
AN910
PICmicro® Device Programming: What You Always

Wanted to Know (But Didn’t Know Who to Ask)
INTRODUCTION

There is a lot material out there about microcontroller
programming. Most of it focuses on the software side of
things – orthogonal instruction sets, code optimization,
high-level language programming tricks and tweaks in
assembler environments, even taking advantage of a
device’s peculiarities to make it do what you want. This
is, of course, a very good thing, as microcontrollers end
up doing more complex tasks in more sophisticated
applications, the ability to write elegant code becomes
more and more valuable.

What doesn’t get mentioned as often is the last key part
of the process: actually getting that elegant code into
the microcontroller itself. The author still remembers
well his first experience, in the days before Microchip
even existed, of trying to piece together several
hardware specifications in order to figure out how the
programming process was supposed to work. True,
device programming is a vital step, but it doesn’t
always get the attention it deserves.

That brings us to the point of this application note. For
more than a decade, Microchip has published a lot of
information about programming its 8-bit micro-
controllers. There is now so much information out
there, in fact, that it’s sometimes hard for engineers
and technicians who are unfamiliar with Microchip
products to know where to start. The purpose of this
paper is to provide the entry point for information on
programming Microchip’s 8-bit microcontrollers. While
we can’t cover every programming specification in
detail, we can give you a good idea of how the process
works and show you what to look for in a specification.
We’ll also touch briefly on how in-system programma-
bility can affect an application’s design and finish with
other programming and diagnostic innovations that
make applications more reliable.

THE BASICS

If you’ve had previous experience with programming
microcontrollers, you’re already familiar with the basic
issue: a microcontroller in an embedded application is
not a computer. There is no convenient built-in GUI for
loading a program. You can’t just insert a tiny floppy in
the side and press any pin to continue. Instead, you
use a hardware protocol to get the device’s attention
and present it with the intended program in an unam-
biguous fashion. If the designers have done their job
correctly, the device will interpret the incoming data and
write it to memory exactly as you intended.

For the vast majority of PICmicro devices, the protocol
is known as In-Circuit Serial Programming™ (better
know as ICSP™). Since Microchip introduced it in the
early 1990s, serial programming methods of some form
have become the standard for in-system programming
for most microcontroller manufacturers. The protocol
allows programming functions to be multiplexed with
existing device pins, avoiding the need of tying up
precious I/O real estate with ports that might only be
used occasionally, if at all.

Although the exact implementation varies from one
PICmicro family of devices to another, the basic ICSP
protocol remains the same. When the device is sup-
plied with a normal power supply and a specific voltage
on the Master Clear (MCLR) pin, a state machine built
into the core architecture takes control. It accepts serial
data and clock on two of the port pins and writes the
information to the appropriate target memory space.
The entire process is controlled by a set of special
commands that accompany the serial data stream.

That sounds simple, doesn’t it? In principle, the whole
system can be reduced to those basic concepts. There
are, of course, lots of details that must be observed for
things to work correctly and many of those differ
depending on the particular device family. It is those
details that we will discuss here.

Keep in mind if you’re using one of Microchip’s device
programmers, such as PRO MATE® II or a programmer
offered by one of Microchip’s approved third party
partners, that all of these details will be handled for you
automatically. It is those cases where the ICSP opera-
tion is used as it was named – that is, programming
the microcontroller in the system – that knowing how
the process works will help you to understand the
issues and make the application work for you.

Author: Eric Somerville
Microchip Technology Inc.
 2004 Microchip Technology Inc. DS00910A-page 1

AN910
The ICSP Hardware Protocol

Generally speaking, all PICmicro microcontrollers are
placed in Serial Programming mode by doing these
three things in sequence:

1. Applying the appropriate power source and
ground (VDD and VSS) to the device;

2. Raising the voltage on the MCLR pin to the pro-
gramming voltage level (in general, around
13V), while at the same time:

3. Pulling the two designated I/O port pins to logic
low and holding them there.

A few details are worth mentioning here. First, applying
VDD and VSS means all digital and analog supply and
ground pins, including AVDD and AVSS, not just those
pins that are convenient. This is usually stated clearly
in the first page or two of each programming specifica-
tion, which is a separate document from the data sheet.
If it isn’t, it is safe to assume that the device requires it.

The programming voltage applied to MCLR, also
known as VPP, varies with device architecture. The
voltage level (referred to throughout the literature as
“VIHH”) can be specified as a fixed range for older
EPROM devices, or as an offset of VDD in Flash
devices. A safe generalization for all PICmicro micro-
controllers is a VIHH of 13V; however, it is always best
to check the particular device’s programming specifica-
tion first for its particular values. This is why all pro-
gramming specifications call for a well regulated
voltage source with a resolution of ±0.25V.

Besides the level of VIHH, there is a requirement for the
transition time to that level. The text in some specifica-
tions may be non-specific, but there is almost always a
defined and very short interval. There is a very good
reason for the brevity: the device may begin to execute
whatever is in its program memory if VDD is applied for
sufficient time before VPP reaches VIHH. Although this
is not an issue with OTP parts, which are shipped blank
and will only perform NOP instructions, it may cause
concerns if a Flash device is being reprogrammed
while in the application.

Premature code execution is primarily a concern with
applications that use a fast-starting RC oscillator or the
device’s internal RC oscillator; however, it could be an
issue for any oscillator type if the VPP rise time is suffi-
ciently long. In fact, some earlier devices are even
more explicit, requiring that VIHH already be on MCLR
before VDD is provided to the part. This is good practice
for any application that uses an RC oscillator and
where external Master Clear functionality is disabled. In
all cases, it means that VPP not only requires a regu-
lated supply, but an output with adequate drive behind
it to bring the level up sufficiently fast. This is
particularly important where the circuit uses added
capacitance or strong pull-up resistors.

There’s also the matter of the ports. Depending on the
device, the two programming pins are usually multi-
plexed with functions on PORTB, most often RB6 and
RB7 and are designated “PGC” (Program Clock) and
“PGD” (Program Data). For really low pin count devices
with only one I/O port (like those in the PIC12 family),
the programming pins are GP0 and GP1. If there’s any
doubt as to which pins are associated with serial pro-
gramming, refer to the pinout diagram in the device
data sheet or programming specification.

As a final clarification on ports: some newer PICmicro
devices have a MCLR pin that can be turned into some-
thing else. Specifically, the pin (usually GP3, RA5 or
RE3, depending on the pin count) can function as an
input-only port when the MCLRE configuration bit is
set; in these cases, external Master Clear functionality
is disabled. Even if the pin is configured as a port,
however, it can still function as the trigger for ICSP
operation. Applying VPP to this pin when it is configured
as a digital port still invokes the ICSP protocol as
before, provided the other conditions are met.

When all conditions are met for the appropriate setup
interval, the on-board serial programming state
machine takes control. The device enters an Idle state,
where the CPU and all the peripherals are unclocked
and then waits for a clock signal to appear on the PGC
pin to start the programming process. The program-
ming voltage on MCLR is also used by EPROM-based
devices (and a few earlier Flash devices) to charge the
program memory array and get it ready for the
incoming data.

Programming itself is a synchronous process, starting
as soon as a clock train is applied to PGC; there is no
latency. This is very important to note, as the state of
PGD on each and every falling edge of PGC is latched
and interpreted as a data bit. If the data stream gets a
late start, the net effect is to left-shift the incoming data
or commands, with accordingly bad results. Starting the
data stream before the program clock is ready will end
up right-shifting your data, which is just as bad.

PGC also controls the way that data and commands
are clocked in and out. Unlike some serial protocols
with a constant clock train, the ICSP protocol differenti-
ates data items by using intervals between short pulse
trains. For a command to receive data, as an example,
some number of pulses are sent to clock in the accom-
panying data on PGD. PGC is then held low for an
interval longer than one clock cycle; then PGC is
pulsed a certain number of times to clock in more data.
These longer “PGC held low” intervals mark the bound-
aries between commands; they are used by the state
machine to complete the current command and
prepare for the next. The intervals themselves vary,
based on their purpose and the particular programming
algorithm used by a device family and are spelled out
in the programming specifications.
DS00910A-page 2 2004 Microchip Technology Inc.

AN910
Timely introduction of the data stream is not the only
concern. The setup and hold times for data on PGD
must also fall within certain specifications to actually be
recognized as valid data (that is to say, a valid logic ‘1’
or ‘0’). There are also minimum intervals that must be
observed in separating programming commands from
their accompanying data and commands from each

other. All of these intervals vary from family to family
and are detailed in the appropriate programming
specification.

Besides those we’ve just discussed, there are many
more specified voltage levels and timing intervals in
ICSP operation. The most commonly used terms are
defined in Tables 1 and 2.

TABLE 1: COMMON DC CHARACTERISTIC DEFINITIONS IN MICROCHIP
PROGRAMMING SPECIFICATIONS(1)

Symbol Characteristic Comments

VDD Supply voltage for device during programming Some Flash specifications may give multiple
values or ranges under VDD, depending on the
operation (program/verify, erase, bulk erase, etc.).
Regardless of the application’s operating range,
the device’s VDD must be held in the appropriate
range during the programming operation.

VDDP Supply voltage for device during programming Usually specified for OTP devices (Flash devices
specify one or more VDD ranges; see above).
Regardless of the application’s operating range,
the microcontroller’s VDD must be held in this
range during programming.

VDDV Supply voltage during verify Usually a range specified for OTP devices. Most
algorithms require verification at the minimum and
maximum ends of the range to ensure proper
programming.

VIHH

(VIHH1)
Voltage on MCLR to enable high-voltage ICSP™
programming

For most devices, this serves as the hardware
trigger and the source for charging the program
memory array. Specified as a range.

VIHL Voltage on MCLR and/or PGM to enable
single-supply ICSP programming

This is the secondary trigger and the voltage
source for charging the program memory array in
single-supply ICSP programming.

