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Introduction
The primary application of coherent sampling is sinewave
testing of A/D converters. If the proper ratios between fIN and
fS are observed, the need for windowing is eliminated. This
greatly increases the spectral resolution of a FFT and
creates an ideal environment for critically evaluating the
spectral response of the A/D converter. Care must be taken,
however, to insure the spectral purity and stability of fIN and
fS in the testing environment. Figure 1 illustrates this
procedure.

Definition of Coherence
Coherent Sampling of a periodic waveform occurs when an
integer number of cycles exist in the sample window. In other
words, coherent sampling occurs when the relationship of
Equation 1 is rational.

Where:

fS is the sampling frequency
fIN is the input frequency
M is the integer number of cycles in the data record
N is the integer, factor of 2, number of samples in the

record

Ideal Parameters for Coherence
The coherence relationship will work for any arbitrary M and
N, but practical values provide better results. A prudent
choice for N is a power of 2. The FFT requires the number of
samples to be a power of 2 because of its inherent
periodicity. The DFT can be performed on an arbitrary sam-
ple size, but requires more computation time. M should be
odd or prime. By making M odd, we eliminate many common
factors with N. A prime M eliminates all common factors with
N. Common factors between M and N lead to different har-
monics of fIN having the same frequency bin in the FFT after
aliasing. The uniqueness of M is absolutely imperative to
Harmonic Distortion calculations.

What follows is a mathematical analysis defining a simple
rule that evaluates true when two harmonics have equivalent
bins in the FFT. Equation 2 represents the location, Mh, in a
FFT, of a harmonic h.

Suppose harmonic 1 and harmonic 2 have the same FFT bin
locations, Mh1 = Mh2 = Mh, then, from Equation 2,

FIGURE 1. TESTING SYSTEM FOR SINEWAVE ANALYSIS
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Consider that h1, h2, and N will always be positive values.
Simplifying Equation 3 results in Equation 4.

Since the right side of Equation 4 must necessarily be an
integer, the left side must also be an integer when the two
harmonic locations Mh1 and Mh2 are equal.

Therefore, when Equation 5 is true, the frequency bin of har-
monic 1 is equal to the frequency bin of harmonic 2. The
FFT provides N/2 frequency bins. To insure the uniqueness
of each harmonic of the fundamental frequency bin,
Equation 5 must be false for all combinations of h1 and h2
for all multiples of M extending to N.

Sampling at the Nyquist rate of fS = 2*fIN is a classic prob-
lem. As an example, consider N = 4096, fIN = fS/2, M = N/2.
Equation 5 evaluates as ((h1 ± h2)/4096) = INT. If we substi-
tute h = x*M for h1 and h2 where x represents the harmonic
number, the equation simplifies to ((x1 ± x2)/2) = INT. When-
ever this equation holds true, the two harmonics have the
same frequency bin. In this case, every odd harmonic will
have the same bin as the fundamental and every even har-
monic will have the same bin as DC. Therefore, no informa-
tion about harmonic distortion or signal to noise ratio can be
calculated.

Non-Ideal Parameters for Coherence
Thus far, we have talked about the complexities involved in
coherent sampling that usually involve tedious iterative
calculations to get the correct sampling ratio. That process
ultimately resolves a very accurate solution. When the
integer relationship of Equation 1 is not observed, artifacts
result in the FFT spectrum.

Figure 2 is a 4096 point sample record from an ideal 10-bit
A/D converter. To illustrate how the FFT interprets the 4096
points of data, the same 4096 point data record has been
shifted in time by 4096 points and copied onto the graph.
The FFT assumes that the 4096 data points represent a
periodic waveform that extends to infinity in both directions.
Because of this assumed periodicity, the calculation time of
the FFT is reduced significantly and a smaller number of
samples is required. Observe Figure 3. The waveform has
been mirrored in the same way as Figure 1, except the
record now contains 1.1 cycles instead of the original 1.0
cycles of Figure 1. It is obvious that if this is to be the signal
that we perform the FFT on, the results will be degraded.

