
Preliminary Application Note

Bootloader for 78K0/Kx2

8-Bit Single-Chip Microcontroller

78K0/Kx2

Document No. U18539EE1V0AN00

Date published 15/02/07

© NEC Electronics 2007

Printed in Germany

The information in this document is subject to change without notice. Before
using this document, please confirm that this is the latest version.
Not all products and/or types are available in every country. Please check
with an NEC Electronics sales representative for availability and additional
information.

2 Preliminary Application Note U18539EE1V0AN00

Legal Notes

• The information contained in this document is being issued in
advance of the production cycle for the product. The parameters
for the product may change before final production or NEC
Electronics Corporation, at its own discretion, may withdraw the
product prior to its production.

• No part of this document may be copied or reproduced in any form or
by any means without the prior written consent of NEC Electronics.
NEC Electronics assumes no responsibility for any errors that may
appear in this document.

• NEC Electronics does not assume any liability for infringement of
patents, copyrights or other intellectual property rights of third parties
by or arising from the use of NEC Electronics products listed in this
document or any other liability arising from the use of such products.
No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC
Electronics or others.

• Descriptions of circuits, software and other related information in this
document are provided for illustrative purposes in semiconductor
product operation and application examples. The incorporation of
these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer.
NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits,
software and information.

• While NEC Electronics endeavors to enhance the quality, reliability
and safety of NEC Electronics products, customers agree and
acknowledge that the possibility of defects thereof cannot be
eliminated entirely. To minimize risks of damage to property or injury
(including death) to persons arising from defects in NEC Electronics
products, customers must incorporate sufficient safety measures in
their design, such as redundancy, fire-containment and anti-failure
features.

• NEC Electronics products are classified into the following three quality
grades: "Standard", "Special", and "Specific". The "Specific" quality
grade applies only to NEC Electronics products developed based on
a customer-designated "quality assurance program" for a specific
application. The recommended applications of an NEC Electronics
product depend on its quality grade, as indicated below. Customers
must check the quality grade of each NEC Electronics products before
using it in a particular application.
"Standard": Computers, office equipment, communications
equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.),
traffic control systems, anti-disaster systems, anti-crime systems,
safety equipment and medical equipment (not specifically designed
for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters,
nuclear reactor control systems, life support systems and medical
equipment for life support, etc.

Preliminary Application Note U18539EE1V0AN00 3

The quality grade of NEC Electronics products is "Standard" unless otherwise
expressly specified in NEC Electronics data sheets or data books, etc. If
customers wish to use NEC Electronics products in applications not intended by
NEC Electronics, they must contact an NEC Electronics sales representative in
advance to determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics
Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured
by or for NEC Electronics (as defined above).

4 Preliminary Application Note U18539EE1V0AN00

Notes for CMOS Devices

1. VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause
malfunction. If the input of the CMOS device stays in the area between
VIL (MAX) and VIH (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the
device when the input level is fixed, and also in the transition period
when the input level passes through the area between VIL (MAX) and
VIH (MIN).

2. HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an
input pin is unconnected, it is possible that an internal input level may
be generated due to noise, etc., causing malfunction. CMOS devices
behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down
circuitry. Each unused pin should be connected to VDD or GND via a
resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and
according to related specifications governing the device.

3. PRECAUTION AGAINST ESD
A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device
operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier
should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag
or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be
grounded using a wrist strap. Semiconductor devices must not be
touched with bare hands. Similar precautions need to be taken for PW
boards with mounted semiconductor devices.

4. STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with
reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, I/O settings or contents of registers.
A device is not initialized until the reset signal is received. A reset
operation must be executed immediately after power-on for devices
with reset functions.

5. POWER ON/OFF SEQUENCE
In the case of a device that uses different power supplies for the
internal operation and external interface, as a rule, switch on the
external power supply after switching on the internal power supply.
When switching the power supply off, as a rule, switch off the external
power supply and then the internal power supply. Use of the reverse
power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing
malfunction and degradation of internal elements due to the passage
of an abnormal current. The correct power on/off sequence must be
judged separately for each device and according to related
specifications governing the device.

Preliminary Application Note U18539EE1V0AN00 5

6. INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device
is not powered. The current injection that results from input of such a
signal or I/O pull-up power supply may cause malfunction and the
abnormal current that passes in the device at this time may cause
degradation of internal elements. Input of signals during the power off
state must be judged separately for each device and according to
related specifications governing the device.

6 Preliminary Application Note U18539EE1V0AN00

Regional Information

Some information contained in this document may vary from country tocountry. Before
using any NEC product in your application, please contact theNEC office in your country
to obtain a list of authorized representatives anddistributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for

third-party tools and components, host computers, power plugs, AC
supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and otherlegal
issues may also vary from country to country.

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044 4355111
http://www.necel.com/

[America]

[Europe]

[Asia & Oceania]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554,
U.S.A.
Tel: 408 5886000
http://www.am.necel.com/

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211 65030
http://www.eu.necel.com/

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908 691133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01 30675800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091 5042787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 6387200

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02 667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven,
The Netherlands
Tel: 040 2654010

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27
ZhiChunLu Haidian District,
Beijing 100083, P.R.China
Tel: 010 82351155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China
Tower,
200 Yincheng Road Central,
Pudong New Area,
Shanghai 200120, P.R. China
Tel: 021 58885400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886 9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.
Tel: 02 27192377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253 8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku, Seoul,
135-080, Korea Tel: 02-558-3737
http://www.kr.necel.com/

Preliminary Application Note U18539EE1V0AN00 7

Table of Contents

Chapter 1 Introduction . 9

1.1 Definition and advantages of a bootloader . 9

1.2 Main tasks of a Bootloader . 10

Chapter 2 Flash Memory Programming . 11

2.1 Memory organization . 11
2.1.1 Boot cluster . 12
2.1.2 Difference in Representation of Memory Space . 12

2.2 Self programming . 12
2.2.1 Hardware environment . 13
2.2.2 Software environment . 13

Chapter 3 Bootloader . 17

3.1 Specification . 17

3.2 Hardware requirements . 18

3.3 Bootloader concept . 19
3.3.1 Bootloader vs. Application . 19
3.3.2 Virtual interrupt vectors . 20
3.3.3 Update methods . 21

3.4 Software architecture . 25
3.4.1 Time Control module . 25
3.4.2 Communication Interface module . 26
3.4.3 Data Buffer Control module . 26
3.4.4 File Decoder module . 26

3.5 Bootloader implementation . 27
3.5.1 Watchdog . 28
3.5.2 Timeout detection with polling . 28
3.5.3 Receive flow . 28
3.5.4 Error handler . 30

3.6 Bootloader configuration . 31
3.6.1 Bootloader adaptation . 33

Chapter 4 Application adaption . 35

4.1 Modify XCL-file . 35

4.2 Add/configure predefined files . 36

Chapter 5 Application example . 39

Chapter 6 Interface specification . 43

6.1 Intel Hex File format . 43

6.2 Interface specification . 46
6.2.1 Communication interface . 46
6.2.2 File decoder interface . 52
6.2.3 Time control interface . 55

8 Preliminary Application Note U18539EE1V0AN00

Chapter 1 Introduction

This application note describes how to implement a bootloader using the
78K0/Kx2 family microcontroller. Before going into detail of the bootloader code
it is as well to explain what a bootloader is and the advantages of using one.

