t *length);

 } USBD_DEVICE, *pUSBD_DEVICE;

– GetDeviceDescriptor: This callback returns the device descriptor.

– GetLangIDStrDescriptor: This callback returns the Language ID string descriptor.

– GetManufacturerStrDescriptor: This callback returns the manufacturer string
descriptor.

– GetProductStrDescriptor: This callback returns the product string descriptor.

– GetSerialStrDescriptor: This callback returns the serial number string descriptor.

– GetConfigurationStrDescriptor: This callback returns the configuration string
descriptor.

– GetInterfaceStrDescriptor: This callback returns the interface string descriptor.

– Get_USRStringDesc: This callback returns the user defined string descriptor.

Note: The usbd_desc.c file provided within USB Device examples implement these callback
bodies.

5.6 USB device classes

The class module contains all the files related to the class implementation. It complies with
the specification of the protocol built in these classes.

The table below presents the USB device class file for the MSC, HID, DFU, Audio, CDC and
CCID classes.

Table 9. USB device class files

Class Files Description

HID usbd_hid_core (.c, .h)
This file contains the HID class callbacks (driver) and the

configuration descriptors related to this class.

MSC

usbd_msc_core(.c, .h)
This file contains the MSC class callbacks (driver) and the

configuration descriptors relative to this class.

usbd_msc_bot (.c, .h) This file handles the bulk only transfer protocol.

usbd_msc_scsi (.c, .h) This file handles the SCSI commands.

usbd_msc_data (.c,.h)
This file contains the vital inquiry pages and the sense data of the

mass storage devices.

usbd_msc_mem.h
This file contains the function prototypes of the called functions from

the SCSI layer to have access to the physical media

DocID025767 Rev 1 25/73

UM1717 USB device library

72

5.6.1 HID class

HID class implementation

This module manages the HID class V1.11 following the “Device Class Definition for Human
Interface Devices (HID) Version 1.11 June 27, 2001". This driver implements the following
aspects of the specification:

– The boot interface subclass

– The mouse protocol

– Usage page: generic desktop

– Usage: joystick

– Collection: application

HID user interface

The USBD_HID_SendReport can be used by the application to send HID reports, the HID
driver, in this release, handles only IN traffic. An example of use of this function is shown
below:

static uint8_t HID_Buffer [4];

USBD_HID_SendReport (&USB_FS_dev,

USBD_HID_GetPos(),

4);

static uint8_t *USBD_HID_GetPos (void)

{

DFU

usbd_dfu_core (.c,.h)
This file contains the DFU class callbacks (driver) and the

configuration descriptors relative to this class.

usbd_flash_if (.c,.h)
This file contains the DFU class callbacks relative to the internal

Flash memory interface.

usbd_mem_if_template
(.c,.h)

This file provides a template driver which allows you to implement
additional memory interfaces.

usbd_dfu_mal.c/.h This file provides the generic media access layer for DFU
applications

Audio
usbd_audio_core
(.c,.h)

This file contains the AUDIO class callbacks (driver) and the
configuration descriptors relative to this class.

CDC

usbd_cdc_core (.c,.h)
This file contains the CDC class callbacks (driver) and the

configuration descriptors relative to this class.

usbd_cdc_if_template
(.c,.h)

This file provides a template driver which allows you to implement
low layer functions for a CDC terminal.

CCID

usbd_ccid_cmd

(.c,.h)
This file provides the CCID command handling

usbd_ccid_core

(.c,.h)

This file contains the CCID class callbacks (driver) and the
configuration descriptors relative to this class.

usbd_ccid_if(.c,.h) This file provides all the functions for USB Interface for CCID

Table 9. USB device class files (continued)

Class Files Description

USB device library UM1717

26/73 DocID025767 Rev 1

HID_Buffer[0] = 0;

HID_Buffer[1] = GetXPos();;

HID_Buffer[2] = GetXPos();

HID_Buffer[3] = 0;

return HID_Buffer;

}

HID core files

5.6.2 Mass storage class

Mass storage class implementation

This module manages the MSC class V1.0 following the “Universal Serial Bus Mass Storage
Class (MSC) Bulk-Only Transport (BOT) Version 1.0 Sep. 31, 1999".

This driver implements the following aspects of the specification:

– Bulk-only transport protocol

– Subclass: SCSI transparent command set (ref. SCSI Primary Commands - 3)

The USB mass storage class is built around the Bulk Only Transfer (BOT). It uses the SCSI
transparent command set.

A general BOT transaction is based on a simple basic state machine: it begins with ready
state (idle state) and if a CBW is received from the host, three cases can be managed:

– DATA-OUT-STAGE: when direction flag is set to “0”, the device must be prepared
to receive an amount of data indicated in dCBWDataTransferLength in the
CBW block. At the end of data transfer, a CSW is returned with the remaining data
length and the STATUS field.

– DATA-IN-STAGE: when direction flag is set to “1”, the device must be prepared to
send an amount of data indicated in dCBWDataTransferLength in the CBW
block. At the end of data transfer, a CSW is returned with the remaining data
length and the STATUS field.

– ZERO DATA: in this case, no data stage is needed: the CSW block is sent
immediately after the CBW one.

Table 10. usbd_hid_core (.c, .h) files functions

Functions Description

static uint8_t USBD_HID_Init

(void *pdev, uint8_t cfgidx)

Initializes the HID interface and open the used
endpoints.

static uint8_t USBD_HID_DeInit

(void *pdev, uint8_t cfgidx)

Un-Initializes the HID layer and close the used
endpoints.

static uint8_t USBD_HID_Setup (void
*pdev, USB_SETUP_REQ *req)

Handles the HID specific requests.

uint8_t USBD_HID_SendReport
(USB_CORE_HANDLE *pdev, uint8_t
*report, uint16_t len)

Sends HID reports.

DocID025767 Rev 1 27/73

UM1717 USB device library

72

Figure 9. BOT Protocol architecture

The following table shows the supported SCSI commands

As required by the BOT specification, the following requests are implemented:

– Bulk-only mass storage reset (class-specific request)

This request is used to reset the mass storage device and its associated interface. This
class-specific request should prepare the device for the next CBW from the host.

Table 11. SCSI commands

Command
specification

Command

SCSI

SCSI_START_STOP_UNIT,

SCSI_TEST_UNIT_READY,

SCSI_INQUIRY,

SCSI_READ_CAPACITY10,

SCSI_MODE_SENSE6,

SCSI_MODE_SENSE10

SCSI_READ10,

SCSI_WRITE10,

SCSI_VERIFY10

USB device library UM1717

28/73 DocID025767 Rev 1

To generate the BOT Mass Storage Reset, the host must send a device request on the
default pipe of:

– bmRequestType: Class, interface, host to device

– bRequest field set to 255 (FFh)

– wValue field set to ‘0’

– wIndex field set to the interface number

– wLength field set to ‘0’

Get Max LUN (class-specific request)

The device can implement several logical units that share common device characteristics.
The host uses bCBWLUN to indicate which logical unit of the device is the destination of the
CBW. The Get Max LUN device request is used to determine the number of logical units
supported by the device.

To generate a Get Max LUN device request, the host sends a device request on the default
pipe of:

– bmRequestType: Class, Interface, device to host

– bRequest field set to 254 (FEh)

– wValue field set to ‘0’

– wIndex field set to the interface number

– wLength field set to ‘1’

MSC Core files

Table 12. usbd_msc_core (.c, .h) files functions

Functions Description

static uint8_t USBD_MSC_Init (void
*pdev, uint8_t cfgidx)

Initializes the MSC interface and opens the used
endpoints.

static uint8_t USBD_MSC_DeInit
(void *pdev, uint8_t cfgidx)

De-initializes the MSC layer and close the used
endpoints.

static uint8_t USBD_MSC_Setup (void
*pdev, USB_SETUP_REQ *req)

Handles the MSC specific requests.

uint8_t USBD_MSC_DataIn (void
*pdev, uint8_t epnum)

Handles the MSC Data In stage.

uint8_t USBD_MSC_DataOut (void
*pdev, uint8_t epnum)

Handles the MSC Data Out stage.

Table 13. usbd_msc_bot (.c, .h) files functions

Functions Description

void MSC_BOT_Init

(USB_CORE_HANDLE *pdev)
Initializes the BOT process and physical media.

void MSC_BOT_Reset (USB_CORE_HANDLE
*pdev)

Resets the BOT Machine.

void MSC_BOT_DeInit (USB_CORE_HANDLE
*pdev)

De-Initializes the BOT process.

DocID025767 Rev 1 29/73

UM1717 USB device library

72

void MSC_BOT_DataIn (USB_CORE_HANDLE
*pdev, uint8_t epnum)

Handles the BOT data IN Stage.

void MSC_BOT_DataOut
(USB_CORE_HANDLE *pdev, uint8_t
epnum)

Handles the BOT data OUT Stage.

static void MSC_BOT_CBW_Decode
(USB_CORE_HANDLE *pdev)

Decodes the CBW command and sets the BOT
state machine accordingly.

static void
MSC_BOT_SendData(USB_CORE_HANDLE
pdev, uint8_t buf, uint16_t len)

Sends the requested data.

void MSC_BOT_SendCSW
(USB_CORE_HANDLE *pdev, uint8_t
CSW_Status)

Sends the Command Status Wrapper.

static void MSC_BOT_Abort
(USB_CORE_HANDLE *pdev)

Aborts the current transfer.

void MSC_BOT_CplClrFeature
(USB_CORE_HANDLE *pdev, uint8_t
epnum)

Completes the Clear Feature request.

Table 14. usbd_msc_scsi (.c, .h) functions

Functions Description

int8_t SCSI_ProcessCmd
(USBCORE_HANDLE *pdev, uint8_t lun,
uint8_t *params)

Processes the SCSI commands.

static int8_t SCSI_TestUnitReady
(uint8_t lun, uint8_t *params)

Processes the SCSI Test Unit Ready command.

static int8_t SCSI_Inquiry (uint8_t
lun, uint8_t *params)

Processes the Inquiry command.

static int8_t SCSI_ReadCapacity10
(uint8_t lun, uint8_t *params)

Processes the Read Capacity 10 command.

static int8_t
SCSI_ReadFormatCapacity (uint8_t
lun, uint8_t *params)

Processes the Read Format Capacity command.

static int8_t SCSI_ModeSense6
(uint8_t lun, uint8_t *params)

Processes the Mode Sense 6 command.

static int8_t SCSI_ModeSense10
(uint8_t lun, uint8_t *params)

Processes the Mode Sense 10 command.

static int8_t SCSI_RequestSense
(uint8_t lun, uint8_t *params)

Processes the Request Sense command.

void SCSI_SenseCode(uint8_t lun,
uint8_t sKey, uint8_t ASC)

Loads the last error code in the error list.

Table 13. usbd_msc_bot (.c, .h) files functions (continued)

Functions Description

USB device library UM1717

30/73 DocID025767 Rev 1

usbd_msc_mem (.h)

This file contains the prototypes of the functions called from the SCSI layer to have access
to the physical media.

Disk operation structure definition

typedef struct _USBD_STORAGE

{

int8_t (* Init) (uint8_t lun);

int8_t (* GetCapacity) (uint8_t lun, uint32_t *block_num, uint32_t
*block_size);

int8_t (* IsReady) (uint8_t lun);

int8_t (* IsWriteProtected) (uint8_t lun);

int8_t (* Read) (uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t
blk_len);

int8_t (* Write)(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t
blk_len);

int8_t (* GetMaxLun)(void);

int8_t *pInquiry;

}USBD_STORAGE_cb_TypeDef;

In the media access file from user layer, once the USBD_STORAGE_cb_TypeDef structure
is defined, it should be assigned to the USBD_STORAGE_fops pointer.