VIH

(VIH1)
Input high-level (logic ‘1’) limit on PGC:PGD Defines the lower limit of what will be recognized

as a logic ‘1’. This term may be used in some
specifications in the same sense as VIHL. It is not
necessarily the same value. “VIH1” is the earlier
usage.

VIL

(VIL1)
Input low-level (logic ‘0’) limit on PGC:PGD Defines the upper limit of what will be recognized

as a logic ‘0’. “VIL1” is the earlier usage.

IDD Current requirement for MCLR/VPP during
programming

Not always specified; more likely to be seen on
OTP devices.

IDDP Current requirement for device during programming Total current drawn during programming for all VDD
pins; expressed as a typical or maximum.

CIO Loading capacitance on I/O pins General requirement for all devices for meeting AC
specifications listed in their data sheets. In
programming, applies primarily to PGC and PGD.

Note 1: This list represents the most commonly defined DC specifications for ICSP programming and is not
exhaustive. Specifications not listed here are defined in the programming specification where they occur.
 2004 Microchip Technology Inc. DS00910A-page 3

AN910
TABLE 2: COMMON AC TIMING PARAMETER DEFINITIONS IN MICROCHIP
PROGRAMMING SPECIFICATIONS(1)

Symbol(2,3) Characteristic Comments

TVHHR

(tVHHR and
TR)

Maximum rise time for MCLR (Vss to VIHH) to
enter Programming mode

TR is more commonly used with OTP devices.
MCLR must rise to VPP faster than this value.

TF Maximum fall time for MCLR (VIHH to VSS) MCLR must return to VSS faster than this value.

TSET0 PGC:PGD pattern setup time (minimum time
from start of logic ‘0’ to start of MCLR rise to
VIHH)

Definition for Flash devices.

TSET1 Minimum setup (rise) time for PGD before
PGC falling edge

THLD0 Minimum time to hold PGC and PGD low after
MCLR rises to VIHH to enter Programming mode

THLD1 Minimum hold time for PGD before
PGC falling edge

Defines the time that PGD must be in a particular
state to be clocked in as valid.

Tdly1
(TDLY1(4))

Minimum required time between PGD not being
driven and next rising edge of PGC

Reflects the minimum time between adjacent
commands, or a data payload and the next
command from PGD’s point of view.

Tdly2
(TDLY2(4))

Command separation interval (minimum time
from falling edge of clock to next rising edge)

Also reflects the difference between commands, or
between commands and data payload, from PGC’s
point of view. PGC is held low during this interval.
TDLY1 is always smaller than TDLY2.

Tdly3
(TDLY3(4))

Data out valid time (minimum time from rising
clock edge to valid data out)

Defines the time that PGC must be high before PGD
is read as valid.

TERA Erase cycle time (Flash memory only) May be specified in several ways depending on the
erase operation (program memory, entire device,
etc.).

TPROG Programming cycle time (Flash memory only) May be specified in several ways depending on the
programming operation (program-with-erase,
program only, low-voltage program, etc.).

TPW Programming pulse width (EPROM memory
only)

Represents the interval between “Begin
Programming” and “End Programming” commands,
where PGC must be held low. Although always
required, this interval is not explicitly defined in many
specifications.

Note 1: This list represents the most commonly defined AC specifications for ICSP programming and is not
exhaustive. Specifications not listed here are defined in the programming specification where they occur.
Specifications exclusive to Parallel Programming modes are not included.

2: The most common typographic representations are shown with alternate versions in parentheses. Except
where noted, these symbols correspond to equivalent intervals between timing waveforms for all ICSP
programming specifications.

3: Many programming specifications label diagrams by parameter numbers (intervals labelled “P1”, “P2”,
etc.), which are cross-referenced to the listed symbols. The correspondence between parameter numbers
and symbols may vary between the specifications for different families. For consistency, it is better to
describe AC timing intervals in terms of the listed symbols and not parameter numbers.

4: The most common usages are indicated. All of the TDLY intervals (with the variant representation) have
slightly different definitions in PIC17CXXX and PIC18CXXX. Also, TDLY3 is not defined for PIC18CXXX
devices; it is called “TVALID” instead.
DS00910A-page 4 2004 Microchip Technology Inc.

AN910
SINGLE-SUPPLY PROGRAMMING

An additional advantage of many devices with Flash
program memory is that they are capable of in-system
programming without the regulated 13V source. This
method is known as single-supply programming, since
only VDD is required. Historically, Microchip has
referred to this mode as low-voltage programming to
contrast it with standard ICSP operation and its
“high-voltage” VPP requirement. Using this method
does involve some trade-offs, however.

Single-supply ICSP programming uses an additional
programming pin, labeled PGM, with the other pins
required by the normal (High-Voltage) mode. The pro-
gramming voltage for the memory array is generated
by an internal charge pump when normal operating
voltage (VDD) is placed on the pin. When the PGC and
PGD pins are held to logic low at the same time as VDD

is applied to both PGM and MCLR, the microcontroller
enters Programming mode.

The normal Programming mode is still available to
users and can be used just as before. In fact, except for
the method of entering the Single-Supply mode, all
other programming specifications remain the same.
The primary difference is the elimination of the regu-
lated 13V supply requirement, which can be a distinct
advantage in adding in-circuit and in-the-field
reprogrammability to an application.

The Single-Supply mode is available as an option,
which is controlled by the configuration bit, LVP. The
default, unprogrammed state of this bit (= 1) enables
single-supply programming. Since PGC, PGD and
PGM are typically multiplexed with port pins (generally
RB3/RB5, RB6 and RB7), this means that the I/O
function of these pins is lost when single-supply ICSP
programming is enabled. This also means that when
single-supply programming is used, additional precau-
tions must be taken to ensure that PGM is always
pulled down to a logic low level, in order to prevent
inadvertent entry into Programming mode.

For those users who don’t need single-supply program-
ming, this mode can be easily disabled by clearing the
LVP bit (= 0). However, this can only be done in the
standard ICSP mode. Since most applications don’t
require single-supply programming, a good practice in
using devices with this capability is to perform the initial
programming in normal mode, setting the LVP bit to ‘0’
in the process. If singly-supply programming becomes
necessary later on, it can be restored by setting the bit
(again, using normal ICSP mode) back to ‘1’.

Single-supply ICSP programming is available on select
PICmicro devices with Flash program memory. In most
cases, devices that implement self-programmable mem-
ory (see page 15) also implement the single-supply
option.

The Building Blocks of Programming

Although we’ve established a protocol for getting the
information into the part, we still have to successfully
write it to the proper memory space. Regardless of the
PICmicro device that we’re programming, there are
several steps we must always perform.

1. Load the data. This involves giving a command
that unambiguously tells the device, “The stuff
following me is a word of data. Get ready to
record it.” The state machine knows that a spec-
ified number of bits after the command are serial
data to be serially shifted into a buffer (LSb first).

2. Write the data to memory. This command
says, “Take the contents of that buffer and put it
here.” Just where “here” is may be defined by
the command itself (for example, program
memory or data EEPROM), or may include a
program counter by reference. It could also be
based on what data was loaded in the last
command.

3. Read back the data from memory. This is not
saying “Give me a copy of what was just in the
buffer”, but rather, “Give me a copy of what is
now in the location that you just wrote to”. That
may seem like a minor difference, but it can, in
fact, be significant; it works with the next step to
make sure that data was written successfully.

4. Verify the data against the source. This is an
external process that compares the data
originally sent to the part with what the part has
just read from the programmed memory
location. This not only ensures that the data
wasn’t garbled in transmission, but also verifies
that the individual memory cells have been
unambiguously set to the correct binary value.

Parts of this process are actually handled by the pro-
gramming state machine inside the microcontroller.
Most of it, however, is handled by some agency outside
of the device. This is usually some combination of
hardware and software that “decides” what sequence is
correct for a particular device, queues up the neces-
sary commands and data and toggles the appropriate
voltages and signals on the right pins in the right
sequence.

As we’ve already mentioned, there are a number of
device programmers that will take care of everything for
you – as long as the microcontroller can be placed in
a programmer socket or connected to an external
device. It is when you need to debug an assembly line
programming process, or add in-system field program-
ming to a Microchip-based design, that understanding
the details of actual programming specifications
becomes necessary.
 2004 Microchip Technology Inc. DS00910A-page 5

AN910
Managing the Process:
The Programming Commands

Now that we know how the information gets into the
device, the next question is, “How does the device
know what to do with the information?” The answer is
simple: programming is controlled by a completely
different set of commands that are distinct from the
normal PICmicro instruction sets.

In broad terms, there are two versions of the program-
ming command set: one for the mid-range and previous
architectures and one for the enhanced PIC18 archi-
tecture. How these commands are used to carry out the
programming building blocks will be covered later.

PICmicro devices, up to the mid-range level with 12-bit
and 14-bit instruction words (from PIC12 through
PIC16), all use a common set of 6-bit instructions. For
brevity, we’ll refer to this version of the protocol as the
“PIC16 method” or the “mid-range method”. In practical
terms, this programming method works directly on
memory locations under state machine control. Data is
loaded, programmed and read back by separate
commands. The program counter is incremented with
its own explicit command.

Commands are issued by cycling PGC for 6 clocks;
data is sent over PGD at the same time. A command is
followed by an interval where PGC is held low, to
delimit the command from what follows. If the com-
mand is used to move data, such as “Load” and “Read”,
it is followed by 16 cycles of PGC for the data payload;
during this interval, data is clocked in (for a Load), or
clocked out (for a Read). As previously mentioned,
data on PGD is clocked in on each falling edge of PGC;
data being read out is clocked on the rising edge of
PGC, starting with the second clock pulse. Since the
actual data is only 12 or 14 bits long (depending on the
device), the payload is padded with ‘0’s at the leading
and trailing ends as needed to get a total of 16 bits.

