

Gowin Software Quick Start Guide

SUG918-1.3E,2021-11-02

Copyright © 2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN, **W**, Gowin, GowinSynthesis, and GOWINSEMI are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
05/07/2020	1.0E	Initial version published.
09/07/2020	1.1E	 RTL schematic added. File encryption added. Tcl command added.
10/21/2020	1.1.1E	Use GowinSynthesis $^{\ensuremath{\mathbb{R}}}$ as an example to describe synthesis.
06/10/2021	1.2E	Synplify Pro removed.MIPI IP in the design modified.
11/02/2021	1.3E	Some descriptions updated.

Contents

Contentsi
List of Figuresiii
List of Tablev
1 About This Guide1
1.1 Purpose
1.2 Related Documents
1.3 Terminology and Abbreviations
1.4 Support and Feedback
2 Introduction
2.1 Design Flow
2.2 Design Diagram
3 Quick Start4
3.1 Create a New Project 4
3.1.1 Create a New Project4
3.1.2 Generate MIPI D-PHY IP5
3.1.3 Load File7
3.1.4 RTL Schematic
3.2 Use GowinSynthesis [®] to Synthesize
3.2.1 Configuration
3.2.2 Synthesize
3.3 Physical Constraints
3.3.1 Create New Physical Constraints
3.3.2 Modify Physical Constraints
3.4 Timing Constraint
3.4.1 Create New Timing Constraints 12 3.4.2 Modify Timing Constraints 15
3.4.2 Modify Timing Constraints
3.5 GAO Configuration
3.5.2 Configure Standard Mode GAO
3.6 GPA Configuration
3.6.1 Create GPA Config File
3.6.2 Configure GPA
3.7 Place & Route
3.7.1 Configuration
3.7.2 Run PnR
3.8 Timing Optimization
3.8.1 Timing Analysis
3.8.2 Adjust Key Path

	3.9 Download Bitstream	28
	3.10 GAO Captures Data	29
	3.11 Output Files	30
	3.11.1 Place & Route Report	30
	3.11.2 Ports and Pins Report	30
	3.11.3 Timing Report	31
	3.11.4 Power Analysis Report	32
	3.12 File Encryption	32
	3.12.1 Source File Encryption	32
	3.12.2 Simulation File Encryption	34
4	Tcl	36
	4.1 Tcl Execution	36
	4.1 Tcl Execution 4.1.1 Tcl Editing Window	
		36
	4.1.1 Tcl Editing Window	36 36
	4.1.1 Tcl Editing Window 4.1.2 Tcl Command Line	36 36 37
	4.1.1 Tcl Editing Window4.1.2 Tcl Command Line4.2 Tcl Quick Start	36 36 37 37
	4.1.1 Tcl Editing Window4.1.2 Tcl Command Line4.2 Tcl Quick Start4.2.1 rm_file	36 36 37 37 37
	 4.1.1 Tcl Editing Window 4.1.2 Tcl Command Line 4.2 Tcl Quick Start	36 36 37 37 37 37
	 4.1.1 Tcl Editing Window 4.1.2 Tcl Command Line 4.2 Tcl Quick Start 4.2.1 rm_file 4.2.2 add_file 4.2.3 set_file_enable 	36 36 37 37 37 37 38
	 4.1.1 Tcl Editing Window 4.1.2 Tcl Command Line 4.2 Tcl Quick Start 4.2.1 rm_file 4.2.2 add_file 4.2.3 set_file_enable 4.2.4 set_option 	36 36 37 37 37 37 38 38

List of Figures

Figure 2-1 MIPI Design Diagram	. 3
Figure 3-1 Create a New Project	. 4
Figure 3-2 Project Directory	. 5
Figure 3-3 MIPI RX Advance Configuration	.5
Figure 3-4 MIPI RX Advance IP Directory	. 6
Figure 3-5 MIPI TX Configuration	. 7
Figure 3-6 Design Window	.7
Figure 3-7 Load Files	. 8
Figure 3-8 Synthesis Configuration	. 9
Figure 3-9 Attributes and Instructions of GowinSynthesis	. 9
Figure 3-10 Synthesis Completed	. 10
Figure 3-11 gwsynthesis Directory	. 10
Figure 3-12 I/O Constraints	. 11
Figure 3-13 Physical Constraints Display	. 12
Figure 3-14 Clock Constraints	. 13
Figure 3-15 Timing Report Constraints	. 14
Figure 3-16 Timing Constraints Display	. 14
Figure 3-17 Create GAO Config File	. 15
Figure 3-18 Trigger Options Configuration	. 16
Figure 3-19 Capture Options Configuration	. 16
Figure 3-20 GAO Config Files	. 17
Figure 3-21 Create GPA Config File	. 18
Figure 3-22 General Setting Configuration	. 19
Figure 3-23 Rate Setting Configuration	. 20
Figure 3-24 Clock Setting Configuration	. 21
Figure 3-25 GPA Config Files	. 22
Figure 3-26 Place & Route Configuration	. 23
Figure 3-27 Place & Route Completed	. 23
Figure 3-28 PnR Directory	. 24
Figure 3-29 GAO Directory	. 25
Figure 3-30 Max. Frequency	. 25
Figure 3-31 Timing Path	. 26
Figure 3-32 Timing Path Highlighted	
Figure 3-33 Timing Path Adjusted	. 27
Figure 3-34 Programmer	. 28
Figure 3-35 GAO Interface	. 29
Figure 3-36 GAO Waveform Display	
Figure 3-37 Place & Route Report	
Figure 3-38 Ports & Pins Report	. 31
Figure 3-39 Timing Report	
Figure 3-40 Power Analysis Report	. 32

Figure 3-41 Hierarchy Window	. 33
Figure 3-42 Pack User Design Dialog Box	. 34
Figure 4-1 Tcl Editing Window	. 36
Figure 4-2 Tcl Command Line	. 36
Figure 4-3 Tcl Script File	. 37

List of Table

1 About This Guide

1.1 Purpose

This manual uses MIPI as an example to introduce Gowin Software and aims to help you get familiar with the usage and improve the design efficiency.

1.2 Related Documents

You can find the related documents at <u>www.gowinsemi.com</u>:

- <u>SUG100</u>, Gowin Software User Guide
- <u>SUG935</u>, Gowin Design Physical Constraints User Guide
- <u>SUG101</u>, Gowin Design Timing Constraints User Guide
- <u>SUG114</u>, Gowin Analyzer Oscilloscope User Guide
- <u>SUG282</u>, Gowin Power Analyzer User Guide
- <u>SUG502</u>, Gowin Programmer User Guide
- <u>SUG550</u>, GowinSynthesis User Guide
- <u>SUG755</u>, Gowin HDL Schematic Viewer User Guide

1.3 Terminology and Abbreviations

Table 1-1 shows the abbreviations and terminology used in this manual.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Meaning
PnR	Place & Route
GAO	Gowin Analyzer Oscilloscope
GPA	Gowin Power Analyzer
AO Core	Analysis Oscilloscope Core

1.4 Support and Feedback

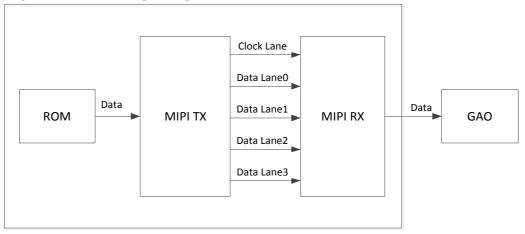
Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

2 Introduction

2.1 Design Flow


Gowin Software is available in Windows and Linux. It supports GUI running mode and commands running mode. Take the GUI running mode in Windows and MIPI design as an instance to introduce quick start of Gowin Software.

The design uses FloorPlanner to add physical constraints, uses Timing Constraints Editor to add timing constraints, uses GAO to add GAO config file and to capture data, GPA to add GPA config file, and Programmer to download bitstream.

2.2 Design Diagram

Gowin MIPI D-PHY TX RX IP applies to the serial display interface and serial camera interface for receiving or transmitting the image or video data. MIPI D-PHY provides its physical layer definition.

The design integrates MIPI RX Advance IP and MIPI TX Advance IP. pROM provides data for MIPI TX Advance. MIPI TX Advance transmits data and MIPI RX Advance receives data. GAO captures the data received by MIPI RX Advance to verify MIPI RX Advance and MIPI TX Advance. The design diagram is as shown in Figure 2-1.