Example:

USBD_STORAGE_cb_TypeDef *USBD_STORAGE_fops = &USBD_MICRO_SDIO_fops;

The standard inquiry data are given by the user inside the STORAGE_Inquirydata array. It
should be defined as:

const int8_t STORAGE_Inquirydata[] = {//36

static int8_t
SCSI_StartStopUnit(uint8_t lun,
uint8_t *params)

Processes the Start Stop Unit command.

static int8_t SCSI_Read10(uint8_t
lun , uint8_t *params)

Processes the Read10 command.

static int8_t SCSI_Write10 (uint8_t
lun , uint8_t *params)

Processes the Write10 command.

static int8_t SCSI_Verify10(uint8_t
lun , uint8_t *params)

Processes the Verify10 command.

static int8_t SCSI_CheckAddressRange
(uint8_t lun , uint32_t blk_offset ,
uint16_t blk_nbr)

Checks if the LBA is inside the address range.

static int8_t SCSI_ProcessRead
(uint8_t lun)

Handles the Burst Read process.

static int8_t SCSI_ProcessWrite
(uint8_t lun)

Handles the Burst Write process.

Table 14. usbd_msc_scsi (.c, .h) functions (continued)

Functions Description

DocID025767 Rev 1 31/73

UM1717 USB device library

72

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer : 8 bytes */

'm', 'i', 'c', 'r', 'o', 'S', 'D', ' ', /* Product : 16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'0', '.', '0' ,'1', /* Version : 4 Bytes */

};

Disk operation functions

5.6.3 Device firmware upgrade (DFU) class

The DFU core manages the DFU class V1.1 following the “Device Class Specification for
Device Firmware Upgrade Version 1.1 Aug 5, 2004".

This core implements the following aspects of the specification:

– Device descriptor management

– Configuration descriptor management

– Enumeration as DFU device (in DFU mode only)

– Request management (supporting ST DFU sub-protocol)

– Memory request management (Download / Upload / Erase / Detach / GetState /
GetStatus).

– DFU state machine implementation.

Table 15. Disk operation functions

Functions Description

int8_t STORAGE_Init (uint8_t lun) Initializes the storage medium.

int8_t STORAGE_GetCapacity (uint8_t
lun, uint32_t *block_num, uint16_t
*block_size)

Returns the medium capacity and block size.

int8_t STORAGE_IsReady (uint8_t
lun)

Checks whether the medium is ready.

int8_t STORAGE_IsWriteProtected
(uint8_t lun)

Checks whether the medium is write-protected.

int8_t STORAGE_Read (uint8_t lun,

uint8_t *buf, uint32_t blk_addr,
uint16_t blk_len)

Reads data from the medium:

blk_address is given in sector unit

blk_len is the number of the sector to be
processed.

USB device library UM1717

32/73 DocID025767 Rev 1

Note: ST DFU sub-protocol is compliant with DFU protocol. It uses sub-requests to manage
memory addressing, command processing, specific memory operations (that is, memory
erase, etc.)

As required by the DFU specification, only endpoint 0 is used in this application.

Other endpoints and functions may be added to the application (that is, HID, etc.).

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

– Manifestation Tolerant mode

Device firmware upgrade (DFU) class implementation

The DFU transactions are based on Endpoint 0 (control endpoint) transfer. All requests and
status control are sent / received through this endpoint.

The DFU state machine is based on the following states:

The allowed state transitions are described in the specification document.

Table 16. DFU states

State State code

STATE_appIDLE 0x00

STATE_appDETACH 0x01

STATE_dfuIDLE 0x02

STATE_dfuDNLOAD-SYNC 0x03

STATE_dfuDNBUSY 0x04

STATE_dfuDNLOAD-IDLE 0x05

STATE_dfuMANIFEST-SYNC 0x06

STATE_dfuMANIFEST 0x07

STATE_dfuMANIFEST-WAIT-RESET 0x08

STATE_dfuUPLOAD-IDLE 0x09

STATE_dfuERROR 0x0A

DocID025767 Rev 1 33/73

UM1717 USB device library

72

Figure 10. DFU Interface state transitions diagram

To protect the application from spurious access before initialization, the initial state of the
DFU core (after startup) is STATE_dfuERROR. Then, the host has to clear this state (by
sending a DFU_CLRSTATUS request) before generating any other request.

The DFU core manages all supported requests.

USB device library UM1717

34/73 DocID025767 Rev 1

Each transfer to the control endpoint can be considered into two main categories:

Data transfers: These transfers are used to:

– Get some data from the device (DFU_GETSTATUS, DFU_GETSTATE and
DFU_UPLOAD).

– Or, to send data to the device (DFU_DNLOAD).

No-Data transfers: These transfers are used to send control requests from host to
device (DFU_CLRSTATUS, DFU_ABORT and DFU_DETACH).

Device firmware upgrade (DFU) core files

usbd_dfu_core (.c, .h)

This driver is the main DFU core. It allows the management of all DFU requests and state
machine. It does not directly deal with memory media (managed by lower layer drivers).

Table 17. Supported requests

Request Code Details

DFU_DETACH 0x00
When bit 3 in bmAttributes (bit WillDetach) is set, the

device generates a detach-attach sequence on the bus
when it receives this request.

DFU_DNLOAD 0x01
The firmware image is downloaded via the control-write

transfers initiated by the DFU_DNLOAD class specific
request.

DFU_UPLOAD 0x02
The purpose of the upload is to provide the capability of

retrieving and archiving a device firmware.

DFU_GETSTATUS 0x03
The host employs the DFU_GETSTATUS request to facilitate

synchronization with the device.

DFU_CLRSTATUS 0x04
Upon receipt of DFU_CLRSTATUS, the device sets a status

of OK and transitions to the dfuIDLE state.

DFU_GETSTATE 0x05 This request solicits a report about the state of the device.

DFU_ABORT 0x06
The DFU_ABORT request enables the host to exit from

certain states and to return to the DFU_IDLE state.

Table 18. usbd_dfu_core (.c, .h) files functions

Functions Description

static uint8_t usbd_dfu_Init (void
*pdev, uint8_t cfgidx)

Initializes the DFU interface.

static uint8_t usbd_dfu_DeInit
(void *pdev, uint8_t cfgidx)

De-initializes the DFU layer.

static uint8_t usbd_dfu_Setup (void
*pdev, USB_SETUP_REQ *req)

Handles the DFU request parsing.

static uint8_t EP0_TxSent (void
*pdev)

Handles the DFU control endpoint data IN stage.

static uint8_t EP0_RxReady (void
*pdev)

Handles the DFU control endpoint data OUT
stage.

DocID025767 Rev 1 35/73

UM1717 USB device library

72

usbd_dfu_mal (.c, .h):

This driver is the entry point for the memory low layer access. It allows the parsing of the
memory control/access requests through the available memory (internal Flash). Depending
on the address parameter, it dispatches the control/access request to the relative memory
driver (or returns error code if the address is not supported).

static uint8_t* Get_USRStringDesc
(void *pdev, uint8_t idx)

Manages the transfer of memory interfaces string
descriptors.

static void DFU_Req_DETACH (void
*pdev, USB_SETUP_REQ *req)

Handles the DFU DETACH request.

static void DFU_Req_DNLOAD (void
*pdev, USB_SETUP_REQ *req)

Handles the DFU DNLOAD request.

static void DFU_Req_UPLOAD (void
*pdev, USB_SETUP_REQ *req)

Handles the DFU UPLOAD request.

static void DFU_Req_GETSTATUS (void
*pdev)

Handles the DFU GETSTATUS request.

static void DFU_Req_CLRSTATUS (void
*pdev)

Handles the DFU CLRSTATUS request.

static void DFU_Req_GETSTATE (void
*pdev)

Handles the DFU GETSTATE request.

static void DFU_Req_ABORT (void
*pdev)

Handles the DFU ABORT request.

static void DFU_LeaveDFUMode (void
*pdev)

Handles the sub-protocol DFU leave DFU mode
request (leaves DFU mode and resets device to

jump to user loaded code).

Table 19. usbd_dfu_mal (.c, .h) files functions

Functions Description

uint16_t MAL_Init (void)
Calls memory interface initialization functions

supported by the low layer.

uint16_t MAL_DeInit (void)
Calls memory interface de-initialization functions

supported by the low layer.

uint16_t MAL_Erase (uint32_t
SectorAddress)

Calls the memory interface Erase functions
supported by the low layer (if Erase is not

supported, this function has no effect).

uint16_t MAL_Write (uint32_t
SectorAddress, uint32_t DataLength)

Calls memory interface Write functions supported
by the low layer.

uint8_t *MAL_Read (uint32_t
SectorAddress, uint32_t DataLength)

Calls the memory interface Read functions
supported by the low layer.

Table 18. usbd_dfu_core (.c, .h) files functions (continued)

Functions Description

USB device library UM1717

36/73 DocID025767 Rev 1

The low layer memory interfaces are managed through their respective driver structure:

typedef struct _DFU_MAL_PROP

{

const uint8_t* pStrDesc;

uint16_t (*pMAL_Init) (void);

uint16_t (*pMAL_DeInit) (void);

uint16_t (*pMAL_Erase) (uint32_t Add);

uint16_t (*pMAL_Write) (uint32_t Add, uint32_t Len);

uint8_t *(*pMAL_Read) (uint32_t Add, uint32_t Len);

uint16_t (*pMAL_CheckAdd) (uint32_t Add);

const uint32_t EraseTiming;

const uint32_t WriteTiming;

}

DFU_MAL_Prop_TypeDef;

Each memory interface driver should provide a structure pointer of type
DFU_MAL_Prop_TypeDef. The functions and constants pointed by this structure are listed
in the following sections.

If a functionality is not supported by a given memory interface, its related field is set as
NULL value.

usbd_xxxx_if (.c, .h): (i.e. usbd_flash_if (.c,.h))

This is the low layer driver managing the memory interface. Each memory interface should
be managed by a separate low level driver (that is, usbd_flash_if.c/.h, usbd_otp_if.c/.h).

Note: The library provides one memory driver for internal Flash memory (usbd_flash_if.c/.h), you
can add other memories using the provided template file (usbd_mem_if_template_if.c/.h).

This driver provides the structure pointer:

extern DFU_MAL_Prop_TypeDef DFU_Flash_cb;

extern DFU_MAL_Prop_TypeDef DFU_OTP_cb;

uint16_t MAL_GetStatus(uint32_t
SectorAddress ,uint8_t Cmd, uint8_t
*buffer)

Returns the low layer memory interface status.

static uint8_t MAL_CheckAdd
(uint32_t Add)

Checks which memory interface supports the
current address (returns error code if the address

is not supported).

Table 19. usbd_dfu_mal (.c, .h) files functions (continued)

Functions Description

DocID025767 Rev 1 37/73

UM1717 USB device library

72

How to use the driver:

Using the file usbd_conf.h, you can configure:

– The number of media (memories) to be supported (define MAX_USED_MEDIA).

– The device string descriptors.

– The application default address (where the image code should be loaded): define
APP_DEFAULT_ADD.

Call usbd_dfu_Init() function to initialize all memory interfaces and DFU state
machine.

All control/request operations are performed through control endpoint 0, using the
functions: usbd_dfu_Setup() and EP0_TxSent(). These functions can be used to
call each memory interface callback (read/write/erase/get state...) depending on the
generated DFU requests. No user action is required for these operations.

To close the communication, call the usbd_dfu_DeInit() function.

