Dual Modulus Prescaler

This device is a two-modulus prescaler which will divide by 10 and 11. A MECL-to-MTTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- $550 \mathrm{MHz}(\div 10 / 11)$
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input - Series Input RC Typ, 20Ω and 4.0 pF
- VBB Reference Voltage
- 310 Milliwatts (Typ)
* When using a 5.0 V supply, apply 5.0 V to $\operatorname{Pin} 1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL $\left.\mathrm{V}_{\mathrm{CC}}\right)$, Pin $16\left(\mathrm{~V}_{\mathrm{CC}}\right)$, and ground Pin $8\left(\mathrm{~V}_{\mathrm{EE}}\right)$. When using -5.2 V supply, ground Pin $1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL V_{CC}), and Pin $16\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and apply -5.2 V to $\mathrm{Pin} 8\left(\mathrm{~V}_{\mathrm{EE}}\right)$. If the translator is not required, Pin 6 may be left open to conserve dc power drain.

MAXIMUM RATINGS

| Characteristic | Symbol | Rating | Unit |
| :--- | :---: | :---: | :---: | | (Ratings above which device life may be impaired) | | | |
| :--- | :---: | :---: | :---: |
| Power Supply Voltage
 $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$ | V_{EE} | -8.0 | Vdc |
| Input Voltage
 $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$ | $\mathrm{V}_{\text {in }}$ | 0 to V_{EE} | Vdc |
| Output Source Current
 Continuous
 Surge | IO | <50
 <100 | mAdc |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -65 to 175 | ${ }^{\circ} \mathrm{C}$ |

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
DC Fan-Out (Note 1) (Gates and Flip-Flops)	n	70	-

NOTES: 1. AC fan-out is limited by desired system performance.
2. ESD data available upon request.

MC12013

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12013D	$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	SO-16
MC12013P		

MC12013

Figure 1. Logic Diagrams

Figure 2. Typical Frequency Synthesizer Application

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	$\mathrm{linH1}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{linH}^{\text {a }}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	$\mathrm{linH3}^{\text {in }}$	5	0.7	3.0	1.0	3.0	1.0	3.6	
	$\mathrm{linH}^{\text {a }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		-10 -10 -10 -10		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	$l_{\text {inL2 }}$	$\begin{gathered} \hline 9 \\ 10 \end{gathered}$	$\begin{aligned} & \hline-1.6 \\ & -1.6 \end{aligned}$		-1.6 -1.6		$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		mAdc
Reference Voltage	V_{BB}	14			-1.360	-1.160			Vdc
Logic '1' Output Voltage	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.100 \\ & -1.100 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-1.000 \\ & -1.000 \end{aligned}$	$\begin{aligned} & \hline-0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.930 \\ & -0.930 \end{aligned}$	$\begin{aligned} & \hline-0.700 \\ & -0.700 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	-2.8		-2.6		-2.4		
Logic '0' Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OL} 1} \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.990 \\ & -1.990 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.950 \\ & -1.950 \end{aligned}$	$\begin{aligned} & \hline-1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & -1.925 \\ & -1.925 \end{aligned}$	$\begin{aligned} & \hline-1.615 \\ & -1.615 \end{aligned}$	Vdc
	VOL2	7		-4.26		-4.40		-4.48	
Logic '1' Threshold Voltage	$\begin{aligned} & \hline \text { VOHA } \\ & \text { (Note 2) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.120 \\ & -1.120 \end{aligned}$		$\begin{aligned} & \hline-1.020 \\ & -1.020 \end{aligned}$		$\begin{aligned} & -0.950 \\ & -0.950 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & \hline-1.655 \\ & -1.655 \end{aligned}$		$\begin{aligned} & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Short Circuit Current	Ios	7	-65	-20	-65	-20	-65	-20	mAdc
NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 10 during this test. The clock input is the waveform shown. 3. In addition to meeting the output levels specified, the device must divide by 11 during this test. The clock							Clock Input		$\mathrm{V}_{\mathrm{IH} \text { max }}$ $\mathrm{V}_{\text {ILmin }}$

 input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

				TEST	LTAGE/CU	RRENT VA			
					Volt				
	est Tem	erature	$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILmin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{IH}	$\mathrm{V}_{\text {ILH }}$	
		$-40^{\circ} \mathrm{C}$	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7	
		$25^{\circ} \mathrm{C}$	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7	
		$85^{\circ} \mathrm{C}$	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7	
		Pin		T VOLTAG	APPLIED	O PINS LIS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILmin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{IH}	$\mathrm{V}_{\text {IL }}$	Gnd
Power Supply Drain Current	ICC1	8							1,16
	ICC2	6	4	5					6
Input Current	$\mathrm{l}_{\mathrm{inH}}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$						$\begin{array}{r} 1,16 \\ 1,16 \\ 1,16 \\ 1,16 \\ \hline \end{array}$
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$					6
	linH3	5	4	5					6
	linH4	$\begin{gathered} 9 \\ 10 \end{gathered}$					$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	$\mathrm{l}_{\text {inL1 }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$							$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
	$l_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$						$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	$V_{B B}$	14							1,16
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 1)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7	5	4					6
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL} 1} \\ (\text { Note 1) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7	4	5					6
Logic '1' Threshold Voltage	VOHA (Note 2)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{array}{\|l\|} \hline 11,12,13 \\ 11,12,13 \\ \hline \end{array}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$				$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$			$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$
Short Circuit Current	Ios	7	5	4				7	6
NOTES: 1. Test outputs of the devi ground voltages must 2. In addition to meeting th input is the waveform sh 3. In addition to meeting th input is the waveform sh	sted by seq between t ls specified ls specified	encing th ts. The c the devic the devic	ugh the truth ck input is th must divide by must divide	able. All in waveform 10 during 11 during	power supp wn. test. The c test. The cl				Hax min