1.1 Definition and advantages of a bootloader

What is a bootloader? The “boot” part of the name comes from the fact that a
bootloader is a piece of code that executes when the microcontroller powers up
or “boots”. The “loader” part of the name comes from the fact that the main
function of the bootloader is to “load” new application code if requested. “Load”
in this context means getting the data into the microcontroller and writing it into
flash memory.

The following picture shows the general bootloader flow.

Figure 1-1 General bootloader flow

The main advantage of a bootloader is the ability to update or replace your
application code without needing to use an external programmer. It opens up the
possibility of updating your code remotely over a phone line, internet connection
etc. A good example would be a micro that controls pay phones. If there were
5.000 microcontroller based pay phones in Germany and the phones needed a

Preliminary Application Note U18539EE1V0AN00 9

firmware update, the phone company would have two choices of how to perform
the upgrade. One way would be for the phone company to drive around Germany
and manually reprogramming all 5.000 phones one at a time using an external
programmer. This would be a very costly time consuming effort. But if the micro
has a bootloader, all 5.000 phones could be reprogrammed remotely from one
central location.

1.2 Main tasks of a Bootloader

Signal to start the
bootloading process

Let’s say you have hundreds of vending machines all connected to the Internet
and you want to update their firmware. Some signal is needed to tell the
microcontroller to start the bootloading process. This could be an interrupt, a
command byte sent over a serial channel etc. This will cause the program to reset
and to run the bootloader code.

Signal to execute the
bootloader

When the microcontroller starts up, it looks for an external signal to determine
whether a new application is to be loaded, or whether it should execute the
existing application. This can be as simple as checking a port pin on power up
and making a decision based on whether the pin is high or low. It could also be
based on a character received by the UART, or the reading taken by the ADC. It
is up to the user to decide how to implement this.

Getting the new code
into the

microcontroller

The data can come in over a RS232, CAN, etc. serial port, or in parallel over a
number of port lines. The user decides how the data gets into the microcontroller.
The data coming in will typically be much larger than can be held in the
microcontroller RAM, so there must be some provision to control the flow of the
data. For an RS232 serial port, one solution would be to use a slow baud rate so
the microcontroller has time to process the data and self-flash program it without
being overrun. Another would be to use hardware handshaking using CTS and
RTS lines to control the flow of data. Another would be to use software
handshaking using the XON/XOFF protocol. The new code can be in any format
decided by the user but will need to contain addressing information as well as
checksums for error processing. Typically a standard format like Intel-Hex will be
used.

Self-flash
programming the

new code

Each time the microcontroller receives a new batch of data it must self-flash
program it into the correct memory locations. If the locations are not already blank,
they must be erased before programming. Also, typically, they will be verified
during or after programming.

Transferring control
to a valid application

program

Once the new code has been received and programmed successfully, the
bootloader will write a checksum or other unique byte sequence to a fixed memory
location. The bootloader checks for this valid application checksum or byte
sequence. If present, it will transfer control to the application.

Chapter 1 Introduction

10 Preliminary Application Note U18539EE1V0AN00

Chapter 2 Flash Memory Programming

Before going into the detail of the bootloader it is essential to understand the
architecture of the memory and the usage of the self-programming. This
description will focus on the μPD78F0547 microcontroller of the 78K0/Kx2 family.

2.1 Memory organization

The following figure shows the architecture of the flash memory(μPD78F0547). All
78K0/Kx2 devices have a common flash memory area and each device differs by
the number of additional memory banks in its architecture.

Figure 2-2 This figure shows the memory architecture of the μPD78F0547

The flash memory is divided into blocks of one kilobyte as shown in the following
table. This is the smallest amount of memory that can be blank checked, erased
or verified by the firmware.

Block Address range

Block 00H 0000H - 03FFH

Block 01H 0400H - 07FFH

Block 02H 0800H - 0BFFH

.........

Preliminary Application Note U18539EE1V0AN00 11

2.1.1 Boot cluster

Within the common area are two boot clusters(bootcluster 0 and bootcluster 1),
which have a size of 4 KB. The primary bootcluster(bootcluster 0) will be used for
the bootloader whereas the second bootcluster is designed to temporarily save
a new bootloader and perform a secure Boot Swap. The bootcluster 0 can be
secured by flags, for example, to avoid the user accidentally erasing the
bootcluster.

2.1.2 Difference in Representation of Memory Space

With 78K0/Kx2 products which support memory banking, addresses can be
viewed in the following two different ways.

• Memory bank number + CPU address

• Flash memory real address (for flash programming)

Figure 2-3 Memory addressing

The update file format must use real flash addresses which is required by the
bootloader for the self-programming, whereas for the CRC calculation, the
bootloader uses the "Memory bank number + CPU address" instead.

2.2 Self programming

As previously mentioned the microcontroller family 78K0/Kx2 supports self
programming and allow the bootloader to write new application or bootloader into
the flash memory. The write access to the flash memory will be processed by the
firmware. The following figure shows the access flow to the flash memory.

Chapter 2 Flash Memory Programming

12 Preliminary Application Note U18539EE1V0AN00

Figure 2-4 Access flow from bootloader to flash memory access

Below will be described the usage of the self-programming library.

2.2.1 Hardware environment

To execute self programming, a circuit that controls the voltage on the FLMD0
pin of the 78K0/Kx2 is necessary. The voltage on the FLMD0 pin must be low
while an ordinary user program is being executed (in normal operation mode) and
high while self programming is being executed (in flash rewriting mode).

If the firmware and software for rewriting runs while the FLMD0 pin is low, the
circuit for rewriting flash memory does not operate. Therefore, the flash memory
is not actually rewritten. To rewrite the flash memory, the FLMD0 pin must be
pulled high by manipulating a general purpose port.

Figure 2-5 FLMD0 pin must be set on high for self programming

2.2.2 Software environment

To control the self-flash programming process there are three operating modes
for the microcontroller which are described below.

Mode Description

Normal Mode
- Execution of user application
- After RESET operation starts in this mode

Mode A1
- Setting up self-programming
- During this mode the firmware can be executed

via CALL 8100H

Mode A2
- The firmware functions will be executed
- This mode is not visible to the user

Flash Memory Programming Chapter 2

Preliminary Application Note U18539EE1V0AN00 13

In the normal mode the application will be executed and the firmware is not visible
for the user. The firmware will be activated by the self-programming library when
an instruction CALL 8100H is performed.

Figure 2-6 Memory access during self-programming

As you can see in the figure above, the bootloader/application(which will use the
self-programming library) must be located within the common area, otherwise an
instruction cannot be fetched in the Mode A1. The self-programming environment
will be set up by the SelfLib_Open and SelfLib_Init function.