Figure 2-1 MIPI Design Diagram

3 Quick Start

3.1 Create a New Project

3.1.1 Create a New Project

Open Gowin Software and click "Start Page > Quick Start > New Project" to create a new project named as MIPI_RX_TX_Advance. The device selected is as shown in Figure 3-1.

- Series: GW1N
- Device: GW1N-9
- Package: PBGA256
- Speed: C6/I5
- Part Number: GW1N-LV9PG256C6/I5

Click "Next" until the project creation completed. For the details, please refer to <u>SUG100</u>, Gowin Software User Guide.

Figure 3-1 Create a New Project

Project Name Select Device Sunmary	Specify a target device for y	our project						
-	Series: GW1N		 Device: 	GW1N-9				•
			Package:	PBGA256				•
			Speed:	C6/I5				•
	Part Number	Device	Package	Speed	Voltage	ю	LUT	FF
	GW1N-LV9PG256C6/I5	GW1N-9	PBGA256	C6/I5	LV	207	8640	648
	GW1N-UV9PG256C6/I5	GW1N-9	PBGA256	C6/I5	UV	207	8640	648
	<							

After the project is created, the impl and src folders are generated under the project creation path, as shown in Figure 3-2. impl contains synthesis and PnR files and src contains the source files.

Figure 3-2 Project Directory

Name	Date modified	Туре	Size
impl	6/10/2021 17:17	File folder	
src	6/10/2021 17:17	File folder	
🐝 MIPI_RX_TX_Advance.gprj	6/10/2021 17:07	GPRJ File	1 KB
MIPI_RX_TX_Advance.gprj.user	6/10/2021 17:17	USER File	3 KB

3.1.2 Generate MIPI D-PHY IP

Click "Tools > IP Core Generator" to open the IP Core Generator window. Double-click "Interface and Interconnect > MIPI RX Advance" to open the IP Customization dialog box to configure as required. The MIPI RX Advance configuration in this design is shown in Figure 3-3. Then click "OK" to generate MIPI RX Advance IP.

Figure 3-3 MIPI RX Advance Configuration

Options	
MIPI D-PHY Mode: () 1:8 () 1:16	
CLK IO TYPE: O TLVDS	
D-PHY Lane0 Lane0 IO TYPE:	ELVDS -
☑ D-PHY Lane1 Lane1 IO TYPE:	ELVDS 🔻
☑ D-PHY Lane2 Lane2 IO TYPE:	ELVDS 🔻
☑ D-PHY Lane3 Lane3 IO TYPE:	ELVDS 🔻
Data0 Before Lane Alignment	HS DATA0 IO Delay Value 0 🔹
Data1 Before Lane Alignment	HS DATA1 IO Delay Value 0
Data2 Before Lane Alignment	HS DATA2 IO Delay Value 0
Data3 Before Lane Alignment	HS DATA3 IO Delay Value 0
LP mode on clock lane	
LP mode on data lane 0	LP mode on data lane 1
LP mode on data lane 2	LP mode on data lane 3
✓ Turns on byte alignment	☑ Turns on lane alignment
D-PHY RX using external Clock	
Generation Config	
Disable I/O Insertion	
L	

After generation, IP design files and simulation files are generated

under the IP creation path, as shown in Figure 3-4.

- .v file is an IP design file, encrypted.
- _tmp.v is an IP design template file.
- .vo file is an IP simulation model file, unencrypted.
- .ipc file is an IP configuration file. The user can load the file to modify the configuration.
- temp contains the files required to generate the IP.
- The doc, model, sim, and tb contain the simulation files: readme text, simulation model, simulation script, and testbench.

Note!

At present, for some IPs, the created path still generates doc, model, sim, and tb folders, indicating readme text, simulation model, simulation script, and testbench simulation file. The IP directory is subject to IP Core Generator in use.

Figure 3-4 MIPI RX Advance IP Directory

Name	Date modified	Туре	Size	
temp	6/10/2021 17:17	File folder		
📓 mipi_rx_advance.ipc	6/10/2021 13:42	IPC File	1 KB	
📓 mipi_rx_advance.v	6/10/2021 13:43	V File	427 KB	
📓 mipi_rx_advance.vo	6/10/2021 13:43	VO File	734 KB	
🎽 mipi_rx_advance_tmp.v	6/10/2021 13:43	V File	2 KB	

Double-click MIPI TX Advance to open the IP Customization dialog box to configure as required. The MIPI TX Advance configuration in this design is shown in Figure 3-5. Then click "OK" to generate MIPI TX Advance IP.

Figure 3-5 MIPI TX Configuration

Options
MIPI D-PHY Mode: () 8:1 () 16:1
D-PHY CLK CLK IO TYPE: ELVDS -
☑ D-PHY Lane0 Lane0 IO TYPE: ELVDS ▼
☑ D-PHY Lane1 Lane1 IO TYPE: ELVDS ▼
☑ D-PHY Lane2 Lane2 IO TYPE: ELVDS ▼
☑ D-PHY Lane3 Lane3 IO TYPE: ELVDS ▼
LP mode on clock lane
LP mode on data lane 0 LP mode on data lane 1
LP mode on data lane 2 LP mode on data lane 3
DPHY TX with Internal PLL
PLL Reference Clock: 50MHz
Generation Config
Disable I/O Insertion

After MIPI RX Advance and MIPI TX Advance IPs generated, the Design window is as shown in Figure 3-6.

Figure 3-6 Design Window

Design	Design 🗗 🕹			
✓				
@ GW1N-LV9PG256C6/I5				
× 📂	🗸 🗁 Verilog Files			
	src\mipi_rx_advance\mipi_rx_advance.v			
src\mipi_tx_advance\mipi_tx_advance.v				
Design	Process	Hierarchy		

3.1.3 Load File

In order to test MIPI RX Advance and MIPI TX Advance, some design files need to be loaded or created, as shown in Figure 3-7.

Design		8 ×
-	GW1N-LV9 Verilog File src\DPH src\mip src\mip	dvance - [E:\IDE\MIPI_RX_TX_Advance\MIPI_RX_TX_Advance.gprj] PG256C6/I5 s
Design	Process	Hierarchy

Figure 3-7 Load Files

3.1.4 RTL Schematic

After the source file is loaded, you can view the design schematic by clicking "Tools > Schematic Viewer" to help you better understand the logic. For details, see <u>SUG755</u>, Gowin HDL Schematic Viewer User Guide.

3.2 Use GowinSynthesis® to Synthesize

3.2.1 Configuration

Select "Process > Synthesize > Configuration" to open Configurations dialog box. For details, refer to <u>SUG550</u>, GowinSynthesis User Guide.

The top module/entity is DPHY_TOP, as shown in Figure 3-8.

Synthesize	
General	
Synthesis Tool:	 GowinSynthesis
Top Module/Entity:	DPHY_TOP
Include Path:	
GowinSynthesis	
Verilog Language:	System Verilog 2017 🔻
VHDL Language:	VHDL 1993 -
Looplimit:	2000
Disable Insert P	ad
Ram R/W Check	د
DSP Balance	
Show All Warnin	gs

Figure 3-8 Synthesis Configuration

In addition, you can add some attributes and instructions to the source file to control synthesis. For the details, see <u>SUG550</u>, GowinSynthesis User Guide. As shown in Figure 3-9, in this design, a specific net is retained without optimization during the synthesis by using the/* synthesis syn_keep=1 */ attribute.


Figure 3-9 Attributes and Instructions of GowinSynthesis

417	`ifdef GEN_MIPI_RX_16
418	reg [63:0] data_in;
419	reg [15:0] data0, data1, data2, data3;
420	reg [15:0] dout, dout1;
421	<pre>reg [15:0] data_cntr;</pre>
422	<pre>reg hactive_flag_RX;</pre>
423	
424	<pre>wire [1:0] lp_clk_out,lp_data0_out;</pre>
425	<pre>wire [1:0] lp_data1_out,lp_data2_out,lp_data3_out;</pre>
426	
427	<pre>wire [15:0] data_out3, data_out2, data_out1, data_out0;</pre>
428	<pre>wire D0_delay,D1_delay,D2_delay,D3_delay;</pre>
429	reg [63:0] data out reg;
430	<pre>wire clk_byte_out/* synthesis syn_keep=1 */;</pre>
431	wire sclk_tx ;
432	`endif

3.2.2 Synthesize

After synthesis configuration, you can start to synthesize.