Note: When the DFU application starts, the default DFU state is STATE_dfu_ERROR. This state is
set to protect the application from spurious operations before having a correct configuration.

How to add a new memory interface:

Use the file usbd_mem_if_template.c as reference (modify file name, fill functions
allowing to read/write/erase/get status and the mean timings for write and erase

Table 20. usbd_flash_if (.c,.h) files functions

Functions Description

const uint8_t* pStrDesc

Pointer to the memory interface descriptor that allows the
host to get memory interface organization (name, size,

number of sectors/pages, size of sectors/pages, read/write
rights).

uint16_t (*pMAL_Init) (void) Handles the memory interface initialization.

uint16_t (*pMAL_DeInit)
(void)

Handles the memory interface de-initialization.

uint16_t (*pMAL_Erase)
(uint32_t Add)

Handles the block erase on the memory interface.

uint16_t (*pMAL_Write)
(uint32_t Add, uint32_t Len)

Handles the data writing to the memory interface.

uint8_t *(*pMAL_Read)
(uint32_t Add, uint32_t Len)

Handles the data reading from the memory interface.

uint16_t (*pMAL_CheckAdd)
(uint32_t Add)

Returns MAL_OK result if the address is in the memory
range.

const uint32_t EraseTiming
Mean time for erasing a memory block (sector/page…). It is

possible to set this timing value to the maximum value
allowed by the memory.

const uint32_t WriteTiming
Mean time for writing a memory block (sector/page). It is
possible to set this timing value to the maximum value

allowed by the memory.

USB device library UM1717

38/73 DocID025767 Rev 1

operations in DFU_Mem_cb structure). If a functionality is not supported (i.e. Erase), fill
the relative field in the DFU_MAL_Prop_TypeDef structure.

Configure the new memory string descriptor allowing to determine the memory size,
number of sectors, and possibilities of read/write/erase operations on each group of
sectors (MEM_IF_STRING in usbd_mem_if_template.h).

Configure the start and end addresses of the memory using define MEM_START_ADD
and MEM_START_ADD in file usbd_mem_if_template.h.

Update the number of memory interfaces in usbd_conf.h file (define
MAX_USED_MEDIA)

Update the file usbd_dfu_mal.c by:

– Including the new memory header file.

– Adding the new memory callback structure in “tMALTab” table.

– Adding the pointer to the new memory string descriptor in “usbd_dfu_StringDesc”
table.

Note: It is advised to modify the names of defines/variable/files/structures in
usbd_mem_if_template.c/.h files for each new memory interface.

5.6.4 Audio class

This driver manages the Audio Class 1.0 following the “USB Device Class Definition for
Audio Devices V1.0 Mar 18, 98".

This driver implements the following aspects of the specification:

– Device descriptor management

– Configuration descriptor management

– Standard AC Interface Descriptor management

– 1 Audio Streaming Interface (with single channel, PCM, Stereo mode)

– 1 Audio Streaming Endpoint

– 1 Audio Terminal Input (1 channel)

– Audio Class-Specific AC Interfaces

– Audio Class-Specific AS Interfaces

– Audio Control Requests: only SET_CUR and GET_CUR requests are supported (for
Mute)

– Audio Feature Unit (limited to Mute control)

– Audio Synchronization type: Asynchronous

– Single fixed audio sampling rate (configurable in usbd_conf.h file)

Note: The Audio Class 1.0 is based on USB Specification 1.0 and thus supports only Low and Full
speed modes. Please refer to “USB Device Class Definition for Audio Devices V1.0 Mar 18,
98" for more details.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

– Audio Control Endpoint management

– Audio Control requests other than SET_CUR and GET_CUR

– Abstraction layer for Audio Control requests (only mute functionality is managed)

– Audio Synchronization type: Adaptive

DocID025767 Rev 1 39/73

UM1717 USB device library

72

– Audio Compression modules and interfaces

– MIDI interfaces and modules

– Mixer/Selector/Processing/Extension Units (featured unit is limited to Mute control)

– Any other application-specific modules

– Multiple and Variable audio sampling rates

– Audio Out Streaming Endpoint/Interface (microphone)

Audio class implementation

The Audio transfers are based on isochronous endpoint transactions. Audio control
requests are also managed through control endpoint (endpoint 0).

In each frame, an audio data packet is transferred and must be consumed during this frame
(before the next frame). The audio quality depends on the synchronization between data
transfer and data consumption.

The implemented synchronization mechanism allows to overcome the difference between
USB clock domain and STM32 clock domain: Clock update synchronization consists on
slightly modifying the period of the timer triggering the DAC peripheral.

This solution is based on speeding-up and slowing-down the trigger clock in order to match
the USB clock domain. This clock allows to keep all data samples (no data loss) but
modifies slightly the audio frequency (this modification is not perceived by human ear). For
this method, the distance between write pointer and read pointer is periodically measured
and depending on the measured distance a correction action is performed:

– If the measured distance is higher than 3/4 buffer size, the timer (trigger of DAC) is
speed-up

If the measured distance is lower than 1/4 buffer size, the timer (trigger of DAC) is slow-
downThis mechanism may be enhanced by implementing more flexible audio flow controls
like USB feedback mode, dynamic audio clock correction or audio clock generation/control
using SOF event.

The driver also supports basic Audio Control requests. To keep the driver simple, only two
requests have been implemented. However, other requests can be supported by slightly
modifying the audio core driver.

Note: This implementation is based on STM32F072B Eval Board Hardware, Which use the DAC
as output Path as shown in the Figure 11

Figure 11. USB Audio Block Diagram

USB device library UM1717

40/73 DocID025767 Rev 1

Audio core files

usbd_audio_core (.c, .h)

This driver is the audio core. It manages audio data transfers and control requests. It does
not directly deal with audio hardware (which is managed by lower layer drivers).

Table 21. Audio control requests

Request Supported Meaning

SET_CUR Yes
Sets Mute mode On or Off (can also be updated to set volume

level…).

SET_MIN No NA

SET_MAX No NA

SET_RES No NA

SET_MEM No NA

GET_CUR Yes Gets Mute mode state (can also be updated to get volume level…).

GET_MIN No NA

GET_MAX No NA

GET_RES No NA

GET_MEM No NA

Table 22. usbd_audio_core (.c, .h) files functions

Functions Description

static uint8_t usbd_audio_Init
(void *pdev, uint8_t cfgidx)

Initializes the Audio interface.

static uint8_t usbd_audio_DeInit
(void *pdev, uint8_t cfgidx)

De-initializes the Audio interface.

static uint8_t usbd_audio_Setup
(void *pdev, USB_SETUP_REQ *req)

Handles the Audio control request parsing.

static uint8_t
usbd_audio_EP0_RxReady(void *pdev)

Handles audio control requests data.

static uint8_t usbd_audio_DataIn
(void *pdev, uint8_t epnum)

Handles the Audio In data stage.

static uint8_t usbd_audio_DataOut
(void *pdev, uint8_t epnum)

Handles the Audio Out data stage.

static uint8_t usbd_audio_SOF
(void *pdev)

Handles the SOF event (data buffer update and
synchronization).

static void
AUDIO_Req_GetCurrent(void *pdev,
USB_SETUP_REQ *req)

Handles the GET_CUR Audio control request.

DocID025767 Rev 1 41/73

UM1717 USB device library

72

The low layer hardware interfaces are managed through their respective driver structure:

typedef struct _Audio_Fops

{

uint8_t (*Init) (uint32_t AudioFreq, uint32_t Volume, uint32_t options);

uint8_t (*DeInit) (uint32_t options);

uint8_t (*AudioCmd) (uint8_t* pbuf, uint32_t size, uint8_t cmd);

uint8_t (*VolumeCtl) (uint8_t vol);

uint8_t (*MuteCtl) (uint8_t cmd);

uint8_t (*OptionCtrl) (uint8_t size);

uint8_t (*GetState) (void);

}AUDIO_FOPS_TypeDef;

Each audio hardware interface driver should provide a structure pointer of type
AUDIO_FOPS_TypeDef. The functions and constants pointed by this structure are listed in
the following sections. If a functionality is not supported by a given memory interface, the
relative field is set as NULL value.usbd_audio_xxx_if (.c, .h): (i.e. usbd_audio_out_if (.c, .h))

This driver manages the low layer audio hardware. usbd_audio_out_if.c/.h driver manages
the Audio Out interface (from USB to audio speaker/headphone). It calls lower layer codec
driver (i.e. stm32072b_audio_codec.c/.h) for basic audio operations (play/pause/volume
control...).

This driver provides the structure pointer:

extern AUDIO_FOPS_TypeDef AUDIO_OUT_fops;

static void
AUDIO_Req_SetCurrent(void *pdev,
USB_SETUP_REQ *req)

Handles the SET_CUR Audio control request.

void usbd_audio_BuffXferCplt (uint8_t** pbuf,
uint32_t* pSize)

Manage end of buffer transfer and Adjust DAC
trigger clock

Table 23. usbd_audio_xxx_if (.c, .h) files functions

Functions Description

static uint8_t Init
(uint32_t AudioFreq, uint32_t
Volume, uint32_t options)

Initializes the audio interface.

static uint8_t DeInit
(uint32_t options)

De-initializes the audio interface and free used
resources.

static uint8_t AudioCmd
(uint8_t* pbuf, uint32_t size,
uint8_t cmd)

Handles audio player commands (play, pause…)

static uint8_t VolumeCtl (uint8_t
vol)

Handles audio player volume control.

static uint8_t MuteCtl (uint8_t
cmd)

Handles audio player mute state.

Table 22. usbd_audio_core (.c, .h) files functions (continued)

Functions Description

USB device library UM1717

42/73 DocID025767 Rev 1

The Audio player state is managed through the following states:

How to use this driver

This driver uses an abstraction layer for hardware driver . This abstraction is performed
through a lower layer (i.e. usbd_audio_out_if.c) which you can modify depending on the
hardware available for your application.

To use this driver:

Through the file audio_app_conf.h, you can configure:

– The audio sampling rate (define USBD_AUDIO_FREQ)

– The default volume level (define DEFAULT_VOLUME)

– The endpoints to be used for each transfer (defines AUDIO_OUT_EP)

– The device string descriptors

Call the function usbd_audio_Init() at startup to configure all necessary firmware and
hardware components (application-specific hardware configuration functions are also called
by this function). The hardware components are managed by a lower layer interface (i.e.
usbd_audio_out_if.c) and can be modified by user depending on the application needs.

The entire transfer is managed by the following functions (no need for user to call any
function for out transfers):

– usbd_audio_SOF which synchronizes the low layer interface at each start of
frame. For out transfers, at each SOF event, this function controls the low layer to
stop the previous transfer if it is not stopped yet and start playing next sub-buffer.
Each time the reading buffer (IsocOutRdPtr) is incremented.

– usbd_audio_DataIn() and usbd_audio_DataOut() which update the audio
buffers with the received or transmitted data. For Out transfers, when data are

static uint8_t OptionCtrl (uint8_t
size)

Switch audio digital streaming to new sampling
rate

static uint8_t GetState (void)
Returns the current state of the driver audio

player (Playing/Paused/Error …).

Table 24. Audio player states

State Code Description

AUDIO_STATE_INACTIVE 0x00 Audio player is not initialized.

AUDIO_STATE_ACTIVE 0x01 Audio player is initialized and ready.

AUDIO_STATE_PLAYING 0x02 Audio player is currently playing.

AUDIO_STATE_PAUSED 0x03 Audio player is paused.

AUDIO_STATE_STOPPED 0x04 Audio player is stopped.

