
This document contains information on a product under development. The parametric information contains target parameters that are subject to change.

Bt835 VideoStream III Decoder

Video Capture Processor and Scaler for TV/VCR Analog Input

The Bt835 VideoStream[™] III Decoder is a high quality single-chip, composite NTSC/PAL/SECAM video and S-Video decoder. Low operating power consumption and power-down capability make it an ideal low-cost solution for PC video capture applications on both desktop and portable system platforms. The Bt835 supports square pixel and CCIR601 resolutions for NTSC, PAL and SECAM video. The Bt835 has a sophisticated 3-line adaptive comb filter that maintains full vertical video resolution and eliminates traditional comb filter artifacts. The Bt835's flexible pixel ports support digital video input as well as VIP, VMI and ByteStream interfaces to popular graphics controllers.

Functional Block Diagram

Distinguishing Features

- Single-chip composite/S-Video NTSC/PAL/ SECAM to YCrCb digitizer
- On-chip Ultralock™
- Square pixel and CCIR601 resolution for: – NTSC (M), NTSC (4.43)
 - NTSC (M) without 7.5IRE pedestal
 - PAL (B, D, G, H, I, M, N, N combination), PAL (60)
 - SECAM
- NTSC 3-line adaptive comb filter
- Arbitrary horizontal and 5-tap vertical filtered scaling
- Hardware closed-caption decoder
- Vertical Blanking Interval (VBI) data pass-through
- · Single crystal for any video format
- Arbitrary temporal decimation for a reduced frame-rate video sequence
- Programmable hue, brightness, saturation, and contrast
- Digital video input port
- 2x oversampling to simplify external analog filtering
- Two-wire Inter-Integrated Circuit (I²C) bus
 interface
- 8- or 16-bit pixel interface
- YCrCb (4:2:2) output format
- Software selectable four-input analog MUX
- Eight fully programmable GPIO bits
- Auto NTSC/PAL format detect
- Automatic Gain Control (AGC)
- Typical power consumption 500 mW (3.3 V)
- IEEE 1149.1 Joint Test Action Group (JTAG) interface
- 100-pin PQFP package
- VIP, VMI, ByteStream interfaces

Related Products

Bt829B, Bt868/869

Applications

- Multimedia
- Image processing
- Desktop video
- Video phone
- Interactive video
- Rockwell Semiconductor Systems

Ordering Information

Model Number	Package	Operating Temperature
Bt835KRF	100-pin PQFP	0°C to +70°C

Copyright © 1998 Rockwell Semiconductor Systems, Inc. All rights reserved. Print date: October 1998

Rockwell Semiconductor Systems, Inc. reserves the right to make changes to its products or specifications to improve performance, reliability, or manufacturability. Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by its implication or otherwise under any patent or intellectual property rights of Rockwell Semiconductor Systems, Inc.

Rockwell Semiconductor Systems, Inc. products are not designed or intended for use in life support appliances, devices, or systems where malfunction of a Rockwell Semiconductor Systems, Inc. product can reasonably be expected to result in personal injury or death. Rockwell Semiconductor Systems, Inc. customers using or selling Rockwell Semiconductor Systems, Inc. products for use in such applications do so at their own risk and agree to fully indemnify Rockwell Semiconductor Systems, Inc. for any damages resulting from such improper use or sale.

Bt is a registered trademark of Rockwell Semiconductor Systems, Inc.

Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered trademarks of their respective companies. All other marks mentioned herein are the property of their respective holders.

Specifications are subject to change without notice.

PRINTED IN THE UNITED STATES OF AMERICA

Table of Contents

	List	of Figur	'es	vii
	List	of Table	es	іх
1.0	Fun	ctional I	Description	1
	1.1	Functio	nal Overview	1
		1.1.1	Bt835 Video Capture Processor for TV/VCR Analog Input.	3
		1.1.2	Bt835 Architecture and Partitioning.	
		1.1.3	Comb Filter	4
		1.1.4	UltraLock	5
		1.1.5	Scaling and Cropping	5
		1.1.6	Input Interfaces	6
		1.1.7	Output Interface.	6
		1.1.8	VBI Data Pass-through	7
		1.1.9	Closed Caption Decoding.	7
		1.1.10	I ² C Interface	7
		1.1.11	3.3 V/5 V Operation	7
	1.2	Pin Des	criptions	8
	1.3	UltraLo	ck	11
		1.3.1	The Challenge	11
		1.3.2	Operation Principles of UltraLock	11
	1.4	Compos	site Video Input Formats	13
	1.5	Y/C Sep	paration and Chroma Demodulation	15
	1.6	Video S	caling, Cropping, and Temporal Decimation	18
		1.6.1	Horizontal and Vertical Scaling	18
		1.6.2	Luminance Scaling	18
		1.6.3	Peaking	21
		1.6.4	Chrominance Scaling.	22
		1.6.5	Scaling Registers	22
		1.6.6	Image Cropping	24
		1.6.7	Cropping Registers	26
		1.6.8	Temporal Decimation	28

	1.7	Video A	Adjustments	29
		1.7.1	The Hue Adjust Register (HUE)	29
		1.7.2	The Contrast Adjust Register (CONTRAST)	29
		1.7.3	The Saturation Adjust Registers (SAT_U, SAT_V)	29
		1.7.4	The Brightness Register (BRIGHT)	29
	1.8	Bt835 V	/BI Data Output Interface	30
		1.8.1	Introduction.	30
		1.8.2	Overview	30
		1.8.3	Functional Description	32
		1.8.4	VBI Line Output Mode	32
		1.8.5	VBI Frame Output Mode	36
	1.9	Closed	Captioning and Extended Data Services Decoding	37
		1.9.1	Automatic Chrominance Gain Control	39
		1.9.2	Low Color Detection and Removal.	39
		1.9.3	Coring	40
2.0	Elec	trical In	iterfaces	41
	2.1	Input In	Iterface	41
		2.1.1	Analog Signal Selection	41
		2.1.2	Multiplexer Considerations	41
		2.1.3	Autodetection of NTSC or PAL/SECAM Video	42
		2.1.4	Flash A/D Converters	42
		2.1.5	A/D Clamping	42
		2.1.6	Power-Up Operation	42
		2.1.7	Digital Video Input Option	43
		2.1.8	Automatic Gain Controls	43
		2.1.9	Crystal Inputs and Clock Generation	43
		2.1.10	2X Oversampling and Input Filtering	45
	2.2	Output	Interface	48
		2.2.1	Output Interfaces.	48
		2.2.2	YCrCb Pixel Stream Format, SPI Mode 8- and 16-bit Formats	49
		2.2.3	Synchronous Pixel Interface (SPI, Mode 1)	50
		2.2.4	Synchronous Pixel Interface (SPI, Mode 2, ByteStream)	51
		2.2.5	Synchronous Pixel Interface (Mode 3, VIP Interface)	55
			2.2.5.1 Bt835 VIP CODE (T, F, V, H) GENERATION:	57
		2.2.6	CCIR601 Compliance.	60
	2.3	I ² C Inte	rface	61
		2.3.1	Starting and Stopping	61
		2.3.2	Addressing the Bt835	62
		2.3.3	Reading and Writing	62
		2.3.4	Software Reset	65

Bt835

VideoStream III Decoder

	2.4	JTAG Interface
		2.4.1 Need for Functional Verification
		2.4.2 JTAG Approach to Testability
		2.4.3 Optional Device ID Register
		2.4.4 Verification with the Tap Controller
3.0	PC E	Board Layout Considerations 67
	3.1	Ground Planes
	3.2	Power Planes
	3.3	Supply Decoupling
	3.4	Volt Regulator Circuit 71
	3.5	Power-Up Sequencing
	3.6	Digital Signal Interconnect 72
	3.7	Analog Signal Interconnect 72
	3.8	Latch-up Avoidance
	3.9	Sample Schematics
4.0	Con	trol Register Description
5.0	Para	ametric Information
	5.1	DC Electrical Parameters
	5.2	AC Electrical Parameters