Double-click "Synthesize" in Process window to synthesize, as shown in Figure 3-10. When the icon changes to ", you can double-click Synthesis Report to view the report and double-click Netlist File to view the netlist file.

Process	8	x
📗 Design Summary		
4 厚 User Constraints		
📕 FloorPlanner		
🔀 Timing Constraints Editor		
🔺 🥝 Synthesize		
Synthesis Report		
Netlist File		
🔺 🔡 Place & Route		
🧾 Place & Route Report		
🧾 Timing Analysis Report		
🧾 Ports & Pins Report		
Power Analysis Report		
📲 Program Device		
Design Process Hierarchy		
nezrku trocezz mierarcuh		

After synthesis, the gwsynthesis folder is generated under the \impl path. The folder contains all the files and folders generated in synthesis, as shown in Figure 3-11.

Figure 3-11 gwsynthesis Directory

Name	Date modified	Туре	Size
MIPI_RX_TX_Advance.log	6/10/2021 15:09	LOG File	4 KB
MIPI_RX_TX_Advance.prj	6/10/2021 15:09	PRJ File	2 KB
MIPI_RX_TX_Advance.vg	6/10/2021 15:09	VG File	464 KB
MIPI_RX_TX_Advance_syn.rpt.html	6/10/2021 15:09	360 se HTML Doc	29 KB
MIPI_RX_TX_Advance_syn_resource.html	6/10/2021 15:09	360 se HTML Doc	3 KB
MIPI_RX_TX_Advance_syn_rsc.xml	6/10/2021 15:09	XML Document	1 KB

3.3 Physical Constraints

After synthesis, you can use FloorPlanner or write manually to add physical constraints. In this design, FloorPlanner is selected. For more details, please refer to the <u>SUG935</u>, Gowin Design Physical Constraints User Guide

3.3.1 Create New Physical Constraints

Click "Process > User Constraints > FloorPlanner" to open FloorPlanner, which supports I/O, Primitive, and Group physical constraints. This design only adds I/O constraints and uses it as an instance.

You can create I/O constraints in I/O Constraints window. Drag the port row to be constrained in the Netlist or I/O Constraints window to a specific location in the Package View or Chip Array view. After finished, the port location displays in the IOB, as shown in Figure 3-12.

Netlist			₽×	Chip Ar	ray 🗈	I	ackas	ge Vi	ew 🗵												
Y 📓 DPH	Y_TOP		^		1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16		^
Y 🛅 P	orts(26)			A	≱	(Þ	Þ	Þ	8	Þ	Þ	Þ	Þ	Þ	Þ	≱	Δ	
1	HS_CLK_	-				•				*		*						•		A	
1	HS_CLK_	-		В	Ð	÷	₽₽	•	Ð	₽	Ð	Ð	Ð	Ð	Ð	Ð	Ð	÷	٩	в	
7	HS_DATA			С	₽		- Đ	Ð	Ð	Ð	Ð	Ð	Ð	Ð	Ð	Þ	÷	Ð	Ð	С	
7	HS_DATA			D	Ð	Т	<mark>ي ب</mark>	≑	Ð	Ð	Þ	Ð	Þ	Ð	≱	÷	Ð	Þ	Ð	D	
1	_			Е	Ð	e t		1	Ð	Ð	6	Ð	Ð		÷	\$		Ð		Е	
1								=				-			_						
1				F	Ð	Ð	Ð	Ð	÷	Ð	Ð	Ð	Ð	÷	۲	٢	٢	٢	٢	F	
7	HS_DATA			G	Ð		≥ €		Ð	≯	≉	≯	≯	Ð	Ð	Ð	٩	٩	۲	G	
1				н	Ð	Т	● €		Ð	≉	÷	÷	≉	Ð	Ð	٢	Þ	۲	٩	н	
1	HS_DATA	N0_RX_N		J	⊅	Ðđ	Ð	Ð	Ð	≉	÷	÷	≯	Þ	Ð	Ð			6	J	
1				к						-	- \$	≱	, ≯	Ð		Ð				к	
1	clkx2x4	TYD			Ð	€ 6			•	\$							-		2		
	HS_CLK_	-		L	Ð	•	≥ €	(D)	÷	₽	Ð	Ð	Ð	÷	۲	Ð	Ð	Ð	۲	L	
		-		М		• (≥ \$	÷	Ð	Ð	Ð	Ð	Ð	Ð	÷		Ð	Ð	۲	М	
	HS_DATA			N		()	<mark>ي ا</mark>	≱	Ð	Ð	Ð	Þ	Ð	Ð	≱	÷	Ð	Ð	Ð	N	
1	HS_DATA			Р	6					Ð	A	A				Ð	1	Ð		Р	
-	HS_DATA																=				
-	HS DATA			R	2	÷		₽		Ð	Ð	Ð	۲		Ð	Ð	Ð	÷	Ð	R	
	HS_DATA			Т	≯		Ð			Ð	Ð	Ð	Ð	Ð	Ð	Ð	Ð	Ð	≯	Т	
	HS DATA		v		1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16		~
Summary	Netlist			<																	>
E/O Constrai	nts																				ð×
P	ort	Direction		Diff Pair		Lo	ocatio	on		В	ank			Ex	clusi	ve		10	о ту	pe	^
1 HS_CLK_	RX_P	input	H	S_CLK_RX	N	к	14,K1	5			0			F	alse			LVC	MOS	S33D	
2 HS_CLK_	TX_P	output	н	S_CLK_TX	N	I	2,M1				2			F	alse	•		LVC	MOS	S33D	
3 HS_DATA	A0_RX_P	input	HS	DATA0_R	X_N	J	I5,K1	6			0			F	alse	,		LVC	MOS	S33D	
4 HS_DATA	AO TX P	output	HS	DATA0 T	хN	ſ	13,N	1			2			F	alse	,		LVC	MOS	S33D	
5 HS_DATA	A1 RX P	input	HS	DATA1_R	XN	J	16,J1	4			0			F	alse	•		LVC	MOS	S33D	+
6 HS_DATA		output	-	DATA1_T	-		R1,P2				2			F	alse	•		LVC	MOS	S33D	
7 HS DATA		input	-	DATA2 R	-		15,G1				0				alse		-			533D	+
											-										
<																					>
Message	I/O Constr	raints Primit	ive C	onstraint	s																

Figure 3-12 I/O Constraints

After constraints finished, click "Save" to generate physical constraints

files as shown ir	•
Figure 3-13 Physic	cal Constraints Display
Design Image: Section of the section	<pre></pre>
Design Process Hierarchy	MIPI_RX_TX_Advance.cst

In PnR, if there is no physical constraints file, the PnR will be automatically performed. If there is a physical constraint file, the PnR will be performed according to the physical constraints file.

3.3.2 Modify Physical Constraints

After physical constraints files generated, you can modify the constraints by FloorPlanner. Click "Save" to finish.

3.4 Timing Constraint

After synthesis, you can use Timing Constraints Editor or write manually to add timing constraints. In this design, Timing Constraints Editor is selected. For more details, please refer to <u>SUG101</u>, Gowin Design Timing Constraints Guide.

3.4.1 Create New Timing Constraints

Click "Process > User Constraints > Timing Constrains Editor" to open Timing Constrains Editor, which supports clock, I/O and timing report constraints. This design adds clock and timing report constraints and uses them as instances.

