MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Customer Specific Semiconductor

SC931

Low Voltage PLL Clock Driver

The SC931 is a 3.3V compatible, PLL based clock driver device targeted for high performance clock applications. With output frequencies of up to 140MHz and output skews of 300ps the SC931 is ideal for the most demanding clock distribution designs. The device employs a fully differential PLL design to minimize cycle to cycle and long term jitter. This parameter is of significant importance when the clock driver is providing the reference clock for PLL's on board todays microprocessors and ASiC's. The device offers 6 low skew outputs, and a choice between internal or external feedback. The feedback option adds to the flexibility of the device, providing numerous input to output frequency relationships.

FA SUFFIX 32–LEAD TQFP PACKAGE CASE 873A–02

- Differential LVPECL Reference Input
- Fully Integrated PLL
- Output Shut Down Mode
- Output Frequency up to 140MHz
- Compatible with PowerPC[™] and Intel Microprocessors
- 32-Lead TQFP Packaging
- Power Down Mode
- ±100ps Typical Cycle-to-Cycle Jitter

The SC931 offers two power saving features for power conscious portable or "green" designs. The power down pin will seemlessly reduce all of the clock rates by one half so that the system will run at half the potential clock rate to extend battery life. The POWER_DN pin is synchronized internally to the slowest output clock rate. This allows the transition in and out of the power-down mode to be output glitch free. In addition, the shut down control pins will turn off various combinations of clock outputs while leaving a subset active to allow for total processor shut down while maintaining system monitors to "wake up" the system when signaled. During shut down, the PLL will remain locked, if internal feedback is used, so that wake up time will be minimized. The shut down and power down pins can be combined for the ultimate in power savings. The Shut_Dn pins are synchronized to the clock internal to the chip to eliminate the possibility of generating runt pulses.

An internal feedback divide by 8 of the VCO frequency is compared with the input reference provided. The internal VCO is running at 8x the input reference clock. The outputs can be configured to run at 4x, 2x, 1.25x or 0.66x the input reference frequency. If the external feedback is selected, one of the SC931's outputs must be connected to the Ext_FB pin. Using the external feedback, numerous input/output frequency relationships can be developed.

The SC931 is fully 3.3V compatible and requires no external loop filter components. All control inputs accept LVCMOS or LVTTL compatible levels while the outputs provide LVCMOS levels with the capability to drive terminated 50Ω transmission lines. For series terminated applications, each output can drive two 50Ω transmission lines, effectively increasing the fanout to 1:12. The device is packaged in a 32–lead TQFP package to provide the optimum combination of board density and cost.

PowerPC is a trademark of International Business Machines Corporation. Pentium is a trademark of Intel Corporation.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

6/98

Qc

÷4

÷6

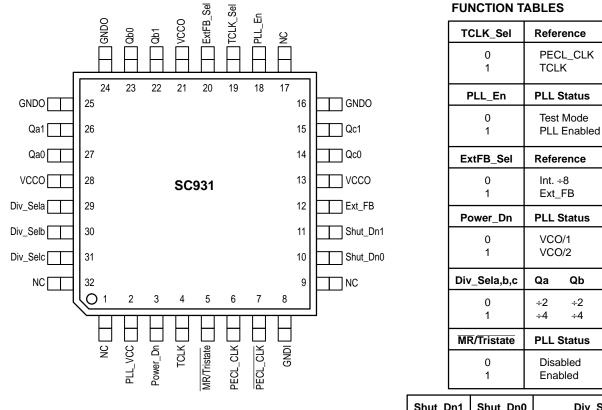


Figure 1. 32-Lead Pinout (Top View)

Shut_Dn1	Shut_Dn0	Div_Seln
0	0	Qb & Qc Low, Qa Toggle
0	1	Qa & Qb Low, Qc Toggle
1	0	Qb Low, Qa & Qc Toggle
1	1	All Toggle

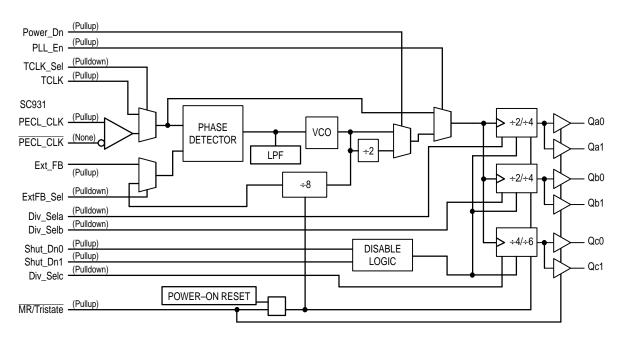
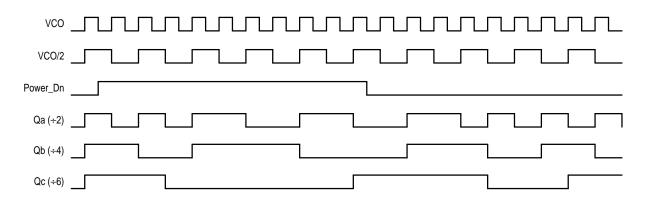
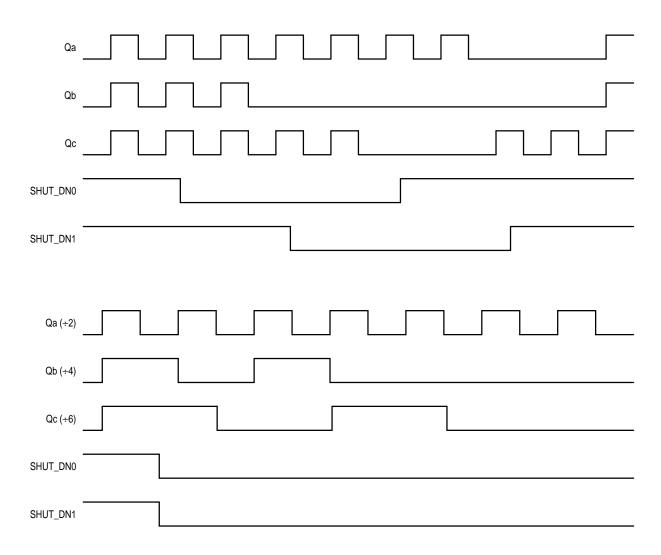
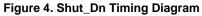