Activities during SelfLib_Open

• FLMD0 pin will be pulled up by the user defined general purpose port.
• Backup all registers from the register bank 3, which will be used by

the firmwareNote

• Backup user defined interrupt controller configuration and mask out
all interruptsNote

Activities during SelfLib_Init

• Initialization of the pointer to the user defined data-buffer. This data-
buffer will be used for data exchange between firmware and
bootloader.

The SelfLib_Close function will close the self-programming environment.

Activities during SelfLib_Close

• FLMD0 pin will be pulled down by user defined general purpose port.
• Restore all registers from the register bank 3
• Restore user defined interrupt controller configuration

Note This feature is by default disabled within the bootloader!

The following figure illustrates the complete flash erase process.

Chapter 2 Flash Memory Programming

14 Preliminary Application Note U18539EE1V0AN00

Figure 2-7 Mode transitions during self-programming

The following self-programming functions are used by the bootloader:

SelfLib_EepWrite Write flash word on defined address.

SelfLib_Verify Verify the voltage levels on the written block.

SelfLib_Erase Erase flash block

SelfLib_ModeCheck Check the voltage level on FLMD0 pin.

SelfLib_BlankCheck Specified block will be blank checked.

SelfLib_SetInfo_SwapBootCluster
Inverts the current value of the boot flag inside the
extra areaNote

SelfLib_GetInfo_BootCluster
Read the boot flag , whether the two boot cluster
are swapped

Note Security information is located within an extra area(boot-flag, chip erase
protection, block erase protection, write protection, boot cluster protection).
Security information can only be read/written using the self-programming
functions.

Boot swap function
The self-programming environment allows the bootloader to be updated in a
secure way by the boot swap function. Even if a power failure occurs during an
update, the old bootloader can always be used until the boot swap is completed.
The following figure illustrates the boot swap steps.

Flash Memory Programming Chapter 2

Preliminary Application Note U18539EE1V0AN00 15

Figure 2-8 Boot swap states

Step 1: Self-programming the new bootloader into the boot cluster 1
Step 2: Execute the SelfLib_SetInfo_SwapBootCluster function to set

the swap bit within the extra area. Force a hardware reset.
Step 3: Copy the new bootloader into boot cluster 0.
Step 4: Execute the SelfLib_SetInfo_SwapBootCluster function to

reset the swap bit within the extra area. Force a hardware
reset.

Note After the set/reset of the boot swap flag above, the microcontroller must be
reset to actively swap the physical addresses.

Chapter 2 Flash Memory Programming

16 Preliminary Application Note U18539EE1V0AN00

Chapter 3 Bootloader

This chapter describes the features and the use of the bootloader.

3.1 Specification

Bootloader specification

Frequency 12 MHz or 20 MHz(can be adapted by user)

UART6

Baud rate: 115200 bps or 57600 bps(can be adapted by user)
Data bits: 8 Bit
Stop bits: 1 Bit
Parity: No parity
Flow control: XON/XOFF

Supported file
format Intel-Hex-Standard or Intel-Hex-Extended Note 1

Update methods
Application or bootloader update.
User can disable the bootloader update feature.

Interrupts Interrupts are not allowed during the bootloader process Note 2

Watchdog
Will be stopped by bootloader to execute self programming
functions, but can be used by the application.

Note 1. File must be sorted by addresses from low to high and the gaps must be filled
2. Interrupts within the application will be processed by virtual interrupt table

Software environment

Software Version

IAR C/C++ Compiler for NEC 78K0 and
78K0S

V4.40B (4.40.2.3)

IAR Assembler for NEC 78K0 and 78K0S V4.40A (4.40.1.3)

IAR XLINK (Linker) 4.60C (4.60.3.0)

IAR Embedded Workbench 4.6B (4.6.2.0)

RealTerm Note 1.99.0.24

Note RealTerm is a serial terminal: http://realterm.sourceforge.net

Bootloader timing

Conditions: Baud rate is 115200 bps, Intel-Hex-File size: 349KByte, Code size: 124KByte

Receive buffer size Update time

200Byte 6:50min

400Byte 4:10min

Preliminary Application Note U18539EE1V0AN00 17

Bootloader size for banked model(optimized for size)

Optimization level Bootloader update allowed Bootloader update is not
allowed

None 4027Bytes 3607Bytes

Low 3902Bytes 3517Bytes

Medium 3710Bytes 3350Bytes

High 3540Bytes 3186Bytes

Bootloader size for non banked model(optimized for size)

Optimization level Bootloader update allowed Bootloader update is not
allowed

None 3969Bytes 3549Bytes

Low 3847Bytes 3462Bytes

Medium 3655Bytes 3295Bytes

High 3489Bytes 3135Bytes

3.2 Hardware requirements

The following figure shows the circuit which is required by the bootloader.

Figure 3-9 Hardware requirements for the bootloader

To use the bootloader, the FLMD0 pin is pulled-up by the user using the general
purpose port.

Chapter 3 Bootloader

18 Preliminary Application Note U18539EE1V0AN00

3.3 Bootloader concept

3.3.1 Bootloader vs. Application

The use of a bootloader can restrict some microcontroller features(e.g. CALLT,
CALLF) for the application. As you can see in the figure below the application does
not have any access to the bootloader area(0x0000 - 0x0FFF). Following features
can not be used/changed by the application:

CALLT Can only be used by the bootloader

CALLF Can only be used by the bootloader

Option byte Is predefined by the bootloader

Interrupt vector table Is predefined by the bootloader for the application(see below)

The following figure illustrates the differences between bootloader and application
view.

Figure 3-10 Bootlaoder vs. Application

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 19

The interrupt vector table must be constant, because an application will be
compiled and linked independently from the bootloader, the link between interrupt
vector(bootloader) and interrupt service routine(application) does not exist.

3.3.2 Virtual interrupt vectors

As previously described, the interrupt vector table in the bootloader area is
constant and cannot be redefined by the application. For this reason, the
bootloader runs in the polling mode with interrupts disabled and use of the
interrupts can only be enabled for the application. The reset vector is the only
vector used by the bootloader for start-up.

The interrupt handling for the application is handled by virtual interrupt vectors.
The real interrupt vector table contains predefined addresses which point to the
virtual interrupt vector table(located within the application area). Branching
instructions are located within the virtual interrupt vector table, which executes a
branch to the real interrupt service routine.

The following figure illustrates an interrupt flow for a watch timer.

Figure 3-11 Interrupt handling with virtual interrupt vectors

Chapter 3 Bootloader

20 Preliminary Application Note U18539EE1V0AN00

The watch timer interrupt flow will be handled within 5 steps:

1. Interrupt triggered by watch timer
2. PSW(program status word) and PC(program counter) will be saved on

the stack
3. PC will be set to the address of watch timer interrupt vector

(PC = 0x106D).
4. On the address 0x106D is a branch instruction to the real interrupt

service routine(PC = real interrupt service routine) located.
5. Real interrupt service routine is serviced and PC with PSW are

restored from the stack.

As described, the reset vector points to the bootloader CSTARTUP address. The
application virtual reset vector is a branch to the application CSTARTUP, so if the
bootloader transfers control to the application, a branch to the application virtual
reset vector occurs.