During a mid-range method programming cycle, only
6-bit programming commands may be executed;
instructions from the core instruction set are not
available. The timing for a typical mid-range method
command is shown in Figure 1.

In contrast, PIC18 devices do not have separate pro-
gramming commands in the same sense as the
mid-range method. Instead, the architecture of this
family incorporates instructions (Table Read and Table
Write) that allow direct access to the program memory.
To enhance this feature for ICSP operation, PIC18
devices use a 4-bit command “shorthand” that actually
implements the existing Table Read and Table Write
instructions. An additional NOP command allows the
user to execute other instructions for the core instruc-
tion set under ICSP control; data following a NOP is
interpreted as an instruction rather than data and is
executed accordingly.

Commands are issued in a manner similar to the
mid-range method; in this case, PGC is cycled 4 times
for each command, followed by a delimiting interval.
When the command has a data payload, PGC is
clocked 16 times as data is being loaded, or 8 times as
data is being read out. (The difference is because pro-
gram memory is written as a two-byte word, but read as
single bytes.) As with the mid-range method, data is
clocked in on the falling edge of PGC. Data being read
out, however, is also clocked out on the falling edge,
starting with the first clock pulse.

By combining sequences of Table Read, Table Write
and Move Register commands, all of the explicit com-
mands in the PIC16 programming command set can be
duplicated. This may seem inefficient until you consider
that the Table Read and Table Write commands can
also implicitly increment or decrement the Table
Pointer. These instructions also eliminate the need for
separate commands to load and write data, which
makes the overall process faster than its PIC16
counterpart. The timing for a typical PIC18 4-bit
command is shown in Figure 2.

It is also important to note that, no matter which com-
mand method is used, information is sent to and from
the device during programming with the Least Signifi-
cant bit first. This applies to programming commands,
as well as any data being loaded or read back.

A summary of the 6-bit and 4-bit ICSP commands is
presented in Table 3.

Note: The only instructions that can’t be exe-
cuted using the NOP are Table Reads and
Table Writes. Attempting this will disrupt
the internal timing of the ICSP state
machine. Table Reads and Table Writes
can only be done in ICSP operation using
their 4-bit command versions.

Note: In programming specifications for PIC18
devices, the terms “SCLK” and “SDATA” are
used interchangeably for “PGC” and “PGD”,
respectively. The latter designations are the
preferred usages.

Don’t confuse “SCLK” and “SDATA” with
“SCK” and “SDA”, which are names for the
multiplexed clock and data pins of the
Synchronous Serial Port peripheral.
Attempting to program the device with
these pins will result in a programming
failure, at the very least.
DS00910A-page 6 2004 Microchip Technology Inc.

AN910
FIGURE 1: EXAMPLE OF A 6-BIT “LOAD PROGRAM MEMORY” COMMAND (PIC16F87XA)

FIGURE 2: EXAMPLE OF A 4-BIT PIC18 COMMAND SEQUENCE
(TABLE WRITE/POST-INCREMENT WITH DATA IN PIC18FXX20)

MCLR
VIHH

TSET0

RB6/PGC
(Clock)

RB7/PGD
(Data)

Reset

TSET1

THLD1
TDLY1

1 µs min

Program/Verify Test Mode

TSET1

THLD1

100 ns min

1 µs min

TDLY21 2 3 4 5 6

0 1 0 0 0 X

1 2 3 4 5 15 16

strt_bit stp_bit

100 ns min

}

THLD0

} } }

1 2 3 4

RB6/PGC

P5

RB7/PGD

RB7 = Input

5 6 7 8 1 2 3 4

P5A

9 10 11 13 15 161412

Fetch Next 4-bit Command

1 0 1 1

1 2 3 4

n n n n

P3

P2 P2A

0 0 0 0 0 0 01 0 0 0 1 1 1 1 0

0 4 C 3

P4

4-bit Command 16-bit Data Payload

P2B

(Clock)

(Data)

RB7 State
 2004 Microchip Technology Inc. DS00910A-page 7

AN910
TABLE 3: OVERVIEW OF 6-BIT AND 4-BIT PROGRAMMING COMMAND SETS

6-bit Command Set (PIC12 through PIC16)

Instruction Opcode (MSb...LSb) Data Payload Format

Load Configuration Word 0(1) 0(1) 0 0 0 0

0, (data (0:13)), 0Load Program Data 0(1) 0(1) 0 0 1 0

Read Program Data 0(1) 0(1) 0 1 0 0

Increment Address 0(1) 0(1) 0 1 1 0

N/A
Begin Programming or
Begin Erase/Programming Cycle(2)

0 0 1 0 0 0

Begin Programming Only Cycle(3) 0 1 1 0 0 0

Load Data Memory(4) x(5) x(5) 0 0 1 1
0, (data(0:7)), 0000000

Read Data Memory(4) x(5) x(5) 0 1 0 1

Bulk Erase Program Memory(3) x(5) x(5) 1 0 0 1

N/A
Bulk Erase Data Memory(4) x(5) x(5) 1 0 1 1

End Programming(7,8) 0(1) 0(1) 1 1 1 0

Chip Erase(9) x(5) 1 1 1 1 1

4-bit Command Set (PIC18)

Instruction Opcode (MSb...LSb) Data Payload Format

Forced NOP (core instruction follows) 0 0 0 0

data (0:15)

Shift Out Value of TABLAT(10) 0 0 1 0

Table Read, don’t change pointer 1 0 0 0

Table Read, post-increment pointer 1 0 0 1

Table Read, post-decrement pointer 1 0 1 0

Table Read, pre-increment pointer 1 0 1 1

Table Write, don’t change pointer 1 1 0 0

Table Write, post-increment pointer(11) 1 1 0 1

Table Write, post-decrement
pointer(11)

1 1 1 0

Table Write, pre-increment pointer or
start programming(12)

1 1 1 1

Legend: x = Don’t care.
Note 1: These values must be ‘0’ for OTP devices, but are “don’t-care” for most Flash devices. Refer to the

programming specification for a particular device for exceptions.
2: Implemented as “Begin Programming” for OTP devices and “Begin Erase/Program” for Flash devices.
3: Implemented for Flash devices only. Some devices implement this as an externally timed write requiring

an “End Programming” command; other devices do not implement it at all. Refer to the programming
specification of a particular device for specific information.

4: Implemented only for Flash devices with data EEPROM. The trailing pad of the data payload is seven ‘0’s.
5: These values must be ‘0’ for some Flash devices. Refer to the programming specification for a particular

device for the specific requirement.
6: Implemented for Flash devices only.
7: Implemented for OTP devices and some Flash devices. A very few devices implement this command as

‘xx1010’.
8: Rare Flash devices use ‘x10111’ to terminate externally timed programming.
9: Implemented for rare Flash devices to erase everything on the device, including data EEPROM. Devices

without data EEPROM may use this term for what other devices refer to as Bulk Program Erase.
10: Implemented on PIC18F devices only.
11: For PIC18 OTP devices, the increment/decrement is 1; for PIC18F devices, it is 2.
12: For PIC18 OTP devices, the command pre-increments the Table Pointer before performing the Table

Write. For PIC18F devices, the command initiates the timed programming cycle.
DS00910A-page 8 2004 Microchip Technology Inc.

AN910
READING A PROGRAMMING
SPECIFICATION

When you approach PICmicro device programming for
the first time, you may see a huge array of
documents – lots and lots of documents, with each
subfamily of devices getting its own specification.
When you find the one for your device of interest, you’ll
find pages and pages of text, diagrams, code exam-
ples, timing and voltage specifications, all of it calling
for your attention. You may ask, why are there so many
specifications? And where do I start?

To begin with, Microchip makes many different types of
microcontrollers. Although everything up to the PIC18
devices is based on the same basic Harvard-RISC
architecture, there are still many differences. There are
several versions of the microprocessor core, each one
more complex than the last. Some devices use
Flash-based program memory, while some use
EPROM; some write to memory one word at a time,
while others write in blocks of 4 words . . . in short, there
are lots of variations. Each of these factors has an
impact on how the device is programmed, even though
the same basic hardware protocol is used. It’s the
unique combination of all of these that determines the
programming specification for a particular device family
and how it differs from other families.

Regardless of the device family, all of Microchip’s pro-
gramming specifications are organized in the same
way. Each document contains at least these basic
sections:

• Overview. This section lists the devices covered
by the document, shows the device pinouts and
describes the connection and voltage require-
ments. It also states the programming protocol
used (usually the ICSP protocol, but occasionally
something else).

• Program Memory Programming and
Verification. This section describes the device
memory architecture, the command set and
specific algorithms for programming. Supporting
processes (like erase for Flash memory) are also
covered here.

• Configuration Word, Device IDs and ID
Locations. This section covers the same topics
as above for these normally inaccessible memory
areas.

• Code Protection and Checksum. This topic
describes the device code protection scheme and
its use. It also covers the device checksum and
how it is calculated.

• AC/DC Specifications. This section describes
the voltage and signal requirements for
programming and the specific timing parameters.

Depending on the specific device, there may also be a
section to describe data EEPROM programming. Cer-
tain other devices may include additional sections for
other programming methods (for example, parallel
programming in the PIC17C7XX).

Since we’ve covered the basic things found in the
Overview already, we’ll use the next few pages cover-
ing the remaining topics in approximately the order you
would find them in a real programming specification.
This will highlight the factors that influence the
programming algorithms for different device families.

The Device Memory Map

Although the memory maps are rolled into the program
section, they actually show all of the addressable areas
of the microcontroller, except for data EEPROM. For
that reason, it makes more sense to discuss it
separately.

The memory map gives a visual overview of where the
target memory locations are in the device’s memory
space. It also gives a comparison of the size of program
memory for different individual devices in the same
family. The programmable address space is shown in
relation to the entire memory space of the device.