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

@ Test Temperature			TEST VOLTAGE/CURRENT VALUES						Gnd
			Volts			mA			
			$\mathrm{V}_{\mathrm{IHT}}$	VILT	$V_{\text {EE }}$	IL	IOL	IOH	
	$\begin{array}{r} -40^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \end{array}$		-3.2	-4.4	-5.2	-0.25	16	-0.40	
			-3.2	-4.4	-5.2	-0.25	16	-0.40	
			-3.2	-4.4	-5.2	-0.25	16	-0.40	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
			$\mathrm{V}_{\mathrm{IHT}}$	VILT	$V_{E E}$	IL	IOL	IOH	
Power Supply Drain Current	ICC1	8			8				1,16
	ICC2	6			8				6
Input Current	linH_{1}	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \\ & 9,10 \end{aligned}$		8 8 8 8				$\begin{array}{r} 1,16 \\ 1,16 \\ 1,16 \\ 1,16 \\ \hline \end{array}$
	linH2	4 5			8				6
	linH3	5			8				6
	linH4	$\begin{gathered} 9 \\ 10 \end{gathered}$			8				$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$			$\begin{aligned} & 8,15 \\ & 8,11 \\ & 8,12 \\ & 8,13 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$
	$1 \mathrm{inL2}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	$V_{B B}$	14			8	14			1,16
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 1)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7			8			7	6
Logic '0' Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OL} 1} \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7			8		7		6
Logic '1' Threshold Voltage	VOHA (Note 2)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Short Circuit Current	Ios	7			8				6
NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 10 during this test. The clock input is the waveform shown. 3. In addition to meeting the output levels specified, the device must divide by 11 during this test. The clock input is the waveform shown.									

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	linH1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{linH}^{\text {2 }}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	$\mathrm{l}_{\text {inH3 }}$	5	0.7	3.0	1.0	3.0	1.0	3.6	
	$\mathrm{linH}^{\text {a }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & \hline-10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	linL2	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & \hline-1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		mAdc
Reference Voltage	$V_{B B}$	14			3.67	3.87			Vdc
Logic '1' Output Voltage	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \text { (Note 1) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.900 \\ & 3.900 \end{aligned}$	$\begin{aligned} & 4.110 \\ & 4.110 \end{aligned}$	$\begin{aligned} & 4.000 \\ & 4.000 \end{aligned}$	$\begin{aligned} & 4.190 \\ & 4.190 \end{aligned}$	$\begin{aligned} & 4.070 \\ & 4.070 \end{aligned}$	$\begin{aligned} & 4.300 \\ & 4.300 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	2.4		2.6		2.8		
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL} 1} \\ (\text { Note 1) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.070 \\ & 3.070 \end{aligned}$	$\begin{aligned} & 3.385 \\ & 3.385 \end{aligned}$	$\begin{aligned} & 3.110 \\ & 3.110 \end{aligned}$	$\begin{aligned} & 3.410 \\ & 3.410 \end{aligned}$	$\begin{aligned} & 3.135 \\ & 3.135 \end{aligned}$	$\begin{aligned} & 3.445 \\ & 3.445 \end{aligned}$	Vdc
	$\mathrm{V}_{\text {OL2 }}$	7		0.94		0.80		0.72	
Logic '1' Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OHA}} \\ & (\text { Note 2) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.880 \\ & 3.880 \end{aligned}$		$\begin{aligned} & 3.980 \\ & 3.980 \end{aligned}$		$\begin{aligned} & 4.050 \\ & 4.050 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 3.405 \\ & 3.405 \end{aligned}$		$\begin{aligned} & 3.430 \\ & 3.430 \end{aligned}$		$\begin{aligned} & 3.465 \\ & 3.465 \end{aligned}$	Vdc
Short Circuit Current	Ios	7	-65	-20	-65	-20	-65	-20	mAdc
NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 10 during this test. The clock input is the waveform shown. 3. In addition to meeting the output levels specified, the device must divide by 11 during this test. The clock								Input	$\mathrm{V}_{\mathrm{IH} \text { max }}$ $V_{\text {ILmin }}$

and 11 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage = 5.0 V, unless otherwise noted.) (continued)

MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.) (continued)

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 10 during this test. The clock input is the waveform shown.
3. In addition to meeting the output levels specified, the device must divide by 11 during this test. The clock

Clock Input
 input is the waveform shown.