List of Figures

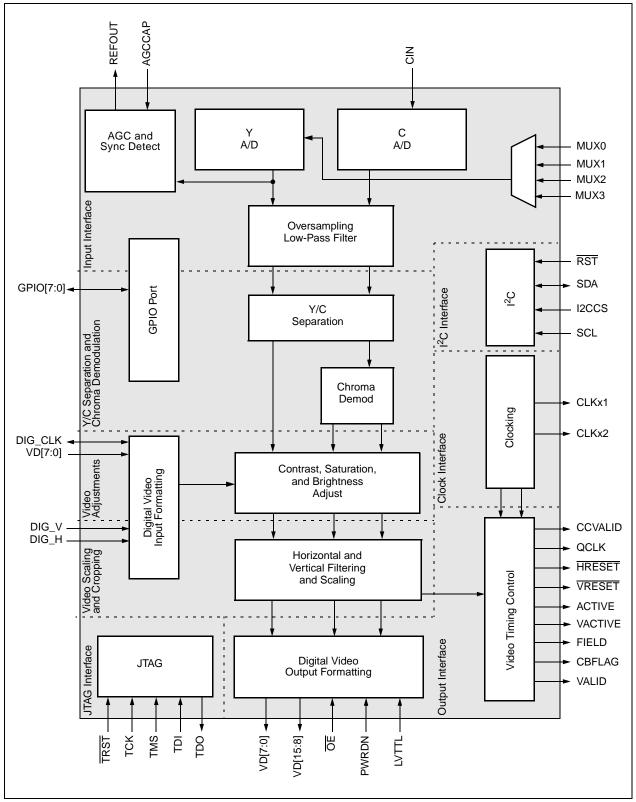
Figure 1-1.	Bt835 Detailed Block Diagram.	2
Figure 1-2.	Bt835 Pinout	8
Figure 1-3.	UltraLock Behavior for NTSC Square Pixel Output	12
Figure 1-4.	Y/C Separation and Chroma Demodulation for Composite NTSC Video	15
Figure 1-5.	Y/C Separation and Chroma Demodulation for Composite PAL Video	16
Figure 1-6.	NTSC and PAL/SECAM Y/C Separation Filter Responses	16
Figure 1-7.	Filtering and Scaling	17
Figure 1-8.	Optional Horizontal Luma Low-Pass Filter Responses	18
Figure 1-9.	Combined Luma Notch, 2x Oversampling and Optional Low-Pass Filter Response (NTSC)	19
Figure 1-10.	Combined Luma Notch, 2x Oversampling and Optional Low-Pass Filter Response (PAL/SECAM)	19
Figure 1-11.	Frequency Responses for the Four Optional Vertical Luma Low-Pass Filters	20
Figure 1-12.	Combined Luma Notch and 2x Oversampling Filter Response	20
Figure 1-13.	NTSC Peaking Filters	21
Figure 1-14.	PAL/SECAM Peaking Filters.	21
Figure 1-15.	Effect of the Cropping and Active Registers	
Figure 1-16.	Regions of the Video Signal	
Figure 1-17.	Regions of the Video Frame	
Figure 1-18.	Bt835 YCrCb 4:2:2 Data Path	
Figure 1-19.	Bt835 VBI Data Path	
Figure 1-20.	VBI Line Output Mode Timing	
Figure 1-21.	VBI Sample Region	
Figure 1-22.	Location of VBI Data	
Figure 1-23.	VBI Sample Ordering.	
Figure 1-24.	CC/EDS Data Processing Path.	
Figure 1-25.	5 5	
Figure 1-26.	Closed Captioning/Extended Data Services FIFO	
Figure 1-27.	Coring Map	40
Figure 2-1.	Diode Protection	42
Figure 2-2.	Clock Options	44
Figure 2-3.	Bt835 Typical External Circuitry	46
Figure 2-4.	Luma and Chroma 2x Oversampling Filter	47
Figure 2-5.	Output Mode Summary	48
Figure 2-6.	YCrCb 4:2:2 Pixel Stream Format (SPI Mode, 8 and 16 Bits)	49
Figure 2-7.	Bt835 Synchronous Pixel Interface, Mode 1 (SPI-1)	50

Figure 2-8.	Basic Timing Relationships for SPI Mode 1	50
Figure 2-9.	Data Output in SPI Mode 2 (ByteStream™)	52
Figure 2-10.	Video Timing in SPI Modes 1 and 2	53
Figure 2-11.	Horizontal Timing Signals in the SPI Modes	54
Figure 2-12.	The Relationship between SCL and SDA	61
Figure 2-13.	I ² C Slave Address Configuration	62
Figure 2-14.	I ² C Protocol Diagram	64
Figure 2-15.	Instruction Register	66
Figure 3-1.	Example Ground Plane Layout	67
Figure 3-2.	Optional Regulator Circuitry for 5 V Systems	68
Figure 3-3.	Typical Power and Ground Connection Diagram and Parts List for 5 V I/O Mode	69
Figure 3-4.	Typical Power and Ground Connection Diagram and Parts List for 3.3 V I/O Mode	70
Figure 3-5.	Optional 3.3 V Regulator	71
Figure 3-6.	Bt835 typical Circuit Schematic.	74
Figure 5-1.	Clock Timing Diagram	104
Figure 5-2.	Output Enable Timing Diagram	105
Figure 5-3.	JTAG Timing Diagram	105

List of Tables

Table 1-1.	VideoStream III Features Options
Table 1-2.	Bt835 Pin Descriptions
Table 1-3.	Video Input Formats Supported by the Bt835 13
Table 1-4.	Register Values for Video Input Formats 14
Table 1-5.	Scaling Ratios for Popular Formats Using Frequency Values
Table 1-6.	Uncropped Clock Totals
Table 2-1.	Pixel/Pin Map
Table 2-2.	Description of the Control Codes in the Pixel Stream
Table 2-3.	Data Output Ranges 54
Table 2-4.	ITU-R-656 Specification on Range of Active Video Data
Table 2-5.	Reference Byte, XY[7:0] and its Individual Bit Information
Table 2-6.	VIP SAV and EAV Codes Under Full Resolution
Table 2-7.	Bt835 Address Matrix
Table 2-8.	Example I ² C Data Transactions
Table 2-9.	Device Identification Register
Table 4-1.	Register Map
Table 5-1.	Recommended Operating Conditions
Table 5-2.	Absolute Maximum Ratings 100
Table 5-3.	DC Characteristics (3.3 V digital I/O operation) 100
Table 5-4.	DC Characteristics (5 V only operation) 101
Table 5-5.	Clock Timing Parameters
Table 5-6.	Power Supply Current Parameters (3 V / 5 V operation) 104
Table 5-7.	Output Enable Timing Parameters
Table 5-8.	JTAG Timing Parameters 105
Table 5-9.	Decoder Performance Parameters
Table 5-10.	100-Pin PQFP Package Mechanical Drawing

1.0 Functional Description


1.1 Functional Overview

Rockwell's VideoStream[™] III decoder is a high quality, single-chip solution for processing all analog NTSC/PAL/SECAM video standards into 4:2:2 YCrCb video. The Bt835 offers the highest price/performance of any video decoder, with its unique 3-line adaptive comb filter, digital video input port, flexible digital video output port, single crystal operation, and low power consumption.

A detailed block diagram of the decoder is shown in Figure 1-1.

1.1 Functional Overview

1.1.1 Bt835 Video Capture Processor for TV/VCR Analog Input

The Bt835 Video Capture Processor is a fully integrated single-chip decoding and scaling solution for analog NTSC/PAL/SECAM input signals from TV tuners, VCRs, cameras, and other sources of composite or Y/C video. It is the third generation front-end input solution for low-cost PC video/graphics systems. The Bt835 delivers complete integration and high-performance video synchronization, Y/C separation, and filtered scaling. It has all the mixed signal and DSP circuitry required to convert an analog composite waveform into a scaled digital video stream, supporting a variety of video formats, resolutions, and frame rates.

The Bt835 builds on the previous Bt829B VideoStream II decoder by adding the following features, as detailed in Table 1-1.

Feature Options	Bt829B	Bt835
Composite Video Decoding	Х	Х
S-Video Decoding	Х	Х
SECAM Video	Х	Х
Hardware Closed-Caption Decoding	Х	Х
Filtered Vertical Scaling	Х	Х
3-line Adaptive Comb Filter		Х
Single Crystal Operation for all Video Formats		Х
Digital Video Input Port		Х
PAL 60, NTSC 4.43 Decoding		Х
8-bit GPIO		Х
VIP Interface		Х

Table 1-1. VideoStream III Features Options

1.1.2 Bt835 Architecture and Partitioning

The Bt835 provides the most cost-effective, high-quality video input solution for low-cost multimedia subsystems that integrate both graphics display and video capabilities. The feature set of the Bt835 supports a video/graphics system partitioning, which optimizes the total cost of a system configured with and without video capture capabilities. This enables system vendors to easily offer products with graphics display and video support using a single base-system design.

As graphics chip vendors move from PCI video/graphics processors to 3D AGP graphics processors, the ability to efficiently use silicon and package pins to support 2D/3D graphics acceleration, video playback acceleration, and video capture becomes critical. This problem becomes more acute as the race toward higher performance graphics requires more and more package pins to be consumed for wide 128-bit memory interfaces and glueless local bus interfaces.

1.1 Functional Overview

The Bt835 minimizes the cost of video capture function integration in two ways. First, recognizing that YCrCb to RGB color space conversion is a standard feature of multimedia controllers for acceleration of digital video playback, the Bt835 avoids redundant functionality and allows the downstream controller to perform this task. Second, the Bt835 can minimize the number of interface pins required by a downstream multimedia controller to keep package costs to a minimum. This is accomplished by using industry standards interfaces such as the VESA Video Interface Port (VIP) or the Rockwell ByteSteamTM interface.

Controller systems designed to take advantage of these features allow video capture capability to be added to the base system in a modular fashion using only a single Integrated Circuit (IC).