3.3.3 Update methods

The bootloader supports two update methods, which are available for the user.

Application update

This update method enables the user to update their application. Before going
into the details of this update method lets look at the application header.

Figure 3-12 Memory structure of the application

The first entry within the application header is the valid byte pattern. To prove the
validity of the application, the bootloader verifies this byte and starts the
application if valid, or updates this if not valid.

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 21

Content of the valid byte Validity of the application

0xA5 The application is valid and can be started.

other Invalid application. Update essential

The next entry within the application header is the calculated CRC located on the
addresses from 1004H to 1005H. This CRC is calculated by the Linker. The
address boundaries for the CRC calculation are stored within the next application
header entries "CRC App. Start Address" and "CRC App. End Address". The
following figure illustrates a complete application update flow.

Figure 3-13 Application programming flow

Before a new application can be written into the memory, the full application area
must be erased(Step 1). An erasing procedure begins with the lowest block
number(Block 04H), due to the fact that the valid byte pattern must be cleared
first. The next step within the update flow is to program the new application into
the flash memory(Step 2). In this case the received Intel-Hex file will be decoded
and the application code will be written into the flash memory. The final procedure
is the CRC check of the application(Step 3). The CRC calculation begins from the
stored address within the application header "CRC App. Start Address" and end
at the address "CRC App. End Address". If the calculated CRC is equal to the
stored CRC within the application header the valid byte pattern will be written and
after this step the application is valid and can be started.

Bootloader update

This method allows the bootloader code to be updated in asecure way. The new
received bootloader code will be written into the boot cluster 1 and the bootloader
CRC is stored at the addresses from 0x1FFE to 0x1FFF as showing in the
following figure.

Chapter 3 Bootloader

22 Preliminary Application Note U18539EE1V0AN00

Figure 3-14 Memory structure of the bootloader

In contrast to the application, the bootloader contains always the same address
boundaries(from 0x1000 to 0x1FFB) for the CRC calculation. Therefore the Sart-
and End-Addresses of the bootloader are not stored. The new received
bootloader will be written into the boot cluster 1. The following steps describes a
bootloader update flow:

1. Erasing the application area(boot cluster 1): The first step during
the update is to erase the application area(boot cluster 1). This area
will be blank checked and erased if necessary.

2. Receive the new bootloader and write it into the boot cluster 1:
The received bootloader will be written into the boot cluster 1. The
updated memory areas will be internal verified, whether the voltage
levels are correct. After successful write cycle, a CRC check will be
performed. If all checks was ok, the boot swap flag will be set by the
self programming library and a hardware reset will be generated.

3. Copy new bootloader into the bootcluster 0: The new bootloader
will start-up and check the boot swap flag. If the boot swap flag is set,
the bootloader will copy itself to the bootcluster 0. After this copy, the
CRC check will be performed. If all checks was ok, the boot swap flag
will be reset by the self programming library and a hardware reset will
be generated.

4. After the last reset the bootloader was successful updated.

In the following figure are this steps illustrated.

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 23

Figure 3-15 Bootloader update states

Chapter 3 Bootloader

24 Preliminary Application Note U18539EE1V0AN00

3.4 Software architecture

The software architecture is modular, so modules like communications or file
decoders can be exchanged. The following figure shows the general bootloader
concept.

Figure 3-16 Bootloader concept with all modules

The bootloader control is a central connection unit between all modules, which
controls all data transfer. The bootloader control operates in the polling mode and
all interrupts are disabled. The module interface specifications are located within
the chapter "Interface specification".

3.4.1 Time Control module

The bootloader runs with the watchdog disabled, so all critical loops must be
controlled by the time control module. The following list shows the cases where
timeout detection is used.

• Communication interface send a message
• Communication interface waits for a byte
• Communication interface send a XOFF or XON flow control byte Note

The control flow will be checked by the timeout detection, because there can be
other interfaces like CAN, where the data transfer is priority controlled. So it can
be that the priority is low and the flow control byte can not be sent. In this case
the micro will hang. On this reason the flow must be controlled by the time control
module.

Note XOFF and XON flow control bytes are used for UART communication. Different
flow control signals may be used for other communication interfaces.

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 25

3.4.2 Communication Interface module

This module receives and transmits data from/to the host. The serial interface
(UART6) can be exchanged by the user (e.g. for CAN). To prevent a receive
overflow the interface operates with XON/XOFF protocol. The modular concept
allows other flow controls like hardware handshake to be used.

3.4.3 Data Buffer Control module

The self programming library uses a data buffer for data exchange with the
firmware.

For example.

The bootloader writes 4 Bytes data into the data buffer and execute the function
SelfLib_Write(). This data will be written into flash on a defined address by the
firmware.

As you can see in the example above the data buffer must be correctly filled, so
the firmware handles the data writes into the flash. The following firmware
conditions for write process are controlled by this module:

• First byte address must be on modulo 4 address
• Data buffer content must not overlap over two flash blocks
• The byte count within the data buffer must be modulo 4

3.4.4 File Decoder module

The File Decoder module decodes the received bytes from the update-file. It
signals if there are bytes to write into the flash. The following file formats can be
decoded:

• Intel-Hex Standard
• Intel-Hex Extended

There are restrictions which must be observed:

1. The update-file must be sorted by addresses from low to high
addresses

2. Gaps between addresses must be filled(for CRC calculation).

Chapter 3 Bootloader

26 Preliminary Application Note U18539EE1V0AN00

3.5 Bootloader implementation

This chapter describes how the bootloader is implemented. The following figure
shows the general bootloader flow and the interactions with the user.

Figure 3-17 General bootloader flow

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 27

As you can see in the figure above the user can configure the bootloader for two
update flows. The first update("Update y or n") in the figure aonly allows updates
to the application. So if the Intel-Hex file contains addresses which are located
within the bootloader area, the update will be cancelled. The second update
("Update a or b") flow allows both application and bootloader updates.

3.5.1 Watchdog

The bootloader is implemented without the use of the watchdog(watchdog is
stopped). The reason behind this is, because the Self-programming set info
functions(e.g. set boot swap flag) needs up to 700μs execution time and the max.
overflow time for the watchdog is 500μs(watchdog would reset the
microcontroller during set info functions). The watchdog can be stopped by the
internal low-speed oscillator. The configuration for the internal low speed
oscillator is set by the Option byte to enable stop/start control by software. This
allows the usage of the watchdog within the application.

3.5.2 Timeout detection with polling

The bootloader runs without activation of the watchdog, so that all critical loops
must be controlled by timeout detection. The following figure illustrates a timeout
detection flow.

Figure 3-18 General timeout detection flow

3.5.3 Receive flow

The receive flow of the Intel-Hex file will be controlled by the XON/XOFF protocol.
During the file transfer the bootloader will receive the bytes until the receive buffer
is full. Then the bootloader sends a XOFF byte and receive the last bytes(after
XOFF). Therefore the receive buffer is divided into two sections as shown in the
following figure:

Chapter 3 Bootloader

28 Preliminary Application Note U18539EE1V0AN00

Figure 3-19 Buffer architecture

The following figure illustrates the complete receive flow.