AUDIO_STATE_ERROR 0x05
Error occurred during initialization or while

executing an audio command.

Table 23. usbd_audio_xxx_if (.c, .h) files functions (continued)

Functions Description

DocID025767 Rev 1 43/73

UM1717 USB device library

72

received, they are directly copied into the audiobuffer and the write buffer
(IsocOutWrPtr) is incremented.

– The Audio Control requests are managed by the functions
usbd_audio_Setup() and usbd_audio_EP0_RxReady(). These functions
route the Audio Control requests to the lower layer (i.e. usbd_audio_out_if.c). In
the current version, only SET_CUR and GET_CUR requests are managed and are
used for mute control only.

Audio known limitations

– The following situation has not been validated: When dynamic frequency switching is
enabled (SUPPORTED_FREQ_NBR define in usbd_conf.h is higher than 1) and
when the host uses this feature to optimize the bus usage by switch audio frequency
multiple times while the audio file is playing (Windows XP SP3 and Windows 7 drivers
don't use this mechanism).

– While application is playing an audio stream, if the USB cable is unplugged without
stopping the audio stream and ejecting the device correctly, then a "noise" may result
from this operation. This issue is due to missing management of cable disconnected
event(will be fixed in next versions)

5.6.5 Communication device class (CDC)

This driver manages the “Universal Serial Bus Class Definitions for Communications
Devices Revision 1.2 November 16, 2007" and the sub-protocol specification of “Universal
Serial Bus Communications Class Subclass Specification for PSTN Devices Revision 1.2
February 9, 2007".

This driver implements the following aspects of the specification:

– Device descriptor management

– Configuration descriptor management

– Enumeration as CDC device with 2 data endpoints (IN and OUT) and 1 command
endpoint (IN)

– Request management (as described in section 6.2 in specification)

– Abstract Control Model compliant

– Union Functional collection (using 1 IN endpoint for control)

– Data interface class

Note: For the Abstract Control Model, this core can only transmit the requests to the lower layer
dispatcher (i.e. usbd_cdc_vcp.c/.h) which should manage each request and perform relative
actions.

These aspects may be enriched or modified for a specific user application.

This driver does not implement the following aspects of the specification (but it is possible to
manage these features with some modifications on this driver):

– Any class-specific aspect relative to communication classes should be managed
by user application.

– All communication classes other than PSTN are not managed.

USB device library UM1717

44/73 DocID025767 Rev 1

Communication

The CDC core uses two endpoint/transfer types:

– Bulk endpoints for data transfers (1 OUT endpoint and 1 IN endpoint)

– Interrupt endpoints for communication control (CDC requests; 1 IN endpoint)

Data transfers are managed differently for IN and OUT transfers:

Data IN transfer management (from device to host)

The data transfer is managed periodically depending on host request (the device specifies
the interval between packet requests). For this reason, a circular static buffer is used for
storing data sent by the device terminal (i.e. USART in the case of Virtual COM Port
terminal).

On a periodic interval (defined through CDC_IN_FRAME_INTERVAL in usbd_conf.h file) the
driver checks if there are available data in the buffer. It sends them into successive packets
to the host through data IN endpoint.

Data OUT transfer management (from host to device)

In general, the USB is much faster than the output terminal (i.e. the USART maximum bit
rate is 115.2 Kbps while USB bit rate is 12 Mbps for Full speed mode). Consequently, before
sending new packets, the host has to wait until the device has finished to process the data
sent by host. Thus, there is no need for circular data buffer when a packet is received from
host: the driver calls the lower layer OUT transfer function and waits until this function is
completed before allowing new transfers on the OUT endpoint (meanwhile, OUT packets
will be NACKed).

Command request management

In this driver, control endpoint (endpoint 0) is used to manage control requests. But a data
interrupt endpoint may be used also for command management. If the request data size
does not exceed 64 bytes, the endpoint 0 is sufficient to manage these requests.

The CDC driver does not manage command requests parsing. Instead, it calls the lower
layer driver control management function with the request code, length and data buffer.
Then this function should parse the requests and perform the required actions.

Communication device class (CDC) core files

usbd_cdc_core (.c, .h)

This driver is the CDC core. It manages CDC data transfers and control requests. It does
not directly deal with CDC hardware (which is managed by lower layer drivers).

Table 25. usbd_cdc_core (.c, .h) files functions

Functions Description

static uint8_t usbd_cdc_Init
(void *pdev, uint8_t cfgidx)

Initializes the CDC interface.

static uint8_t usbd_cdc_DeInit
(void *pdev, uint8_t cfgidx)

De-initializes the CDC interface.

static uint8_t usbd_cdc_Setup
(void *pdev, USB_SETUP_REQ *req)

Handles the CDC control requests.

DocID025767 Rev 1 45/73

UM1717 USB device library

72

The low layer hardware interfaces are managed through their respective driver structure:

typedef struct _CDC_IF_PROP

{

uint16_t (*pIf_Init) (void);

uint16_t (*pIf_DeInit) (void);

uint16_t (*pIf_Ctrl) (uint32_t Cmd, uint8_t* Buf, uint32_t Len);

uint16_t (*pIf_DataTx) (uint8_t* Buf, uint32_t Len);

uint16_t (*pIf_DataRx) (uint8_t* Buf, uint32_t Len);

}

CDC_IF_Prop_TypeDef;

Each hardware interface driver should provide a structure pointer of type
CDC_IF_Prop_TypeDef. The functions pointed by this structure are listed in the following
sections.

If a functionality is not supported by a given memory interface, its related field is set as
NULL value.

Note: In order to get the best performance, it is advised to calculate the values needed for the
following parameters (all of them are configurable through defines in the usbd_conf.h file):

static uint8_t usbd_cdc_EP0_RxReady
(void *pdev)

Handles CDC control request data.

static uint8_t usbd_cdc_DataIn
(void *pdev, uint8_t epnum)

Handles the CDC IN data stage.

static uint8_t usbd_cdc_DataOut
(void *pdev, uint8_t epnum)

Handles the CDC Out data stage.

static uint8_t usbd_cdc_SOF
(void *pdev)

Handles the SOF event (data buffer update and
synchronization).

static void Handle_USBAsynchXfer
(void *pdev)

Handles the IN data buffer packaging.

Table 25. usbd_cdc_core (.c, .h) files functions (continued)

Functions Description

Table 26. Configurable CDC parameters

Define Parameter
Typical value

Full Speed

CDC_DATA_IN_PACKET_SIZE Size of each IN data packet 64

CDC_DATA_OUT_PACKET_SIZE Size of each OUT data packet 64

CDC_IN_FRAME_INTERVAL
Interval time between IN packets

sending.
5

APP_RX_DATA_SIZE
Total size of circular temporary

buffer for IN data transfer.
2048

USB device library UM1717

46/73 DocID025767 Rev 1

usbd_cdc_xxx_if (.c, .h): (i.e. usbd_cdc_vcp_if (.c, .h))

This driver can be part of the user application. It is not provided in the library, but a template
can be used to build it and an example is provided for the USART interface. It manages the
low layer CDC hardware. The usbd_cdc_xxx_if.c/.h driver manages the terminal interface
configuration and communication (i.e. USART interface configuration and data
send/receive).

This driver provides the structure pointer:

extern CDC_IF_Prop_TypeDef APP_FOPS;

where APP_FOPS should be defined in the usbd_conf.h file as the low layer interface
structure pointer. (i.e. #define APP_FOPS VCP_fops) for using Virtual COM Port
interface provided in the Virtual COM Port example).

In order to accelerate data management for IN transfers, the low layer driver
(usbd_cdc_xxx_if.c/.h) should use two global variables exported from CDC core:

How to use this driver

This driver uses an abstraction layer for hardware driver (i.e. USART control interface...).
This abstraction is performed through a lower layer (i.e. usbd_cdc_vcp.c) which you can
modify depending on the hardware available for your application.

To use this driver:

Through the file usbd_conf.h you can configure:

– The Data IN and OUT and command packet sizes (defines
CDC_DATA_IN_PACKET_SIZE, CDC_DATA_OUT_PACKET_SIZE,
CDC_CMD_PACKET_SZE)

Table 27. usbd_cdc_xxx_if (.c, .h) files functions

Functions Description

uint16_t pIf_Init (void) Initializes the low layer CDC interface.

uint16_t pIf_DeInit (void) De-initializes the low layer CDC interface.

uint16_t pIf_Ctrl (uint32_t Cmd,
uint8_t* Buf, uint32_t Len)

Handles CDC control request parsing and
execution.

uint16_t pIf_DataTx (uint8_t* Buf,
uint32_t Len)

Handles CDC data transmission from low layer
terminal to USB host (IN transfers).

uint16_t pIf_DataRx (uint8_t* Buf,
uint32_t Len)

Handles CDC data reception from USB host to
low layer terminal (OUT transfers).

Table 28. Variables used by usbd_cdc_xxx_if.c/.h

Variable Usage

extern uint8_t APP_Rx_Buffer []
Writes CDC received data in this buffer. These data
will be sent over USB IN endpoint in the CDC core

functions.

extern uint32_t APP_Rx_ptr_in
Increments this pointer or rolls it back to start the
address when writing received data in the buffer

APP_Rx_Buffer.

DocID025767 Rev 1 47/73

UM1717 USB device library

72

– The interval between IN packets (define CDC_IN_FRAME_INTERVAL)

– The size of the temporary circular buffer for IN data transfer (define
APP_RX_DATA_SIZE).

– The device string descriptors.

Call the function usbd_cdc_Init() at startup to configure all necessary firmware and
hardware components (application-specific hardware configuration functions are called by
this function as well). The hardware components are managed by a lower layer interface
(i.e. usbd_cdc_vcp_if.c) and can be modified by user depending on the application needs.

CDC IN and OUT data transfers are managed by two functions:

– APP_DataTx (i.e. VCP_dataTx) should be called by user application each time a
data (or a certain number of data) is available to be sent to the USB Host from the
hardware terminal.

– APP_DataRx (i.e. VCP_dataRx) is called by the CDC core each time a buffer is
sent from the USB Host and should be transmitted to the hardware terminal. This
function should exit only when all data in the buffer are sent (the CDC core then
blocks all coming OUT packets until this function finishes processing the previous
packet).

CDC control requests should be handled by the function APP_Ctrl (i.e. VCP_Ctrl). This
function is called each time a request is received from Host and all its relative data are
available if any. This function should parse the request and perform the needed actions.

To close the communication, call the function usbd_cdc_DeInit(). This closes the used
endpoints and calls lower layer de-initialization functions.

5.6.6 CCID (Specification for Integrated Circuit(s) Cards Interface Devices)

The USB device library provide an embedded CCID firmware application that is compliant
with the USB CCID Class Specification of the USB Device Class Specification for USB
Chip/Smart Card Interface Devices Specification, Revision 1.1

The USB CCID driver implements the following aspects of the specification:

– Bulk transfers of CCID commands

– Interrupt Transfers of the CCID status

CCID Device Class

– CCID Endpoints

The configuration and usage of endpoints shall follow the CCID specification section 3

In addition to the default (control) endpoint, the CCID requires three endpoints to
communicate with the Host Computer:

– Control Endpoint: For setup and Control purpose

– Bulk OUT: For Command to be sent from Host to STM32 (CCID)

– Bulk IN: To send responses and transfer data from the device to the host in reply to
commands received on the Command Pipe

– Interrupt IN: Used by the CCID to notify the host of an insertion and removal events of
the card in case of hardware errors

USB device library UM1717

48/73 DocID025767 Rev 1

Note: The data packet size for Bulk IN and Bulk OUT endpoints is 64 bytes

The data packet size for Interrupt IN endpoint is 8 bytes

– Communication Protocol:

The control commands are sent on control pipe, these include Class-specific requests and
USB standard requests. Commands that are sent on the default pipe report information
back to the host on the on the default pipe.