1.1.3 Comb Filter

The Bt829 video decoder and many other video decoders employ a luminance notch filter, a chrominance bandpass filter, and a chrominance comb filter. This means that the luminance signal is derived by filtering out the color information (chrominance) from a composite video signal with a notch filter. This works because the NTSC color information is in a frequency band centered at about 3.58 MHz which extends about +/- 1.3 MHz (i.e., from 2.3 to 4.9 MHz). The Y filter is thus designed to reject frequencies in that range. Although this effectively filters most of the chrominance signal out of the luminance signal, it also removes the higher frequency luminance signal components. This loss of bandwidth reduces the horizontal resolution of the luminance signal, and fine details in the picture are lost. The chrominance signal is derived by bandpass filtering the composite video signal to extract the frequency band centered at 3.58 MHz which contains the color information. The Bt829 employs a chrominance comb filter to remove any residual luminance (Y) signal that overlaps the chrominance (C) signal in this frequency range.

Other video decoders employ a line comb filter. These line comb filters operate by delaying the previous composite video horizontal scan line and comparing it to the current horizontal scan line. Adding the two lines together cancels the C signal and provides the Y signal. Subtracting the current line from the delayed line provides the C signal. This process creates two filters which have a frequency response that look like teeth in a comb. This type of filter is usually known as a 1-H line comb filter, since it uses a 1-horizontal scan line delay to process the signals. More complex filters can be built using 2-horizontal scan line delays and are called 2-H line comb filters. While these filters will show improvement with a multiburst test pattern compared to a notch filter, and demonstrate a horizontal flat frequency response, the multiburst pattern does not show that 50% of the vertical resolution is lost due to the averaging of two lines. These filters still suffer the "hanging dot" problem noticeable on test patterns such as the SMPTE color bar test pattern.

1.1 Functional Overview

In order to overcome this hanging dot problem and the loss of vertical resolution, Rockwell has designed a sophisticated 3-line, adaptive comb filter to separate the Y/C components in a composite video signal. This circuit is used in the new Bt835 video decoder. As stated above, simple line comb filters can not eliminate "hanging dots" on a vertical color transition. The problem is caused by comb filtering two successive scan lines with different color values at the same horizontal positions along the lines. The line comb filter cannot separate the Y/C signals correctly in this situation. The color signal crosses over into the luminance signal, creating the cross-luminance artifact. In a 3-line adaptive Y/C separation filter, adaptive logic is used to continuously evaluate the video image and then select the most efficient processing algorithm available in the filter. This is sometimes called a 2-D filter, because both the horizontal scan lines and vertical transitions are processed. This type of filter eliminates the hanging dot problem by detecting the vertical transitions in the image. The logic examines three successive horizontal scan lines simultaneously. If a vertical transition occurs between the first and third lines, the notch filtered luminance and bandpass filtered chrominance will be used directly, without comb filtering. Hence, two lines with different colors will not be input to the comb filter at a transition boundary. Therefore the Y/C signals will be fully separated and the hanging dots eliminated. The Bt835 can accomplish this adaptive task on a pixel by pixel basis by using powerful DSP techniques. This also ensures that the Y/C separated image does not suffer from any loss of vertical resolution.

1.1.4 UltraLock

The Bt835 employs a proprietary technique known as UltraLock to lock to the incoming analog video signal. It will always generate the required number of pixels per line from an analog source in which the line length can vary by as much as a few microseconds. UltraLock's digital locking circuitry enables the VideoStreamTM decoders to quickly and accurately lock on to video signals, regardless of their source. Because the technique is completely digital, UltraLock can recognize unstable signals caused by VCR head switches or any other deviation, and adapt the locking mechanism to accommodate the source. UltraLock uses nonlinear techniques which are difficult, if not impossible, to implement for genlock systems. Unlike linear techniques, it automatically adapts the locking mechanism.

1.1.5 Scaling and Cropping

The Bt835 can independently reduce the video image size in both horizontal and vertical directions. Using arbitrarily selected scaling ratios, the X and Y dimensions can be scaled down to one-sixteenth of the full resolution. Horizontal scaling is implemented with a six-tap interpolation filter, while a maximum of five-tap interpolation is used for vertical scaling with a line store.

The video image can be arbitrarily cropped by programming the ACTIVE flag to reduce the number of active scan lines and active horizontal pixels per line.

The Bt835 also supports a temporal decimation feature that reduces video bandwidth by allowing frames or fields to be dropped from a video sequence at regular, but arbitrarily selected, intervals.

1.1.6 Input Interfaces

Analog Video Input	Analog video signals are input to the Bt835 via a four-input multiplexer that can select between four composite source inputs, or between three composite input sources and a single S-Video input source. When an S-Video source is input to the Bt835, the luma component is fed through the input analog multiplexer, and the chroma component is fed directly into the C input pin. An AGC circuit enables the Bt835 to compensate for reduced amplitude in the analog signal input. The clock signal interface consists of two pins for crystal connection and two clock output pins. These crystal pins connect to any standard 14.318 MHz, low-jitter (50 ppm or better) crystal for NTSC /PAL/SECAM operation. The on-board PLL circuit generates output clocks for interface to the graphics controller or frame buffer. CLKx2 is output at full frequency (4*Fsc). Either crystals or CMOS oscillators may be used for the clock source.
Digital Video Input	The Bt835 will accept digital video data as 8-bit, 26-30 MHz 4:2:2 YCrCb samples on the VD[7:0] pins. The digital video clock (DIG_CLK) can be configured either as an input or output for slave or master mode timing. Timing and synchronization control is provided by the DIG_H and DIG_V pins. These pins are not required if the video source has CCIR656 timing with embedded SAV, EAV timing codes. When accepting digital video, the Bt835 can control contrast, saturation, and brightness. There is no provision for hue adjustment.

1.1.7 Output Interface

The Bt835 supports a Synchronous Pixel Interface (SPI) mode.

The SPI supports a YCrCb 4:2:2 data stream over an 8- or 16-bit wide path. When the pixel output port is configured to operate 8 bits wide, 8 bits of chrominance data are output on the first clock cycle, followed by 8 bits of luminance data on the next clock cycle for each pixel. Two clocks are required to output one pixel in this mode, and so a 2x clock is used to output the data.

The Bt835 outputs all horizontal and vertical blanking pixels, in addition to the active pixels synchronous with CLKX1 (16-bit mode) or CLKX2 (8-bit mode). It is possible to insert control codes into the pixel stream using chrominance and luminance values that are outside the allowable chroma and luma ranges. These control codes can be used to flag video events such as ACTIVE, HRESET, and VRESET. Decoding these video events downstream enables the video controller to eliminate pins required for the corresponding video control signals.

The Bt835 supports the VESA VIP interface and the Rockwell ByteStream interface for embedding control codes into the digital video pixel stream.

1.1 Functional Overview

1.1.8 VBI Data Pass-through

The Bt835 provides VBI data passthrough capability. The VBI region ancillary data is captured by the video decoder and is made available to the system for subsequent software processing. The Bt835 may operate in a VBI line output mode, in which the VBI data is only made available during select lines. This mode of operation is intended to enable capture of VBI lines containing ancillary data, as well as processing normal YCrCb video image data. In addition, the Bt835 supports a VBI frame output mode, in which every line in the video signal is treated as if it were a vertical interval line, and no image data is output. This mode of operation is designed for use in still-frame capture/processing applications.

In VIP mode, the Bt835 passes VBI data raw samples. During selected VBI lines, the VIP task bit T is set. The protection bits P[3:0] are not used and are forced to 0. Ancillary data is not supported. This mode is controlled by the VIPEN bit.

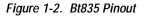
1.1.9 Closed Caption Decoding

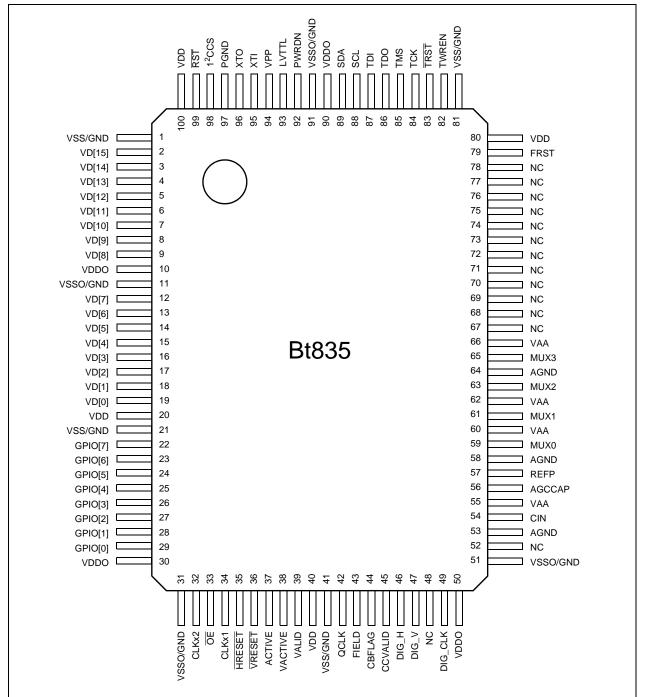
The Bt835 provides a Closed Captioning (CC) and Extended Data Services (EDS) decoder. Data presented to the video decoder on the CC and EDS lines is decoded and made available to the system through the CC_DATA and CCSTATUS registers.