Figure 3-20 Receive flow controlled by XON/XOFF

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 29

3.5.4 Error handler

An error handler is implemented within the bootloader, which will send an error
message to the user terminal if an error occurs.

The following table illustrates all defined errors.

Error
Code Error description

01
Application update is selected but the hex file is within the bootloader area.
Please check the address ranges of the application.

02 Interface does not send "XOFF". Please check the UART connection.

03 Intel-Hex file error. Please check the Intel-Hex-File.

04
Timeout during hex file receive. Please check the Intel-Hex file whether a EOF
tag is written or increase the timeout factor RX_BYTE_TIMEOUT_HEX_2MS.

05 Error during receive. Please check the UART connection.

06
Data buffer write error. Please check the Intel-Hex file whether the addresses
are sorted.

07
CRC error on written application. The calculated CRC on the written
application is not equal to the stored CRC. Please check the Intel-Hex file
whether there are address gaps between the application.

08
CRC error on written bootloader. The calculated CRC on the written
bootloader is not equal to the stored CRC. Please check the Intel-Hex file
whether there are address gaps between the bootloader.

09
Error on swap flag set. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

10
Error on flash verify. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

11
Error on flash write. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

12
Error on flash erase. Please check whether all interrupts are disabled and
masked out. Check the application area whether it is protected.

13

Error on FLMD0 check. Please check the port connection to the FLMD0 pin.
Check whether the defined port is correct defined within the header file
spl78k0_kx2_user.h (FLMD0_CTRL_PORT_HIGH and
FLMD0_CTRL_PORT_LOW).

14
Error on copy boot cluster from 0 to 1. Please check the boot cluster 1 area,
whether it is protected and check whether all interrupts are disabled and
masked out.

15 Error on swap flag read.

16
The received Intel-Hex file has addresses, which are over the defined
application end block. See definition(LAST_APP_BLOCK) within the
spl78k0_kx2_user.h file.

17
Address of the new bootloader is bigger than address 0x1000. Please check
the Intel-hex-File.

18

Bootloader update not allowed. The bootloader allows only the application
update defined within the header file spl78k0_kx2_user.h
(BOOTL_UPDATE_ALLOWED). Check the Intel-Hex file whether there are
addresses within the bootloader area.

19
User selected a bootloader update, but the Intel Hex file is within the
application area. Please check the Intel-Hex file.

Chapter 3 Bootloader

30 Preliminary Application Note U18539EE1V0AN00

3.6 Bootloader configuration

There are three header files for the bootloader configuration as described below.

bl78k0_kx2_user.h

Within this header file are general definitions for the bootloader. Listed below are
defines with the functionality:

Definition Description

BOOTLOADER_VERSION Bootoader version as string.

BOOTL_UPDATE_ALLOWED
Defines whether the bootloader update is allowed or not.
If it is commented out the user can only update the
application update(Terminal prompt: Update y or no?).

STOP_RX_WITH_TIMEOUT

General the bootloader send a XOFF control byte if the
receive buffer is full. In the case of the UART interface the
interface cannot wait until the XOFF byte was send,
therefore the XOFF byte will be written into the send
buffer and the following bytes will be received(after
XOFF). Otherwise the interface would get a receive
overrun error. This feature can only be used at interfaces
with hardware handshake, were the stop to send signal
is very fast.

CLOCK_FREQUENCY
Clock frequency of the used oscillator. Supported are the
following frequencies: CLOCK_FREQUENCY = 12
CLOCK_FREQUENCY = 20

IMS_REGISTER_VALUE
Set the value for the IMS register(internal memory size
switching register). Within the application the IMS must
not be changed.

IXS_REGISTER_VALUE
Set the value for the IXS register(internal expansion RAM
size switching register). Within the application the IXS
must not be changed.

CODEBANK_BANKS_USER
Count of memory banks. Comment it out, if non banked
model is used.
E.g. CODEBANK_BANKS_USER = 5

FLASH_END_ADDR

This is an end address of the flash, if the non banked
model is chosen. Comment it out, if the banked model is
used. E.g. For (64KByte non banked)
FLASH_END_ADDR = 0xEFFF

FILL_BYTE
This is a byte pattern, which will be written into the data
buffer address gaps.

LAST_APP_BLOCK
This is a define for the last application block. The
bootloader will erase the flash memory until this block
number during update.

BYTES_AFTER_RX_STOP
This is the reserved bytes count for the following bytes
after XOFF message.

RX_BUFFER_SIZE Receive buffer size definition.

STOP_WATCHDOG
This is a macro to stop a watchdog(the internal low-
speed oscillator will be stopped). Change this macro only
if the watchdog will be stopped by other method.

START_WATCHDOG
This is a macro to start a watchdog(the internal low-
speed oscillator will be started). Change this macro only
if the watchdog will be stopped by other method.

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 31

The following two tables contains time factors(K x 2ms or K x 50ms) for timeout
detection within the bootloader flow.

Definition (2ms factors) Description

RX_BYTE_TIMEOUT_HEX_2MS

This factor is for the timeout detection during file transfer.
For example: 70 * 2ms = 140ms. Timeout will be
occurred, if the bootloader does not receive any byte
within 140ms.

READY_TO_RX_TIMEOUT
This factor is for the timeout detection during XON send
(2 x 2ms = 4ms).

STOP_RX_TIMEOUT
This factor is for the timeout detection during XOFF send
(2 x 2ms = 4ms).

Definition (50ms factors) Description

ILLEGAL_BYTE_TIMEOUT

At the start-up the bootloader send a XON byte to the
host. After this the bootloader wait for this timeout
(2 x 50ms = 100ms) whether a file transfer is active. If a
byte is received during 100ms the bootloader wait on
illegal bytes(see ILLEGAL_SEND_TIMEOUT).

ILLEGAL_SEND_TIMEOUT

If an illegal file transfer is detected(see
ILLEGAL_BYTE_TIMEOUT) the bootloader will receive
illegal bytes until the file transfer has finished(no byte may
received until 14 x 50ms = 700ms).

MESSAGE_TIMEOUT_K_50MS
Within this timeout the interface must send a message
otherwise a timeout will be occurred(40 x 50ms = 2s).

RECEIVE_TIMEOUT_K_50MS
This timeout factor(60 x 50ms = 3s) is for the user prompt
('y' or 'n'). If the user does not press a key a timeout will
be occurred(application will be started).

FIRST_BYTE_HEX_TIMEOUT
This timeout factor(200 x 50ms = 10s) is for the wait loop
on the Intel-Hex file.

bl78k0_kx2_uart.h

Within this header file are definitions for the for the UART.

Definition Description

BAUDRATE

This is a define for the Baud rate. Supported are following
baud rates:
Baud rate = 115200
Baud rate = 57600

spl78k0_kx2_user.h

Within this header file are definitions for self-programming.

Definition Description

DATA_BUFFER_SIZE
This is a definition buffer size definition, which will be
used for data exchange between firmware and
bootloader.