CCID events are sent on Bulk Out endpoint. Each command sent to the STM32(CCID) has
an associated ending response.

CCID response are sent on Bulk IN endpoint. All commands sent to the STM32(CCID) have
to be sent synchronously.

Figure 12. CCID Class Driver Architecture

USB CCID Core files

usbd_ccid_core(.c,.h)

Table 29. usbd_ccid_core(.c,.h) files functions

Functions Description

static uint8_t USBD_CCID_Init (void *pdev,
uint8_t cfgidx)

Initializes the Interface. Opens the EP channels

Initializes the parameters for the CCID

static uint8_t USBD_CCID_DeInit (void *pdev,
uint8_t cfgidx)

De-Initializes the Interface. Close the EP
channels De-initializes the parameters for the

CCID

Static uint8_t USBD_CCID_Setup (void *pdev,
USB_SETUP_REQ *req)

Handles the CCID specific class requests.

There are three class requests defined by CCID
specifications

static uint8_t USBD_CCID_DataIn (void *pdev,
uint8_t epnum)

Handles data IN Stage. The function calls
CCID_BulkMessage_In

DocID025767 Rev 1 49/73

UM1717 USB device library

72

usbd_ccid_if.c(.c,.h)

usbd_ccid_cmd(.c,.h)

static uint8_t USBD_CCID_DataOut (void *pdev,
uint8_t epnum)

Handles data OUT Stage The function calls
CCID_BulkMessage_Out

static uint8_t *USBD_CCID_GetCfgDesc (uint8_t
speed, uint16_t *length)

Returns configuration descriptor

Table 30. usbd_ccid_if.c(.c,.h) files functions

Functions Description

void CCID_Init (USB_CORE_HANDLE
*pdev)

Initializes the CCID USB Layer

void CCID_DeInit (USB_CORE_HANDLE
*pdev)

Uninitializes the CCID Machine

void CCID_BulkMessage_In
(USB_CORE_HANDLE *pdev,

 uint8_t epnum)

Handles Bulk IN data stage :
CCID_BulkMessage_In

void CCID_BulkMessage_Out
(USB_CORE_HANDLE *pdev,

uint8_t epnum)

Processes CCID OUT data

void
CCID_CmdDecode(USB_CORE_HANDLE
*pdev)

Decodes the received Commands and call the
related CCID commands

void
Transfer_Data_Request(uint8_t*
Data_Pointer, uint16_t Data_Len)

Prepares the request response to be sent to the
host

static void
CCID_Response_SendData(USB_CORE_H
ANDLE *pdev, uint8_t* buf,
uint16_t len)

Sends the pre-filled data to the host

void
CCID_IntMessage(USB_CORE_HANDLE
*pdev)

Sends the Interrupt-IN datato the host

void
CCID_ReceiveCmdHeader(uint8_t*
pDst, uint8_t u8length)

Receives the Data from USB BulkOut Buffer to the
CCID structure for easy parsing

uint8_t
CCID_IsIntrTransferComplete
(void)

Provides the status of previous Interrupt transfer
status

void CCID_SetIntrTransferStatus
(uint8_t xfer_Status)

Sets the value of the Interrupt transfer status

Table 29. usbd_ccid_core(.c,.h) files functions (continued)

Functions Description

USB device library UM1717

50/73 DocID025767 Rev 1

Table 31. usbd_ccid_cmd(.c,.h) files functions

Functions Description

uint8_t
PC_to_RDR_IccPowerOn(void)

PC_TO_RDR_ICCPOWERON message execution,
Apply the ICC VCC, Fills the Response buffer with

ICC ATR

uint8_t
PC_to_RDR_IccPowerOff(void)

Icc VCC is switched Off

uint8_t
PC_to_RDR_GetSlotStatus(void)

Provides the Slot status to the host

uint8_t PC_to_RDR_XfrBlock(void) Handles the Block transfer from Host.

uint8_t
PC_to_RDR_GetParameters(void)

Provides the ICC parameters to the host

uint8_t
PC_to_RDR_ResetParameters(void)

Sets the ICC parameters to the default

uint8_t
PC_to_RDR_SetParameters(void)

Sets the ICC parameters to the host defined
parameters

uint8_t PC_to_RDR_Escape(void) Executes the Escape command. This is user
specific Implementation

uint8_t PC_to_RDR_IccClock(void) Executes the Clock specific command from host

uint8_t PC_to_RDR_Abort(void) Executes the Abort command from host, This stops
all Bulk transfers from host and ICC

uint8_t CCID_CmdAbort(uint8_t
slot, uint8_t seq)

Executes the Abort command from Bulk EP or from
Control EP. This stops all bulk transfers from Host

and ICC

void RDR_to_PC_DataBlock(uint8_t
errorCode)

Provides the data block response to the host

void RDR_to_PC_SlotStatus(uint8_t
errorCode)

Provides the Slot status response to the host

void RDR_to_PC_Parameters(uint8_t
errorCode)

Provides the data block response to the host

void RDR_to_PC_Escape(uint8_t
errorCode)

Provides the Escape data block response to the
host

void
RDR_to_PC_NotifySlotChange(void)

Interrupt message to be sent to the host, Checks the
card presence status and updates the buffer

accordingly

void CCID_UpdSlotStatus (uint8_t
slotStatus)

Updates the variable for the slot status

void CCID_UpdSlotChange (uint8_t
changeStatus)

Updates the variable for the slot change status

uint8_t CCID_IsSlotStatusChange
(void)

Provides the value of the variable for the slot
change status

static uint8_t
CCID_CheckCommandParams (uint32_t
param_type)

Checks the specific parameters requested by the
function and update status accordingly. This

function is called from all

DocID025767 Rev 1 51/73

UM1717 USB device library

72

CCID Descriptors and specific requests

CCID Descriptors

– Device Descriptor:

The device descriptor of the CCID class is shown below:

0x12, /*bLength */

USB_DEVICE_DESCRIPTOR_TYPE, /*bDescriptorType*/

LOBYTE(BCD_USB_VER), /*bcdUSB */

HIBYTE(BCD_USB_VER),

0x00, /*bDeviceClass*/

0x00, /*bDeviceSubClass*/

0x00, /*bDeviceProtocol*/

USB_MAX_EP0_SIZE, /*bMaxPacketSize*/

LOBYTE(USBD_VID), /*idVendor*/

HIBYTE(USBD_VID), /*idVendor*/

LOBYTE(USBD_PID), /*idVendor*/

HIBYTE(USBD_PID), /*idVendor*/

LOBYTE(USBD_BCD_DEVICE_VER), /*bcdDevice rel. 2.00*/

HIBYTE(USBD_BCD_DEVICE_VER),

USBD_IDX_MFC_STR, /*Index of manufacturer string*/

USBD_IDX_PRODUCT_STR, /*Index of product string*/

USBD_IDX_SERIAL_STR, /*Index of serial number string*/

USBD_CFG_MAX_NUM /*bNumConfigurations*/

– Configuration Descriptor

0x09, /* bLength: Configuration Descriptor size */

USB_DESC_TYPE_CONFIGURATION, /* bDescriptorType: Configuration */

SMARTCARD_SIZ_CONFIG_DESC,

0x00,

0x01, /* bNumInterfaces: 1 interface */

0x01, /* bConfigurationValue: */

0x04, /* iConfiguration: */

0x80, /*bmAttributes: bus powered */

0x32, /* MaxPower 100 mA */

– Interface Descriptor

The interface descriptor is for the CCID Class Interface. It should indicates the Smart Card
Class code (0Bh).

0x09, /* bLength: Interface Descriptor size */

0x04, /* bDescriptorType: */

0x00, /* bInterfaceNumber: Number of Interface */

0x00, /* bAlternateSetting: Alternate setting */

0x03, /* bNumEndpoints: 3 endpoints used */

0x0B, /* bInterfaceClass: user's interface for CCID */

0x00, /* bInterfaceSubClass : */

0x00, /* nInterfaceProtocol : None */

0x05, /* iInterface: */

USB device library UM1717

52/73 DocID025767 Rev 1

Note: The bNumEndpoints field is set to 3, because a CCID shall support a minimum of two
endpoints one bulk-out and one bulk-in, in addition to the default, control endpoint(This is
not taken into account here)

A CCID that reports ICC insertion or removal events must also support an interrupt
endpoint.

– CCID Descriptor

The STM32 (CCID) supported CCID features are indicated in its Class descriptor as it is
shown below:

 0x36, /* bLength: CCID Descriptor size */

 0x21, /* bDescriptorType: Functional Descriptor type. */

 0x10, /* bcdCCID(LSB): CCID Class Spec release number (1.00) */

 0x01, /* bcdCCID(MSB) */

 0x00, /* bMaxSlotIndex :highest available slot on this device */

 0x03, /* bVoltageSupport: bit Wise OR for 01h-5.0V 02h-3.0V 04h 1.8V*/

 0x01,0x00,0x00,0x00,/* dwProtocols: 0001h = Protocol T=0 */

 0x10,0x0E,0x00,0x00,/* dwDefaultClock: 3.6Mhz = 3600kHz = 0x0E10*/

 0x10,0x0E,0x00,0x00,/* dwMaximum*/

 0x00, /* bNumClockSupported*/

 0xCD,0x25,0x00,0x00,/* dwDataRate*/

 0xCD,0x25,0x00,0x00,/* dwMaxDataRate*/

 0x00,/* bNumDataRatesSupported*/

 0x00,0x00,0x00,0x00, /* dwMaxIFSD: 0 (T=0 only)*/

 0x00,0x00,0x00,0x00,/* dwSynchProtocols */

 0x00,0x00,0x00,0x00,/* dwMechanical: no special characteristics */

 0x38,0x00,EXCHANGE_LEVEL_FEATURE,0x00,/* dwFeatures*/

 0x0F,0x01,0x00,0x00, /* dwMaxCCIDMessageLength*/

 0x00, /* bClassGetResponse*/

 0x00, /* bClassEnvelope */

 0x00,0x00,/* wLcdLayout : 0000h no LCD. */

 0x00, /* bPINSupport : no PIN verif and modif */

 0x01, /* bMaxCCIDBusySlots*/

– Endpoint Descriptor

As mentioned previously, there are bulk OUT, bulk IN and Interrupt IN endpoints

0x07, /*Endpoint descriptor length = 7*/

0x05, /*Endpoint descriptor type */

CCID_BULK_IN_EP, /*Endpoint address (IN, address 1) */

0x02, /*Bulk endpoint type */

LOBYTE(CCID_BULK_EPIN_SIZE),

HIBYTE(CCID_BULK_EPIN_SIZE),

0x00, /*Polling interval in milliseconds */

0x07, /*Endpoint descriptor length = 7 */

0x05, /*Endpoint descriptor type */

CCID_BULK_OUT_EP, /*Endpoint address (OUT, address 1) */

0x02, /*Bulk endpoint type */

DocID025767 Rev 1 53/73

UM1717 USB device library

72

LOBYTE(CCID_BULK_EPOUT_SIZE),

HIBYTE(CCID_BULK_EPOUT_SIZE),

0x00, /*Polling interval in milliseconds*/

0x07, /*bLength: Endpoint Descriptor size*/

0x05, /*bDescriptorType:*/

CCID_INTR_IN_EP, /*bEndpointAddress: Endpoint Address (IN)*/

0x03, /* bmAttributes: Interrupt endpoint */

LOBYTE(CCID_INTR_EPIN_SIZE),

HIBYTE(CCID_INTR_EPIN_SIZE),

0x18 /*Polling interval in milliseconds */

Class-Specific Requests

The USB CCID supports following Class specific requests:

5.6.7 Adding a custom class

To create a new custom class, the user has to add USBD_CustomClass_cb as described
in Section 5.4

typedef struct _Device_cb

{

uint8_t (*Init) (void *pdev , uint8_t cfgidx);

uint8_t (*DeInit) (void *pdev , uint8_t cfgidx);

/* Control Endpoints*/

uint8_t (*Setup) (void *pdev , USB_SETUP_REQ *req);

uint8_t (*EP0_TxSent) (void *pdev);

uint8_t (*EP0_RxReady) (void *pdev, uint8_t epnum);

/* Class Specific Endpoints*/

uint8_t (*DataIn) (void *pdev , uint8_t epnum);

uint8_t (*DataOut) (void *pdev , uint8_t epnum);

uint8_t (*SOF) (void *pdev);

Table 32. Summary of supported Class Specific Requests

Request Implemented Comments

 ABORT Yes

The ABORT request allows the host to abort
the response portion of a command/response

message pair. This may be necessary to
recover from error conditions and put the CCID

into a state where it can receive a new
command message.