1.1.10 I²C Interface

The Bt835 registers are accessed via a two-wire I^2C interface. The Bt835 operates as a slave device. Serial clock and data lines SCL and SDA transfer data from the bus master at a maximum rate of 100 kbps. Chip select and reset signals are also available to select one of two possible Bt835 devices in the same system, and to set the registers to their default values.

1.1.11 3.3 V/5 V Operation


The Bt835 can interface to either 5 V or 3.3 V signal level graphics/system controllers. When in 5 V mode, all power pins should be tied to +5 V levels. LVTTL must also be tied to +5 V.


When in 3.3 V mode, the digital inputs/outputs are not 5 V tolerant, they can only interface to 3.3 V signal levels. When in 3.3 V mode, all VDD, VPP, and VDDO pins must be tied to 3.3 V, all VAA pins must be tied to +5 V (for ADC biasing). LVTTL must be tied to ground.

1.2 Pin Descriptions

1.2 Pin Descriptions

Figure 1-2 details the Bt835 pinout. Table 1-2 provides pin numbers, names, input and output functions, and descriptions.

1.2 Pin Descriptions

Table 1-2. Bt835 Pin Descriptions (1 of	2)
---	----

Pin #	I/O	Pin Name	Description	
9–2	0	VD[15:8]	In 16-bit output mode, these pins represent the luma portion of the decoded video signal. In 8-bit output mode, these pins are the 4:2:2 multiplexed data stream. In test mode, these pins may be configured to be the test bus output.	
19–12	I/O	VD[7:0]	In 16-bit mode, these pins represent the multiplexed Cr/Cb portion of the decoded video signal. In 8-bit mode, these pins are three-stated. When in 8-bit mode, these pins may be used to input digital video. In test mode, these pins are used as the test bus input.	
29–22	I/O	GPI0[7:0]	These pins are used to control, or sample, external devices. These pins will power up three-stated.	
32	0	CLKx2	ADC sample clock output.	
33	I	OE	Active low output enable. When pulled high, this pin will three-state the pins defined by the OES[1:0] register bits. This pin works in conjunction with the NOUTEN register bit. When either NOE or OUTEN is high, the selected pins will be three-stated.	
34	0	CLKx1	ADC sample clock, divided by two.	
35	0	HRESET	Active low. Horizontal reset output.	
36	0	VRESET	Active low. Vertical reset output.	
37	0	ACTIVE	Composite active video region. Indicates non-blanked region of decoded video. May be configured to represent the horizontal active region of each line.	
38	0	VACTIVE	Vertical active output. Indicates the non-blanked vertical region of the decoded video.	
39	0	VALID	Valid pixel output. This signal, in conjunction with ACTIVE, indicates which pixels will be used in the construction of the decoded video field/frame. May be internally and logically ANDED with the ACTIVE pin.	
42	0	QCLK	Gated output clock. In 16-bit mode, this pin is created by inverting and gating the CLKX1 clock. In 8-bit mode, the CLKX2 clock is used.	
43	0	FIELD	Even Field indicator.	
44	0	CBFLAG	Cb pixel indicator.	
45	0	CCVALID	Open drain output. Indicates that the CC FIFO has CC data to be read. If used, must be externally pulled up.	
46	I	DIG_H	Digital video horizontal reset input. Can be tied high/low if not used.	
47	I	DIG_V	Digital video vertical reset input. Can be tied high/low if not used.	
49	Ι/Ο	DIG_CLK	Digital video clock. May be configured as either input or output. Bidirectional. Do not tie if not used.	
79	I	FRST	Active HIGH FIFO reset. Used for testing purposes only. JTAG. Tie high for normal use.	
82		TWREN	FIFO test-write input. JTAG pin. Tie low for normal use.	
83		TRST	Active low. JTAG reset. Tie low for normal use.	
84		ТСК	JTAG clock. Tie low for normal use.	
85		TMS	JTAG test mode select. Tie high for normal use.	

1.2 Pin Descriptions

VideoStream III Decoder

Pin #	I/O	Pin Name	Description			
86	0	TDO	JTAG test data out. Do not connect this pin for normal use.			
87	I	TDI	JTAG test data in. Tie high for normal use.			
88	I	SCL	I ² C clock.			
89	I/O	SDA	$\mbox{I}^2\mbox{C}$ data. Open drain I/O. Must be externally pulled up, typically with a 10 $\mbox{k}\Omega$ resistor.			
92	I	PWRDN	Powers down the decoder when high.			
93	I	LVTTL	When connected to ground, configures the Bt835 to operate at 3.3 V. When connected to VDD, configures the Bt835 to operate at 5 V.			
95	I	XTI	Crystal in.			
96	I	XTO	Crystal out.			
98	I	I ² CCS	Used to select alternate I^2C address. High = 0x8A; low = 0x88.			
99	I	RST	When low, resets the Bt835. Internal pullup.			
20, 40, 80, 100	Р	VDD	Core power. Can be connected to 3.3 V or 5 V.			
1, 21, 41, 81	G	VSS	Core ground. Must be connected to ground.			
10, 30, 50, 90	Р	VDDO	Pad ring power.			
11, 31, 51, 91	G	VSSO/GND	Pad ring ground.			
94	Р	VPP	PLL power.			
97	G	PGND	PLL ground.			
55, 60, 66	Р	VAA	Analog power. Must always be connected to 5 V.			
53, 58, 64	G	AGND	Analog ground. Must always be connected to ground.			
54	I	CIN	The analog chroma input to the C-ADC.			
57	I	REFP	The top of the ADC reference must be connected to a 0.1 μF input capacitor to ground.			
56	Ι	AGCCAP	The AGC time-constant control. Must be connected to a 0.1 μF capacitor to ground.			
59, 61, 63, 65	I	MUX[3:0]	Analog composite video inputs to the on-chip input multiplexer. They are used to select between four composite sources or three composite and one S-Video source. Unused pins should be connected to GND.			

1.3 UltraLock

1.3 UltraLock

1.3.1 The Challenge

The line length (the interval between the midpoints of the falling edges of succeeding horizontal sync pulses) of analog video sources is not constant. For a stable source such as a studio grade video source or test signal generators, this variation is very small: ± 2 ns. For an unstable source such as a VCR, laser disk player, or TV tuner, line length variation can be a few microseconds.

Despite these variations, digital display systems require a fixed number of pixels per line. The Bt835 employs the UltraLock technique to lock to the horizontal sync and the subcarrier of the incoming analog video signal, and to generate the required number of pixels per line.

1.3.2 Operation Principles of UltraLock

UltraLock is based on sampling, using a fixed-frequency stable clock. Because the video line length varies, the number of samples generated using a fixed-frequency sample clock also varies from line to line. If the number of generated samples per line is always greater than the number of samples per line required by the particular video format, the number of acquired samples can be reduced to fit the required number of pixels per line.

The Bt835 PLL generates a 8*Fsc (28.64 MHz for NTSC and 35.47 MHz for PAL) clock from a crystal or oscillator input signal source. The 8*Fsc clock signal, or CLKx2, is divided down to CLKx1 internally (14.32 MHz for NTSC and 17.73 MHz for PAL). Both CLKx2 and CLKx1 are made available to the system. UltraLock operates at CLKx1, although the input waveform is sampled at CLKx2, then low-pass filtered, and decimated to a CLKx1 sample rate.

A 4*Fsc (CLKx1) sample rate produces 910 pixels for NTSC and 1,135 pixels for PAL/SECAM within a nominal line time interval (63.5 μ s for NTSC and 64 μ s for PAL/SECAM). Square pixel NTSC and PAL/SECAM formats should produce only 780 and 944 pixels per video line, respectively. This is because the square pixel clock rates are slower than a 4*Fsc clock rate, i.e., 12.27 MHz for NTSC, and 14.75 MHz for PAL.

UltraLock accommodates line length variations from nominal time line intervals in the incoming video by always acquiring more samples (at an effective 4*Fsc rate) than the particular video format requires. UltraLock interpolates to the required number of pixels so that it maintains the stability of the original image, despite variation in the line length of the incoming analog waveform.

The example illustrated in Figure 1-3 shows three successive lines of video being decoded for square pixel NTSC output. The first line is shorter than the nominal NTSC line time interval of 63.5 μ s. On this first line, a line time of 63.2 μ s sampled at 4*Fsc (14.32 MHz) generates only 905 pixels. The second line matches the nominal line time of 63.5 μ s and provides the expected 910 pixels. Finally, the third line is too long at 63.8 μ s, within which 913 pixels are generated. In all three cases, UltraLock outputs only 780 pixels.

1.3 UltraLock

UltraLock can be used to extract any programmable number of pixels from the original video stream, as long as the sum of the nominal pixel line length, 910 for NTSC and 1,135 for PAL/SECAM, and the worst case line length variation in the active region is greater than or equal to the required number of output pixels per line, i.e.,

$$P_{Nom} + P_{Var} \ge P_{Desired}$$

- where: P_{Nom} = Nominal number of pixels per line at 4*Fsc sample rate (910 for NTSC, 1,135 for PAL/SECAM) P_{Var} = Variation of pixel count from nominal at 4*Fsc (can be a positive or negative number) $P_{Desired}$ = Desired number of output pixels per line
- **NOTE(S):** For stable inputs, UltraLock guarantees the time between the falling edges of HRESET to within only one pixel. UltraLock guarantees the number of active pixels in a line, as long as the above relationship holds.