The characteristics of non-coherent sampling are obvious for
gross errors, but are illusive with smaller error. Figure 4 is
the FFT spectrum of a coherently sampled ideal 10-bit A/D
converter. Notice there is no significant activity below -80db
and the harmonic components are virtually nonexistent.
Conversely, adjusting the coherence relationship to reflect a

change in M of as little as 0.005, the harmonic components
are significantly increased, and a unique condition called
spreading occurs. Spreading, sometimes referred to as
smearing or leakage, causes a spike centered around the
frequency bin of the fundamental. The width of the spike is
an indication of the magnitude of non-coherence. A concept
crucial to understanding the nature of the problem is
interpreting what a 0.005 change in M really means with
respect to fIN and fS. If N and fS stay constant, and M is
increased by 0.005, then the input frequency, fIN, is
increased by fS/N*0.005 causing leakage in the time domain
window that leads to non-coherence.
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FIGURE 2. TRANSIENT RESPONSE OF A COHERENTLY
SAMPLED DATASET AS SEEN BY FFT

FIGURE 3. TRANSIENT RESPONSE OF A NON-COHERENTLY
SAMPLED DATASET AS SEEN BY FFT

FIGURE 4. FFT SPECTRUM OF A COHERENTLY SAMPLED
WAVEFORM
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An important specification for A/D testing is ENOB or
Effective Number of Bits. Figure 6 shows the effect on ENOB
performance of a shift in M from M-0.5 to M+0.5. Since the
data is based on an Ideal converter, we expect to be able to
achieve 10-bit accuracy. Indeed, there is a region where 10
bits is achievable, but it is very slim. The acuity of this region
highlights why coherence must be accurately observed.
Although, Figure 6 is somewhat misleading. Assuming the
input frequency was 10MHz, the range of Figure 6 would
represent an input frequency range from 9995117Hz to
10004883Hz. In most instances, high frequency equipment
will perform within 1Hz of the programmed value resulting in
a range of ±0.5Hz or a variability in M of ±0.00005 for our
high-frequency example. Further narrowing in on the ideal
range of variability for M, Figure 7 shows the change in
ENOB for a change in M of ±0.0005. The assumed accuracy
of our high-frequency source puts it within the 9.95 - 10.0 bit
range for an Ideal signal.

Unwrapping
A coherently sampled sine wave can be reassembled using
a concept called unwrapping. Figure 8 shows a sinewave
with M = 11 sampled N = 4096 times. Figure 9 is the same
waveform after unwrapping is applied. If a waveform has
been coherently sampled, the unwrapped waveform should
look like one cycle sampled N times.

Windowing
Leakage is not a problem in all cases. It does not affect
transient data as long as the transient occurrence is fully
contained within the sample window. Leakage only occurs
when the FFT is used to extrapolate frequency information
from the sampled waveform. The actual source of leakage is
not the signal itself but the window used in acquisition. The
amount of leakage depends on the window shape and how
the signal fits into the window.

Consider the coherently sampled waveform of Figure 12.
The window of acquisition is rectangular and precisely set so
that an integer number of cycles are captured. Therefore,
leakage does not occur, the noise floor is nearly ideal for a
10 bit device, and harmonic distortion is nonexistent. In
many cases the signal or sampling variables can not be
precisely controlled. This makes it difficult to obtain exactly
an integer number of cycles. But, leakage can be avoided or
controlled by modifying the window to fit the data or to
modify the data to a better form.

FIGURE 5. FFT SPECTRUM OF A NON-COHERENTLY SAM-
PLED WAVEFORM

FIGURE 6. ENOB vs M FOR M-0.5 TO M+0.5

FIGURE 7. ENOB vs M FOR M-0.0005 TO M+0.0005

FIGURE 8. COHERENTLY SAMPLED WAVEFORM FOR M = 11

FIGURE 9. COHERENTLY SAMPLED WAVEFORM AFTER
UNWRAP FOR M = 11
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Resampling and Interpolative Resampling
For example, if 9.5 cycles of a waveform are captured, the
data window can be shortened to disregard the extra 0.5
cycle. Assuming the original data set is 1045 samples long,
as in Figure 10, after discarding the extra 0.5 cycle, the data
set is reduced to 990 samples as illustrated by Figure 11. A
990 point DFT can now be performed on the modified data
to produce accurate results free of leakage. This presents a
problem to FFT algorithms that are limited to power of 2
sample sets. There is, however, a solution. The new sample
set can be resampled to fit a given sample size or
interpolation techniques can be applied to fit the waveform
into the appropriately sized sample set. The 9.0 cycle
waveform of Figure 11 was resampled to provide 1024
samples. Figure 15 shows the affects of the linear
resampling in the frequency domain. Figure 14 is a similar
example except the data has been resampled using linear
interpolation. Linear resampling preserves the levels of the
original data and avoids leakage, but does produce a more
discontinuous waveform leading to harmonic distortion.
Linear interpolative resampling circumvents this problem but
does not entirely preserve the original data. Figure 12 is
provided as a reference.