GET_DATA_RATES No
CCID with bNumDataRatesSupported equal to

00h does not have to support this request

GET_CLOCK_FREQUENCIES No
CCID with bNumClockSupported equal to 00h

does not have to support this request.

USB device library UM1717

54/73 DocID025767 Rev 1

uint8_t *(*GetConfigDescriptor)(uint8_t speed ,
uint16_t *length);

#ifdef USB_SUPPORT_USER_STRING_DESC

uint8_t *(*GetUsrStrDescriptor)(uint8_t speed ,
uint8_t index, uint16_t *length);

#endif

} USBD_Class_cb_TypeDef;

In the DataIn and DataOut functions, the user can implement the internal protocol or state
machine, while in the Setup; the class specific requests are to be implemented. The
configuration descriptor is to be added as an array and passed to the USB device library,
through the GetConfigDescriptor function which should return a pointer to the USB
configuration descriptor and its length.

EP0_TxSent and EP0_RxReady could be eventually used when the application needs to
handle events occurring before the Zero Length Packets (see the DFU example).

5.7 Application layer description

Figure 13. Folder organization

All the examples provided within the STM32F0x2 USB FS device Library firmware package
are developed and validated on the STM32072B-EVAL evaluation board. For each
example, the source folder is split into src (sources) and inc (includes).

The sources directory includes the following files:

– app.c: contains the main function

– stm32_it.c: contains the system interrupt handlers

– system_stm32f0xx.c: system clock configuration file for STM32F072 devices.

DocID025767 Rev 1 55/73

UM1717 USB device library

72

– usb_bsp.c: contains the function implementation (declared in the usb_bsp.h in the
USB device low level driver) to initialize the GPIO for the core and interrupts
enabling/disabling process.

– usbd_usr: contains the function implementation (declared in the usbd_usr.h in the
USB library) to handle the library events from user layer (event messages).

– usbd_desc.c: This file is provided within USB Device examples and implements
callback bodies. This file offers a set of functions used to change the device and
string descriptors at application runtime.

The includes directory contains the following files:

– stm32_it.h: header file of the stm32_it.c file

– usb_conf.h: configuration files for the USB device low level driver

– usbd_conf.h: configuration files for the USB device library

– usbd_pwr.c: this file provides API for power management

The user should use CN4 connector of the STM32072B-EVAL to connect the board to a PC
host through USB cable

5.8 Starting the USB library

The USB Library is built as an interrupt model; from application layer the user has only to
call the USBD_Init () function and pass the user and class callbacks. The USB internal
process is handled internally by the USB library and triggered by the USB interrupts from
the USB driver.

Figure 14. USBD_Initf unction example

5.9 USB examples

5.9.1 USB mass storage example

The Mass storage example uses the microSD Flash embedded in the STM32072B-EVAL
evaluation board as media for data storage.

In addition to the source files mentioned above, additional files for the disk access were
added to handle the microSD driver and microSD access operations.

The mass storage example has the following USB device information (usbd_desc.c).

#define USBD_VID 0x0483

#define USBD_PID 0x5720

#define USBD_LANGID_STRING 0x409

USB device library UM1717

56/73 DocID025767 Rev 1

#define USBD_MANUFACTURER_STRING "STMicroelectronics"

#define USBD_PRODUCT_FS_STRING "Mass Storage in FS Mode"

#define USBD_CONFIGURATION_FS_STRING "MSC Config"

#define USBD_INTERFACE_FS_STRING "MSC Interface"

The mass storage demo complies with USB 2.0 and USB mass storage class (bulk-only
transfer subclass) specifications. After running the application, the user just has to plug the
USB cable into a PC Host and the device is automatically detected without any additional
drive (with Win 2000, XP, Vista and Windows 7). A new removable drive appears in the
system window and write/read/format operations can be performed as with any other
removable drive.

5.9.2 USB human interface example

The HID example uses the joystick embedded in the STM32072B-EVAL evaluation board.

The HID example works in Full speed modes and has the following USB device information
(usbd_desc.c).

 #define USBD_VID 0x0483

 #define USBD_PID 0x5710

 #define USBD_LANGID_STRING 0x409

 #define USBD_MANUFACTURER_STRING "STMicroelectronics"

 #define USBD_PRODUCT_FS_STRING "Joystick in FS Mode"

 #define USBD_CONFIGURATION_FS_STRING "HID Config"

 #define USBD_INTERFACE_FS_STRING "HID Interface"

The user can use the embedded joystick on the evaluation board to move the mouse pointer
on the host screen.

Note: The Low power mode is enabled, allowing entering the core into Low power mode by the
USB Suspend event, the core wakes up when the USB wakeup event is received on the
USB. The HID example supports also the remote wakeup feature allowing the device to
wake up the host by pressing the [Tamper] button on the evaluation board.

5.9.3 USB firmware upgrade example

The DFU example allows a device firmware upgrade using the DFU drivers provided by ST
(ST DFUse and ST DFU Tester) available for download from www.st.com.

Refer to the UM0412, DfuSe USB device firmware upgrade STMicroelectronics extension,

for more details on the driver installation and PC user interface.

The Internal flash memory is the only supported memory for this example

The DFU example has the following USB device information.

#define USBD_VID 0x0483

#define USBD_PID 0xDF11

#define USBD_LANGID_STRING 0x409

#define USBD_MANUFACTURER_STRING "STMicroelectronics"

#define USBD_PRODUCT_FS_STRING "DFU in FS Mode"

#define USBD_CONFIGURATION_FS_STRING "DFU Config"

DocID025767 Rev 1 57/73

UM1717 USB device library

72

#define USBD_INTERFACE_FS_STRING "DFU Interface"

When the DFU application starts, the default state is DFU ERROR in order to prevent
spurious access to the application before it is correctly configured. Once the application is
running, the state is updated depending on the current operation.

After downloading a DFU image into the internal Flash and exiting from DFU mode (using
command “Leave DFU mode” of the DfuSe applet), a hardware reset may be performed
(using RESET button on the evaluation board). After reset, the DFU example jumps and
executes the loaded user application in the internal Flash memory.

To go back to the DFU example, you have to reset the device (using RESET button or
software reset) while the Tamper button is pushed. If the Tamper button is released after
reset, the example jumps to user image application loaded in the internal Flash.

5.9.4 USB virtual com port (VCP) example

The VCP example illustrates an implementation of the CDC class following the PSTN sub-
protocol. The VCP example allows the STM32 device to behave as a USB-to-RS232 bridge.

– On one side, the STM32 communicates with host (PC) through USB interface in
Device mode.

– On the other side, the STM32 communicates with other devices (same host, other
host, other devices…) through the USART interface (RS232).

The support of the VCP interface is managed through the ST Virtual Com Port driver
available for download from www.st.com.

This example can be customized to communicate with interfaces other than USART.

The VCP example has the following USB device information.

#define USBD_VID 0x0483

#define USBD_PID 0x5740

#define USBD_LANGID_STRING 0x409

#define USBD_MANUFACTURER_STRING "STMicroelectronics"

#define USBD_PRODUCT_FS_STRING "STM32 Virtual ComPort in FS Mode"

#define USBD_CONFIGURATION_FS_STRING "VCP Config"

#define USBD_INTERFACE_FS_STRING "VCP Interface"

When the VCP application starts, the USB device is enumerated as serial communication
port and can be configured in the same way (baudrate, data format, parity, stop bit
length…).

To test this example, you can use one of the following configurations:

– Configuration 1: Connect USB cable to host and USART (RS232) to a different host
(PC or other device) or to the same host. In this case, you can open two
hyperterminal-like terminals to send/receive data to/from host to/from device.

– Configuration 2: Connect USB cable to Host and connect USART TX pin to USART
RX pin on the evaluation board (Loopback mode). In this case, you can open one
terminal (relative to USB com port or USART com port) and all data sent from this
terminal will be received by the same terminal in Loopback mode. This mode is useful
for test and performance measurements.

USB device library UM1717

58/73 DocID025767 Rev 1

Figure 15. Configuration 1a: Two different hosts for USB and USART

Figure 16. Configuration 1b: One single Host for USB and USART

Figure 17. Configuration 2: Loopback mode (for test purposes)

5.9.5 USB audio example

The Audio device example allows device to communicate with host (PC) as USB Speaker
using isochronous pipe for audio data transfer along with some control commands (i.e.
Mute).

DocID025767 Rev 1 59/73

UM1717 USB device library

72

The Audio device is natively supported by most of operating systems (there is no need for
specific driver setup).

The Audio device example has the following USB device information.

#define USBD_VID 0x0483

#define USBD_PID 0x5730

#define USBD_LANGID_STRING 0x409

#define USBD_MANUFACTURER_STRING "STMicroelectronics"

#define USBD_PRODUCT_FS_STRING "STM32 AUDIO Streaming in FS Mode"

#define USBD_CONFIGURATION_FS_STRING "AUDIO Config"

#define USBD_INTERFACE_FS_STRING "AUDIO Interface"

The Audio example uses the DAC interface to stream audio data from USB to the audio
amplifier implemented on the evaluation board. The audio downstream is driven with 48 kHz
sampling rate, a 16-bit depth, and 2 channels (stereo) to headset. It supports single audio
frequency for the output: the host PC driver manages the sampling rate conversion from
original audio file sampling rate to the sampling rate supported by the example. It is advised
to set high audio frequencies to guarantee high audio quality. It is also possible to modify the
default volume through define DEFAULT_VOLUME in file audio_app_conf.h.

This example provides a synchronization mechanism allowing to overcome the difference
between USB clock domain and STM32 clock domain:

The Clock update synchronization consists on slightly modifying the period of the timer
triggering the DAC peripheral. This solution is based on speeding-up and slowing-down the
trigger clock in order to match the USB clock domain.

This clock allows to keep all data samples (no data loss) but modifies slightly the audio
frequency (this modification is not perceived by human ear).