1.4 Composite Video Input Formats

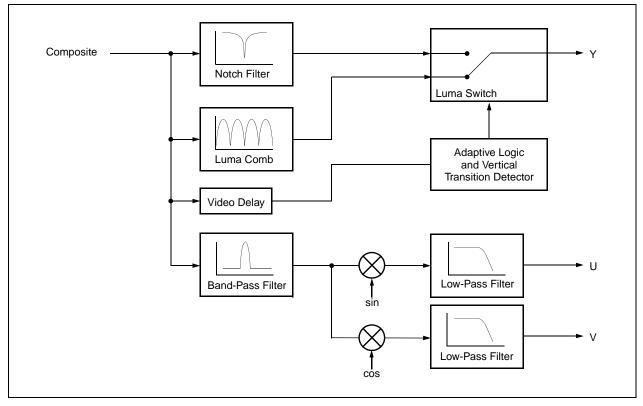
The Bt835 supports all composite video input formats. Table 1-3 shows the different video formats and shows some of the countries in which each format is used.

Format	Lines	Fields	F _{SC}	Country		
NTSC-M	525	60	3.58 MHz	U.S., many others		
NTSC-Japan ⁽¹⁾	525	60	3.58 MHz	Japan		
PAL-B	625	50	4.43 MHz	Many		
PAL-D	625	50	4.43 MHz	China		
PAL-G	625	50	4.43 MHz	Many		
PAL-H	625	50	4.43 MHz	Belgium		
PAL-I	625	50	4.43 MHz	Great Britain, others		
PAL-M	525	60	3.58 MHz	Brazil		
PAL-N	625	50	4.43 MHz	Paraguay, Uruguay		
PAL-N combination	625	50	3.58 MHz	Argentina		
SECAM	625	50	4.406 MHz 4.250 MHz	Eastern Europe, France, Middle East		
PAL-60 ⁽²⁾	525	60	4.43 MHz	China		
NTSC(4.43)	525	60	4.43 MHz	Transcoding Application		
(1) NTSC-Japan has 0 IRE setup.(2) Typically used in Chinese Video CD players.						

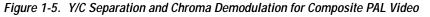
Table 1-3. Video Input Formats Supported by the Bt835

The video decoder must be appropriately programmed for each of the composite video input formats. Table 1-4 lists the register values that need to be programmed for each input format.

Register	Bit	NTSC-M	NTSC-Japan	PAL-B, D, G, H, I	PAL-M	PAL-N	PAL-N Combination	PAL-60	SECAM	NTSC 4.43
INPUT (0x01)	FMT[3:0]	0001	0010	0100	0101	0110	0111	1000	1001	0011
Cropping: HDELAY, VDELAY, VACTIVE, CROP	7:0 in all 5 registers	Set to desired cropping values in registers	Set to NTSC-M square pixel values	Set to desired cropping values in registers	Set to NTSC-M square pixel values	Set to PAL-B, D, G, H, I square pixel values	Set to PAL-B, D, G, H, square pixels values	Set to PAL-B, D, G, H, I square pixel values	Set to PAL-B, D, G, H, I square pixel values	Set to NTSC-M square pixel values
HSCALE (0x0A, 0x09)	15:0	0x02AA	0x02AA	0x033C	0x02AA	0x033C	0x00F8	0x02AA	0x033C	0x02AA
ADELAY (0x1A)	7:0	0x68	0x68	0x7F	0x68	0x7F	0x7F	0x68	0x7F	0x68
BDELAY (0x1B)	7:0	0x5D	0x5D	0x72	0x5D	0x72	0x72	0x5D	0xA0	0x5D


Table 1-4. Register Values for Video Input Formats

14


1.5 Y/C Separation and Chroma Demodulation

Y/C separation and chroma decoding are handled as shown in Figure 1-4 and Figure 1-5. A 3-line adaptive comb filter is used to separate luminance and chrominance for NTSC video. A notch/band-pass filter is used for PAL/SECAM video. Figure 1-6 displays the filter responses. The optional chroma comb filter, when using notch filter, is implemented in the vertical scaling block. See the section on Video Scaling, Cropping, and Temporal Decimation in this chapter.

Figure 1-4. Y/C Separation and Chroma Demodulation for Composite NTSC Video

Bt835

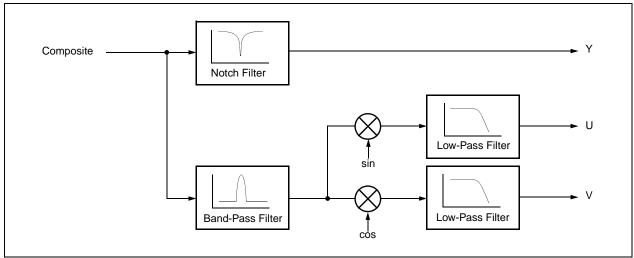


Figure 1-6. NTSC and PAL/SECAM Y/C Separation Filter Responses

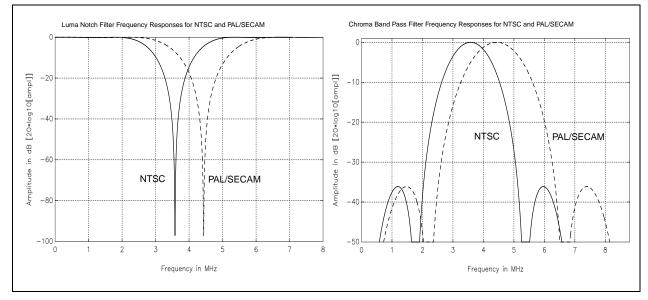
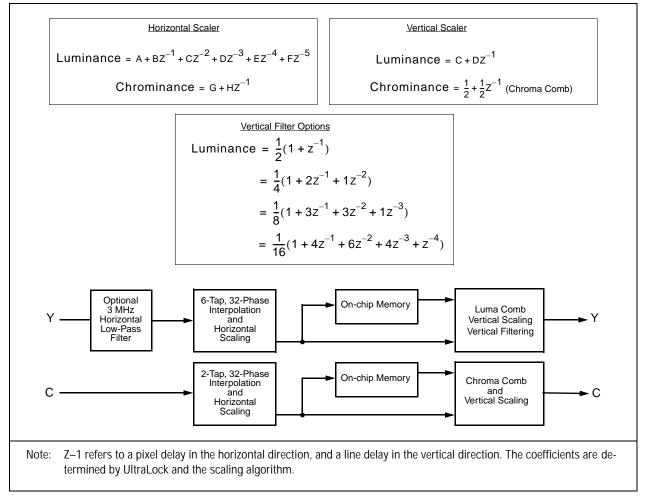


Figure 1-7 describes the filtering and scaling operations.


In addition to the Y/C separation and chroma demodulation illustrated in Figure 1-5, the Bt835 also supports chrominance comb filtering as an optional filtering stage after chroma demodulation. The chroma demodulation generates baseband I and Q (NTSC) or U and V (PAL/SECAM) color difference signals.

For S-Video operation, the digitized luma data bypasses the Y/C separation block completely, and the digitized chrominance is passed directly to the chroma demodulator.

For monochrome operation, the Y/C separation block is also bypassed, and the saturation registers (SAT_U and SAT_V) are set to zero.

1.5 Y/C Separation and Chroma Demodulation

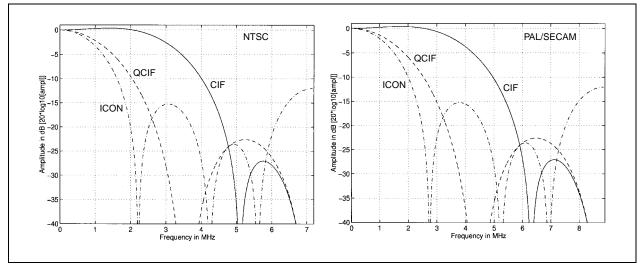
Figure 1-7. Filtering and Scaling

1.6 Video Scaling, Cropping, and Temporal Decimation

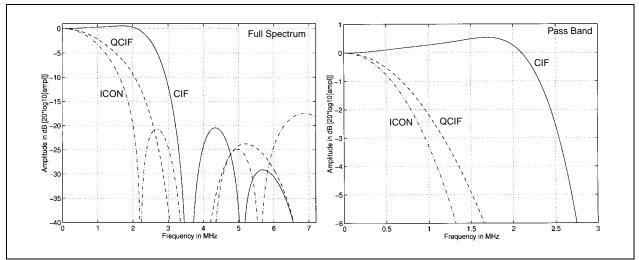
VideoStream III Decoder

1.6 Video Scaling, Cropping, and Temporal Decimation

The Bt835 provides three mechanisms to reduce the amount of video pixel data in its output stream: down-scaling, cropping, and temporal decimation. All three can be controlled independently.


1.6.1 Horizontal and Vertical Scaling

The Bt835 provides independent and arbitrary horizontal and vertical downscaling. The maximum scaling ratio is 16:1 in both X and Y dimensions. The maximum vertical scaling ratio is reduced from 16:1 when using frames to 8:1. The following sections describe the different methods used for scaling luminance and chrominance.