Clock Constraints

 Select "Timing Constraints > Clocks" and right-click to select "Create Clock" as shown in Source Object: get_pins { u_MIPI_RX_Advance_Top/DPHY_RX_INST/u_idesx8/Inst3_CLKDIV /CLKOUT}

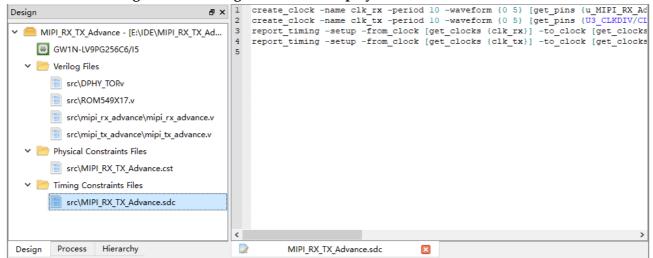
Figure 3-14. The constraints are as follows:

- Clock name: clk_rx
- Period: 10
- Rising: 0
- Falling: 5
- Source Object: get_pins
 { u_MIPI_RX_Advance_Top/DPHY_RX_INST/u_idesx8/Inst3_CLKDIV
 /CLKOUT}

Figure 3-14 Clock Constraints

🐳 Create Cl	ock					?	×
Clock name: 	clk_rx						
Period:	10	ns					
Frequency:	100	MCHz					
Rising:	0	ns					
Falling:	5	ns) E	i	10	-
Objects: u_M	IPI_RX_Advance_Top/DPHY_R	X_INST/	u_i de	sx8/Inst3_CLKDIV/	CLKOVT}]	🗌	Add
					OK	Cance	1

Timing Report Constraint


Select "Timing Constraints > Report > Report Timing" and right-click to select "Create Report". You can configure parameters in Report Timing dialog box. The max.setup path is 100, as shown in Figure 3-15.

Report Timing			? >
Clocks			
From clock: 🔻	clk_rx		~
To clock: 🔻	clk_rx		~
Objects			
From: 🔻			
Through:			
To: 🔻			
Analysis Type			
🖲 Setup	⊖ Hold	🔿 Recovery	🔿 Removal
Path			
Max Paths:	100	Min Logic Level:	
Max Common Path	s:	Max Logic Level:	
Module Instance	:		

Figure 3-15 Timing Report Constraints

After constraints is finished, click "Save" to generate timing constraints, as shown in Figure 3-16.

Figure 3-16 Timing Constraints Display

In PnR, if there is no timing constraints file, the PnR will be automatically performed. If there is a timing constraint file, the PnR will be performed according to the timing constraints file.

3.4.2 Modify Timing Constraints

After timing constraints files are generated, you can modify the constraints by Timing Constrains Editor. Click "Save" to finish.

3.5 GAO Configuration

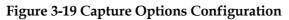
After synthesis, you can create GAO config file to capture data and verify the design. Gowin Software provides Standard Mode GAO and Lite Mode GAO. For the usage, see <u>SUG114</u>, Gowin Analyzer Oscilloscope User Guide.

This design uses Standard Mode GAO and takes it as an instance.

3.5.1 Create Standard Mode GAO Config File

Select "Design > New File..." to open "New" dialog box, and select "GAO Config File" in "New", as shown in Figure 3-17. Click "OK". Select For Post-Synthesis Netlist in Type, Standard in Mode. Click "Next". The file name is MIPI_RX_TX. Then click "Next" until finished.

Figure 3-17	'Create GAO	Config File
-------------	--------------------	--------------------


🐝 New	?	×
Timing Constraints File		^
GowinSynthesis Constraints File		
📘 User Flash Initialization File		
GAO Config File		
GPA Config File		
Memory Initialization File		
		×
Create a GAO Config File.		
OK	Cancel	-

3.5.2 Configure Standard Mode GAO

After file created, you can configure the number of AO cores, trigger options and capture options. The trigger options include match unit, trigger port, match type and expressions; The capture options include sample clock, capture, capture utilization and capture signals. In this design the number of AO cores is 1 and the trigger options and capture options configuration are shown in Figure 3-18 and Figure 3-19.

ore O										
Trigger Options (Captur	e Op	tions							
Trigger Ports		Matc	h Units							Expressions
Trigger Port 0		Mat	ch Unit	Trigger Port	Match Type	Function	Counter	Value	-	🖲 Static 🔘 Dyna
ready_c		V	M0	Trigger 0	Basic w/edges	==	Disabled	R		MO
Trigger Port 1					basic ii, cages		0.000.000			
Trigger Port 2			M1	NONE	Basic	==	Disabled			
Trigger Port 3			M2	NONE	Basic	==	Disabled			
Trigger Port 4										
Trigger Port 5			M3	NONE	Basic	==	Disabled			
Trigger Port 6			M4	NONE	Basic	==	Disabled			
Trigger Port 7				Home			bibabiea			
Trigger Port 8			M5	NONE	Basic	==	Disabled			
Trigger Port 9			M6	NONE	Basic	==	Disabled		_	
Trigger Port 10	0		INIO	NONE	Dasie		Disabicu		Ξ	
Trigger Port 1	1		M7	NONE	Basic	==	Disabled			
Trigger Port 12	2		M8	NONE	Basic	==	Disabled			
Trigger Port 13	3		INIO	NONE	Dasie		Disabicu			
Trigger Port 14	4		M9	NONE	Basic	==	Disabled			
Trigger Port 1	5		M10	NONE	Basic	==	Disabled			

Figure 3-18 Trigger Options Configuration

ore 0					
rigger Options C	apture Options				
Sample Clock		Ca	oture Signa	als	
Clock: clk_byt	te_out		Add	Add From Trigger	Remove
Sample On: 🖲 Risir	ng 🔿 Falling	>	data_out(0[15:0]	
Cantura		>	data_out1	1[15:0]	
Capture		>	data_out2	2[15:0]	
Storage Size:	1024	- >	data_out3	3[15:0]	
Windows Number:	1	-	ready		
Capture Amount:	1024	-			
Trigger Position:	100				
Capture Utilization					
BSRAM Usage : 4/2	6				

After configuration, click "Save" to finish and the design window is as shown in Figure 3-20.

Figure 3-20 GAO Config Files

3.6 GPA Configuration

After synthesis, you can create a GPA config file to analyze power. For the usage, please refer to <u>SUG282</u>, Gowin Power Analyzer User Guide.

3.6.1 Create GPA Config File

Select "Design > New File..." to open "New" dialog box, and select "GPA Config File" in "New", as shown in Figure 3-21. Click "OK". The file name is MIPI_RX_TX_Advance, and the file is under src by default. Then click "OK" to finish.

New		?	×
	Timing Constraints File GowinSynthesis Constraints File User Flash Initialization File		^
	GAO Config File GPA Config File Memory Initialization File		
	· ·		¥
GOWIN Pow	er Analyzer Config File.		
	ОК	Can	cel

Figure 3-21 Create GPA Config File

3.6.2 Configure GPA

After GPA config file is created, configure General Setting, Rate Setting and Clock Setting.

- General Setting includes the parameters of device, package, speed grade, temperature grade, thermal impedance, and voltage.
- Rate Setting is used to configure signal transition rate. You can set transition rate of IO or Net, or use the default value.
- Clock Setting is used to configure clock and enable features of BSRAM, I/O and DFF.

General Setting

In this design, the general setting is configured as follows: commercial temperature, 25° C ambient temperature, no heat sink, VCCX 3.3V and VCC 1.2V, as shown in Figure 3-22.

Device Device: GW1N-LV9PG256C6/I5 Operating Condition: COMMERCIAL ▼ Process: TYPICAL ▼ Environment Ambient Temperature: 25.000°C ▼ Custom Theta JA: 25.000°C/W ↓ Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ▼ (LFM) Custom Theta SA: 25.000°C/W ↓
Operating Condition: COMMERCIAL ▼ Process: TYPICAL ▼ Invironment Imbient Temperature: 25.000°C ▼ Imbient Temperature: 25.000°C/W ↓ Heat Sink Image:
invironment Ambient Temperature: 25.000℃ ♀ Custom Theta JA: 25.000℃/W ♀ Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ▼ (LFM)
mbient Temperature: 25.000℃ ♀ Custom Theta JA: 25.000℃/W ♀ Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ▼ (LFM)
Custom Theta JA: 25.000°C/W ↓ Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ▼ (LFM)
Custom Theta JA: 25.000°C/W ↓ Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ↓ (LFM)
Heat Sink ● None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0 ▼ (LFM)
 None ○ Low Profile ○ Medium Profile ○ High Profile ○ Custo Air-flow: 0
Air-flow: 0 • (LFM)
Board Thermal Model
None Oustom Otypical
Board Temperature: 25.000℃ 🗘 (-40℃-100℃)
Custom Theta JB: 25.000℃/W 🐳

Figure 3-22 General Setting Configuration

Rate Setting

In this design, the transition rate of clkx2x4 is 50% and the remaining signals use the default value, as shown in Figure 3-23.