For this method, the distance between write pointer and read pointer is periodically
measured and depending on the measured distance a correction action is performed:

– If the measured distance is higher than 3/4 buffer size, the timer (trigger of DAC) is
speed-up

– If the measured distance is lower than 1/4 buffer size, the timer (trigger of DAC) is
slow-down

5.9.6 USB CCID example

The CCID example illustrates an implementation of the CCID class following the USB-CCID
“Specification for Integrated Circuit(s) Cards Interface Revision 1.1”

The USB CCID is built around the Smart-Card Integrated Circuit(s) Card Interface Devices
specifications. The driver implements the following aspects of the specification:

– Bulk transfers of CCID commands

– Interrupt Transfers of the CCID status

Driver Selection and Installation:

When the STM32072B-EVAL evaluation board containing the CCID firmware application is
plugged into the USB port of a host PC (Windows), the STM32 device appears as a smart
card reader device using the windows native CCID driver. For Windows XP users, a
windows update may be needed in order to download the CCID driver "usbccid.sys".

USB device library UM1717

60/73 DocID025767 Rev 1

The features provided by Microsoft’s usbccid.sys are fully detailed in Microsoft Class Drivers
for USB CCID Smart Cards
(http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx).

Commands Description:

The CCID commands are in specified format of 10 bytes. Additionally data transfer may take
place depending on commands and their responses. A general BOT transaction is based on
a simple basic state machine: it begins with ready state (CCID_STATE_IDLE) and if a
Command is received from the host, the commands are decoded and handled by CCID
layers.

When the commands are received, the endpoint (EP) Interrupt calls the appropriate function
for BulkOut Transfer. The state machine in CCID decodes the commands. Each command
is then responded with a Bulk-In response.

Most of the Commands are short commands. These commands do not have 2nd stage of
the data transfer. The commands are directly responded with the response. The State
machine of these commands are shown below:

Figure 18. CCID State machine

The Bulk-out/in messages are managed by a state machine. When the Bulk-out message
reception is completed, the message function is executed and returns only after the
completion of the action to be done by the USART. The response is sent to the host by Bulk-
in message. If there are any interrupt messages, they are sent just before the Bulk-in
message is sent.

CCID Command Pipe Bulk IN/OUT Messages

The STM32 (CCID) shall follow the CCID Bulk OUT Messages as specified in CCID Rev 1.1
Section 6.1. This CCID part uses a 271-byte buffer for all messages. Messages are
composed of two parts:

– header (10 bytes: fixed size)

– data (up to 261 bytes).

The CCID_BulkMessage_Out() function uses several Bulk-out USB transactions to
verify the message header and store the entire message in the buffer. This function
manages the state machine during USB Bulk Out message reception. It fills the message
buffer with a maximum of 271 bytes.

http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx

DocID025767 Rev 1 61/73

UM1717 USB device library

72

The Bulk IN messages are used in response to the Bulk OUT messages.

The CCID_BulkMessage_In()function handleBulk IN and Interrupt IN data stage.

This section lists the CCID Bulk IN/OUT message to be supported by the STM32 (CCID):

PC_to_RDR_IccPowerOn

This command activates the card slot and return ATR data from the card. The response to
this command message is the RDR_to_PC_DataBlock response message and the data
returned is the the Answer To Reset (ATR) data

PC_to_RDR_IccPowerOff

This command desactivates the card slot. The response to this message is the
RDR_to_PC_SlotStatus.

PC_TO_RDR_GETSLOTSTATUS

This command gets the current status of the slot. The response to this message is the
RDR_to_PC_SlotStatus

PC_TO_RDR_GETPARAMETERS:

This command gets the slot parameters. The respnse to this message is the
RDR_to_PC_Parameters

PC_TO_RDR_RESETPARAMETERS

This command resets the slot parameters to the default value.The respnse to this message
is the RDR_to_PC_Parameters

PC_TO_RDR_SETPARAMETERS

This command sets the slot parameters The respnse to this message is the
RDR_to_PC_Parameters

PC_TO_RDR_ESCAPE

This command allows the CCID manufacturer to define and access extended features.
Information sent via this command is processed by the CCID control logic. The respnse to
this message is the RDR_to_PC_Escape

PC_TO_RDR_ICCCLOCK

This command stops or restarts the clock. The respnse to this message is the
RDR_to_PC_SlotStatus

PC_TO_RDR_ABORT

This command is used with the Control pipe Abort request to tell the CCID to stop any
current transfer at the specified slot and return to a state where the slot is ready to accept a
new command pipe Bulk-OUT message.The respnse to this message is the
RDR_to_PC_SlotStatus

PC_TO_RDR_T0APDU

This command changes the parameters used to perform the transportation of APDU
messages by the T=0 protocol.The respnse to this message is the
RDR_to_PC_SlotStatus

PC_TO_RDR_MECHANICAL

USB device library UM1717

62/73 DocID025767 Rev 1

This command is used to manage motorized type CCID functionality. The Lock Card
function is used to hold the ICC. This prevents an ICC from being easily removed from the
CCID. The Unlock Card function is used to remove the hold initiated by the Lock Card
function. The respnse to this message is the
RDR_to_PC_SlotStatusPC_TO_RDR_SETDATARATEANDCLOCKFREQUENCY

This command is used to manually set the data rate and clock frequency of a specific slot.
The respnse to this message is the RDR_to_PC_DataRateAndClockFrequency

PC_TO_RDR_SECURE

This command is used to manually set the data rate and clock frequency of a specific
slot.This is a command message to allow entering the PIN for verification or modification.
The respnse to this message is the RDR_to_PC_DataBlock

5.9.7 USB Composite examples

The USB Composite Device is a general way to integrate two or more functions into one
single device. It is defined in the USB Specification Revision 2.0, as "A device that has
multiple interfaces controlled independently of each other".

Intefaces:

Two kinds of composite are described: Single (MSC+HID) and Multi (HID+CDC) interface
functions. There are classes like CDC or audio, which consists of multiple interfaces,for
these devices an additional Interface Association Descriptor (IAD) should be used.

The interfaces descriptors for each functions are merged in one interface descriptor for the
composite.

For example in the MSC+HID composite demo usbd_hid_msc_wrapper was created by
combining

– Both HID and MSC Interfaces and endpoints descriptors

– Handlers of class-specific requests for these classes

USBD_Class_cb_TypeDef USBD_HID_MSC_cb =

{

 USBD_HID_MSC_Init,

 USBD_HID_MSC_DeInit,

 USBD_HID_MSC_Setup,

 NULL,

 USBD_HID_MSC_EP0_RxReady,

 USBD_HID_MSC_DataIn,

 USBD_HID_MSC_DataOut,

 NULL,

 USBD_HID_MSC_GetConfigDescriptor,

};

Figure 19 shows the device descriptor of a composite device with single interface function
and Figure 20 shows the device descriptor of a composite device with Multi interfaces
function.

Note: As specified by the Universal Serial Bus Specification bDeviceClass, bDeviceSub-Class
and bDeviceProtocol set to zero for a device without multi-interface function; bDeviceClass,

DocID025767 Rev 1 63/73

UM1717 USB device library

72

bDeviceSub-Class and bDeviceProtocolset to EFH, 02H, 01H for a device with
multiinterface function inside

Figure 19. Device descriptor of a composite device with single interface function

Figure 20. Device descriptor of a composite device with single interface function

Endpoints:

Excluding the default control endpoint (EP0), the composite device should define a number
of endpoints equal to the sum of the number of endpoints required for each individual
function.

For more details on composite devices, please refer to “usb_20.pdf 5.2.3”, which is
available on the usb.org website

USB device library UM1717

64/73 DocID025767 Rev 1

Mass Storage-HID composite example

This example was created by combining the code in the Custom HID and USB MSC
example projects. Starting from the Custom HID example, a new interface and Endpoint
(EP2) descriptor were added for mass storage, and the total length in the configuration
descriptor was modified. The block diagram in Figure 21 shows the architecture of the HID
MSC composite example.

Figure 21. Architecture of the HID MSC composite example

CDC-HID composite example

Interface association descriptor

the CDC Class uses two different interfaces, each with one endpoint. That’s why the CDC
interfaces are part of a composite device class.

Interface 0 is the device management interface (communication). It provides the host with a
mechanism to control the device and to receive notification of events.

Interface 1 is the data interface. It provides the data transfer mechanism for the virtual
UART.

Endpoint 2 (CDC_CMD_EP) belongs to Interface 0. It is a USB IN endpoint (Interrupt),
transmitting notifications to the host.

Endpoint 3 (CDC_IN_EP/CDC_OUT_EP) belongs to Interface 1. It is used in both directions
as an IN and OUT endpoint (Bulk).

The interface association descriptor (IAD) is used to report that interfaces 0 and 1use the
same function (CDC) to the host.

DocID025767 Rev 1 65/73

UM1717 USB device library

72

Figure 22. Standard Interface Association Descriptor

For more details about the IAD descriptor please refer to:

http://www.usb.org/developers/whitepapers/iadclasscode_r10.pdf

Windows Driver Files

To run this example, you will need to modify the following lines in the .inf file of the cdc
driver: stmcdc.inf (you will find it in "C:\Program Files\STMicroelectronics\Software\Virtual
COM Port Driver).

The stmcdc.inf exists to assist in the loading of the proper USB serial drivers in the Windows
OSs for the composite device to operate correctly as a virtual COM interface.

The following Lines associates the CDC device with the OS’s usbser.sys driver file

and causes the OS to load this driver during the enumeration process.

The "MI" stands for Multiple Interface.

;VID/PID Settings

;--

[DeviceList.NT]

%DESCRIPTION%=DriverInstall,USB\VID_0483&PID_3256&MI_01

[DeviceList.NTamd64]

%DESCRIPTION%=DriverInstall,USB\VID_0483&PID_3256&MI_01

To avoid USB devices with the same VID&PID (Which may cause conflict on Windows)
each Composite example (MSC+HID) or (CDC+HID)uses a different PID (VID stays
unchanged)

.

5.9.8 Custom HID example

This demo uses the HID(human interface device) class for general purpose I/O operations.
Typically, the HID class is used to implement human interface products, such as standard
mouse devices, keyboards, Bluetooth adaptors etc.

The HID protocol is however quite flexible, and can be adapted and used to send/receive
general purpose data to/from a USB device. HID Input/Output reports can be exchanged

USB device library UM1717

66/73 DocID025767 Rev 1

over both the interrupt endpoints, and over the default endpoint (Get_/Set_Report requests).
The custom HID demo is a simple HID demo provided with a small PC applet to give an
example of how to create a customized HID based on the native Windows HID driver. It
consists of simple data exchanges between the STM32 evaluation board and the PC Host
using two interrupt pipes (IN and OUT).

The Interrupt IN and OUT pipes are used for sending asynchronous data to the host, and to
receive low-latency information.

All data transferred must be formatted as reports which structure is defined in the report
descriptor. Reports are discussed in detail later

The custom HID demo implements feature request handling, which allows the user to send
a control command to the device. This command is sent through endpoint 0, and must be
treated as a set_report request. For more details on the HID device class, please refer to the
“Device Class Definition for HID 1.11” available from the usb.org website. The data
exchanged is related to LED commands, push-button state reports and ADC conversion
values.

In order to begin sending/receiving packets to the device, you must first plug in the USB
device, then run the USB HID demonstrator. As configured by default, the application is
looking for HID class USB devices with VID = 0x0483 and PID = 0x5750

For more details on how to use the PC applet of the custom HID, please refer to the
UM0551 user manual “USB HID demonstrator” available from the STMicroelectronics
microcontroller website www.st.com.

Report Descriptors

All data transferred to and from an HID device must be structured in the form of reports. The
report descriptor defines the report structure, which contains all the information a host
needs to determine the data format and how the data should be processed. See next Figure
for a report descriptor topology:

DocID025767 Rev 1 67/73

UM1717 USB device library

72

Figure 23. Custom HID topology

Each report descriptor is related to a specific component in the evaluation board (LEDs,
Push-buttons or ADC). The following section describes the functionality of these reports.