All maps are represented as reaching to the bound-
aries set by the size of the device’s program counter.
For most devices up to mid-range with 14-bit instruction
sets, the program counter is 13 bits wide, which yields
an upper boundary of 1FFF (8K word). For PIC18
devices, the 20-bit program counter yields an upper
boundary of 1FFFFFh (2 Mbytes or 1M word). It is
important to remember that just because a memory
map extends so far, it doesn’t mean that all of those
addresses are physically implemented. Addresses that
are available are indicated with the their boundaries
marked. Devices that subdivide their program memo-
ries into smaller panels will also show the boundaries
for these areas. Unimplemented memory spaces are
usually indicated in grey.

In addition to the program memory, it is a convention to
show a memory space of equal size extending from the
bottom of the program memory space to a lower
boundary of twice the program memory (3FFFh for
devices up to mid-range, 3FFFFFh for PIC18 devices).
Addresses in this range are part of the device’s “config-
uration space”, a virtual memory area that is largely
unimplemented and not available under normal operat-
ing modes. The configuration words, Device IDs and
identification locations are mapped to this area and are
available in programming modes. This area of the map
is usually marked as “Unimplemented” or “Configura-
tion Space”. Except for those items already mentioned,
it is not available to the user.

Figures 3 and 4 show typical memory maps for PIC16
and PIC18 devices. The latter is usually presented as
two diagrams, but are combined into one here to save
space.
 2004 Microchip Technology Inc. DS00910A-page 9

AN910
FIGURE 3: TYPICAL MEMORY MAPS FOR PIC16 DEVICES

0h

3FFh
400h

1FFFh
2000h

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

2008h

3FFFh

Not Implemented

Not Implemented

Implemented

1FFh

Not Implemented

Not Implemented

Implemented

Implemented

0.5K word(1) 1K word(1)

Implemented

Note: Sizes of memory areas not to scale.

* Although 0.5 and 1K word program memory sizes are shown here, PIC16 devices are available with program
memory sizes up to 8K words.

Code Memory

Configuration
Space
DS00910A-page 10 2004 Microchip Technology Inc.

AN910
FIGURE 4: COMBINED MEMORY MAP FOR PIC18F DEVICES,
SHOWING PROGRAM MEMORY AND CONFIGURATION LOCATIONS

000000h

00BFFFh

1FFFFFh

3FFFFFh

007FFFh

0001FFh

003FFFh

00FFFFh

Boot Block

64 Kbyte 128 Kbyte

013FFFh

017FFFh

01BFFFh

01FFFFh

Note: Sizes of memory areas are not to scale.

Panel 1

Panel 2

Panel 3

Panel 4

Panel 6

Panel 5

Panel 7

Panel 8

Code Memory

Unimplemented
Read as ‘0’

Boot Block

Block 2

Block 3

Block 4

Panel 1

Panel 2

Panel 3

Panel 4

Panel 6

Panel 5

Panel 7

Panel 8

Block 2

Block 3

Block 4

Panel 9

Panel 10

Panel 11

Panel 12

Panel 14

Panel 13

Panel 15

Panel 16

Block 5

Block 6

Block 7

Block 8

Unimplemented

Read as ‘0’s

Block 1Block 1

000000h

01FFFFh

001FFFh

005FFFh

00DFFFh

011FFFh

015FFFh

009FFFh

019FFFh

01DFFFh

(32K word) (64K word)

ID Location 1 200000h

ID Location 2 200001h

ID Location 3 200002h

ID Location 4 200003h

ID Location 5 200004h

ID Location 6 200005h

ID Location 7 200006h

ID Location 8 200007h

CONFIG1L 300000h

CONFIG1H 300001h

CONFIG2L 300002h

CONFIG2H 300003h

CONFIG3L 300004h

CONFIG3H 300005h

CONFIG4L 300006h

CONFIG4H 300007h

CONFIG5L 300008h

CONFIG5H 300009h

CONFIG6L 30000Ah

CONFIG6H 30000Bh

CONFIG7L 30000Ch

CONFIG7H 30000Dh

Device ID1 3FFFFEh

Device ID2 3FFFFFh

000000h

1FFFFFh

3FFFFFh

01FFFFh
Code Memory

Unimplemented
Read as ‘0’

Configuration
and ID
Space

2FFFFFh

Configuration
and ID
Space

User ID

Configuration Space

Device ID Space

Location Space
 2004 Microchip Technology Inc. DS00910A-page 11

AN910
Programming, Part I: Program Memory

Although the core architecture is the determining factor
in the programming method, the major determinant in
designing the actual algorithm is the memory’s archi-
tecture. As PICmicro microcontrollers have developed
over the past decade, the operation of program
memory has also changed.

In the architecture of program memory, there are two
important considerations: the type of memory arrays
and the write/erase block size. We’ll examine each of
these separately, then consider how they fit together.

MEMORY ARRAYS

The type of basic memory unit used in the program
memory array determines the length of time for pro-
gramming; this is because some technologies just take
more effort to acquire and hold the necessary charge to
be read consistently as the desired value. Just as
important is the support “peripherals” (sense amplifiers,
charge pumps, etc.) built around the cells to support
their operation. These give flexibility to the operating
range and programming conditions and may even
allow for other convenient features.

PICmicro devices use two types of user programmable
memory arrays: One-Time-Programmable EPROM
(usually referred to as “OTP”) and rewritable Flash
technology. OTP arrays are implemented in one fash-
ion for all devices. Flash arrays are implemented in two
ways; the cell technology remains the same, but the
array structure varies depending on the particular
family’s feature set.

OTP Arrays

OTP program memories use the typical cycle of “load
data-write data-read back data”. The write process is
controlled entirely by the programming system and
depends on the device architecture. For devices other
than PIC18 family members, a write is controlled by
separate “Begin Programming” and “End Program-
ming” commands. Between these commands, PGC
must be held low, typically for 100 µs. This interval is
sometimes referred to as the programming pulse. For
PIC18 devices, the write is initiated by a Table Write
command and ends when the instruction is finished
executing. A separate pair of commands, or a Table
Write instruction, must be issued for each and every
programming “pulse” for every address.

Generally, OTP arrays also require “over-program-
ming”, where each location is written to more than once
to ensure the proper margin on each programmed cell.
Many algorithms will attempt to write a location up to 25
times, verifying the location after each attempt. When
verification occurs, the same number of writes is
re-applied to the location several more times. For an
algorithm that calls for 3x overprogramming, for exam-
ple, a location that requires 8 pulses to get a verified
write will end up receiving 32 pulses in total (8 pulses
on the first pass, plus three more passes of 8 pulses).

The level of overprogramming varies widely and
depends on several factors. When needed, the require-
ment is clearly spelled out in the device’s programming
algorithm.

As a side note, the default state of an OTP EPROM cell
is a ‘1’; programming it makes it a ‘0’. “Clearing” a cell
back to its original state of ‘1’ is not possible unless the
microcontroller is a windowed device. The entire pro-
gram memory can be erased in these devices with
exposure to UV light.

The flow for a typical PIC16 OTP programming
algorithm is shown in Figure 5.

Flash Arrays with Internally Timed Writing

In this version of the array, we also use the cycle of
load-write-read back. The difference here is that the
write cycle is controlled by a hardware timer in the array
itself, which has been calibrated to ensure a proper
programming margin on each cell. While each pro-
gramming pulse may take longer, the elimination of
repetitive passes shortens the overall programming
time per address.

As noted before, PIC18 devices use the Table Write
command to program a location; the data is loaded and
written in a single Table Write command. All other
devices use an explicit “Begin Programming” com-
mand, but do not need a separate “End Programming”
command to conclude the write. This saves total pro-
gramming time. It is still necessary, however, to hold
PGC low during the programming interval, which can
last up to 10 ms (depending on the device). The actual
timing is controlled by the array hardware; the pause
simply prevents the state machine from becoming
“confused” and terminating the Programming mode
early.

A significant difference from OTP arrays is that a Flash
array must include specific erase functions. This is only
logical, since Flash cells can be written and erased
multiple times. (With OTP arrays, you can program a
cell once; you can’t unprogram it after that.) If you
consider the possibility that writing to a location may
not unprogram individual bits that were previously
programmed, the need for erasure becomes clear.

For all devices except the PIC18 family, erase is gener-
ally handled as part of the programming command. All
devices use an “Erase Program” command, which
automatically blanks the target location before writing
new data to it. Many also include a “Program Only”
command, which performs a timed write without doing
the erase first. This is generally used when the target
memory is known to be blank. Separate commands are
usually implemented to “Bulk Erase” a particular mem-
ory space or clear all memory on the device (“Chip
Erase”). The particular erase commands implemented
varies from family to family and are discussed in that
family’s programming specification.

The programming algorithm flow for a typical PIC16
Flash device is shown in Figure 6.
DS00910A-page 12 2004 Microchip Technology Inc.

AN910
FIGURE 5: TYPICAL PROGRAMMING ALGORITHM FOR AN OTP DEVICE (PIC16C7XX)

*VDDP = VDD range for programming (typically 4.75V-5.25V).
 VDDMIN = Minimum VDD for device operation.
 VDDMAX = Maximum VDD for device operation.

Start

N = 1

Set VDD = VDDP*

Program Cycle

Read Data
Command

Apply 3N Additional
Program Cycles

Verify all locations
@ VDDMIN*
VPP = VIHH2

Verify all locations
@ VDDMAX*
VPP = VIHH2

Done

Report Programming
Failure

N = N + 1
N = # of Program Cycles

Increment Address
Command

Report verify
@ VDDMIN Error

Report verify
@ VDDMAX Error

Load Data
Command

Begin Programming
Command

End Programming
Command

Wait 100 µs

PROGRAM CYCLE

Yes

No

No

Yes

No

Yes

No

No

Yes

Yes

Set VPP = VIHH1

Data Correct?

Data Correct?

Data Correct?

All Locations
Done?

