The RF Line
 NPN Silicon
 RF Power Transistor

Designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 520 MHz .

- Guaranteed 440, 470, 512 MHz 12.5 Volt Characteristics

Output Power = 50 Watts
Minimum Gain = 5.2 dB @ $440,470 \mathrm{MHz}$
Efficiency $=55 \%$ @ 440, 470 MHz
IRL = 10 dB

- Characterized with Series Equivalent Large-Signal Impedance Parameters from 400 to 520 MHz
- Built-In Matching Network for Broadband Operation
- Triple Ion Implanted for More Consistent Characteristics
- Implanted Emitter Ballast Resistors
- Silicon Nitride Passivated
- 100\% Tested for Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ 15.5 Vdc, 2.0 dB Overdrive
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

CASE 316-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16.5	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	38	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current - Continuous	${ }^{\text {I }}$	12	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 135 \\ & 0.77 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\theta J C}$	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}^{\text {C }}=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR) }}$ CEO	16.5	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}^{\text {C }}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR) }}$ CES	38	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	ICES	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	20	70	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	135	170	pF

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS (In Motorola Test Fixture. See Figure 1.)					
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470 \mathrm{MHz}\right)$	$G_{p e}$	5.2	6.1	-	dB
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	$G_{p e}$	5.0	5.9	-	dB
Input Return Loss $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470,512 \mathrm{MHz}\right)$	IRL	10	15	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470 \mathrm{MHz}\right) \end{aligned}$	η	55	65	-	\%
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	-	50	60	-	\%
Output Mismatch Stress $\begin{aligned} & (\mathrm{V} C \mathrm{CC}=15.5 \mathrm{~V}, 2.0 \mathrm{~dB} \text { Overdrive, } \mathrm{f}=470 \mathrm{MHz}, \\ & \mathrm{VSWR}=20: 1 \text {, All Phase Angles) (1) } \end{aligned}$	$\psi(2)$	No Degradation in Output Power			

NOTES:

1. $\mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~dB}$ above drive requirement for 50 W output at 12.5 Vdc .
2. $\psi=$ Mismatch stress factor - the electrical criterion established to verify the device resistance to load mismatch failure. The mismatch stress test is accomplished in the standard test fixture (Figure 1) terminated in a 20:1 minimum load mismatch at all phase angles.

Bias Boards: $1 / 16^{\prime \prime}$ G10 or Equivalent
2 oz. Cu Clad Double Sided
Figure 1. 440 to 512 MHz Broadband Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 5. Broadband Performance for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~W}$

$P_{\text {out }}=50 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}$
TUNED FOR MAXIMUM GAIN AT $P_{0}=50 \mathrm{~W}$

f $(M H z)$	$Z_{\text {in }}$ Ω	Z OL * Ω
400	$0.7+\mathrm{j} 2.8$	$1.4+\mathrm{j} 2.3$
440	$0.7+\mathrm{j} 3.2$	$1.1+\mathrm{j} 2.6$
470	$0.8+\mathrm{j} 3.3$	$0.8+\mathrm{j} 2.7$
512	$0.8+\mathrm{j} 3.2$	$0.7+\mathrm{j} 2.9$
520	$0.7+\mathrm{j} 3.0$	$0.6+\mathrm{j} 3.0$

NOTE: $Z_{\text {in }} \& Z_{O L}{ }^{*}$ are given from base-to-base and collector-to-collector respectively.

Figure 6. Input and Output Impedance Normalized to 10 Ohms Circuit Tuned for Maximum Gain @ $\mathrm{P}_{\mathrm{o}}=50 \mathrm{~W}$

Figure 7. Schematic of Broadband Demonstration Amplifier (3)

PERFORMANCE CHARACTERISTICS OF BROADBAND DEMONSTRATION AMPLIFIER

Figure 8. Output Power versus Input Power

Figure 9. $\mathrm{P}_{\mathrm{O}}, \eta_{\mathrm{c}}$ and VSWR versus Frequency
(3) Detailed design and performance information available from Motorola upon request.

NOTES

NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

Customer Focus Center: 1-800-521-6274

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System

- US \& Canada ONLY 1-800-774-1848
- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
HOME PAGE: http://motorola.com/sps/