FLMD0_CTRL_PORT_HIGH Definition of the port, which will pull-up the FLMD0 pin.

FLMD0_CTRL_PORT_LOW
Definition of the port, which will pull-down the FLMD0
pin.

Chapter 3 Bootloader

32 Preliminary Application Note U18539EE1V0AN00

bl78k0_kx2_main.c

The OPTION BYTE must be configured for application requirements(e.g. the
watchdog timer interval).

Attention: The Internal low-speed oscillator must be configured in the
following mode: Can be stopped by software.

Example:

#pragma location = "OPTBYTE"
__root const u08 opbyte[]={0x7E,0x00,0x00,0x00,0x00};

3.6.1 Bootloader adaptation

The XCL and header files of the bootloader are configured for the μPD78F0547
microcontroller. The following entries within the XCL and header files must be
adapted by the user for other microcontroller of the 78K0/Kx2 family.

bl78k0_kx2_user.h

1. Set the values for the IMS(IMS_REGISTER_VALUE) and IXS
(IXS_REGISTER_VALUE) registers. Within the application the IMS and
IXS registers must not be changed.

2. For the banked memory model the user must set the banks count or
comment it out, if non banked model will be used. E.g.
CODEBANK_BANKS_USER = 6

3. If the non banked model will be used, the user must set the flash end
address(FLASH_END_ADDR). E.g. For 64KByte flash memory
FLASH_END_ADDR=0xEFFF

XCL-File

Following segments must be added for the self-programming environment:

Location of the bootloader:
-Z(CODE)BCLUST0=0086-0FFF

Location of the register bank 3:
-Z(DATA)RB3REGS=FEE0-FEE7

Location of the register bank 2:
-Z(DATA)RB2REGS=FEE8-FEEF

Location of the register bank 1:
-Z(DATA)RB1REGS=FEF0-FEF7

Location of the register bank 0:
-Z(DATA)RB0REGS=FEF8-FEFF

Location of the data buffer:
-Z(DATA)DS_DBF=FB00-FC00

Location of the work area for the self-programming environment:
-Z(DATA)DS_ERAM=FE20-FE83

Bootloader Chapter 3

Preliminary Application Note U18539EE1V0AN00 33

The CALLF segment can be commented out, because the bootloader does not
uses this feature:
//-Z(CODE)FCODE=0800-0FFF

The following code segments must be located within the address range of
0086 to 0FFB. Because the addresses 0080 to 0084 are for the option byte and
0FFC-0FFF are for the bootloader CRC:

The Start-up, Runtime-library, Non banked and Interrupt functions code segment:
-Z(CODE)RCODE,CODE=0086-0FFB

Data initialize segments:
-Z(CODE)NEAR_ID,SADDR_ID,DIFUNCT=0086-0FFB

Location for constants and switch table:
-Z(CODE)CONST,SWITCH=0086-0FFB

The short address data segments must be located from the address FE84,
because the DS_ERAM segment of the self-programming environment is located
up to the address FE83:
-Z(DATA)SADDR_I,SADDR_Z,SADDR_N,WRKSEG=FE84-FEDF

Following segments must be added for address translation and CRC calculation:

This entry will fill the unused bootloader code within the address range of
0000 to 0FFB with the 0xFF pattern:
-h(CODE)0-0FFB
-HFF

The following segment is the location for the 2Byte CRC:
-Z(CODE)CHECKSUM=0FFE-0FFF

The following entry will calculate a 2Byte CRC over the code range of
0000 to 0FFB:
-J2,crc16,,,,1,0=(CODE)0-0FFB

Chapter 3 Bootloader

34 Preliminary Application Note U18539EE1V0AN00

Chapter 4 Application adaption

This chapter describes how the user can configure the application for use with
the bootloader.

4.1 Modify XCL-file

First of all the XCL file must be adapted by the user as described below.

Define two code segments(START_ADDR, END_ADDR), which will contain the
start and the end address boundaries for the CRC calculation.

-Z(CODE)START_ADDR=1008-100B
-Z(CODE)END_ADDR=100C-100F

As described before, the application can not uses CALLT, CALLF... features.
Delete the following listed segments from the XCL file:

-Z(CODE)INTVEC=0000-003F
-Z(CODE)CLTVEC=0040-007D
-Z(CODE)OPTBYTE=0080-0081
-Z(CODE)SECUID=0084-008E
-Z(CODE)FCODE=0800-0FFF

The virtual interrupt vector table must be located within the application area, so
that a the following segment must be defined:

-Z(CODE)VINTVEC=1010-106F

For the CRC calculation the application area must be filled with a byte pattern(-
HFF -> 0xFF). The -h option defines the address area, which must be filled. The
begin(e.g. 1010) and the end(e.g. 1FFF) addresses must be adapted to the
application.

-h(CODE)1010-1FFF // 0x1010 until application end

-HFF

If the application is implemented with banking usage, the banks must be filled
separate.

For example:
-h(CODE)01010-7FFF
-h(CODE)08000-0BFFF
-h(CODE)18000-1BFFF
-h(CODE)28000-2BFFF
-HFF

The following segment defines the location for the calculated CRC of the Linker
(this segment must be added).

-Z(CODE)CHECKSUM=1004-1005

Preliminary Application Note U18539EE1V0AN00 35

The following option defines the CRC calculation. The address ranges must be
equal to the address ranges of the fill option(see above –h option).

-J2,crc16,,,,1,0=(CODE)1010-1FFF

Change the start addresses of other code segments to ensure that they are over
the end address of the VINTVEC segment.

For example:

OLD: -Z(CODE)RCODE,CODE=0257-7FFF
NEW: -Z(CODE)RCODE,CODE=1070-7FFF

If the bootloader is compiled for the banking mode, the addresses must be
translated. This will be done by the following options:

-M18000-1BFFF=0C000-0FFFF
-M28000-2BFFF=10000-13FFF
-M38000-3BFFF=14000-17FFF
-M48000-4BFFF=18000-1BFFF
-M58000-5BFFF=1C000-1FFFF

4.2 Add/configure predefined files

There are three predefined files, which must be added to the application project:

• cstartup.s26

• virtual_irq_table.asm

• app_bootl_def.h

virtual_irq_table.asm

This file contains predefined branches to the interrupt service routines and must
not be changed by the user.

cstartup.s26

This file will replacing the standard cstartup file. The difference between this file
and the standard file is that the address for the reset interrupt vector will not be
written(because it would be on the address 0x0000, where the bootloader is
located). Change this file only if it is necessary for the application.

app_bootl_def.h

This file must be adapted by the user for the application.

1. Modify the start and the end addresses for the application. These addresses
must agree with addresses defined for CRC calculation within the XCL file
(-J2,crc16,,,,1,0=(CODE)1010-1FFF and -h(CODE)1010-1FFF).

#define START_ADDR_APP 0x1010

#define END_ADDR_APP 0x1FFF

Chapter 4 Application adaption

36 Preliminary Application Note U18539EE1V0AN00

2. Comment out interrupt services, which are not used by the application.

//#define INTCK2_isr_used
//#define INTLVI_isr_used
#define INTP0_isr_used
#define INTP1_isr_used
//#define INTP2_isr_used
...........

