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Understanding the HI5721 D/A Converter
Spectral Specifications

Introduction
Data converters have, and continue to be one of the basic
building blocks in data acquisition systems. However, with
the growing dependance on D/A converter spectral purity in
today’s applications, it is becoming increasingly important for
system level designers and IC manufacturers alike to under-
stand the effect of spectral non-uniformity in these complex
applications. The performance of a given D/A converter
under a specific set of conditions provides the system
designer with the data he or she needs to determine whether
the converter will meet the requirements of the system.

Discussion
Although there are a variety of definitions for Spurious Free
Dynamic Range (SFDR), one which is commonly accepted is
that SFDR is the difference in power between the fundamental
and the highest spur over the full Nyquist bandwidth. SFDR is
specified in dBc (decibels below carrier). Some variations of
this specification include: a) the definition of a frequency win-
dow of interest around the fundamental and b) the exclusion
of harmonics in the calculation of SFDR. Though sound argu-
ments can be made to justify any of these definitions for
SFDR, particular attention must be paid to what is actually
being defined in each case.

Depending on the glitch impulse characteristics of the D/A
converter, noise within a band limited range of frequencies
(or window) can be dominated by its effects. Glitch impulse,
which is a measure of the glitch area created by switching
transients during converter updates, will generate high fre-
quency spurs that fold back in band and cannot be filtered.
This noise, which resides close to the fundamental, can
define “windowed” SFDR.

Therefore, while the definition of a window around the funda-
mental provides useful information regarding the nature of
the noise floor, it provides too limited a scope. Unless the
user filters the output signal in a similar fashion to that being
used to test the converter, the effect of the remainder of the
noise floor on the application is unknown. The same can be
said of defining SFDR using harmonics. Since harmonic dis-
tortion typically exceeds noise in the D/A converter’s spec-
trum (as seen in Figure 1), little information about the
characteristics of the noise floor are obtained. Figure 2
graphically illustrates this point. As one can see, dramatically
different SFDR specifications can arise depending on the
method used for its definition. Specific system requirements
will dictate which of the outlined methods will best suit your
needs. However, by using method 2 (as shown in Figure 2)
and determining the peak non-harmonically related noise
generated by the converter in combination with total har-
monic distortion (which defines noise generated by harmon-
ics only), a better determination of the D/A converter’s
overall spectral purity can be obtained.

FIGURE 1. TYPICAL D/A CONVERTER SPECTRUM

NOTES:

1. SFDR as Defined In ‘Window’

2. SFDR to Nyquist Without Harmonics

3. SFDR to Nyquist Including Harmonics

FIGURE 2. DEFINING SFDR

Total Harmonic Distortion (THD) is defined as the difference
in power between the fundamental and the RMS contribution
of all harmonics in band (to Nyquist), and is specified in dBc.
While harmonics in general are dominated by any repetitive
sources of error in a given converter, the shape of the trans-
fer curve, or more specifically, the combination of integral
non-linearity (INL), which is specified as the worst case devi-
ation from the straight line approximation of a given con-
verter’s transfer function, and differential non-linearity (DNL),
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which is the worst case deviation from an ideal step size
between adjacent codes along the transfer curve, will domi-
nate the harmonic content of the spectrum.

Analysis of the Fourier series expansion of a given function
reveals that:

where

and  is the DC value of the waveform ƒ(t)[1].

When a function is even (or ƒ(t) = ƒ(-t)),

only even harmonics are generated.

Similarly, when a function is odd (or ƒ(t) = -ƒ(-t)),

and only odd harmonics are generated.

In order to apply these equations, we must first establish the
evenness or oddness of a given function. If we analyze the
typical converter transfer functions shown in Figure 3, and
prove the periodicity of these functions by superimposing
them on to a sine wave, we now become free to apply the
visual test for evenness or oddness[2]. Figure 4 graphically
illustrates this procedure. The results of this test determine
that the characteristic ‘bow’ function is even, while the ‘S’
function is odd.

FIGURE 3. TYPICAL D/A CONVERTER TRANSFER FUNCTIONS

FIGURE 4. VISUAL TEST FOR EVENNESS OR ODDNESS

ƒ t( )
a0
2
------ an nω0t( )cos

n 1=

∞

∑ bn nω0t( )sin
n 1=

∞

∑+ +=

bn
2
T
--- ƒ t( ) nω0t( )sin

T
∫=

an
2
T
--- ƒ t( ) nω0t( )cos

T
∫=

a0
2
------

bn 0≡ an
4
T
--- ƒ t( ) nωot( )cos

0

T
2
---

∫= dt

an 0≡ bn
4
T
--- ƒ t( ) nω0t( )sin

0

T
2
---

∫= dt

   DIGITAL CODE IN

O
U

T
P

U
T

 V
O

LT
A

G
E

0

INL

Vfs

000 001 010 011 100 101 110 111

S CURVE

IDEAL TRANSFER CURVE

BOW

EVEN FUNCTION  ODD FUNCTION

 EVEN HARMONICS

 ƒ(t) = ƒ(-t) ƒ(t) = ƒ(-t)

CREATES CREATES

t

1/2 PERIOD OF SINE WAVE

RESULTANT ERROR FUNCTION WHEN BOW IS SUPERIMPOSED
ON SINE WAVE

RESULTANT ERROR FUNCTION WHEN ‘S’ IS
SUPERIMPOSED ON SINE WAVE

t

t

t

t

INVERT
AND FOLD

FOLD

ODD HARMONICS

ƒ(t) ƒ(t)

ƒ(t) ƒ(t)

ƒ(t)

Application Note 9501



3

Applying this knowledge, we can determine that a ‘bow’
characteristic will generate dominant second harmonic, and
an ‘S’ characteristic will generate a dominant third.

While this analysis assumes that functions are perfectly even
or perfectly odd (which rarely occurs), it does provide an
intuitive feel for the nature of harmonic distortion in data con-
verters.

Signal to Noise + Distortion (SINAD) is the ratio of the power
of the fundamental to RMS noise including harmonics
(depending on the manufacturer, this specification may also
be called Signal to Noise Ratio), and is specified in dB.
Since this specification encompasses all noise in band (both
harmonically and non-harmonically related over the full
Nyquist bandwidth), it defines the overall effective resolution
of the converter being tested. Once SINAD has been com-
puted, the effective number of bits (ENOB) of a given con-
verter is defined by the following equation:

Signal to Noise Ratio (or SNR) is defined as the ratio of the
power of the fundamental to RMS noise (the RMS value of
the entire noise floor, minus harmonics, over the full Nyquist
bandwidth), and is specified in dB. While this specification
does not include any harmonic contributions, it does provide
insight to the overall characteristic of its noise floor. There-
fore, the combination of this specification with THD provides
the user with more information about the nature of both har-
monically and non-harmonically generated distortion than
SINAD alone can provide.

Conclusion
Since these specifications define the level of resolution for a
given converter, it is important to understand the test condi-
tions used when defining these parameters, and their appli-
cability to the system being designed. Also, since not all
manufacturers guarantee a minimum level of dynamic accu-
racy on their converters (usually given as typical values, if at
all), it has been shown that careful analysis of the DC speci-
fications can yield relevant spectral information. The nature
of the converter’s transfer function (which outlines the linear-
ity performance of the converter) as well as specifications
such as settling time and glitch impulse can assist the
designer in anticipating the nature of both harmonic and
noise floor degradation, which will limit the overall resolution
of the converter.
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