LED control

The STM32F072B evaluation board have four LEDs. In this demo each LED corresponds to
a specific report (reports 1 to 4), and the LED states (ON/OFF) are set by the PC applet.
Reports generated by the host to the device are transmitted through either the interrupt
(OUT) endpoint or the default endpoint (Control) using the Set_Report request. In the PC
applet, the output mode is set by default to SET_REPORT, and interrupt transfer is
applied.When the device receives data on endpoint 1 OUT, the USBD_HID_DataOut()
function is called to dispatch the received state to the corresponding LED according to the
report number. When switching to the SET_FEATURE mode, control transfer is applied. The
USBD_HID_EP0_RxReady() function is called, and the host initiates a control endpoint
transfer, which causes IN and OUT reports to be sent and received. Report_Buf[] contains
both the report and the number of bytes to transmit. The data received has the format
shown in Figure 5, where:

– Report Num: report number from 1 to 4.

– LED state:

a) 0 -> LED off

b) 1 -> LED on

USB device library UM1717

68/73 DocID025767 Rev 1

Figure 24. Data OUT format

Tamper button state report

The state of the Tamper button on the STM32F072B evaluation board is reported to the PC
host using the endpoint 1 IN. The tamper button corresponds to Report 6. When the tamper
button is pressed, the device sends the related report number and the tamper button state to
the host. Figure 6 shows the used format, where:

– Report Num: report number 6

– Button state: 1 -> button pressed

Figure 25. Data IN Format

ADC-converted data transfer

This part of the demo consists in transferring the result of the converted voltage connected
to the potentiometer of the evaluation board to the PC host. The ADC is configured in
continuous mode with DMA data transfer to a RAM variable (ADC_ConvertedValueX). After
each conversion the converted value is tested against an old one
(ADC_ConvertedValueX_1) and if there is a difference between the two values
(potentiometer value changed by a user), the new value is sent to the PC using the endpoint
1 IN.

Note: The data format is the same as the one used for the tamper button, but the report number
(7) is followed by the MSB of the ADC conversion result.

DocID025767 Rev 1 69/73

UM1717 Frequently-asked questions

72

6 Frequently-asked questions

1. How to define the number of endpoints to be used?

The usb_conf.h file is used to define the number of endpoints to be used (through
the define EP_NUM: Which take the maximum used endpoint number + 1 (default
endpoint EP0) for example in the MSC demo we are using two endpoints: EP1 for MSC
IN and EP2 for MSC OUT, in this case EP_NUM = 2 + 1=3.

You can add also a new endpoint through this file.

2. How to set the buffer configuration for endpoints?

The usb_conf.h file is used also to configure the BTABLE and all endpoint addresses in
the PMA (by modifying and/or adding relative address defines: BTABLE_ADDRESS,
ENDP0_RXADDR,ENDP0_TXADDR ...).

Packet memory area (PMA) is used to store buffer description table. Depending on
number and type of used endpoints you need to reserve enough space. Please refer to
the RM0091 ”STM32F0x1/STM32F0x2/STM32F0x8 advanced ARM-based 32-bit
MCUs” Reference manual available from STMicroelectronics website www.st.com.

3. How to select the USB Clock source?

The USB clock can be from one of the below two sources:

- The system clock : PLL and Quartz (Native)

- The HSI 48MHz RC oscillator: Special Clock Recovery circuitry dedicated to provide
an high precision reference clock.

In the usb_conf.h the CRS is used as default USB clock source, through these
defines:#define USB_CLOCK_SOURCE_CRS (Default).

If you need to use PLL and Quartz as USB clock you have to comment this line.

4. Is the New STM32 USB FS Device Library fully compatible with the STM32 USB OTG
Host and Device Library V2.1.0 ?

Yes, The low layer driver (DCD and DCD ISR) manage the difference between the two
USB IPs, that’s why we have built a new USB low level core with the same architecture
as the USB OTG one. The aim of this approach is to simplify the migration for user.

We use the same way to connect the new low level driver with USB Full speed Core,
which provides the same APIs for user.

Also the new STM32 USB FS Device Library uses the same way (as OTG Library) for
different layers interaction between the low level driver, the usb device library and the
application layer.

5. What about other audio synchronization mechanism?

More advanced application with state of art audio synchronization mechanism is
available. For any questions regarding this demo please contact your local FAE.

6. Which USB audio class does the Audio demo support?

The current firmware is using the USB audio class version 1.

7. How can the Device and string descriptors be modified on-the-fly?

In the usbd_desc.c file, the descriptor related to the device and the strings can be
modified using the Get Descriptor callbacks. The application can return the correct
descriptor buffer related to the application index using a switch case statement.

8. How can the mass storage class driver support more than one logical unit (LUN)?

Frequently-asked questions UM1717

70/73 DocID025767 Rev 1

In the usbd_storage_template.c file, all the APIs needed to use physical media are
defined. Each function comes with the “LUN” parameter to select the addressed media.

The number of supported LUNs can be changed using the define STORAGE_LUN_NBR
in the usbd_storage_xxx.c file (where, xxx is the medium to be used).

For the inquiry data, the STORAGE_Inquirydata buffer contains the standard inquiry
data for each LUN.

Example: 2 LUNs are used.

const int8_t STORAGE_Inquirydata[] = {

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'm', 'i', 'c', 'r', 'o', 'S', 'D', ' ', /* Product:
16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

/* LUN 0 */

0x00,

0x80,

0x02,

0x02,

(USBD_STD_INQUIRY_LENGTH - 5),

0x00,

0x00,

0x00,

'S', 'T', 'M', ' ', ' ', ' ', ' ', ' ', /* Manufacturer:
8 bytes */

'N', 'a', 'n', 'd', ' ', ' ', ' ', ' ', /* Product:
16 Bytes */

'F', 'l', 'a', 's', 'h', ' ', ' ', ' ',

'1', '.', '0' ,'0', /* Version: 4 Bytes */

};

9. How can the DFU class driver support more than one memory interface?

To add an additional memory interface:

DocID025767 Rev 1 71/73

UM1717 Frequently-asked questions

72

a) In the usbd_conf.h file (under Project\USB_Device_Examples\DFU\inc), change
the following define: #define MAX_USED_MEDIA

For example:

#define MAX_USED_MEDIA 2

b) Implement the APIs given by the following structure: DFU_MAL_Prop_TypeDef
to implement the media I/O requests (Read, Write, Erase …etc), the prototype of
each API is given in the usbd_dfu_mal.h file.

c) Add the interface string of the new medium to be added in the
usbd_dfu_StringDesc table defined in the usbd_dfu_mal.c file.

10. Can I use Different endpoints than those used in the demo?

Yes, this can be done in the usbd_conf.h file by changing this define (MSC demo case
for example)

#define MSC_IN_EP 0x81 > For Endpoint 1 IN

#define MSC_OUT_EP 0x02 > For Endpoint 2 OUT

11. What about USB device stack footprint?

This library is built with a reduced footprint to provide optimum solution for low STM32
memory products (e.g HID Joystick application consumes as low as 7.5KB of flash and
1.5KB of RAM in high compiler optimization).

Revision history UM1717

72/73 DocID025767 Rev 1

7 Revision history

Table 33. Document revision history

Date Revision Changes

11-Feb-2014 1 Initial release

DocID025767 Rev 1 73/73

UM1717

73

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Reference information
	1.1 Glossary
	Table 1. List of terms

	2 USB device library overview
	Figure 1. USB device library organization overview
	2.1 Main features

	3 USB device library folder structure
	Figure 2. Folder structure

	4 USB low level driver
	4.1 USB low level driver architecture
	Figure 3. Driver architecture overview

	4.2 USB low level driver files
	Figure 4. Driver files
	Table 2. USB low level file descriptions

	4.3 USB driver programming manual
	4.3.1 Low level driver structures
	4.3.2 Programming device drivers
	Table 3. USB_Device_dev struct size

	5 USB device library
	5.1 USB device library overview
	Figure 5. USB device library architecture
	Figure 6. USB device library file structure

	5.2 USB device library description
	5.2.1 USB device library flow
	Table 4. Standard requests

	5.2.2 USB device library process
	Figure 7. USB device library process flowchart

	5.2.3 USB device data flow
	Figure 8. USB device data flow

	5.2.4 USB device library configuration
	5.2.5 USB control functions

	5.3 USB device library functions
	Table 5. USB device core files
	Table 6. usbd_core (.c, .h) files functions
	Table 7. usbd_ioreq (.c, .h) files functions
	Table 8. usbd_req (.c, .h) functions

	5.4 USB device class interface
	5.5 USB device user interface
	5.6 USB device classes
	Table 9. USB device class files
	5.6.1 HID class
	Table 10. usbd_hid_core (.c, .h) files functions

	5.6.2 Mass storage class
	Figure 9. BOT Protocol architecture
	Table 11. SCSI commands
	Table 12. usbd_msc_core (.c, .h) files functions
	Table 13. usbd_msc_bot (.c, .h) files functions
	Table 14. usbd_msc_scsi (.c, .h) functions
	Table 15. Disk operation functions

	5.6.3 Device firmware upgrade (DFU) class
	Table 16. DFU states
	Figure 10. DFU Interface state transitions diagram
	Table 17. Supported requests
	Table 18. usbd_dfu_core (.c, .h) files functions
	Table 19. usbd_dfu_mal (.c, .h) files functions
	Table 20. usbd_flash_if (.c,.h) files functions

	5.6.4 Audio class
	Figure 11. USB Audio Block Diagram
	Table 21. Audio control requests
	Table 22. usbd_audio_core (.c, .h) files functions
	Table 23. usbd_audio_xxx_if (.c, .h) files functions
	Table 24. Audio player states

	5.6.5 Communication device class (CDC)
	Table 25. usbd_cdc_core (.c, .h) files functions
	Table 26. Configurable CDC parameters
	Table 27. usbd_cdc_xxx_if (.c, .h) files functions
	Table 28. Variables used by usbd_cdc_xxx_if.c/.h

	5.6.6 CCID (Specification for Integrated Circuit(s) Cards Interface Devices)
	Figure 12. CCID Class Driver Architecture
	Table 29. usbd_ccid_core(.c,.h) files functions
	Table 30. usbd_ccid_if.c(.c,.h) files functions
	Table 31. usbd_ccid_cmd(.c,.h) files functions
	Table 32. Summary of supported Class Specific Requests

	5.6.7 Adding a custom class

	5.7 Application layer description
	Figure 13. Folder organization

	5.8 Starting the USB library
	Figure 14. USBD_Initf unction example

	5.9 USB examples
	5.9.1 USB mass storage example
	5.9.2 USB human interface example
	5.9.3 USB firmware upgrade example
	5.9.4 USB virtual com port (VCP) example
	Figure 15. Configuration 1a: Two different hosts for USB and USART
	Figure 16. Configuration 1b: One single Host for USB and USART
	Figure 17. Configuration 2: Loopback mode (for test purposes)

	5.9.5 USB audio example
	5.9.6 USB CCID example
	Figure 18. CCID State machine

	5.9.7 USB Composite examples
	Figure 19. Device descriptor of a composite device with single interface function
	Figure 20. Device descriptor of a composite device with single interface function
	Figure 21. Architecture of the HID MSC composite example
	Figure 22. Standard Interface Association Descriptor

	5.9.8 Custom HID example
	Figure 23. Custom HID topology
	Figure 24. Data OUT format
	Figure 25. Data IN Format

	6 Frequently-asked questions
	7 Revision history
	Table 33. Document revision history