N > 25?
 2004 Microchip Technology Inc. DS00910A-page 13

AN910
FIGURE 6: TYPICAL PROGRAMMING ALGORITHM FOR A PIC16 FLASH DEVICE
(ARRAY WITH INTERNALLY TIMED WRITING)

Set VDD = VDDP

Program Cycle

Read Data
Command

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations

Data Correct?

Increment
Address

Command

Report
Verify Error

Load Data
Command

Begin
Programming

Command

Wait TPROG

PROGRAM CYCLE

No

No

No

Start

Done

Yes

Yes
DS00910A-page 14 2004 Microchip Technology Inc.

AN910
For PIC18 devices, an erase must be done separately
before a write. Special commands that are triggered by
writing to the configuration test area are used to clear
blocks of program memory, the entire program mem-
ory, the configuration words, the data EEPROM or the
entire device.

It is also possible to erase smaller program memory
locations, down to a level as small as 32 words. The
instruction sequence is considerably longer for these
small erasures, but the process is convenient when you
only need to erase and reprogram a small section of
memory. Additionally, this process can be performed
throughout the entire VDD range of the device, while
erase operations affecting panels or the whole device
must be done at the higher end of VDD (typically 4.5V
and above).

As an architectural side note, many devices that
include internal write timing also add other useful fea-
tures. These include the ability of the device to write to
its own program memory while in normal operating
mode – better known as self-programming – and the
ability to use single-supply ICSP programming.

Because of their ability to self-program, an additional
“safety lock” feature has been added to the core logic;
writes to memory under normal code execution require
that a specific data sequence be written to a control
register prior to each write. This unlock sequence is
also required to program certain memory spaces dur-
ing ICSP operation for PIC18F devices. The PIC16
command set bypasses the requirement for the lock
entirely during ICSP operation.

Flash Arrays with Externally Timed Writing

This version of Flash memory has characteristics of
both OTP and internally timed Flash arrays. The array
design is similar to that used for OTP program memo-
ries, in that there is no hardware timer to control the
write process. Because of this, the programming algo-
rithms look a great deal like those for OTP arrays. Both
“Begin Programming” and “End Programming” com-
mands are required to control the write cycle; PGC
must also be held low during the interval between
instructions. On the other hand, the memory cells are
Flash, so erase-before-write is required; this is gener-
ally accomplished with “Bulk Erase” or “Chip Erase”
commands. Although it is not controlled by an internal
timer, the array hardware still ensures that each cell is
properly charged in a single pass.

This array architecture does not have self-programming
capability and also cannot be programmed with the
single-supply ICSP protocol. It is mainly found in several
mid-range device families, such as the PIC16F7X. It is
also implemented in a few PIC18F families, such as the
PIC18F4610 and PIC18F8490.

Other Variations on Flash Arrays

A small number of PIC16F devices, such as the
PIC16F87XA family, incorporate Flash program mem-
ory arrays with internally timed write capabilities. They
vary from other similar parts in their low-voltage
programming algorithms, which require an externally
controlled write process. The ICSP command set for
these devices includes an “End Programming” com-
mand, which is always used after the “Begin Program
Only Cycle” (no word erase) command.

Finally, many of the latest members of the PIC18 family
(such as the PIC18F4620) take another approach to
Flash program memory arrays. These devices incorpo-
rate enhancements, such as self-programmability and
single-supply ICSP programming, but require external
timing to control their write cycles. Unlike other exter-
nally timed devices, however, they take their cue from
the state of PGC and not an explicit “End Program-
ming” command; specifically, forcing and holding PGC
low for a specified interval at the end of a write cycle
serves as the signal to end programming.

WRITE AND ERASE BLOCKS

Another difference in programming algorithms is based
on how much data is written to the program memory at
one time. In the original implementation, PICmicro
devices performed write operations one word at a time;
the serial data was written to a buffer and written as a
whole word when the programming command was
given. Many devices in the mid-range PIC16 family still
perform writes in this fashion.

Newer Flash arrays perform the write in a different
manner. In these implementations, program data is
written to the array in increments of up to 8 bytes
(4 words) at one time. The algorithm may look the
same to the user, with a “Begin Program” or “Table
Write” command (depending on the core architecture)
being issued for each word to be programmed. In fact,
the data is written to hardware buffers inside the mem-
ory array. Only when all the buffers are full is the actual
write command invoked; all data is then written as a
single parallel operation. Because the programming
time interval is only needed every 2 or 4 cycles,
significant time in programming is saved.

For PIC18F devices, the concept of parallel writing has
been extended with a version known as “multi-panel”
writing. This involves using a set number of physical
buffers (usually 8) for each 8-Kbyte division of program
memory. Multi-panel writes work by filling the buffers for
all panels, then writing the data to all of the panels at
once. The physical arrangement of the memory array
makes this parallel write process even faster than the
regular (sequential physical locations) process.
Devices with multi-panel write arrays operate in this
manner by default. This feature may be disabled by
modifying the panel control configuration word, usually
located at 3C0006h (an address that can only be
accessed when the device is being programmed).
 2004 Microchip Technology Inc. DS00910A-page 15

AN910
An important consideration with write block size is that
changing a single location may mean rewriting more
than that location. For many devices up to mid-range,
the write block is the same size as the data word, so
there is no issue with rewriting a single word/memory
location; the physical writing is done one word at a
time. For PIC18 devices, the program memory is one
byte wide, while each instruction is a multiple of two
bytes. (Most PIC18 instructions are two bytes, or one
word; a few are two words.) This means, for practical
purposes, the smallest write block must be two adja-
cent addresses (two bytes/one word), with the actual
write to the memory occurring on every second instruc-
tion. A good example of this is the PIC18C452 device.
As we’ve already noted, some devices write up to four
words at one time, with the physical write being
performed when all the hardware buffers are filled.

A final consideration is the size of the write block in
relation to that of the erase block. You might think that
write blocks and erase blocks are the same size, since
the underlying processes are essentially the same. In
fact, the two processes are often implemented with dif-
ferent circuits and affect different sizes of address
blocks. This means that algorithms must be adjusted to
account for the differences. Part of this includes the
alignment of write and erase blocks, which both start at
the top of memory and run in block sized multiples.

For a practical example, consider the PIC18F452 and
its relatives; the write block is 8 bytes, while the erase
block is 64 bytes. If you want to reprogram just 8 bytes
of code starting at address 1FC0h, you will have to
erase everything from 1FC0h to 1FFFh and store the
existing data from 1FC9h to 1FFFh for reprogramming.

Erase block size is not a consideration for devices with
OTP memory, since their memories can’t be erased. In
fact, most OTP devices have a write block of one word
(12 or 14 bits for most devices). The exception is the
PIC18C452 family, which has a program word size and
block size of 2 bytes. Like the PIC18F452 family, data
is written in single-byte operations, with the physical
write process occurring every second byte write.

VERIFICATION

Reading back a program memory location and verifying
its contents is a highly recommended practice; it makes
certain that each memory cell has been properly written
or erased. Regardless of the memory technology, all
programming algorithms include a read-back step
immediately following the write. This is done with a
“Read Data” command for devices using the mid-range
method, or a Table Read for PIC18 devices.

For OTP devices, a major issue in verification has been
establishing the parameters for a properly programmed
location. Minute differences in cells may mean that a
cell properly written to at the operating VDD might not
show as properly erased at VDDMIN, or not be
consistently read as programmed at VDDMAX.

With these possibilities in mind, Microchip has
developed programming algorithms that take these
possibilities in account. When the memory has been
completely programmed, verification is performed at
both the VDDMIN and VDDMAX of the part. This method,
known as intelligent verification, ensures that each cell
has a good “program margin” (it will read correctly
across the entire operating range) as well as a good
“erase margin” (it will consistently read as ‘1’ after
being erased). The need for a range of supply voltages
is one reason why ICSP specifications have called for
a well-regulated supply voltage with a resolution of
±0.25V.

The majority of Flash devices do not require the
intelligent verification algorithm. The same internal
write timing that makes overprogramming unnecessary
also provides an adequate programming margin for
each cell across the entire operating range. All that is
required for verification is a successful read-back at the
device’s operating voltage. The reliability of Flash
technology has eliminated the need for intelligent veri-
fication in those algorithms and the ±0.25V resolution
requirement for VDD. (A well regulated power supply, of
course, is still a good idea.)

Programming, Part II: Other than
Program Memory and Code Protection

When you’re programming a PICmicro device using the
ICSP protocol, your main concern is moving the appli-
cation firmware into the device. But there are other
things that should be programmed while you’re there,
such as the device’s configuration settings. Also, it
would be nice to preload non-firmware data (program
constants, calibration values, etc.). The ICSP protocol
makes all of that possible.

CONFIGURATION WORDS AND BITS

Most of the hardware options for PICmicro devices are
enabled or disabled using configuration bits. These are
individual bits located in one or more program memory
words, which are in turn, located just beyond the end of
the program memory space. By setting these bits,
users can select hardware features that are more or
less permanent to their application. Depending on the
particular device, this includes things like oscillator con-
figuration, Watchdog Timer prescaler, code protection,
low-power features, pin multiplexing for modules and
(potentially) many others.
DS00910A-page 16 2004 Microchip Technology Inc.

AN910
For the mid-range method, configuration words are
essentially programmed like any other program mem-
ory location. Although the locations are beyond the
lower boundary of the program memory space and are
not normally accessible, a special “Load Configuration
Word” command alerts the device that the incoming
data is for the configuration word and forces the pro-
gram counter to point to configuration memory. (Users
cannot force the program counter in this way in normal
operation.) Since these devices usually have a block of
ID or reserved locations around the configuration word,
it may be necessary to increment the address pointer
to get to the right address.

For PIC18 devices, the configuration words are more
accessible; although these addresses are also outside
of the program memory space, they can be written to by
using a 22-bit address for the Table Pointer. They are
written with Table Write commands, like any other pro-
gram memory space address; the only difference is
they are written one byte at a time. Their values can
also be read back with Table Read instructions.