1.6.2 Luminance Scaling

The first stage in horizontal luminance scaling is an optional pre-filter which provides the capability to reduce anti-aliasing artifacts. It is generally desirable to limit the bandwidth of the luminance spectrum prior to performing horizontal scaling. This is because the scaling of high-frequency components may create image artifacts in the resized image. The optional low-pass filters shown in Figure 1-8 reduce the horizontal high-frequency spectrum in the luminance signal. Figures 1-9 and 1-10 show the combined results of the optional low-pass filters, and the luma notch and 2x oversampling filter.

Figure 1-8. Optional Horizontal Luma Low-Pass Filter Responses

1.6 Video Scaling, Cropping, and Temporal Decimation

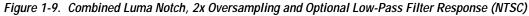
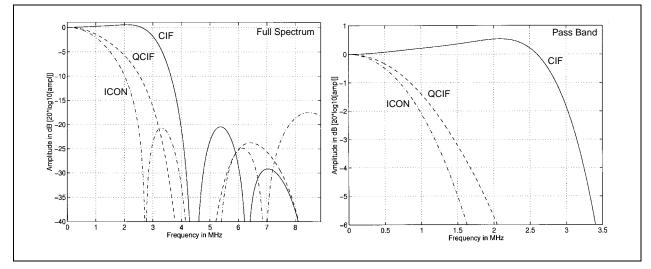



Figure 1-10. Combined Luma Notch, 2x Oversampling and Optional Low-Pass Filter Response (PAL/SECAM)

The Bt835 implements horizontal scaling through poly-phase interpolation. The Bt835 uses 32 different phases to accurately interpolate the value of a pixel. This provides an effective pixel jitter of less than 6 ns.

In simple pixel- and line-dropping algorithms, non-integer scaling ratios introduce a step function in the video signal that effectively introduces highfrequency spectral components. Poly-phase interpolation accurately interpolates to the correct pixel and line position, providing more accurate information. This results in more aesthetically pleasing video, as well as higher compression ratios in bandwidth-limited applications.

For vertical scaling, the Bt835 uses a line store to implement four different filtering options. The filter characteristics are shown in Figure 1-11. The Bt835 provides up to 5-tap filtering to ensure removal of aliasing artifacts. Figure 1-12 shows the combined responses of the luma notch and 2x oversampling filters.

1.6 Video Scaling, Cropping, and Temporal Decimation

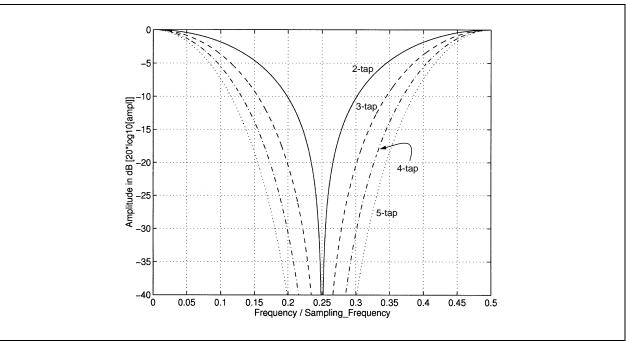
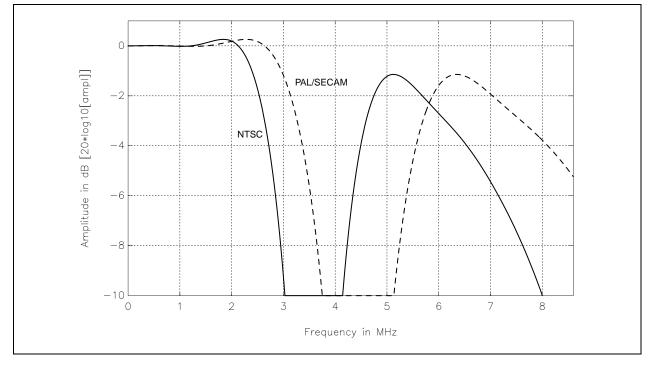



Figure 1-11. Frequency Responses for the Four Optional Vertical Luma Low-Pass Filters

Figure 1-12. Combined Luma Notch and 2x Oversampling Filter Response

1.6.3 Peaking

The Bt835 enables four different peaking levels by programming the PSEL[1:0] bits in the CONTROL_0 register. The filter responses are shown in Figures 1-13 and 1-14.

Figure 1-13. NTSC Peaking Filters

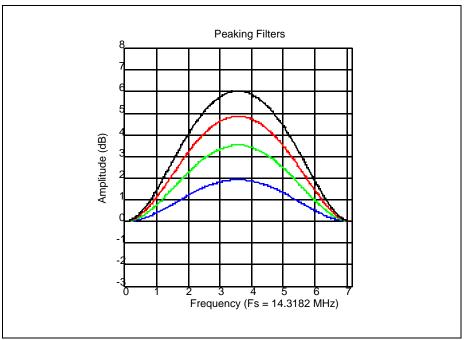
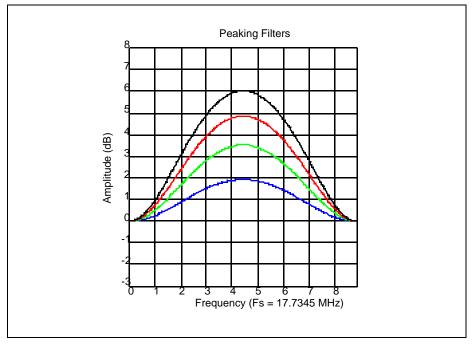



Figure 1-14. PAL/SECAM Peaking Filters

1.6 Video Scaling, Cropping, and Temporal Decimation

The number of taps in the vertical filter is set by the VSCALE_CTL register. The user may select 2, 3, 4, or 5 taps. The number of taps must be chosen in conjunction with the horizontal scale factor. As the scaling ratio is increased, the number of taps available for vertical scaling is increased. In addition to low-pass filtering, vertical interpolation is also employed to minimize artifacts when scaling to non-integer scaling ratios.

1.6.4 Chrominance Scaling

A 2-tap, 32-phase interpolation filter is used for horizontal scaling of chrominance. Vertical scaling of chrominance is implemented through chrominance comb filtering using a line store, followed by simple decimation or line dropping.

1.6.5 Scaling Registers

Horizontal Scaling Ratio Register (HSCALE) HSCALE is programmed with the horizontal scaling ratio. When outputting unscaled video (in NTSC), the Bt835 will produce 910 pixels per line. This corresponds to the pixel rate at f_{CLKx1} (4*Fsc). This register is the control for scaling the video to the desired size. For example, square pixel NTSC requires 780 samples per line, while CCIR601 requires 858 samples per line. HSCALE_HI and HSCALE_LO are two 8-bit registers that, when concatenated, form the 16-bit HSCALE register.

The method below uses pixel ratios to determine the scaling ratio. The following formula is used to determine the scaling ratio to be entered into the 16-bit register:

NTSC:	$HSCALE = [(910/P_{desired}) - 1] * 4096$
PAL/SECAM:	HSCALE = $[(1135/P_{desired}) - 1] * 4096$

where: $P_{desired}$ = Desired number of pixels per line of video, including active, sync, and blanking.

For example, to scale PAL/SECAM input to square pixel QCIF, the total number of horizontal pixels is 236:

HSCALE = [(1135/236) - 1] * 4096= 15602 = 0x3CF2

An alternative method for determining the HSCALE value uses the ratio of the scaled active region to the unscaled active region as shown below:

NTSC:	HSCALE = [(754 / HACTIVE) - 1] * 4096
PAL/SECAM:	HSCALE = [(922 / HACTIVE) – 1] * 4096

where: *HACTIVE* = Desired number of pixels per line of video, not including sync or blanking.

In this equation, the HACTIVE value cannot be cropped; it represents the total active region of the video line. This equation produces roughly the same result as using the full line length ratio shown in the first example. However, due to truncation, the HSCALE values determined using the active pixel ratio will be slightly different than those obtained using the total line length pixel ratio. The values in Table 1-5 were calculated using the full line length ratio.

