
The RF Line NPN Silicon RF Power Transistor

The MRF6409 is designed for GSM base stations applications. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

- To be used in Class AB
- Specified 26 Volts, 960 MHz Characteristics
 Output Power 20 Watts CW
 Gain 11 dB Typ
 Efficiency 60% Typ

MRF6409

20 W, 960 MHz RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbo	l Value	Unit
Collector–Emitter Voltage	VCEO	24	Vdc
Collector–Emitter Voltage	V _{CES}	55	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector-Current — Continuous	l _C	5.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	45 0.26	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$R_{\theta JC}$	3.8	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, I _B = 0)	V(BR)CEO	24	30		Vdc
Emitter–Base Breakdown Voltage (I _B = 5.0 mAdc, I _C =0)	V(BR)EBO	4.0	5.0	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, V _{BE} = 0)	V(BR)CES	55	60	_	Vdc
Collector–Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0)	ICES	_	-	6.0	mA

⁽¹⁾ Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
DC Current Gain (I _{CE} = 1.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	35	80	_
DYNAMIC CHARACTERISTICS		•			
Output Capacitance (V _{CB} = 26 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	18	_	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V _{CC} = 26 Vdc, P _{Out} = 20 W (CW), I _{CQ} = 50 mA, f = 960 MHz)	G _{pe}	10	11	_	dB
Collector Efficiency (V _{CC} = 26 Vdc, P _{out} = 20 W (CW), I _{CQ} = 50 mA, f = 960 MHz)	η	50	60	_	%
Load Mismatch (V _{CC} = 26 Vdc, P _{out} = 15 W (CW), I _{CQ} = 50 mA, f = 960 MHz, Load VSWR = 3:1, All Phase Angles at Frequency of Test)	Ψ	No Degradation in Output Power			

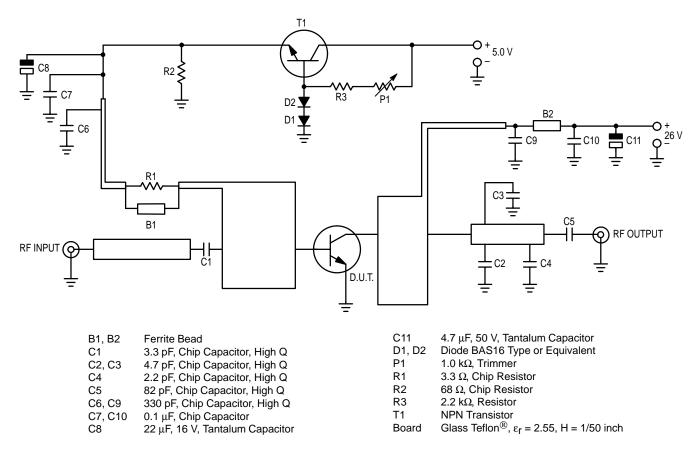
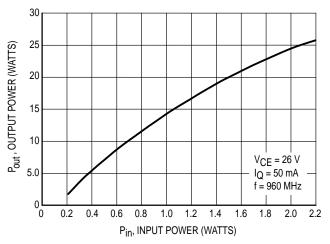



Figure 1. Test Circuit Electrical Schematic

TYPICAL CHARACTERISTICS

25 24 P_{out}, OUTPUT POWER (WATTS) 23 22 21 20 19 18 V_{CE} = 26 V $I_Q = 50 \text{ mA}$ 17 $P_{in} = 1 W$ 16 15 920 930 940 950 960 970 f, FREQUENCY (MHz)

Figure 2. Output Power versus Input Power (CW)

Figure 3. Output Power versus Frequency (CW)

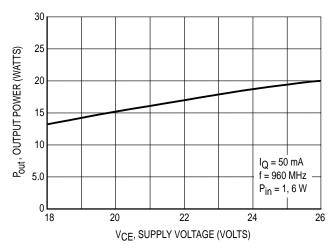


Figure 4. Output Power versus Supply Voltage (CW)