General Setting Rate	e Setting	Clock Setting					
Net Rate		VCD	File				
● % ○ transition/	/s 🐈 🕽	6	Instance		File Name		File Type
Name	Value						
clkx2x4 50	0.00%						
		F	ilter glitch on	VCD file			🐈 🗙
		Defa	ult Rate Settir	9			
		Defa	ult Rate used	for IO input si	gnals 12.50	€ %	•
		De	fault Rate use	d for remainin	g signals		
<		> De	fault Value: 1	2.50	\$	-	
MIPI_R	X_TX_Adva		×				

Figure 3-23 Rate Setting Configuration

Clock Setting

In this design, the clock is created in the timing analysis. The pROM clock enable and read enable used in this design is specified by BSRAM, and the rest are not set, as shown in Figure 3-24.

General Setting Rate Sett	ing Clock Setting			
Clock				10
Global Enable: 100.00			🚽 🗙	
Clock Name	Clock Enable	Quad1	Quad2	
clk_tx	100			
clk_rx	100			
< B-SRAM Clock Enable: 100.00 €	Read Probabi 100.0	0 🛨 Write Probab	>	DFF Name
Name	ClockA E	nable ReadA P	robability WriteA	
u_ROM549x17/dout_2_0_	0 100	100		
u_ROM549x17/dout_2_0	1 100	100		
٢			>	<
WIPI_RX_TX	_Advance.gpa	×		

Figure 3-24 Clock Setting Configuration

After configuration, click "Save" to finish and the design window is as shown in Figure 3-25.

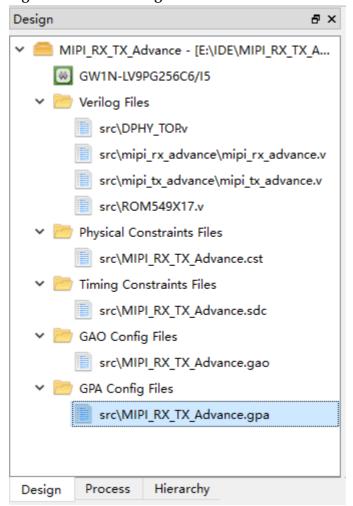


Figure 3-25 GPA Config Files

In PnR, if there is no GPA config file, the PnR will be automatically performed. If there is a GPA config file, the PnR will be performed according to the GPA config file.

3.7 Place & Route

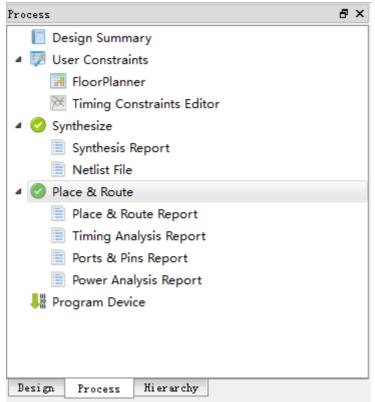
After synthesis and the creation of physical constraints files, timing constraints file, GAO config file, GPA config file as required, you can start PnR.

3.7.1 Configuration

Select "Process > Place & Route > Configuration" to open Configurations to configure General, Dual-Purpose and Bitstream. For the details, see <u>SUG100</u>, Gowin Software User Guide.

In this design, Generate SDF File, Generate Post-Place File and Generate Post-PNR Simulation Model File are configured to True. Place input register to IOB, Place output register to IOB and Place inout register to IOB are configured to False, and the rest use default values, as shown in Figure 3-26.

Category: All	Reset all t	o default
Label	Value	^
Generate SDF File	True	
Generate Constraint File of Ports	False	
Generate IBIS File	False	
Generate Post-Place File	True	
Generate Post-PNR Simulation Model File	True	
Initialize Primitives	False	
Show All Warnings	False	
Generate Plain Text Timing Report	False	


Figure 3-26 Place & Route Configuration

3.7.2 Run PnR

After configuration, you can run PnR.

Double-click Place & Route in Process window to start PnR based on physical constraints, timing constraints, GAO config, GPA config. After PnR, the icon before the Place & Route changes to " \bigcirc ", as shown in Figure 3-27.

Figure 3-27 Place & Route Completed

After finishing PnR, the pnr folder is generated under the project creation path \impl, as shown in Figure 3-28. The folder contains all the files generated in PnR, including the bitstream file, the netlist file after PnR, and the output reports. For the details, refer to <u>3.11</u> Output Files.

rigure 5-20 rink Directory			
Name	Date modified	Туре	Size
📄 ao_0.bin	6/10/2021 16:08	BIN File	435 KB
ao_0.binx	6/10/2021 16:08	BINX File	435 KB
🔐 ao_0.fs	6/10/2021 16:08	FS File	3,476 KB
📔 cmd.do	6/10/2021 16:08	DO File	1 KB
📔 device.cfg	6/10/2021 16:58	CFG File	1 KB
MIPI_RX_TX_Advance.bin	6/10/2021 15:32	BIN File	435 KB
MIPI_RX_TX_Advance.binx	6/10/2021 15:32	BINX File	435 KB
MIPI_RX_TX_Advance.db	6/10/2021 16:08	Data Base File	48 KB
MIPI_RX_TX_Advance.fs	6/10/2021 15:32	FS File	3,476 KB
MIPI_RX_TX_Advance.log	6/10/2021 16:08	LOG File	2 KB
MIPI_RX_TX_Advance.pin.html	6/10/2021 16:08	360 se HTML Doc	57 KB
MIPI_RX_TX_Advance.posp	6/10/2021 16:08	POSP File	1 KB
MIPI_RX_TX_Advance.power.html	6/10/2021 16:08	360 se HTML Doc	9 KB
MIPI_RX_TX_Advance.rpt.html	6/10/2021 16:08	360 se HTML Doc	64 KB
MIPI_RX_TX_Advance.rpt.txt	6/10/2021 16:08	TXT File	48 KB
MIPI_RX_TX_Advance.sdf	6/10/2021 16:08	SDF File	2,356 KB
MIPI_RX_TX_Advance.timing_paths	6/10/2021 16:08	TIMING_PATHS File	53 KB
MIPI_RX_TX_Advance.tr.html	6/10/2021 16:08	360 se HTML Doc	1 KB
MIPI_RX_TX_Advance.vo	6/10/2021 16:08	VO File	1,098 KB
MIPI_RX_TX_Advance_tr_cata.html	6/10/2021 16:08	360 se HTML Doc	9 KB
MIPI_RX_TX_Advance_tr_content.html	6/10/2021 16:08	360 se HTML Doc	1,230 KB

Figure 3-28 PnR Directory

If the project contains the GAO config file, after PnR, gao file is generated under the project creation path \impl, as shown in Figure 3-29:

- ao_0 contains the parameter files of the AO core.
- ao_control contains the parameter files of the control AO core.
- gao.v is the netlist file GAO post-synthesis, encrypted.
- gw_gao_top.v is the top of GAO, connecting ao, ao_control and jtag modules.
- The other files are generated during GAO synthesis.

Figure 3-29 GAO Directory

Name	Date modified	Туре	Size
ao_0	6/10/2021 17:17	File folder	
ao_control	6/10/2021 17:17	File folder	
📔 gao.v	6/10/2021 15:35	V File	269 KB
📄 gao_std.prj	6/10/2021 15:35	PRJ File	2 KB
📝 gw_gao_top.v	6/10/2021 15:35	V File	7 KB

3.8 Timing Optimization

After finishing PnR, you can use FloorPlanner to modify physical constraints and key path to help users realize timing closure to achieve timing optimization. For more details, see <u>SUG935</u>, Gowin Design Physical Constraints User Guide

A place file and a timing path file are needed for timing optimization when using FloorPlanner, and these two files are automatically generated in PnR.

3.8.1 Timing Analysis

Timing Messages Timing Summaries

After finishing PnR, a timing report will be generated. If the max.frequency does not meet requirements, as shown in Figure 3-30, the timing can be optimized by FloorPlanner.

Figure 3-30 Max. Frequency

ming Messages	Max	k Frequency Summary:				
ming Summaries	NO.	Clock Name	Constraint	Actual Fmax	Logic Level	Entity
STA Tool Run Summary	1	clk_rx	100.000(MHz)	97.734(MHz)	5	TOP
	2	clk_tx	100.000(MHz)	177.943(MHz)	1	TOP
Clock Summary	3	u_MIPI_RX_Advance_Top/DPHY_RX_INST/HS_CLK	100.000(MHz)	113.980(MHz)	2	TOP
Max Frequency Summary	4	u_gw_jtag/tck_pad_i	50.000(MHz)	62.647(MHz)	5	TOP
Total Negative Slack Summary		1	1	1	1	

3.8.2 Adjust Key Path

Start FloorPlanner and the place file and the timing paths file will be loaded automatically, the setup and hold of the timing path in the Netlist window are as shown in Figure 3-31. You can highlight a path by changing "Chip Array" to "Show Place View > All Instance", as shown in Figure 3-32.