FIGURE 10. 9.5 CYCLE SINE WAVE

FIGURE 11. 9.0 CYCLE SINE WAVE

FIGURE 12. COHERENT 9.0 CYCLE SINEWAVE

FIGURE 13. FFT OF COHERENT 9.0 CYCLE SINEWAVE

FIGURE 14. FFT OF FIGURE 11 AFTER INTERPOLATION

FIGURE 15. FFT OF FIGURE 11 AFTER RESAMPLING
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Different Window Shapes
Since almost periodic data does not have a definable period,
the above techniques are not applicable. Windowing the
data can however force the data to begin and end at the
same or nearly the same level. The technique of mathemati-
cal windowing is accomplished by multiplying the sampled
waveform by an appropriate function. This prevents
discontinuity at the window edge. Eliminating the
discontinuity does not always eliminate leakage, but it does
help to reduce it.

There are several functions that taper at the window edges.
They are shown in Table 1. The first column is the actual
window which should be applied to the sampled signal. The
second column defines the shape equation for each window.
As a basis for comparison, the third column contains the
normalized frequency domain magnitude for each window.
The fourth column lists the peak magnitude in the frequency
domain as compared to that of the rectangular window. The
decreased major lobe magnitude is due to the addressed
area (energy) of each window as compared to the
rectangular window. Adjusting the amplitude of the window
will accommodate this difference. The fifth column lists the
amplitude of the highest side-lobe in decibels referenced to
the major lobe peak.

The 3dB bandwidth of the major lobe is given in the sixth
column. These bandwidth values are normalized to Beta, the
reciprocal of the window’s time duration. The last column of
parameters lists the theoretical rate of decay (roll-off) of the
side lobes.

In choosing a windowing function, the bandwidth and side
lobe levels should be considered. In general, the lower the
side lobes, the less leakage in the frequency domain of the
windowed data. However, lowering the side lobes also
results in more energy being concentrated in widening the
major lobe. Figures 17 and 18 illustrate these qualities. The
Extended Cosine Bell has a very narrow major lobe and very
high side lobes whereas the Parzen window has very low
side lobes but a wide major lobe. Figure 16 is provided as a
reference. Table 1 lists the windows in order of decreasing
side lobe level and as a result they are listed in order of
increasing bandwidth. The exception is the Hamming
because of its non-zero edges.

In terms of spectral separation, the greater the window’s
bandwidth, the less selectivity it provides for equal amplitude
and adjacent frequencies. The wide bandwidth causes them
to blur together. Alternatively, lower side lobe levels
increases selectivity between adjacent components of
unequal amplitudes since the lower magnitude components
are no longer buried in the leakage skirts. Usually, it takes a
lot of trial and error before the correct window function is
selected. Figures 19 through 22 provide some insight into
the trial and error pitfalls involved in selecting the correct
window shape. In Figure 21, the large side lobes of the
Extended Cosine Bell window overshadow the original
signals apparent in Figure 19. Conversely, the wide major
lobes of the Parzen Window absorb one and another as is
evident by Figure 22. A compromise can be arrived at by
using the Hanning shape. The FFT spectrum of Figure 20
has reduced leakage to a minimum while continuing to pre-
serve spectral separation of the signals.

FIGURE 16A. RECTANGULAR WINDOWED SINE WAVE

FIGURE 16B. FFT SPECTRUM OF RECTANGULAR WINDOWED
SINE WAVE

FIGURE 17A. EXTENDED COSINE BELL WINDOWED SINE
WAVE

FIGURE 17B. FFT OF EXTENDED COSINE BELL WINDOWED
SINE WAVE



6

Application Note 9675

Conclusion
Coherent testing of A/D converters provides an ideal
environment for evaluating the spectral response. The rules
for coherent sampling are simple. M must be prime or odd. N
must be a factor of 2. The sampling and input frequency and
phase must be stable and predictable. There are two
methods for evaluating coherence. Unwrapping the
waveform will show non-coherent anomalies in the time
domain. The algorithm for unwrapping is provided below.
Another indication of noncoherence is leakage skirting, or
spreading, in the FFT spectrum. In the case of a single tone,
sine wave curve fitting can be used to calculate signal to
noise ratio. When the rules of coherent testing are not
observed, windowing may be applied to try and resolve
spectral components.

When should windowing be used, and when should it not? If
windowing is needed, which windowing function should be
used? The answer to these questions depend upon what
you are looking for. If a waveform has adjacent components
of nearly equal magnitude, you may want to leave the data in
the rectangular window. The increased major lobe width of
another window shape may cause the two adjacent
components to leak into each other and appear as one. On
the other hand, if there is a small component near a large
component, a low side-lobe window will decrease leakage
around the large component and make the small component
easier to distinguish. Ultimately, selecting the window is a
compromise between needed side-lobe reduction and a
tolerable increase in major lobe width.