Figure 5. Power Gain and Efficiency versus Output Power

V_{CE} = 26 V

 $I_{CQ} = 50 \text{ mA}$

f1 = 960 MHz

f2 = 960, 1 MHz

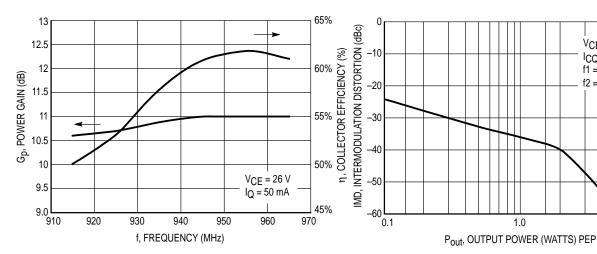
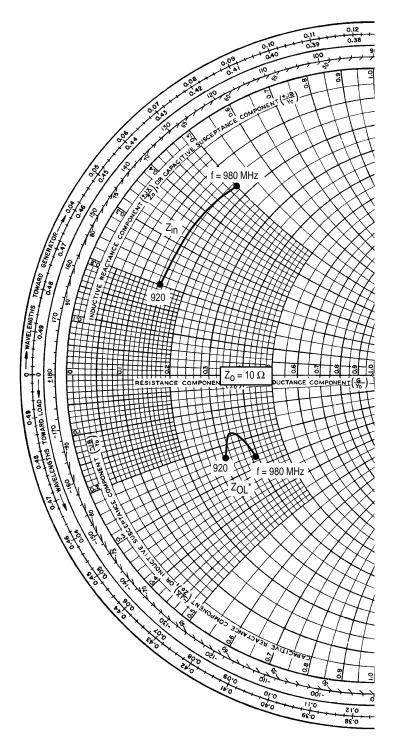



Figure 6. Typical Broadband Performances

Figure 7. Intermodulation Distortion versus Output Power

10

f (MHz)	Z _{in} (Ω)	Z _{OL} * (Ω)
920	1.4 + j3.0	3.2 – j2.5
940	1.5 + j3.9	3.5 – j1.88
960	1.5 + j4.2	3.9 – j2.5
980	1.6 + j4.4	4.0 – j2.8

Z_{OL}*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 8. Input and Output Impedances with Circuit Tuned for Maximum Gain @ V_{CC} = 26 V, I_{CQ} = 50 mA, P_{out} = 20 W (CW)

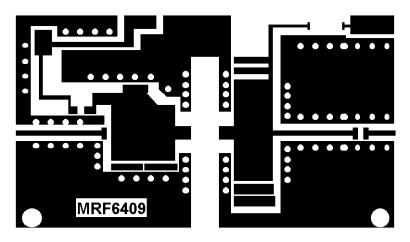


Figure 9. 960 MHz Test Circuit RF, Photomaster Scale 1:1 (Reduced 25% in printed data book, DL110/D)

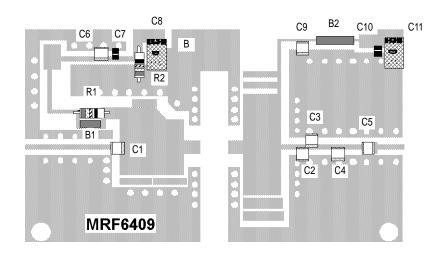
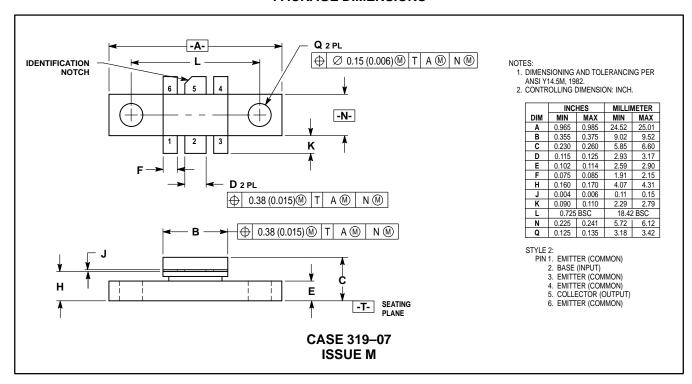



Figure 10. 960 MHz Test Circuit RF, Photomaster Scale 1:1 and Components Location (Reduced 25% in printed data book, DL110/D)

MOTOROLA RF DEVICE DATA MRF6409

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://sps.motorola.com

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MRF6409/D