Netlist	8	×
A DPHY_TOP	_	_
Ports(37)		
Primitives(2605)		
Nets(2907)		
Module		
🔺 🚞 Timing Paths		
▷ Setup		
▲ Hold		
Path_1 (Slack:0.559 Arrive:2.008 Require:1.449)		
Path_2 (Slack:0.559 Arrive:2.008 Require:1.449)		
Path_3 (Slack:0.565 Arrive:1.999 Require:1.434)		
Path_4 (Slack:0.566 Arrive:2.015 Require:1.449)		
Path_5 (Slack:0.566 Arrive:2.015 Require:1.449)		
Path_6 (Slack:0.566 Arrive:2.015 Require:1.449)		
Path_7 (Slack:0.568 Arrive:2.002 Require:1.434)		
Path_8 (Slack:0.568 Arrive:2.002 Require:1.434)		
Path_9 (Slack:0.568 Arrive:2.002 Require:1.434)		
Path_10 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_11 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_12 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_13 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_14 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_15 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_16 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_17 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_18 (Slack:0.57 Arrive:2.004 Require:1.434)		
Path_19 (Slack:0.571 Arrive:2.005 Require:1.434		
Path_20 (Slack:0.571 Arrive:2.005 Require:1.434)		
Path_21 (Slack:0.571 Arrive:2.005 Require:1.434 Disk. 2016 Laboration 2005 Require:1.434		
 Path_22 (Slack:0.571 Arrive:2.005 Require:1.434) Dath_22 (Slack:0.571 Arrive:2.005 Require:1.434) 		
 Path_23 (Slack:0.571 Arrive:2.005 Require:1.434) Dath 24 (Slack:0.571 Arrive:2.005 Require:1.434) 		
 Path_24 (Slack:0.571 Arrive:2.005 Require:1.434 Path_25 (Slack:0.571 Arrive:2.005 Require:1.434 		
Path_25 (Slack:0.571 Arrive:2.005 Require:1.434	1	
Project Netlist		

Figure 3-31 Timing Path

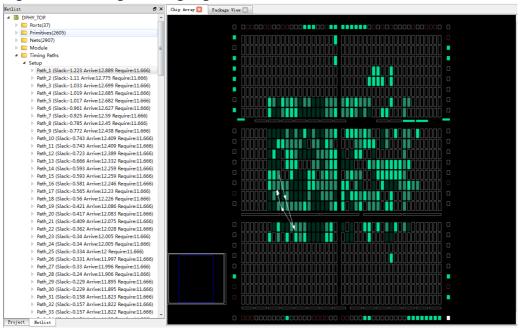


Figure 3-32 Timing Path Highlighted

After adjustment, click "Save" to finish, as shown in Figure 3-33. After this adjustment, the timing optimization can be continued if the max. frequency still does not meet the design requirements.

Figure 3-33 Timing Path Adjusted

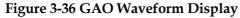
3.9 Download Bitstream

After optimization, the design can meet the timing requirements. Run Place & route again to generate the bitstream file and download it with Programmer to verify the design. For the usage, please see <u>SUG502</u>, Gowin Programmer User Guide.

Select "Process > Program Device" to open Programmer, and the programmer automatically identifies the bitstream file. After the development board is ready, click "Program/Configure" to download the bitstream to the development board. Figure 3-34 shows the completion of the bitstream download.

💖 Gowin Programmer				-	- 🗆	×
File Edit Tools About						
	P 🗣					
Series	Device	Operation	FS File	Checksum	User Code	
1 GW1N G	W1N-9	SRAM Program	E:/IDE/MIPI_RX_TX_Advance/impl/pnr/ao_0.fs	0x323C	0x0000323C	11
<				_		>
Output						ð ×
Info "SRAM Program" s	starting on de	vice-1				<u>с</u> ~
Info User Code: 0x0000						
Info Status Code: 0x000						
Info Cost 6.23 second(s	5)					
Ready						

Figure 3-34 Programmer


3.10 GAO Captures Data

After the bitstream is downloaded, you can use GAO to verify the design. For the usage, refer to the <u>SUG114</u>, Gowin Analyzer Oscilloscope User Guide.

Click the GAO icon in the Gowin Software toolbar to open the GAO interface, which automatically identifies the GAO config file, as shown in Figure 3-35.

💹 Gowin Ana	alyzer Oscilloscope						-		\times
🔭 Cable:	Gowin USB Cable(FT2	2СН) 🗕 🜔 🤅) (i) (ii) (ii)	Q Q [;					
Configuration	a								
- Programmer									
🗌 Enable P	rogrammer								
Ao Core	Core O								
Core 0	Capture								
	Storage Size: 10		dow Number: 1	▼ Capture	Amount: 1024 🔻	Trigger Posi	tion: 1	.00	-
	-Trigger Expressio	ons							
	exp0: M0								
	Match Unit								
	Match Unit	Trigger Port	Match Type	Function	Counter		Valı	ue	
	M0	Trigger 0	Basic w/edges	==	Disabled		R		
< >	<								>

Click the Start icon in the GAO interface to capture data. After finishing capturing data, GAO interface generates a window to display the waveform, as shown in Figure 3-36. The window supports cursor, zoom-out and so on so as to facilitate you to analyze the data.

3.11 Output Files

3.11.1 Place & Route Report

The Place & Route Report describes the resource, memory consumption, time consumption, etc. occupied by the user design, with the file suffix .rpt.html. Check the *.rpt.html file for further details.

Double-click "Place & Route Report" in the Process window to open Place & Route report, as shown in Figure 3-37.

For the details, refer to 6.2 Place & Route Report of <u>SUG100</u> Gowin Software User Guide.

Design Summary			PnR Details				
 User Constraints FloorPlanner Timing Constraints Editor Synthesize Synthesis Report Netlist File Place & Route Place & Route Report Timing Analysis Report 	 PnR Messages PnR Details Resource Resource Usage Summary GAO Resource Usage Summary I/O Bank Usage Summary Global Clock Usage Summary Global Clock Signals Pinout by Port Name 	Place & Route Process Running placement: Placement Phase 0: CPU time = 0h 0m 0.187s, Elapsed time = 0 Placement Phase 1: CPU time = 0h 0m 0.37s, Elapsed time = 0 Placement Phase 2: CPU time = 0h 0m 0.37s, Elapsed time = 0h Placement Phase 3: CPU time = 0h 0m 0.47s, Elapsed time = 0h 0m Placement Phase GAO : CPU time = 0h 0m 0.47s, Elapsed time = 0h 0m Placement Phase GAO : CPU time = 0h 0m 0.5, Elapsed time = 0h 0m Routing Phase 0: CPU time = 0h 0m 0.5, Elapsed time = 0h 0m Routing Phase 2: CPU time = 0h 0m 0.81s, Elapsed time = 0h 0m Routing Phase 2: CPU time = 0h 0m 0.518s, Elapsed time = 0h CR Routing Phase 2: CPU time = 0h 0m 0.518s, Elapsed time = 0h CR Routing CPU time = 0h 0m 0.518s, Elapsed time = 0h 0m Routing CPU time = 0h 0m 0.518s, Elapsed time = 0h 0m Routing CPU time = 0h 0m 2s, Elapsed time = 0h 0m 2s Generate output files: CPU time = 0h 0m 3s, Elapsed time = 0h 0m 2s					
Ports & Pins Report	 All Package Pins 	Total Time and Memory Usage	CPU time = 0h 0m 6s, Elapsed time = 0h 0m 6s, Peak memory usage = 275ME				
Program Device		Resource Resource Usage Summary:					
		Resource	Usage	Utilization			
		Resource Logic	Usage 1540/8640	Utilization 17%			
			-				
		Logic	1540/8640				
		Logic LUT,ALU,ROM16	1540/8640 1540(1531 LUT, 9 ALU, 0 ROM16)				
		Logic LUT,ALU,ROM16 SSRAM(RAM16)	1540/8640 1540(1531 LUT, 9 ALU, 0 ROM16) 0	17% - -			
	6	Logic LUT,ALU,ROM16 SSRAM(RAM16) Register	1540/8640 1540(1531 LUT, 9 ALU, 0 ROM16) 0 837/7104	17% - - 11%			

Figure 3-37 Place & Route Report

3.11.2 Ports and Pins Report

The Ports and Pins Report is the ports and pins files after placement. It includes port types, attributes, and locations, etc. The generated file is saved with the .pin.html suffix. Check the .pin.html file for further details.