If an interrupt service is defined(e.g. #define INTP0_isr_used) the interrupt service
routine will be written as follows:

__interrupt void INTP0_isr(void)
{
............
}

The pragma directive(#pragma vector = INTP0_vect) before the interrupt service
routine must be erased.

If an interrupt service is commented out, it will get an RETI instruction. This
prevents an illegal branch, for example if the interrupts are not clearly disabled.

Application adaption Chapter 4

Preliminary Application Note U18539EE1V0AN00 37

Chapter 4 Application adaption

38 Preliminary Application Note U18539EE1V0AN00

Chapter 5 Application example

The following example illustrates a bootloader update.

Figure 5-21 User prompt for update

As you can see in the figure the bootloader version is 0.4 and the update method
allows to update the bootloader and the application. If the user does not press
any key, the bootloader would start the application. For example the user typed
'b':

Figure 5-22 Bootloader waits on the update file

Preliminary Application Note U18539EE1V0AN00 39

The send file process was triggered by the user. The bootloader does not send
any message to the user, that the file transfer was detected.

Figure 5-23 Triggered file send process

If the Intel-Hex file was successfully transmitted and the CRC check was OK, the
bootloader will send a "File OK!" message.

Figure 5-24 Bootloader update has finished

Chapter 5 Application example

40 Preliminary Application Note U18539EE1V0AN00

After successful update the bootloader start-up with a new version(BV: 0.5).
During the bootloader update the application valid byte pattern will be cleared,
so that the application is not valid and sends the "!APP" message. The new
bootloader only allows application updates("Update? y or n"). If the new
application was written, the bootloader sends the "READY" message and starts
the application.

Figure 5-25 Application update and start

Application example Chapter 5

Preliminary Application Note U18539EE1V0AN00 41

Chapter 5 Application example

42 Preliminary Application Note U18539EE1V0AN00

Chapter 6 Interface specification

This chapter describes the Intel-Hex file and modules specification.

6.1 Intel Hex File format

Intel-Hex File consists of records which has a header of 9-character (4-field) prefix
that defines the start of record, byte count, address offset, and record type, and
a 2-character checksum suffix. The following figure illustrates some sample
records.

Figure 6-26 Intel-Hex file format

The differences between "Standard-Intel-Hex" and "Extended-Intel-Hex" are the
address ranges. Extended Intel-Hex has 32 bit address range and Standard Intel-
Hex has 16 Bit address range.

For the address calculation within the Standard Intel-Hex file is only the address
field within the header necessary. The following figure shows the address
calculation within the Standard Intel-Hex file:

Figure 6-27 Standard-Intel-Hex file addressing

Preliminary Application Note U18539EE1V0AN00 43

For 32Bit addressing within the Extended-Intel-Hex file are two additively records
essential(Linear Address offset and Segment address offset):

Figure 6-28 Extended-Intel-Hex file addressing

There are six record types defined for the Intel-Hex file format. Every record will
be secured by a checksum, which is a two’s complement of the fields byte count,
address, record type and data bytes.

00-Data Record

The data record contains data to write into the flash. The data count will be defined
by the byte count field and the address for the first byte by the address field(see
above for address calculation).

Start
character Byte count Address Record type Data Checksum

1 Byte ':' 1 Byte 2 Byte 1 Byte '00' xx Byte count 1 Byte

01-End of File Record

The end-of-file record represents the end of an Intel-Hex file.

Start character Byte count Address Record type Checksum

1 Byte ':' 1 Byte '00' 2 Byte '0000' 1 Byte '01' 1 Byte 'FF'

02-Extended Segment Address Record

This record type defines bits 4 to 19 of the segment address(see above).

Start
character Byte count Address Record

type Data Checksum

1 Byte ':' 1 Byte '02' 2 Byte '0000' 1 Byte '02'
2 Byte 'ext.
addr.'

1 Byte

Chapter 6 Interface specification

44 Preliminary Application Note U18539EE1V0AN00

03-Start Segment Address Record

This record, which specifies bits 4-19 of the execution start address will be
ignored by the bootloader.

Start
character Byte count Address Record

type Data Checksum

1 Byte ':' 1 Byte '04' 2 Byte '0000' 1 Byte '03'
4 Byte
'addr.'

1 Byte

04-Extended Linear Address Record

This record specifies bits 16-31 of the destination address(see above).

Start
character Byte count Address Record

type Data Checksum

1 Byte ':' 1 Byte '02' 2 Byte '0000' 1 Byte '04'
2 Byte 'ext.
lin. addr.'

1 Byte

05-Start Linear Address Record

This record, which specifies bits 16-31 of the execution start address will be
ignored by the bootloader.

Start
character Byte count Address Record

type Data Checksum

1 Byte ':' 1 Byte '04' 2 Byte '0000' 1 Byte '05'
4 Byte
'addr.'

1 Byte

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 45

6.2 Interface specification

This chapter describes the interface specification. The C files can be exchanged
by the user and only the function names must be equal(the bootloader binds the
function with extern keyword).

6.2.1 Communication interface

void ifaceInit(void)

Description:

This function initializes the communication interface.

Precondition:

None

Postcondition:

The communication interface is initialized and can be used.

Parameter:

None

Return:

None

void readyToRx(void)

Description:

This function signals the host that it is ready to receive(Uart: Xon message(11 hex)
will be send to the host).

Precondition:

None

Postcondition:

The host is informed that the bootloader is ready to receive. The bootloader must
analyze with the readyToRxEnabled function, whether the host has
acknowledged.

Parameter:

None

Return:

None

Chapter 6 Interface specification

46 Preliminary Application Note U18539EE1V0AN00

u08 readyToRxEnabled(void)

Description:

This function checks the host reaction, whether an acknowledge is received(after
readyToRx).

Precondition:

The function readyToRx was called.

Postcondition:

The host has acknowledged or not acknowledged. If the host has acknowledged,
all acknowledge flags must be erased.

Parameter:

none

Return:

• 0HEX Host has not acknowledged.
• 1HEX Host has acknowledged.

void stopRx(void)

Description:

This function signals the host that it must stop the file transfer(Uart: Xoff message
(13 hex) will be send to the host).

Precondition:

None

Postcondition:

The host is informed that the bootloader is not ready to receive. The bootloader
must analyze with the stopRxEnabled function, whether the host has
acknowledged.

Parameter:

None

Return:

None

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 47

u08 stopRxEnabled(void)

Description:

This function checks the host reaction, whether an acknowledge is received(after
stopRx).

Precondition:

The stopRx function was called.

Postcondition:

The host has acknowledged or not yet. If the host has acknowledged, all
acknowledge flags must be erased.

Parameter:

None

Return:

• 0HEX Host has not acknowledged.
• 1HEX Host has acknowledged.

void sendByte(u08 txData)

Description:

This function write a byte into the transmit buffer.

Precondition:

The interface status was checked by the txStatus, that it is not busy.

Postcondition:

The byte is written into the transmit buffer.

Parameter:

• 1Byte - This byte will be written into the transmit buffer.