PIC18F devices also use Table Read and Table Write
commands for programming their configuration words;
they can also access their configuration words under
normal operation. For reasons we will discuss shortly,
this should be done with considerable caution.

CODE PROTECTION, CONFIGURATION BITS
AND ICSP OPERATION

Offered with the other hardware options in the configu-
ration word is the ability to protect all or part of the pro-
gram memory’s contents. The actual protection system
varies enormously from device family to device family.
There are two generalizations we can make, however.
For most devices other than the PIC18F family, code
protection affects either the entire program memory or
some fraction of memory. In the latter cases, this is
implemented as contiguous blocks of increasing size,
going from one end to the other. For example, we can
protect the bottom quarter, then the bottom half, then all
but the top quarter; we cannot protect the bottom and
top quarters, and leave the middle unprotected. The
particular scheme depends on the individual device.
Data EERPOM, when implemented, is protected
separately from program memory.

For PIC18F devices, program memory is divided into
several blocks. Each block can be protected separately
from external reads and writes and can also be protected
from operations requested from within the block. Data
EEPROM and the top segment of program memory are
protected separately from the rest of code memory.

Code protection is accomplished by setting the appro-
priate bit(s) in the device’s configuration word(s). This
is done as part of device programming and is usually
saved as the last step. This should be self-explanatory:
if a device is read-protected, it becomes impossible to
verify by normal means. This is equally applicable if
reading the program memory yields all ‘0’s (as with

most PICmicro devices), or yields scrambled data (with
devices such as those in the PIC16C5X family). By the
same token, write-protecting a device makes attempts
at programming rather pointless.

CONSIDERATIONS IN PROGRAMMING
CONFIGURATION WORDS

For the same reasons as setting code protection, you
must be careful when programming the other configu-
ration bits. Just as code protection can’t be undone
once it’s been set, the bits for other features cannot be
changed on OTP devices. If you accidentally set the
configuration for a crystal oscillator when your applica-
tion is really using an RC oscillator, your design will
probably fail and you’ll be stuck. The problem isn’t
nearly as grave with Flash-based devices, but it still
means than you will have to erase everything and start
from scratch.

A good practice to avoid these programming irritations
is to include the configuration word setting directly into
your code project; this makes your intended device
configuration much less ambiguous. To make this eas-
ier, Microchip’s assembly language tools even include
a set of compiler directives (the _CONFIG directives)
which allows programmers to spell out clearly what fea-
tures they want to enable. These will place the proper
bit settings in the actual binary code to be programmed
and program those bits at the right time (the end of the
cycle).

ID LOCATIONS AND DEVICE IDs

Most PICmicro devices have set aside several words in
the configuration memory space for customer use.
These words, referred to as ID locations, can be used
to store unique identifying information about the device,
such as a serial number; their location in the configura-
tion space make them less likely to be altered by
accident. These locations are programmed in the same
manner as configuration words.

ID locations are different from the Device ID. This is a
single word that contains a device-specific identifier
programmed at the factory. The most significant bits of
the ID (nine in PIC16 devices, 11 in PIC18) specifically
identifies the device by part number; the five Least
Significant bits indicate the revision level.

Device IDs are always located at the same addresses
for particular device families: at 2006h (adjacent to the
configuration word) in PIC16 devices, or at 3FFFFFh
(the very bottom of the configuration memory space) in
PIC18. In either event, the values are read-only.

Device IDs can be used to identify the device for
programming and other related purposes. The specific
values are listed in the programming specification for a
device family and are also called out in most data
sheets. Future silicon errata of PICmicro devices will
also use this information to differentiate in which part
revisions issues occur.
 2004 Microchip Technology Inc. DS00910A-page 17

AN910
DATA EEPROM

Many PICmicro devices include a block of memory that
can be specifically used for storing application data that
is not either the operating program or the temporary
“scratchpad” data RAM. This particular block of mem-
ory is implemented with high-endurance EEPROM
cells and is designed to keep static data intact while the
device is powered down.

In the majority of PICmicro devices, data EEPROM is
not mapped into the program memory space. Instead,
it is treated as a peripheral, with its locations being
addressed through one or more pointer registers. A few
mid-range devices, such as the PIC16F87X family,
map the EEPROM into the configuration memory
space starting at 2100h.

Data EEPROM can be easily programmed during nor-
mal device operation, or through ICSP operation. In the
latter, the algorithm is simpler to remember than for
program memory, since there are only two variations.
How the EEPROM is implemented (mapped or
unmapped) has no effect on the programming method.

For devices using the mid-range method, the process
is similar to the typical “load data-program-read
data-increment” cycle for program memory. Reading
and writing to the data EEPROM involves commands
that are distinct from those used for program memory.
The data payload is still 16 bits following the command;
however, since the data EEPROM is only one byte
wide, only the first eight bits of data clocked in are read.
The word is padded with six ‘0’s following the data, plus
the ‘0’s used as Start and Stop bits at either end. (Just
as with programming data, information for the data
EEPROM is sent LSb first.) The write process is always
self-timed, so the “End Programming” command is not
used.

During ICSP operation, PIC18 devices use the same
general algorithms to read and write to data EEPROM
as they do during normal operation. The individual
instructions involving the data latch and control regis-
ters (EEDATA and EECON1) are shifted into the device
as the data payloads of ICSP NOP instructions. As with
mid-range devices, the write process is self-timed.

The data EEPROM always uses the same type of com-
bination lock used with the internally timed Flash
arrays; a specific sequence of writes to the control reg-
ister must always precede the actual write to the
EEPROM. This feature is implemented even for
devices in which the Flash program memory can’t
self-program. The separate PIC16 ICSP commands for
mid-range devices bypass the requirement for the com-
bination lock; PIC18 devices must still use the lock,
even during ICSP programming.

The combination lock sequence is discussed in detail in
both the programming specifications and the individual
device data sheets.

Checksums

As an added protection for the integrity of programming
data, Microchip programmers also use a checksum
system at the end of the process. In its basic form, the
checksum is a bitwise addition of all program memory
locations that are not code-protected, the configuration
word locations and any masked device ID locations.
The actual result used is the Least Significant 16 bits of
the sum (all carry is discarded). This is independently
calculated by the programming environment for the
data to be programmed, as well as the information that
has actually been written to the device. A successful
match of checksums verifies successful programming.

The checksum scheme also takes code protection into
account. The programming specification for each
device provides different checksum algorithms for each
possible setting of code protection. Each algorithm pro-
duces its checksum based only on the unprotected
locations. This allows Microchip to publish the check-
sum algorithms with the confidence that it does not
reveal anything that would jeopardize the safety of its
customers’ code.

Along with the actual algorithms for calculation, the
checksum tables in the programming specifications
provide two other useful pieces of information. The first
is the “blank value”, which gives the expected check-
sum when all locations (not counting device ID) are
blank or in their unprogrammed state.

The second value, always listed in the far right column,
gives the checksum if the part is blank, but the first and
last program memory addresses are programmed with
a reference value. That value is stated in the heading
of the column; it is usually 25E6h for all devices except
for members of the PIC18 family and AAh for PIC18
devices. This second version provides an alternate
method of validating the checksum algorithm for a
given device and level of code protection.

Just as with other programming features, checksums
operate behind the scenes when you use a device pro-
gramming system provided by Microchip or one of its
third party partners. Knowing how it works becomes
useful if you ever need to design or troubleshoot a
programming system.
DS00910A-page 18 2004 Microchip Technology Inc.

AN910
ICSP PROTOCOL AND ICD

The hardware interface of the ICSP protocol is not
limited to just in-system programming. With some addi-
tional adaptations, it can also be used for simple
monitoring and debugging of applications. This added
functionality is known as In-Circuit Debugging, or ICD.

The heart of ICD is additional hardware in the
microcontroller’s core architecture, which serves as a
background monitor to the microcontroller’s operation.
When activated, the monitor uses the ICSP interface
pins and some additional controller resources to give
an internal view of the device’s state at any given time.
It also permits users to set breakpoints and single-step
the controller through its firmware.

This is, of course, not a complete emulator system;
adding those capabilities to every microcontroller
would be cost prohibitive and extremely impractical.
What ICD does is give users the ability to perform
simple debugging with the microcontroller in its actual
target application and without the added expense or
overhead of emulators, adapter sockets and in-circuit
probes.

ICD is implemented only in the most recent versions of
Flash microcontrollers. These include members of the
PIC16F family with advanced feature sets (such as the
PIC16F87X/87XA) and the PIC18F enhanced family.

To use ICD, users must first set the DEBUG bit in the
device’s configuration word. (DEBUG is occasionally
referred to as DEBUG and BKBUG in earlier Microchip
documentation.) Setting this bit turns control of the
ICSP interface over to ICD operations and enables the
debugger’s executive monitor.

Users also need an appropriate hardware interface and
software to control the debugger’s operation. The cur-
rent choice is Microchip’s MPLAB® ICD 2 module,
which accommodates all ICD enabled microcontrollers.
(The previous MPLAB® ICD module was designed only
for PIC16F87X devices and has been replaced by the
MPLAB ICD 2 version.) Communication between the
external hardware module and the application is
accomplished through a standard 6-wire interface.

Finally, the user must have an appropriate software
interface for controlling the module. This is a version of
the MPLAB development environment suited to the
hardware interface. It is important to note that the ICD
executive code doesn’t come preloaded on each
device; it must be downloaded onto the microcontroller,
along with the application code, for ICD to become
completely functional. Because there is a firmware
component, the executive does consume some mem-
ory resources. These are detailed in the MPLAB ICD
User’s Guides and the specific device data sheets.