Double-click Ports & Pins Report in the Process window to open Ports & Pins Report, as shown in Figure 3-38.

For the details, refer to 6.3 Ports & Pins Report of <u>SUG100</u>, Gowin Software User Guide.

rocess E ×			Pin D	etails						
 User Constraints FloorPlanner 	Pin MessagesPin Details	Pinout by Port Name	:							
Timing Constraints Editor	 Pinout by Port Name 	Port Name	Diff Pair	Loc./Bank	Constraint	Dir.	Site	IO Type	Drive	Pull Mo
	• All Package Pins	HS_CLK_RX_P	HS_CLK_RX_N	K14,K15/0	Y	in	IOT29	LVCMOS33D	NA	UP
- Officies 20		HS_DATA3_RX_P	HS_DATA3_RX_N	H14,H16/0	Y	in	IOT23	LVCMOS33D	NA	UP
Synthesis Report		HS_DATA2_RX_P	HS_DATA2_RX_N	G15,G14/0	Y	in	IOT17	LVCMOS33D	NA	UP
Netlist File		HS_DATA1_RX_P	HS_DATA1_RX_N	J16,J14/0	Y	in	IOT25	LVCMOS33D	NA	UP
V Place & Route		HS_DATA0_RX_P	HS_DATA0_RX_N	J15,K16/0	Y	in	IOT27	LVCMOS33D	NA	UP
Place & Route Report		rstn		B3/2	Y	in	IOB12[A]	LVCMOS12	NA	UP
Timing Analysis Report		clkx2x4		A9/3	Y	in	IOL9[A]	LVCMOS25	NA	UP
Ports & Pins Report		HS_CLK_TX_P	HS_CLK_TX_N	L2,M1/2	Y	out	IOB29	LVCMOS33D	8	NONE
Power Analysis Report		HS_DATA3_TX_P	HS_DATA3_TX_N	T3,R4/2	Y	out	IOB45	LVCMOS33D	8	NONE
Rogram Device		HS_DATA2_TX_P	HS_DATA2_TX_N	T2,R3/2	Y	out	IOB43	LVCMOS33D	8	NONE
		HS_DATA1_TX_P	HS_DATA1_TX_N	R1,P2/2	Y	out	IOB41	LVCMOS33D	8	NONE
		HS_DATA0_TX_P	HS_DATA0_TX_N	M3,N1/2	Y	out	IOB39	LVCMOS33D	8	NONE
		hactive_flag		T6/1	Y	out	IOR25[B]	LVCMOS25	8	UP
		probe[0]		T5/1	Y	out	IOR27[A]	LVCMOS25	8	UP
		probe[1]		R6/1	Y	out	IOR27[B]	LVCMOS25	8	UP
		ready		R11/1	Y	out	IOR3[A]	LVCMOS25	8	UP
		All Package Pins:								
		Loc./Bank	Signal	Dir. Site	ІО Туре		Drive P		Clamp	Hyster
	<	1 15/3	-	in IOT2[/	AT UVCMOS	18	NA U	P NA		NONF

Figure 3-38 Ports & Pins Report

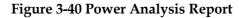
3.11.3 Timing Report

The timing report includes setup check, hold check, recovery time check, removal time check, min. clock pulse check, max. fan out path, Place & Route congestion report, etc. by default. The timing report also includes the max. frequency report.

Double-click Timing Analysis Report in the Process window to open the timing analysis report for the project, as shown in Figure 3-39.

For the details, please refer to <u>SUG940</u>, Gowin Design Timing Constraints User Guide.

Figure 3-39 Timing Report

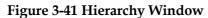

ocess	Timing Messages Timing Summarie STA Tool Run St		Timing Messages				
FloorPlanner	Clock Summary	Report Title 0	Sowin Timing Analysis Report				
M Timing Constraints Editor			:\IDE\MIPI RX TX\impl\svnthesize\rev 1\MIPI RX TX.vm				
🥑 Synthesize	Max Frequency §	-	:\UDE\/HIPI_RX_TX\src\MIPI_RX_TX.cst				
Synthesis Report	Total Negative S						
Netlist File	Timing Details	-	:\IDE\MIPI_RX_TX\src\MIPI_RX_TX.sdc				
🥝 Place & Route	Path Slacks Tabl		'1.9.78eta SW 1N-LV9PG256C6/I5				
Place & Route Report	Setup Paths Ta		W1N-EV9PG256C6/15				
Timing Analysis Report	Setup Paths						
Ports & Pins Report	Setup Paths		Mon Sep 07 16:56:05 2020				
Power Analysis Report	Hold Paths Tal	Legal Announcement Copyright (C)2014-2020 Gowin Semiconductor Corporation. All rights reserved.					
, ↓∰ Program Device	Recovery Path Removal Path Minimum Pulse V) Timing Report B	STA Tool Run Summar	Timing Summaries y:				
	Setup Analysi:	Setup Delay Model	Slow 1.14V 85C				
	Setup Analy	Hold Delay Model	Fast 1.26V 0C 3785				
	Setup Analy	Numbers of Paths Analyzed					
	Hold Analysis	Numbers of Endpoints Analyzed	3982				
	Recovery Anal	Numbers of Falling Endpoints	1				
	Removal Analy	Numbers of Setup Violated Endpoi	nts 0				
	Minimum Pulse V	Numbers of Hold Violated Endpoint	s 0				
	< III +	I <					

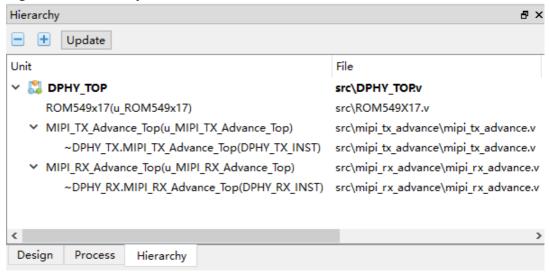
3.11.4 Power Analysis Report

The Power Analysis Report helps you evaluate the basic power consumption of your design.

Double-click Power Analysis Report in the Process window to open the power analysis report as shown in Figure 3-40.

For the details, please refer to chapter 4 Power Analysis Report of <u>SUG282</u>, Gowin Power Analysis User Guide.




Process Process Design Summary User Constraints FloorPlanner Timing Constraints Editor Synthesize Synthesis Report	 Power Messages Power Summary Power Information Thermal Information Configure Information 	Power Information: Total Power (mW) Quiescent Power (mW)	Power Summary 32.529 3.686 28.843
 Vetlist File Place & Route Place & Route Report Timing Analysis Report 	Supply Information Power Details Power By Block Type Power By Hierarchy Power By Clock Domain	Thermal Information: Junction Temperature Theta JA Max Allowed Ambient Temperature	25.330 10.200
Ports & Pins Report Power Analysis Report Report Report Report	• Power by clock bolliam	Configure Information	
		Use Vectorless Estimation	false false
		Use Custom Theta JA Air Flow Heat Sink	false LFM_0 None
Design Process Hierarchy	Start Page	Board Thermal Model	false None False Solution None None Solution None None None None None None None No

3.12 File Encryption

3.12.1 Source File Encryption

When you need to encrypt and protect source files, you can encrypt the selected module and its sub modules in Hierarchy window, as shown in Figure 3-41. For details, see <u>SUG100</u>, Gowin Software User Guide.

Take module DPHY_TOP as an example to introduce the file encryption.

You can right-click DPHY_TOP in the Hierarchy window and select "Pack User Design" in the right-click list to open the dialog box, as shown in Figure 3-42.