Table 1-5.	Scaling Ratios for	or Popular Formats	Using Frequency Values
	oouning manoo no	n i opulai i olimato	comg rioquonoj ranaco

Scaling Ratio	Format	Total Resolution (including sync and blanking interval)	Output Resolution (Active Pixels)	HSCALE Register Values	VSCALE Register Values	
					Use Both Fields	Single Field
Full Resolution 1:1	NTSC SQ Pixel NTSC CCIR601 PAL CCIR601 PAL SQ Pixel	780 x 525 858 x 525 864 x 625 944 x 625	640 x 480 720 x 480 720 x 576 768 x 576	02aa 00F8 0504 033C	0000 0000 0000 0000	1E00 1E00 1E00 1E00
CIF 2:1	NTSC SQ Pixel NTSC CCIR601 PAL CCIR601 PAL SQ Pixel	390 x 262 429 x 262 432 x 312 472 x 312	320 x 240 360 x 240 360 x 288 384 x 288	1555 11F0 1A09 1677	1E00 1E00 1E00 1E00	1A00 1A00 1A00 1A00
QCIF 4:1	NTSC SQ Pixel NTSC CCIR601 PAL CCIR601 PAL SQ Pixel	195 x 131 214 x 131 216 x 156 236 x 156	160 x 120 180 x 120 180 x 144 192 x 144	3AAA 3409 4412 3CF2	1A00 1A00 1A00 1A00	1200 1200 1200 1200
ICON 8:1	NTSC SQ Pixel NTSC CCIR601 PAL CCIR601 PAL SQ Pixel	97 x 65 107 x 65 108 x 78 118 x 78	80 x 60 90 x 60 90 x 72 96 x 72	861A 7813 9825 89E5	1200 1200 1200 1200 1200	0200 0200 0200 0200 0200

2. SECAM-HSCALE and VSCALE register values should be the same as for PAL.

Vertical Scaling Ratio Register (VSCALE) VSCALE is programmed with the vertical scaling ratio. It defines the number of vertical lines output by the Bt835. The following formula should be used to determine the value to be entered into this 13-bit register. The loaded value is a two's-complement, negative value.

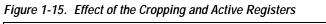
VSCALE = (0x10000 - { [(scaling_ratio) - 1] * 512 }) & 0x1FFF

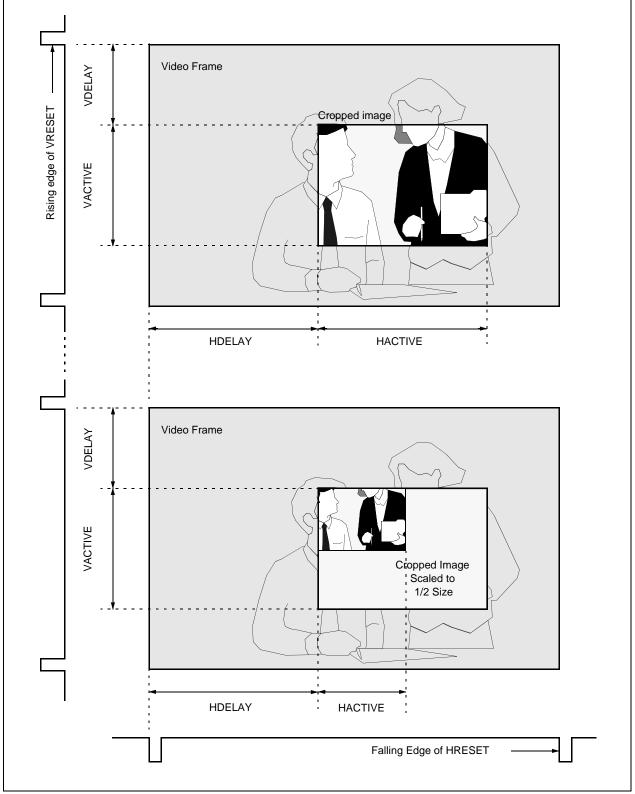
For example, to scale PAL/SECAM input to square pixel QCIF, the total number of vertical lines for PAL square pixel is 156 (see Table 1-5).

VSCALE =
$$(0x10000 - \{ [(4/1) - 1] * 512 \}) \& 0x1FFF$$

= $0x1A00$

NOTE(S): Only the 13 least significant bits of the VSCALE value are used. The user must take care not to alter the values of the three most significant bits when writing a vertical scaling value.


1.6 Video Scaling, Cropping, and Temporal Decimation


When vertical scaling (below CIF resolution), it may be useful to use a single field, as opposed to using both fields. Using a single field ensures that no interfield motion artifacts occur on the scaled output. When performing single field scaling, the vertical scaling ratio is twice as large as when scaling with both fields. For example, CIF scaling from one field does not require any vertical scaling, but when scaling from both fields, the scaling ratio is 50%. The non-interlaced bit should be reset when scaling from a single field (NVINT = 0 in the VSCALE_CTL register). Table 1-5 lists scaling ratios for various video formats and the register values required.

1.6.6 Image Cropping

Cropping enables the user to output any subsection of the video image. The ACTIVE flag can be programmed to start and stop at any position on the video frame as shown in Figure 1-15. The start of the active area in the vertical direction is referenced to VRESET (beginning of a new field). In the horizontal direction, it is referenced to HRESET (beginning of a new line). The dimensions of the active video region are defined by HDELAY, HACTIVE, VDELAY, and VACTIVE. The vertical and horizontal delay values determine the position of the cropped image within a frame, while the horizontal and vertical active values set the pixel dimensions of the cropped image, as illustrated in Figure 1-15.

1.6 Video Scaling, Cropping, and Temporal Decimation

1.6 Video Scaling, Cropping, and Temporal Decimation

1.6.7 Cropping Registers

Horizontal Delay Register (HDELAY) HDELAY is programmed with the delay between the falling edge of $\overline{\text{HRESET}}$ and the rising edge of ACTIVE. The count is programmed with respect to the scaled frequency clock. HDELAY should always be an even number.

Horizontal Active Register (HACTIVE) HACTIVE is programmed with the actual number of active pixels per line of video. This is equivalent to the number of scaled pixels that the Bt835 should output on a line. For example, if this register contained 90, and HSCALE was programmed to down-scale by 4:1, then 90 active pixels would be output. The 90 pixels would be a 4:1 scaled image of the 360 pixels (at CLKx1), starting at count HDELAY. HACTIVE is restricted in the following manner:

HACTIVE + HDELAY \leq Total Number of Scaled Pixels.

For example, in the NTSC square pixel format, there is a total of 780 pixels, including blanking, sync and active regions. Therefore:

HACTIVE + HDELAY \leq 780.

When scaled by 2:1 for CIF, the total number of active pixels is 390. Therefore:

HACTIVE +HDELAY ≤390.

The HDELAY register is programmed with the number of scaled pixels between HRESET and the first active pixel. Because the front porch is defined as the distance between the last active pixel and the next horizontal sync, the video line can be considered in three components: HDELAY, HACTIVE, and the front porch. Figure 1-16 illustrates the video signal regions.

Figure 1-16. Regions of the Video Signal

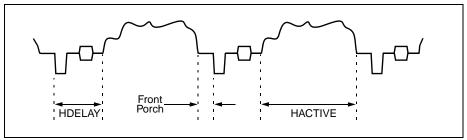


Table 1-6 shows the number of clocks at the 4x sample rate (the CLKx1 rate) when cropping is not implemented.

Table 1-6. Uncropped Clock Totals

	CLKx1 Front Porch	CLKx1 HDELAY	CLKx1 HACTIVE	CLKx1 Total
NTSC	21	135	754	910
PAL/SECAM	27	186	922	1135

1.6 Video Scaling, Cropping, and Temporal Decimation

The value for HDELAY is calculated using the following formula:

HDELAY = [(CLKx1_HDELAY / CLKx1_HACTIVE) * HACTIVE] & 0x3FE

CLKx1_HDELAY and CLKx1_HACTIVE are constant values, so the equation becomes:

NTSC: HDELAY = [(135 / 754) * HACTIVE] & 0x3FE

PAL/SECAM: HDELAY = [(186 / 922) * HACTIVE] & 0x3FE

In this equation, the HACTIVE value cannot be cropped.

Vertical Delay Register (VDELAY) VDELAY is programmed with the delay between the rising edge of $\overline{\text{VRESET}}$ and the start of active video lines. It determines how many lines to skip before initiating the ACTIVE signal, and is programmed with the number of lines to skip at the beginning of a frame.

Vertical Active Register (VACTIVE) VACTIVE is programmed with the number of lines used in the vertical scaling process. The actual number of vertical lines output from the Bt835 is equal to this register, multiplied by the vertical scaling ratio. If VSCALE is set to 0x1A00 (4:1), then the actual number of lines output is VACTIVE/4. If VSCALE is set to 0x0000 (1:1), then VACTIVE contains the actual number of vertical lines output.

NOTE(S): It is important to note the difference between the implementation of the horizontal registers (HSCALE, HDELAY, and HACTIVE) and the vertical registers (VSCALE, VDELAY, and VACTIVE). Horizontally, HDELAY and HACTIVE are programmed with respect to the scaled pixels defined by HSCALE. Vertically, VDELAY and VACTIVE are programmed with respect to the number of lines before scaling (before VSCALE is applied).

1.6 Video Scaling, Cropping, and Temporal Decimation

1.6.8 Temporal Decimation

Temporal decimation provides a solution for video synchronization during periods when full frame rate cannot be supported due to bandwidth and system restrictions.

For example, when capturing live video for storage, system limitations such as hard disk transfer rates or system bus bandwidth may limit the frame capture rate. If these restrictions limit the frame rate to 15 frames per second, the Bt835's time scaling operation enables the system to capture every other frame, instead of allowing the hard disk timing restrictions to dictate which frame to capture. This maintains an even distribution of captured frames and alleviates the jerky effects caused by systems that simply burst in data when bandwidth becomes available.