Return:

None

Chapter 6 Interface specification

48 Preliminary Application Note U18539EE1V0AN00

u08 txStatus(void)

Description:

This function check the interface status, whether it is busy or not.

Precondition:

A byte was written into the transmit buffer by the sendByte function.

Postcondition:

If the byte was transmitted, all transmit ready flags must be erased(e.g. tx interrupt
request bit).

Parameter:

None

Return:

• 0Hex Transmit interface is busy
• 1Hex Transmit interface is ready-to-transmit

__callt u08 byteReceived(void)

Description:

The function checks the receive status.

Precondition:

The host was informed by the readyToRx function, that it is receive ready.

Postcondition:

If a byte was received, all receive flags must be erased.

Parameter:

None

Return:

• 00Hex: Nothing received
• 01Hex: Byte received

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 49

__callt u08 rxError(void)

Description:

This function checks the receiver, whether an error occurs during receive.

Precondition:

Byte was received(see byteReceived).

Postcondition:

If an error is occurred, all error flags must be cleared.

Parameter:

None

Return:

• 00Hex: Error is occurred during receive routine.
• 01Hex: No error.

__callt u08 getRxByte(void)

Description:

This function return the received byte.

Precondition:

Byte was received(see byteReceived()) and no error occurred during receive
routine(see rxError()).

Postcondition:

Received byte was read from the receive buffer.

Parameter:

None

Return:

• 1 Byte : Received byte.

void resetRxErrorFlags(void)

Description:

This function reset all receive error flags of the receive interface.

Precondition:

None

Postcondition:

The receive interface is receive ready.

Parameter:

None

Return:

None

Chapter 6 Interface specification

50 Preliminary Application Note U18539EE1V0AN00

void resetInterface(void)

Description:

This function reset the communication interface.

Precondition:

None

Postcondition:

None

Parameter:

None

Return:

None

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 51

6.2.2 File decoder interface

__callt u08 decodeReceivedBytes(u08 rx_byte)

Description:

This function decode the received byte.

Precondition:

None

Postcondition:

None

Parameter:

• 1 Byte: Received byte from file, which must be checked.

Return:

• 01Hex: File error
• 02Hex: Bytes is checked, but do not write it into the data buffer
• 03Hex: Write the checked byte into the data buffer

__callt void resetFileDecoder(void)

Description:

This function reset the file decoder.

Precondition:

None

Postcondition:

None

Parameter:

None

Return:

None

Chapter 6 Interface specification

52 Preliminary Application Note U18539EE1V0AN00

u08 isEOF(void)

Description:

This function checks, whether the file end is reached.

Precondition:

The host do not send any bytes from the file(timeout is occurred).

Postcondition:

None

Parameter:

None

Return:

• 00Hex: Is not file end.
• 01Hex: The file end is reached.

u32 getAddress(void)

Description:

This function return the flash address location for the byte, which must be written
into the data buffer.

Precondition:

The decodeReceivedBytes() function returned 03Hex.

Postcondition:

None

Parameter:

None

Return:

• 4Byte - Flash address of the byte, which must be written into the data
buffer.

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 53

u08 getWriteByte(void)

Description:

This function returns the byte, which must be written into the data buffer.

Precondition:

The decodeReceivedBytes() function returned 03Hex.

Postcondition:

None

Parameter:

None

Return:

• 1Byte - The current byte, which must be written into the data buffer.

Chapter 6 Interface specification

54 Preliminary Application Note U18539EE1V0AN00

6.2.3 Time control interface

void init_timer_50ms(void)

Description:

This function will be called after the microcontroller reset. The timer will be
initialized for 50ms interval.

Precondition:

None

Postcondition:

The timer is ready for operation.

Parameter:

None

Return:

None

__callt void setTimerIntervall_2ms(void)

Description:

This function set the timer on the 2ms interval.

Precondition:

Timer was initialized by the init_timer_50ms() function.

Postcondition:

None

Parameter:

None

Return:

None

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 55

__callt void setTimerIntervall_50ms(void)

Description:

This function set the timer on the 50ms interval.

Precondition:

Timer was initialized by the init_timer_50ms() function.

Postcondition:

None

Parameter:

None

Return:

None

__callt void initTimeoutDetect(u08 timer_factor)

Description:

This function initialize the timeout detection for a given time(time_factor x 2ms or
time_factor x 50ms).

Precondition:

Timer was initialized by the function init_timer_50ms().

Postcondition:

Timeout detection is initialized and the timer is started.

Parameter:

• 1Byte: This is a factor for the timer e.g. if the timer is initialized by the
function setTimerIntervall_2ms() and the factor is timer_factor = 10 a
timeout will occur after 10 x 2ms = 20ms.

Return:

None

Chapter 6 Interface specification

56 Preliminary Application Note U18539EE1V0AN00

__callt void resetTimeoutDetect(void)

Description:

This function reset the timer and the timeout detection.

Precondition:

None

Postcondition:

Timeout detection can be used for other process.

Parameter:

None

Return:

None

__callt u08 isTimeout(void)

Description:

This function checks the timeout.

Precondition:

The timeout factor was set by the initTimeoutDetect() function.

Postcondition:

None

Parameter:

None

Return:

• 00Hex: No timeout
• 01Hex: Timeout occurred

Interface specification Chapter 6

Preliminary Application Note U18539EE1V0AN00 57

Chapter 6 Interface specification

58 Preliminary Application Note U18539EE1V0AN00

Revision History

This revision list shows all functional changes compared to the previous manual version EASE-
UM-0004-0.2 (date published 16/09/05).

Chapter Page Description

Preliminary Application Note U18539EE1V0AN00 59

Index

60 Preliminary Application Note U18539EE1V0AN00

	1 Introduction
	1.1 Definition and advantages of a bootloader
	1.2 Main tasks of a Bootloader

	2 Flash Memory Programming
	2.1 Memory organization
	2.1.1 Boot cluster
	2.1.2 Difference in Representation of Memory Space

	2.2 Self programming
	2.2.1 Hardware environment
	2.2.2 Software environment
	2.2.2.1 Boot swap function

	3 Bootloader
	3.1 Specification
	3.2 Hardware requirements
	3.3 Bootloader concept
	3.3.1 Bootloader vs. Application
	3.3.2 Virtual interrupt vectors
	3.3.3 Update methods

	3.4 Software architecture
	3.4.1 Time Control module
	3.4.2 Communication Interface module
	3.4.3 Data Buffer Control module
	3.4.4 File Decoder module

	3.5 Bootloader implementation
	3.5.1 Watchdog
	3.5.2 Timeout detection with polling
	3.5.3 Receive flow
	3.5.4 Error handler

	3.6 Bootloader configuration
	3.6.1 Bootloader adaptation

	4 Application adaption
	4.1 Modify XCL-file
	4.2 Add/configure predefined files

	5 Application example
	6 Interface specification
	6.1 Intel Hex File format
	6.2 Interface specification
	6.2.1 Communication interface
	6.2.2 File decoder interface
	6.2.3 Time control interface

	Revision History
	Index