Figure 2. Logic Diagram

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Min	Мах	Unit
VCC	Supply Voltage	-0.3	4.6	V
VI	Input Voltage	-0.3	V _{DD} + 0.3	V
I _{IN}	Input Current		±20	mA
T _{Stor}	Storage Temperature Range	-40	125	°C

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

PLL INPUT REFERENCE CHARACTERISTICS (T_A = 0 to 70°C)

Symbol	Characteristic		Max	Unit	Condition
t _r , t _f	TCLK Input Rise/Falls		3.0	ns	
fref	Reference Input Frequency	10	Note 1.	MHz	
^f refDC	Reference Input Duty Cycle	25	75	%	

1. Maximum input reference frequency is limited by the VCO lock range and the feedback divider.

DC CHARACTERISTICS (TA = 0° to 70°C, V_{CC} = 3.3V $\pm 5\%$)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	2.0		3.6	V	
VIL	Input LOW Voltage			0.8	V	
VOH	Output HIGH Voltage	2.4			V	I _{OH} = -20mA (Note 2.)
V _{OL}	Output LOW Voltage			0.5	V	I _{OL} = 20mA (Note 2.)
I _{IN}	Input Current			±120	μA	Note 3.
ICC	Maximum Core Supply Current		65	85	mA	
ICCPLL	Maximum PLL Supply Current		15	20	mA	
с _{IN}				4	pF	
C _{pd}			25		pF	Per Output

2. The SC931 outputs can drive series or parallel terminated 50Ω (or 50Ω to V_{CC}/2) transmission lines on the incident edge (see Applications Info section).

3. Inputs have pull-up/pull-down resistors which affect input current.

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
^f xtal	Crystal Oscillator Frequency Range	10		20	MHz	Note NO TAG, Note 6.
f _{ref}	Input Reference Frequency	Note 6.		Note 6.	MHz	Ref = TCLK
t _{os}	Output-to-Output Skew Same Frequency Diff Frequency Same Frequency Diff Frequency Diff Frequency Diff Frequency		200 300 300 450	300 400 400 600	ps	$\begin{array}{l} f_{max} \leq 100 MHz \\ f_{max} \leq 100 MHz \\ f_{max} > 100 MHz \\ f_{max} > 100 MHz \end{array}$
fvco	VCO Lock Range Power_Dn = 0	100		280	MHz	
f _{max}	Maximum Output Frequency Qa, Qb (÷2) Qa, Qb, Qc (÷4) Qc (÷6)			140 80 47	MHz	Note 4.
^t pd	TCLK to EXT_FB Delay	-600	-100	400	ps	$f_{ref} = 50MHz, FB = \pm 4$
^t pw	Output Duty Cycle (Note 4.)	tCYCLE/2 -750	tCYCLE/2 ±500	^t CYCLE/2 +750	ps	
t _r , t _f	Output Rise/Fall Time (Note 4.)	0.1		1.0	ns	0.8 to 2.0V
^t PLZ ^{, t} PHZ	Output Disable Time	2.0		8.0	ns	50 Ω to V _{CC} /2
^t PZL	Output Enable Time	2.0		10	ns	50 Ω to V _{CC} /2
^t jitter	Cycle-to-Cycle Jitter (Peak-to-Peak)		±100		ps	Note 5.
tlock	Maximum PLL Lock Time			10	ms	

SC931 AC CHARACTERISTICS (TA = 0° to 70°C, V_{CC} = 3.3V $\pm 5\%$)

Measured with 50Ω to V_{CC}/2 termination.
 See Applications Info section for more jitter information.
 Input reference frequency is bounded by VCO lock range and feedback divide selection.