ICD is not limited to use in end applications. Many of
Microchip’s development and evaluation kits for
PICmicro products are designed to accept the 6-wire
ICD interface. This is usually accomplished with an
on-board, standard 6-wire RJ-11 receptacle. All
MPLAB ICD 2 kits include 6-wire cables and RJ-11
male jacks at either end; these provide the connections
between the development board and the MPLAB ICD
or ICD 2 hardware module. The whole system provides
a quick method for developers to monitor and perform
simple debugging of their prototypes using Microchip
tools. Although the RJ-11 configuration isn’t a require-
ment, it does provide a convenient standard interface
for anyone who may want to add the debugger
interface to their applications.

Enabling ICD means that the ICSP interface can’t be
used for programming – at least not directly. ICD can
operate in several different modes, including a pro-
gramming mode which emulates the regular ICSP
interface. This, in turn, allows users to reset the config-
uration word and disable ICD; of course, this means a
complete erasure of the device, which will require
reprogramming. It also means that you are not
permanently locked into ICD should you choose to
enable it.

On the other hand, the MPLAB ICD 2 hardware itself
can be used as a device programmer. Additional hard-
ware is required in the form of a Universal Programmer
Adapter. Once this has been added, the MPLAB ICD 2
module can be configured by the user to operate as
either a debugger/emulator or a programmer (but not
both at once).

Users interested in learning more about ICD should
refer to the “MPLAB ICD 2 In-Circuit Debugger User’s
Guide” (DS51331). This gives a more complete discus-
sion of ICD in general, as well as requirements for
implementing ICD in target applications.
 2004 Microchip Technology Inc. DS00910A-page 19

AN910
CONSIDERATIONS FOR IN-SYSTEM
PROGRAMMING

We can all agree that the ability to program (or repro-
gram) a microcontroller in its application is a good
thing. Without detailing all the advantages, it can allow
for big savings in inventory and manufacturing cost,
while extending a product’s life. Adding this desirable
feature does mean making some design adaptations.
Some basic circuit considerations are noted here and
are shown in Figure 7.

Let’s start by looking at the programming voltage, VIHH.
For standard (high-voltage) ICSP protocol, it becomes
necessary to think about the 13V source. Obviously,
the microcontroller can handle it; but what about other
components in the circuit? Small circuit boards with tiny
surface-mounted devices may not appreciate even
brief applications of this voltage level. The question
becomes one of isolating the MCLR pin from the rest of
the system at the programming voltage level, without
interfering with the pin’s real job as a device Reset.

In addition to the level of VIHH, we must also consider
its rise time. As we’ve already mentioned, a rise time
that is too slow may cause the device to prematurely
increment the program counter. Large filter capacitors
on MCLR and VDD can have a significant adverse
effect on rise time. So, besides making certain that
nothing attached to the MCLR pin will block the pro-
gramming voltage or be damaged by it, we must also
make sure that nothing will slow the rise time. If capac-

itors are necessary for the application to work, the pro-
gramming device must have sufficient drive to
overcome the capacitive load on these lines.

Another consideration relates to VDD as well as VIHH.
Regardless of the device, a basic requirement is that
the supply and programming voltages stay between the
minimum and maximum levels. A sag in either voltage
during programming will result in incomplete
programming – a potential disaster for OTP devices.
The question here becomes one of ensuring that volt-
age levels are properly regulated to stay within the
requirements during the programming cycle.

There’s also the issue of the programming pins. If
in-system programming is to be built into an applica-
tion, it must be done so that the PGC/PGD lines can
handle a signal of 1 to 10 MHz (the approximate clock
rate associated with the ICSP interface), while the rest
of the application doesn’t load down those lines. Need-
less to say, the use of series diodes in these lines will
probably block programming signals entirely. A simple
solution is to make certain that these two pins, typically
bits 6 and 7 of PORTB, are always used as outputs in
the application. Additional buffering or driving of signals
on these lines may be required. It is impossible to make
blanket recommendations here, as the range of possi-
ble application designs is so broad. Of course, the ideal
solution would be to not use these pins for anything but
programming, but this may not fit well with the
application being designed.

FIGURE 7: TYPICAL CIRCUIT INCORPORATING THE ICSP PROTOCOL INTO AN APPLICATION

MCLR/VPP

VDD

VSS

PGC(2)

PGD(2)

PGM(2,3)

PICmicro® MCU

7 to
kΩ(1)

470Ω(1)

0.1 µF(1)

0.1 µF(1)

Note 1: Component values are recommended starting points for design. Final values must be validated in the actual
application. Some applications may not require the use of the MCLR series resistor.

2: Because of multiple considerations, no other application components are shown connected to these lines. Actual
designs may require passive components. See text for recommendations.

3: PGM is only used in devices capable of single-supply ICSP operation. OTP and some Flash devices use a 5-wire
connection.

RB6 RB7 To Rest of Application

Application ResetMCLR

10

ICSP™ Connector
DS00910A-page 20 2004 Microchip Technology Inc.

AN910

Some general circuit design guidelines are also pro-
vided in the MPLAB ICD 2 User’s Guide (DS51331).
While these are tailored to the requirements of the ICD
interface, they also encompass the signalling require-
ments for the ICSP protocol. As a rule, any design that
is signal compatible with ICD will also be compatible
with the ICSP protocol, but not the other way around.

All of this relates to both the design of the application,
as well as the programmer itself. Device programmers
supplied by Microchip and its approved third party
partners, whether single socket, gang programmers or
in-circuit manufacturing systems, will supply the
proper supply and programming voltages at the proper
level and with sufficient drive to satisfy level and timing
specifications. The load capacity for Microchip’s ICSP
socket module is indicated in the product literature.
Other programming systems must be carefully evalu-
ated to verify that they can meet these requirements.
Needless to say, they should also be verified against
the actual end application.

This also assumes that programming will be done from
an external source, with a 5-wire or 6-wire connector
supplying all the appropriate voltages and signals.
Building a system that is fully field programmable is
another story entirely; that means including a regulated
voltage supply for both VDD and VIHH (as needed) into
the design, adding parts and complexity. Even if the
single-supply ICSP interface is implemented, this
means that the I/O pin associated with PGM cannot be
used for anything but programming.

These matters are all engineering issues that must be
carefully balanced as the system is designed. As the
responsible engineer, you must always validate your
design against the system’s actual programmability and
adjust the application accordingly. As often as it is
repeated, it still holds true: nothing beats live verification.

BOOTLOADERS AND IN-SYSTEM
PROGRAMMING
Even with all the advantages of in-system program-
ming, there may still be cases where constraints on a
system’s design may prevent including the necessary
features. For example, the filter capacitors required to
block EMI on port pins in the application may make it
impossible to achieve the necessary rise-and-hold
values for programming waveforms; or a required
application diode on MCLR may also block
programming voltages. Does this mean that in-system
programming has to be ruled out entirely?

Not necessarily. A combination of features in the latest
PICmicro devices makes it possible for these devices to
program themselves in the end application and under
normal operation. This concept, commonly referred to
as bootloading, can eliminate all of the traditional ICSP
requirements for in-system programming. As long as the
application has some data channel to the rest of the
world, the microcontroller’s firmware can be updated. In

addition, most devices that are self-programmable can
use a bootloader to reprogram themselves, even if code
protection has been enabled. Field upgradability does
not have to take a secondary role to security.

Three features make bootloading possible. The first, of
course, is Flash program memory that can tolerate multi-
ple erase/write cycles. The second is a memory architec-
ture that allows the program memory space to be
manipulated directly through the instruction set in normal
operating mode. Finally, there is the implementation of a
protected block at the top of program memory, residing at
the place pointed to by the program counter on device
Reset. This area, the boot block, can hold special
firmware that can write to the rest of the program memory.

Although the concept might seem a little mind-twisting
at first, the basic principle of a bootloader is simple.
When the microcontroller is reset, it begins to execute
the code in the protected block. If it does not detect a
predetermined hardware event within a certain time (a
pull-up or pull-down on a given pin, a certain bit
sequence from the USART that matches a value in
data EEPROM, etc.), it does a one-way jump to the
main area of program memory and begins to execute
the normal application code. If the event is detected,
however, it goes to its central bootloading routine. This
involves receiving data from a serial channel like the
USART, verifying its integrity and writing it to the appro-
priate memory space using the appropriate commands.
Once the routine is done, the device is reset and can
now execute the new application code. The only thing
that doesn’t change is the bootloader itself, which
resides in a write-protected memory space.

Bootloaders are best implemented in the PIC18F family
of devices, which offer all three of the necessary
features discussed above, as well as a wide selection
of serial communication options. They can also be
implemented in PIC16F mid-range controllers with
self-programmable memory arrays; the best example
is the PIC16F87XA family, which implements a boot
block at the top of program memory. Bootloaders can
also be used in the PIC17C7XX family and the
PIC18C601/801 ROMless microcontrollers.

Where the device has a programmable boot block, the
programming specification will describe how to program
and code-protect the space. If you’re not sure about a par-
ticular device or device family, refer to its data sheet for
self-programmability, or its programming specification.

EXCEPTIONS TO ICSP PROTOCOL
It would be nice if we could generalize all of PICmicro
programming to the versions that we’ve just covered.
But like most things, there are exceptions to the rules.
Because these relate to parts that are in production and
enjoy some popularity, we’ll touch on them briefly here.
Since they are so different, however, we will not go into
great detail. If you are interested in learning more about
programming these devices, you are encouraged to
read the reference specifications for more details.
 2004 Microchip Technology Inc. DS00910A-page 21

AN910
PIC16C5X Family

This group represents some of the earliest members of
the PICmicro family. Even so, it remains one of
Microchip’s most popular product families.

All of the members of this family use a parallel program-
ming method, requiring the 12-bit program data to be
supplied all at once on PORTA and PORTB. Program-
ming mode is invoked in a method similar to the ICSP
method, by applying VIHH to the MCLR pin. The
process is controlled by applying signals to the T0CKI
and OSC1 pins.

The programming method is described in the family
programming specification (DS30190).