FIGURE 18A. PARZEN WINDOWED SINEWAVE

FIGURE 18B. FFT SPECTRUM OF PARZEN WINDOWED
SINEWAVE

FIGURE 19. FFT OF A 3-SIGNAL NON-COHERENT WAVEFORM

FIGURE 20. FFT OF WAVEFORM OF FIGURE 18 WINDOWED
WITH A HANNING SHAPE

FIGURE 21. FFT OF WAVEFORM OF FIGURE 18 WINDOWED
WITH AN EXTENDED COSINE BELL SHAPE

FIGURE 22. FFT OF WAVEFORM OF FIGURE 18 WINDOWED
WITH A PARZEN SHAPE
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TABLE 1. WINDOWING FUNCTIONS

UNITY AMPLITUDE
WINDOW SHAPE EQUATION

FREQUENCY
DOMAIN

MAGNITUDE

MAJOR
LOBE

HEIGHT

HIGHEST
SIDE LOBE

(dB)

BAND-
WIDTH
(3dB)

THEORETICAL
ROLL-OFF

Rectangle A = 1
   for t = 0 to T

T -13.2 0.86β 6

Extended Cosine Bell A = 0.5(1-cos(2π5t/T))
   for t = 0 to T/10
   and t = 9T/10 to T
A = 1
   for t = T/10 to 9T/10

0.9T -13.5 0.95β 18 Beyond 5B

Half Cycle Sine A = sin(2π0.5t/T)
   for t = 0 to T

0.64T -22.4 1.15β 12

Triangle A = 2t/T
   for t = 0 to T/2

A = -2t/T +2
   for t = T/2 to T

0.5T -26.7 1.27β 12

Cosine2(Hanning) A = 0.5(1-cos(2πt/T))
   for t = 0 to T

0.5T -31.6 1.39β 18

Half Cycle Sine3 A = sin3(2π0.5t/T)
   for t = 0 to T

0.42T -39.5 1.61β 24

Hamming A = 0.08 + 0.46(1-cos(2πt/T))
   for t = 0 to T

0.54T -41.9 1.26β 6 Beyond 5B

Cosine4 A = (0.5(1-cos(2πt/T)))2

   for t = 0 to T
0.36T -46.9 1.79β 30

Parzen A = 1-6(2t/T-1)2 + 6|2t/T-1|3

   for t = T/4 to 3T/4
A = 2(1-|2t/T-1|)3

for t = 0 to T/4
and t = 3T/4 to T

0.37T -53.2 1.81β 24
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Algorithms
The coherence algorithm accepts known values for each of
the coherence parameters and evaluates the closest value
to the initial guess so that all values are integer related. N
must be a power of 2 greater than 4. The error is not more
than ±(N/2) for f_s and ±(f_s/N) for f_in.

The unwrap algorithm accepts two arrays(tsample and
unwrap) the number of cycles captured(M), and the array
length(N). The tsample array is the sampled waveform. The
unwrap array is the unwrapped waveform. It should look like
one cycle of the waveform but sampled N times. The variable
M is the number of cycles in the record.

The alias algorithm accepts N and fbin as variables and
computes the correct FFT bin assignment of fbin.
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void coherence(f_in,f_s,N,M)
double *f_in,*f_s;
int N,*M;
{
int K;

K = (*f_s + N/2)/N;
*M = (int)(*f_in)/(int)K/2*2+1;

*f_s = K*N;
*f_in = K*(*M);

}
/* Sample Call */

/* coherence(&f_in,f_s,N,M); */

}/* End of Coherence Algorithm */

void unwrap_algorithm(tsample,unwrap,size_cap,M)
int tsample[],unwrap[],M,size_cap;
{
int i,j;
for (i=0; i<size_cap;i++)

{
j = M*i % size_cap;
unwrap[j] = tsample[i];
}

/* Sample Call */
/* unwrap_algorithm(tsample,unwrap,size_cap,f_bin);
*/

}/* End of Unwrap Algorithm */

void alias_algorithm(fbin,N)
int *fbin,N;
{
*fbin=fabs((float) ( *fbin - N *((*fbin+N/2)/N) ) );
if (*fbin == N/2) *fbin = 0;

/* Sample Call */
/* alias_algorithm(&fbin,M); */

}/* End of Alias Algorithm */