APPLICATIONS INFORMATION

Programming the SC931

The SC931 clock driver outputs can be configured into several frequency relationships, in addition the external feedback option allows for a great deal of flexibility in establishing unique input to output frequency relationships. The output dividers for the three output groups allows the user to configure the outputs into 1:1, 2:1, 3:1, 3:2 and 3:2:1 frequency ratios. The use of even dividers ensures that the output duty cycle is always 50%. Table 1 illustrates the various output configurations, the table describes the outputs using the VCO frequency as a reference. As an example for a 3:2:1 relationship the Qa outputs would be set at VCO/2, the Qb's at VCO/4 and the Qc's at VCO/6. These settings will provide output frequencies with a 3:2:1 relationship.

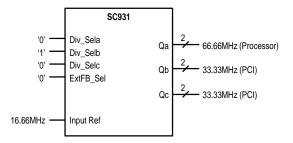

The division settings establish the output relationship, but one must still ensure that the VCO will be stable given the frequency of the outputs desired. The VCO lock range can be found in the specification tables. The feedback frequency and the Power_Dn pin can be used to situate the VCO into a frequency range in which the PLL will be stable. The design of the PLL is such that for output frequencies between 25 and 140MHz the SC931 can generally be configured into a stable region. The relationship between the input reference and the output frequency is also very flexible. Table 2 shows the multiplication factors between the inputs and outputs when the internal feedback option is used. For external feedback Table 1 can be used to determine the multiplication factor, there are too many potential combinations to tabularize the external feedback condition. Figure 5 and Figure 6 illustrate some programming possibilities, although not exhaustive it is representative of the potential applications.

Table 1. Programmable Output Frequency Relationships
(Power_Dn = '0')

	INPUTS		OUTPUTS	5	
Div_Sela	Div_Selb	Div_Selc	Qa	Qb	Qc
0	0	0	VCO/2	VCO/2	VCO/4
0	0	1	VCO/2	VCO/2	VCO/6
0	1	0	VCO/2	VCO/4	VCO/4
0	1	1	VCO/2	VCO/4	VCO/6
1	0	0	VCO/4	VCO/2	VCO/4
1	0	1	VCO/4	VCO/2	VCO/6
1	1	0	VCO/4	VCO/4	VCO/4
1	1	1	VCO/4	VCO/4	VCO/6

Table 2. Input Reference/Output Frequency Relationships ((Internal Feedback Only)
---	--------------------------

INPUTS OUTPUTS								
			Qa Qb		Qa Qb		Q	lC
Div_Sela	Div_Selb	Div_Selc	Power_Dn=0	Power_Dn=1	Power_Dn=0	Power_Dn=1	Power_Dn=0	Power_Dn=1
0	0	0	4x	2x	4x	2x	2x	х
0	0	1	4x	2x	4x	2x	4/3x	2/3x
0	1	0	4x	2x	2x	х	2x	х
0	1	1	4x	2x	2x	х	4/3x	2/3x
1	0	0	2x	х	4x	2x	2x	х
1	0	1	2x	х	4x	2x	4/3x	2/3x
1	1	0	2x	х	2x	х	2x	х
1	1	1	2x	х	2x	х	4/3x	2/3x

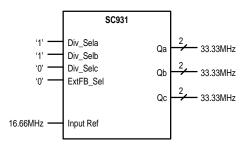
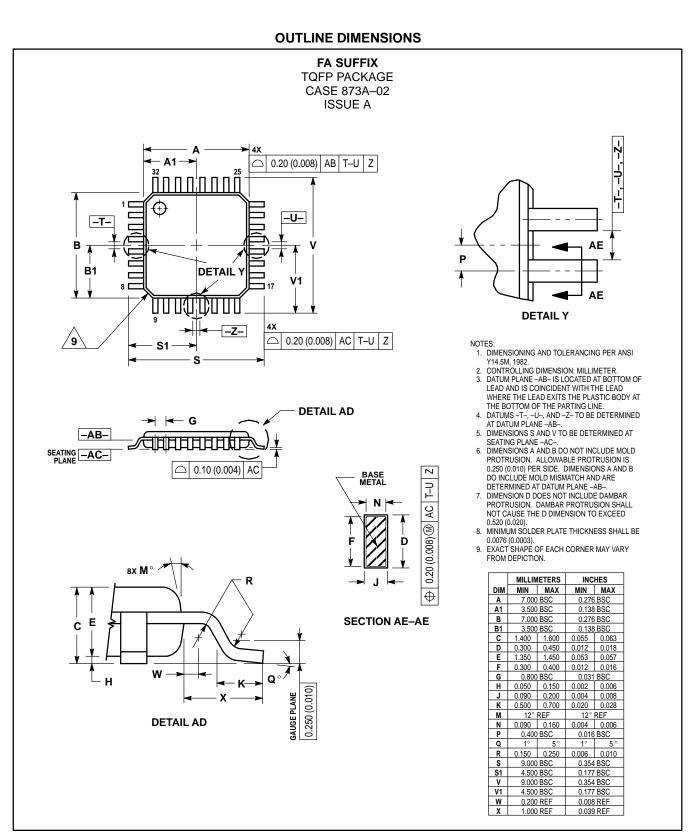



Figure 6. Single Frequency Configuration

SC931

MOTOROLA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employeer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1-602-244-6609

 Motorola Fax Back System
 - US & Canada ONLY 1-800-774-1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298