PIC17CXX and PIC17C7XX Families

This family serves as a stepping stone between the
mid-range PIC16 devices and the enhanced PIC18
family. It incorporates many of the high-end peripheral
features available in PIC18 devices with an instruction
set that represents an expansion of the PIC16 set. Many
features in this family were implemented in a fashion
different from either the PIC16 or PIC18 families;
programming is one of the most notable differences.

Devices in the PIC17CXX and PIC17C7XX families are
usually programmed using a Parallel mode. This oper-
ates very much as it sounds: the 16-bit program data
word is presented all at once as 16 parallel bits across
two entire ports (PORTB and PORTC). Like PIC18
devices, programming is accomplished through Table
Read and Table Write commands. Unlike other
PICmicro devices, however, programming is actually a
form of bootloading: the PIC17 devices are actually
executing code from a built-in protected ROM.

In addition to the data on PORTB and PORTC, pro-
gramming is controlled using the five lines of PORTA,
plus control voltages on the MCLR and TEST pins.
Since the device is executing code during the process,
it also requires a clock source (either on-chip or exter-
nal). Obviously, this is not a convenient method for
in-system programming.

The PIC17C7XX devices can also use a variant of the
ICSP interface. This method is very different from what
we’ve discussed so far, however. To begin with, this
method is also a bootloader method in disguise. Instead
of triggering normal ICSP operation (a passive state
machine under external control), the device is actually
executing code from the protected ROM. All told,
PIC17C7XX devices require 7 connections for ICSP
operation, as opposed to 5 for other PICmicro devices.

The serial programming commands for these devices
are 8 bits and represent a superset of the basic PIC16
commands. Generally speaking, they are same
commands padded with ‘0’s in the two Most Significant
bits.

For a more detailed discussion, refer to the program-
ming specification for the PIC17C4X family (DS30412)
or the PIC17C7XX family (DS30274).

PIC18C601/801 ROMless Devices

At first, this may seem counter intuitive: how do you
program a device without a program memory?

Actually, this isn’t nearly as odd as it sounds. The
PIC18C601/801 devices incorporate a data memory
implemented with RAM that can be programmed
through the ICSP interface. The bottom 512 bytes of this
memory, in turn, can be configured to act as program
memory by setting the PGRM bit in the MEMCON regis-
ter. While 512 bytes doesn’t sound like much, it is
enough space to store a bootloader program and this
lets the user write to any connected external memory
device in a flat memory space of up to 2 Mbytes. Placing
the bootloader in volatile RAM means that it will need to
be loaded every time it’s required, but the vast majority
of applications will not require it on every device Reset.

In addition to the bootloader, the user must also load a
memory specific configuration file; this lets the bootloader
know how to read and write to the type of external mem-
ory being used (if the memory is writable). The latest ver-
sions of MPLAB IDE provide a collection of configuration
files that represent the most common Flash, ROM and
PROM chips available. Selecting the right file is done
from a special dialog menu, enabled only when the
PIC18C601/801 is selected as the target device.

It is not possible to directly program the external mem-
ory connected to these devices using the ICSP opera-
tion. However, the bootloader operation offers many
advantages over the ICSP operation: the device can
program itself, during normal operation, by using a con-
venient serial channel without the need of a program-
ming voltage source or other special conditions. The
user can also use a wide range of memory sizes and
architectures, giving a great deal of flexibility to the
application’s design.

Of course, ICSP operation is also used to program the
configuration words, just as it is with any other device
in the PIC18CXXX family. The details for programming
the configuration words, as well as the data memory,
are covered in the PIC18CXXX family programming
specification (DS39028).

An in-depth discussion of the PIC18C601/801
bootloader can be found in AN819, “Implementing
Bootloader Firmware for the PIC18C601/801 ROMless
Microcontroller” (DS00819).
DS00910A-page 22 2004 Microchip Technology Inc.

AN910
‘CR’ Devices

It is possible that someone may ask about program-
ming a PICmicro device with a ‘CR’ designation in its
name. A good example would be the PIC16CR83. The
best response is to first ask in detail about the type of
programming they had in mind.

Devices with the ‘CR’ designation refer to devices with
a masked ROM program memory; the actual device
program is designed into the memory during manufac-
ture and is a permanent architectural feature. It can’t be
changed, ever.

PIC16CR devices that are ROM versions of PIC16F
parts (like the aforementioned PIC16F83) may have
data EEPROM. This is still accessible under the ICSP
protocol and can be programmed like any other device.
If you want to change the firmware on one of these,
however, you’re out of luck.

PRODUCTION PROGRAMMING:
MOVING BEYOND ICSP PROTOCOL

No discussion of programming is really complete with-
out considering the next big step – what happens to
an application when it moves into mass production.

The methods that we’ve described so far made an
assumption of development level programming: that is,
programming one or several devices at a time, using an
out-of-application socket programmer or a plug-in
external system. Everything we’ve talked about can be
scaled up with some ease to an assembly line level,
doing hundreds to thousands of units a day. We’ve also
assumed that we want or need our firmware to be field
upgradable under all circumstances.

But this may not be the only case. For example, what
of an application with stable and mature code that ships
in the millions of units? When something becomes that
popular, it may become necessary to think of other bulk
programming options.

For those applications that have reached this level,
Microchip has factory-based options available. Pro-
grams such as Quick Turn Programming (QTP) provide
customers with bulk programming for their devices; the
act of reordering parts also takes care of the program-
ming step and its associated time and labor. Its close
relative, Serialized Quick Turn ProgrammingSM

(SQTPSM), also permits individuation of each part with
a serial number or other descriptor in a customer
specified format.

Make no mistake, in-system programmability and
upgradability are good things for your applications. But
they are not the end of the story.

WRAPPING IT UP

With its many permutations, the process of device pro-
gramming may look daunting. But think back to when
you first learned how to write code. Once you learned
the basic instructions, it became comprehensible. As
you progressed, the tangle of instructions became log-
ical, then easy to understand. And finally, it became
second nature.

In the same way, PICmicro device programming is no
more complicated than designing that elegant code for
a sophisticated application. Reduced to its basic terms,
it’s a few simple instructions and a hardware protocol,
tailored to each device it works with. In fact, the best
way to think of it is the next logical step beyond the
code.
 2004 Microchip Technology Inc. DS00910A-page 23

AN910
APPENDIX A: ADDITIONAL
READING

As already mentioned, this paper is only an introduction
to the realm of programming PICmicro micro-
controllers. For in-depth information on the details, as
well as specific information on particular devices, the
reader is encouraged to review Microchip’s most
current literature on device programming and specific
programming specifications.

These Microchip application notes are excellent
resources for information on Flash-based bootloaders:

AN819, “Implementing Bootloader Firmware for the
PIC18C601/801 ROMless Microcontrollers” (DS00819),
G. Kavaiya and N. Rajbharti, 2001.

AN851, “A Flash Bootloader for PIC16 and PIC18
Devices” (DS00851), R. Fosler and R. Richey, 2002.

AN247, “A CAN Bootloader for PIC18F CAN
Microcontrollers” (DS00247), R. Fosler, 2003.

All documents are available in Adobe Acrobat format
on the Microchip corporate web site:

www.microchip.com

Note: Programming specifications for device
families may be revised from time to time
to reflect new information or an occasional
typographic correction. If you have a copy
of a particular specification on hand, be
sure to check the Microchip web site to
see if it has been updated.

Revision level is indicated by the letter fol-
lowing the 5-digit document number;
higher letters indicate later revisions.
DS00910A-page 24 2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
DS00910A-page 25
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart and rfPIC are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL, SmartShunt and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net,
dsPICworks, ECAN, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,
SmartSensor, SmartTel and Total Endurance are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2004 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in October
2003. The Company’s quality system processes and procedures are for
its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.

DS00910A-page 26 2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

02/17/04

WORLDWIDE SALES AND SERVICE

	Introduction
	The Basics
	The ICSP Hardware Protocol
	TABLE 1: Common DC Characteristic Definitions in Microchip Programming Specifications(1)
	TABLE 2: Common AC Timing Parameter Definitions in Microchip Programming Specifications(1)
	Single-Supply Programming

	The Building Blocks of Programming
	Managing the Process: The Programming Commands
	FIGURE 1: Example of a 6-bit “Load Program Memory” Command (PIC16F87XA)
	FIGURE 2: Example of a 4-bit PIC18 Command Sequence (Table Write/Post-Increment with Data in PIC1...
	TABLE 3: Overview of 6-bit and 4-bit Programming Command Sets

	Reading a Programming Specification
	The Device Memory Map
	FIGURE 3: Typical Memory Maps for PIC16 Devices
	FIGURE 4: Combined Memory Map for PIC18F Devices, Showing Program Memory and Configuration Locations

	Programming, Part I: Program Memory
	Memory Arrays
	OTP Arrays
	Flash Arrays with Internally Timed Writing
	FIGURE 5: Typical Programming Algorithm for an OTP Device (PIC16C7XX)
	FIGURE 6: Typical Programming Algorithm for a PIC16 Flash Device (Array with Internally Timed Wri...

	Flash Arrays with Externally Timed Writing
	Other Variations on Flash Arrays

	Write and Erase Blocks
	Verification

	Programming, Part II: Other than Program Memory and Code Protection
	Configuration Words and Bits
	Code Protection, Configuration Bits and ICSP Operation
	Considerations in Programming Configuration Words
	ID Locations and Device IDs
	Data EEPROM

	Checksums

	ICSP Protocol and ICD
	Considerations for In-System Programming
	FIGURE 7: Typical Circuit Incorporating the ICSP Protocol into an Application

	Bootloaders and In-System Programming
	Exceptions to ICSP Protocol
	PIC16C5X Family
	PIC17CXX and PIC17C7XX Families
	PIC18C601/801 ROMless Devices
	‘CR’ Devices

	Production Programming: Moving Beyond ICSP Protocol
	Wrapping it Up
	Appendix A: Additional Reading
	Worldwide Sales and Service