0	0	0						
🐳 Pack User Design							?	×
Create In:	E:\IDE\MIPI_I	RX_TX_Ad	vance\	src\D	РНУ_ТС)P_pac	k	
Synthesis Tool:	GowinSynthe	sis 🔻	Langu	age:	Verilo	g		•
Target Top Module:	DPHY_TOP							
Source Files								
				Add	l File	Rem	ove F	File
E:\IDE\MIPI_RX_T> E:\IDE\MIPI_RX_T> Output								
					Pack		Stop	D

Figure 3-42 Pack User Design Dialog Box

Select DPHY_TOP as the top module. Click "Pack" to start encryption. The relevant information will be printed in the Output window.

After the encryption, two files are generated under the destination path (E:\IDE\MIPI_RX_TX_Advance\src\DPHY_TOP_pack): DPHY_TOP_gowin.vp and DPHY_TOP_sim.v.

- DPHY_TOP_gowin.vp: Encrypted files that can be used by others.
- DPHY_TOP_sim.v: Flattened synthesized plaintext netlist file that can be used for simulation.

3.12.2 Simulation File Encryption

The simulation file provided by Gowin is plaintext. In order to protect the simulation file, it can be encrypted by using a third-party simulation software, such as Modelsim and VCS, and the license of the tool needs to be obtained. Here it uses DPHY_TOP_sim.v as an example to introduce the encryption.

Encryption by Modelsim

When using Modelsim, the steps to encrypt the simulation file are as follows:

- Add macro `protect and `endprotect before and after the encrypted in the simulation file DPHY_TOP_sim.v;
- 2. Run command: vlog +protect DPHY_TOP_sim.v;
- 3. After running the command, DPHY_TOP_sim.vp is generated in the work library, which is the encrypted file of DPHY_TOP_sim.v that can be used for Modelsim simulation.

Encryption by VCS

When using VCS, the steps to encrypt the simulation file are as follows:

- 1. Add macro `protect128 and `endprotect128 before and after the encrypted in the simulation file DPHY_TOP_sim.v;
- 2. Run command: vcs +v2k -protect128 DPHY_TOP_sim.v;
- 3. After running the command, DPHY_TOP_sim.vp is generated under the current path, which is the encrypted file of DPHY_TOP_sim.v that can be used for VCS simulation.

4 Tcl

The previous chapters introduce the way to implement the entire design process by using GUI. Gowin Software also provides tcl commands for some settings. Take MIPI design in Windows as an example to introduce the usage of tcl commands. For the details, see Appendix A of <u>SUG100</u>, Gowin Software User Guide.

4.1 Tcl Execution

4.1.1 Tcl Editing Window

At the bottom of the Console page is the tcl editing window, where you can enter the tcl commands and press Enter to run, as shown in Figure 4-1.

Figure 4-1 Tcl Editing Window

```
Generate file "E:\IDE\MIPI_RX_TX_Advance\impl\pnr\MIPI_RX_TX_Advance.rpt.html" completed
Generate file "E:\IDE\MIPI_RX_TX_Advance\impl\pnr\MIPI_RX_TX_Advance.rpt.txt" completed
Generate file "E:\IDE\MIPI_RX_TX_Advance\impl\pnr\MIPI_RX_TX_Advance.vo" completed
Generate file "E:\IDE\MIPI_RX_TX_Advance\impl\pnr\MIPI_RX_TX_Advance.tr.html" completed
Generate file "E:\IDE\MIPI_RX_TX_Advance\impl\pnr\MIPI_RX_TX_Advance.posp" completed
Thu Jun 10 16:08:46 2021
```

```
% run pnr
```

Console Message

4.1.2 Tcl Command Line

Start command: \x.x\IDE\bin\gw_sh.exe [script file] under the installation directory

The First Way: enter gw_sh.exe to start. This mode executes in the same way as the Tcl editing window, executing tcl commands one by one, as shown in Figure 4-2.

```
Figure 4-2 Tcl Command Line
```

```
*** GOWIN Tc1 Command Line Console ***
% add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/DPHY_TOP.v"
add new file: "E:/IDE/MIPI_RX_TX_Advance/src/DPHY_TOP.v"
% add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/ROM549X17.v"
add new file: "E:/IDE/MIPI_RX_TX_Advance/src/ROM549X17.v"
%
```

The Second Way: use gw_sh.exe [script file] to execute the script file. Tcl script file can contain all the supported tcl commands, such as, device, design file, option, and run information, and tcl script file is shown in Figure 4-3. Tcl script file can be generated by handwriting or saveto command, but saveto command The tcl script file can be generated by hand or by saveto command, but the saveto command does not include the run command when generating the tcl script, so you can add the run command if needed.

Figure 4-3 Tcl Script File

```
1 add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/DPHY_TOP.v"
2 add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/ROM549X17.v"
3 add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/mipi_rx_advance/mipi_rx_advance.v"
4 add_file -type verilog "E:/IDE/MIPI_RX_TX_Advance/src/mipi_tx_advance/mipi_tx_advance.v"
5 add_file -type cst "E:/IDE/MIPI_RX_TX_Advance/src/MIPI_RX_TX_Advance.cst"
6 add_file -type sdc "E:/IDE/MIPI_RX_TX_Advance/src/MIPI_RX_TX_Advance.sdc"
7 set_device GWIN-LV9PG256C6/I5 -name_GWIN-9
8 set_option -synthesis_tool gowinsynthesis
9 set_option -output_base_name_MIPI_RX_TX_Advance
10 set_option -top_module DPHY_TOP
11 set_option -verilog_std sysv2017
12 set_option -gen_sdf 1
13 set_option -gen_sim_netlist 1
14 set_option -gen_sim_netlist 1
15 set_option -ireg_in_iob 0
16 set_option -oreg_in_iob 0
17 set_option -ioreg_in_iob 0
18 run all
```

4.2 Tcl Quick Start

As tcl command line executes in the same way as the Tcl editing window, the following uses tcl editing window as an example to introduce how to use it.

4.2.1 rm_file

rm_file is used to remove files. For example, use this tcl command to remove ROM549X17.v and DPHY_TOP.v from the project: rm_file src/ROM549X17.v src/DPHY_TOP.v

After running the command, the Console will display the prompt for removing files, and these two files will be removed from the Design window.

4.2.2 add_file

add_file is used to add files. Here it will use tcl to add the removed files to the project.

Add ROM549X17.v and DPHY_TOP.v

add_file src/ROM549X17.v src/DPHY_TOP.v

After running the command, the Console will display the prompt for adding files, and these two files will appear in the Design window.

4.2.3 set_file_enable

set_file_enable is used to set whether a file can be used. Here it will use tcl to set DPHY_TOP.v disable/enable.

Modify DPHY_TOP.v to disable

Set_file_enable src/DPHY_TOP.v false

After running the command, the Console will display the prompt for disabling the file and DPHY_TOP.v file is grayed out in Design window.

Modify DPHY_TOP.v to enable

Set_file_enable src/DPHY_TOP.v true

After running the command, the Console will display the prompt for enabling the file and DPHY_TOP.v file is available in Design window.

4.2.4 set_option

set_option is used to set options in the project. Here it will use tcl to configure synthesis and PnR.

Select GowinSynthesis

set_option -synthesis_tool gowinsynthesis

- Set TOP Module/Entity to DPHY_TOP set_option -top_module DPHY_TOP
- Set Generate SDF File to True set_option -gen_sdf 1
- Set Generate Post-Place File to True set_option -gen_posp 1
- Set Generate Post-PNR Simulation Model File to True set_option -gen_sim_netlist 1
- Set Place input register to IOB to False set_option -ireg_in_iob 0
- Set Place output register to IOB to False set_option -oreg_in_iob 0
- Set Place inout register to IOB to False set_option -ioreg_in_iob 0

4.2.5 run

Run is used to run a flow or all flows. Here it will use tcl to run synthesis and PnR flows.

- Run synthesis Run syn
- Run PnR
 Run pnr

4.2.6 set_device

set_device is used to set the target device. Here it will use tcl to set GW1N-9C, GW1N-LV9PG256C6/I5 as the target device.

Set GW1N-9C, GW1N-LV9PG256C6/I5 as the target device.

Set_device -name GW1N-9C GW1N-LV9PG256C6/I5

After running the command, the Console will display the device information.

4.2.7 saveto

saveto is used to save the current data to the tcl script, including device, design file, and options, but no run information. Save the data as mipi.tcl, and you can run with command line gw_sh.exe mipi, as shown below.

Save the current data to mipi.tcl

saveto mipi.tcl

After running the command, the mipi.tcl file is generated on the path where the project files are located.