SWITCHING CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	MC12013									TEST VOLTAGES／WAVEFORMS APPLIED TO PINS LISTED BELOW：								
			$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit	Pulse Gen． 1	Pulse Gen． 2	Pulse Gen． 3	$\begin{gathered} \mathrm{V}_{\mathrm{IH} \text { min }} \\ \dagger \\ \hline \end{gathered}$	$\underset{\dagger}{\mathrm{V}_{\text {ILmin }}}$	$\begin{gathered} V_{F} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & 2.0 \end{aligned}$
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max									
Propagation Delay （See Figures 3 and 5）	$\begin{aligned} & \mathrm{t}_{15+2+} \\ & \mathrm{t}_{15+2-} \\ & \mathrm{t}_{5+7+} \\ & \mathrm{t}_{5-7-} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 7 \\ & 7 \end{aligned}$	二	－ － －	$\begin{aligned} & 8.1 \\ & 7.5 \\ & 8.4 \\ & 6.5 \end{aligned}$	二	二	$\begin{aligned} & 8.1 \\ & 7.5 \\ & 8.1 \\ & 6.5 \end{aligned}$	二	二	$\begin{aligned} & 8.9 \\ & 82 \\ & 8.9 \\ & 7.1 \end{aligned}$	${ }_{\nabla}^{\mathrm{ns}}$	$\begin{gathered} 15 \\ 15 \\ \text { A } \\ \text { A } \end{gathered}$	二	二	二	11，12，13 11，12，13	$\begin{gathered} 9,10 \\ 9,10 \\ - \\ - \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \\ & 1,6,16 \\ & 1,6,16 \end{aligned}$
Setup Time （See Figures 4 and 5）	$\mathrm{t}_{\text {setup1 }}$ $\mathrm{t}_{\text {setup2 }}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	－	－	－	$11,12,13$	${ }_{*}^{9,10}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \end{aligned}$
Release Time （See Figures 4 and 5）	$\begin{aligned} & \mathrm{t}_{\mathrm{rel} 1} \\ & \mathrm{trel}^{2} \end{aligned}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	＊	－	－	$11,12,13$	$\underset{\star}{9.10}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \end{aligned}$
$\begin{aligned} & \text { Toggle Frequency } \\ & \text { (See Figure 6) } \\ & \div 10 / 11 \end{aligned}$	${ }_{\text {max }}$	2	500	－	－	550	－	－	500	－	－	MHz	－	－	－	11	－	－	8	16

＊Test inputs sequentially，with Pulse Generator 2 or 3 as indicated connected to input under test，and the voltage indicated applied to the other input（s）of the same type（i．e．，MECL or MTTL）．

	$\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}{ }^{\circ} \mathbf{C}$	
	1.03	1.115	1.20	
$\dagger \mathrm{V}_{\mathbf{I H} \text { min }}$	0.175	0.200	0.235	Vdc
$\dagger \mathrm{V}_{\text {ILmin }}$	0.175			

Figure 3．AC Voltage Waveforms

Figure 4．Setup and Release Time Waveforms

MC12013

Figure 5. AC Test Circuit

MC12013

Figure 6. Maximum Frequency Test Circuit

DIVIDE BY 11

MC12013

Figure 7. State Diagram

Q1	Q2	Q3	Q4
1	1	1	1
0	1	1	1
0	0	1	1
0	0	0	1
1	0	0	1
1	1	0	1
0	1	1	0
0	0	1	0
0	0	0	0
1	0	0	0
1	1	0	0

NOTES:
——— Enable $=1$.
The State of the Enable is important only for the positive Clock Transition when the counter is in state 1100.

APPLICATIONS INFORMATION

The primary application of this device is as a highspeed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance.
In it's basic form, this device will divide by 10/11. Division
by 10 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 11 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, $50 / 51,100 / 101$, etc.) A few of the many configurations are shown below.

Figure 8. Divide By 10/11

MC12013

Figure 9. Divide By 20/21

To obtain an MTTL output, connect Pins 5 and 4 to Pins 2 and 3, respectively. Termination resistors for the MECL outputs are not shown, but are required except for the flip-flop driving the translator section
The $\div 20 / 21$ counter may also be built using an MTTL flip-flop by connecting Pins 5 and 4 to Pins 2 and 3 respectively, and driving the MTTL flip-flop with Pin 7. MC12013 inputs E4 and E 5 are used rather than E 1 . With $\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3=0$, operation remains as shown.

Figure 10. Divide By 40/41

MC12013

OUTLINE DIMENSIONS

MC12013
NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $(\mathbb{4})$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:
USA/EUROPE/ Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Customer Focus Center: 1-800-521-6274

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System

- US \& Canada ONLY 1-800-774-1848
-http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/