The Bt835 provides temporal decimation on either a field or frame basis. The temporal decimation register (TDEC) is loaded with a value from 1 to 60 (NTSC) or 1 to 50 (PAL/SECAM). This value represents the number of fields or frames skipped by the chip during a sequence of 60 for NTSC, or 50 for PAL/SECAM. Skipped fields and frames are considered inactive, indicated by the ACTIVE pin remaining low. Consequently, if QCLK is programmed to depend on ACTIVE, QCLK becomes inactive as well.

Examples:

TDEC = 0x02	Decimation is performed by frames. Two frames are skipped per 60 frames of video, assuming NTSC decoding.
	Frames 1–29 are output normally, then ACTIVE remains low for one frame. Frames 30–59 are then output, followed by another frame of inactive video.
TDEC = 0x9E	Decimation is performed by fields. Thirty fields are output per 60 fields of video, assuming NTSC decoding.
	This value outputs every other field, or every odd field of video, starting with field one in frame one.
TDEC = 0x01	Decimation is performed by frames. One frame is skipped per 50 frames of video, assuming
TDEC = 0x00	PAL/SECAM decoding. Decimation is not performed. Full frame rate video is output by the Bt835.

When changing programming in the temporal decimation register, 0x00 should be loaded first, and then the decimation value. This ensures that the decimation counter is reset to zero. If zero is not first loaded, the decimation may start on any field or frame in the sequence of 60 (or 50 for PAL/SECAM). On power-up, this preload is not necessary because the counter is internally reset.

When decimating fields, the FLDALN bit in the TDEC register can be programmed to choose whether the decimation starts with an odd field or an even field. If the FLDALN bit is set to logical 0, the first field that is dropped during the decimation process will be an odd field. Conversely, setting the FLDALN bit to logical 1 causes the even field to be dropped first in the decimation process.

1.7 Video Adjustments

The Bt835 provides programmable hue, contrast, saturation, and brightness.

1.7.1 The Hue Adjust Register (HUE)

The hue adjust register is used to offset the hue of the decoded signal. In NTSC, the hue of the video signal is defined as the phase of the subcarrier with reference to the burst. The value programmed in this register is added or subtracted from the phase of the subcarrier, which effectively changes the hue of the video. The hue can be shifted by plus or minus 90 degrees. Because of the nature of PAL/SECAM encoding, hue adjustments cannot be made when decoding PAL/SECAM.

1.7.2 The Contrast Adjust Register (CONTRAST)

The contrast adjust register, also called the luma gain, provides the ability to change the contrast from approximately 0 percent to 200 percent of the original value. The decoded luma value is multiplied by the 9-bit coefficient loaded into this register.

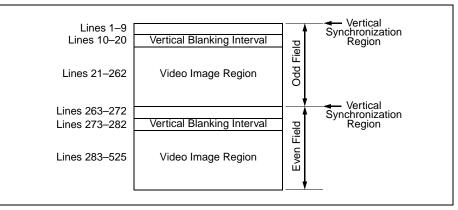
1.7.3 The Saturation Adjust Registers (SAT_U, SAT_V)

The saturation adjust registers are additional color adjustment registers. It is a multiplicative gain of the U and V signals. The value programmed in these registers are the coefficients for the multiplication. The saturation ranges from approximately 0 percent to 200 percent of the original value.

1.7.4 The Brightness Register (BRIGHT)

The brightness register is simply an offset for the decoded luma value. The programmed value is added or subtracted from the original luma value, which changes the brightness of the video output. The luma output ranges from 0 to 255. Brightness adjustment can be made over a range of -128 to +127.

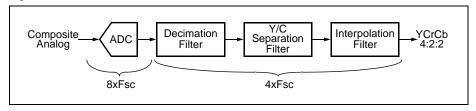
1.8 Bt835 VBI Data Output Interface


VideoStream III Decoder

1.8 Bt835 VBI Data Output Interface

1.8.1 Introduction

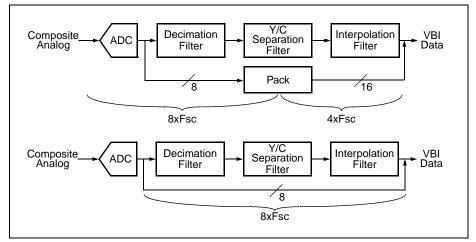
A frame of video is composed of 525 lines for NSTC and 625 for PAL/SECAM. Figure 1-17 illustrates an NTSC video frame in which there are a number of distinct regions. The video image or picture data is contained in the ODD and EVEN fields within lines 21 to 262, and lines 283 to 525, respectively. Each field of video also contains a region for vertical synchronization (lines 1 through 9, and 263 through 272), as well as a region which can contain non-video ancillary data (lines 10 through 20, and 273 through 282). We will refer to the regions which are between the vertical synchronization region and the video picture region as the vertical blanking interval or VBI portion of the video signal.


Figure 1-17. Regions of the Video Frame

1.8.2 Overview

In the default configuration of the Bt835, the VBI region of the video signal is treated the same way as the video image region of the signal. The Bt835 decodes this signal as if it were video. For example, it will digitize at 8xFsc, decimate/filter to a 4xFsc sample stream, separate color to derive luma and chroma component information, and interpolate for video synchronization and horizontal scaling. This process is shown in Figure 1-18.

Figure 1-18. Bt835 YCrCb 4:2:2 Data Path



Bt835

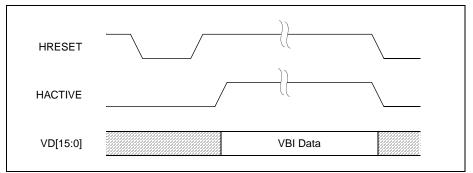
The Bt835 can be configured in a mode known as VBI data passthrough to enable capture of the VBI region ancillary data for later processing by software. In this mode, the VBI region of the video signal is processed as follows:

- The analog composite video signal is digitized at 8*Fsc (28.63636 MHz for NTSC and 35.46895 MHz for PAL/SECAM). This 8-bit value represents a number range from the bottom of the sync tip to the peak of the composite video signal.
- The 8-bit data stream bypasses the decimation filter, Y/C separation filters, and the interpolation filter (see Figure 1-19).
- The Bt835 provides the option to pack the 8*Fsc data stream into a 2-byte-wide stream at 4*Fsc before outputting it to the VD[15:0] data pins. Alternatively, it can be output as an 8-bit 8*Fsc data stream on pins VD[15:8]. In the packed format, the first byte of each pair on a 4*Fsc clock cycle is mapped to VD[15:8], and the second byte is mapped to VD[7:0], with VD[7] and VD[15] being the MSBs. The Bt835 uses the same 16-pin data port for VBI data and YCrCb 4:2:2 image data. The byte pair ordering is programmable.

Figure 1-19. Bt835 VBI Data Path

- The VBI datastream is not pipeline-delayed to match the YCrCb 4:2:2 image output data with respect to horizontal timing (i.e., valid VBI data is output earlier than YCrCb 4:2:2, relative to the Bt835 HRESET signal).
- A larger number of pixels per line is generated in VBI output mode than in YCrCb 4:2:2 output mode. The downstream video processor must be capable of dealing with a varying number of pixels per line to capture VBI data, as well as YCrCb 4:2:2 data from the same frame.
- The following pins can be used to implement this solution: VD[15:0], VACTIVE, HACTIVE, DVALID, VRESET, HRESET, CLKx1, CLKx2, QCLK. This should allow the downstream video processor to correctly load the VBI data and the YCrCb 4:2:2 data.
- Because the 8*Fsc data stream does not pass through the interpolation filter, the sample stream is not locked/synchronized to the horizontal sync timing. The only implication of this is that the sample locations on each line are not correlated vertically.

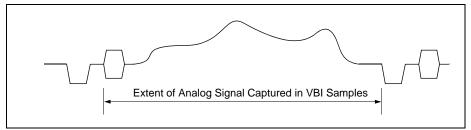
1.8.3 Functional Description


There are three modes of operation for the Bt835 VBI data passthrough feature:

- 1. VBI data passthrough disabled. During this default mode of operation, the device decodes composite video and generates a YCrCb 4:2:2 data stream.
- 2. VBI line output mode. The device outputs unfiltered 8*Fsc data only during the vertical interval, which is defined by the VACTIVE output signal provided by the Bt835. Data is output between the trailing edge of the VRESET signal and the leading edge of VACTIVE. When VACTIVE is high, the Bt835 outputs standard YCrCb 4:2:2 data. This mode of operation is intended to enable capture of VBI lines containing ancillary data, in addition to processing normal YCrCb 4:2:2 video image data.
- 3. VBI frame output mode. In this mode, the Bt835 treats every line in the video signal as if it were a vertical interval line and outputs only the unfiltered 8*Fsc data on every line (i.e., it does not output any image data). This mode of operation is designed for use in still-frame capture/processing applications.

1.8.4 VBI Line Output Mode

The VBI line output mode is enabled via the VBIEN bit in the CONTROL_1 register (0x16). When enabled, the VBI data is output during the VBI active period. The VBI horizontal active period is defined as the interval between consecutive Bt835 HRESET signals. Specifically, it starts at a point one CLKx1 interval after the trailing edge of the first HRESET, and ends with the leading edge of the following HRESET. This interval is coincident with the HACTIVE signal, as indicated in Figure 1-20.


Figure 1-20. VBI Line Output Mode Timing

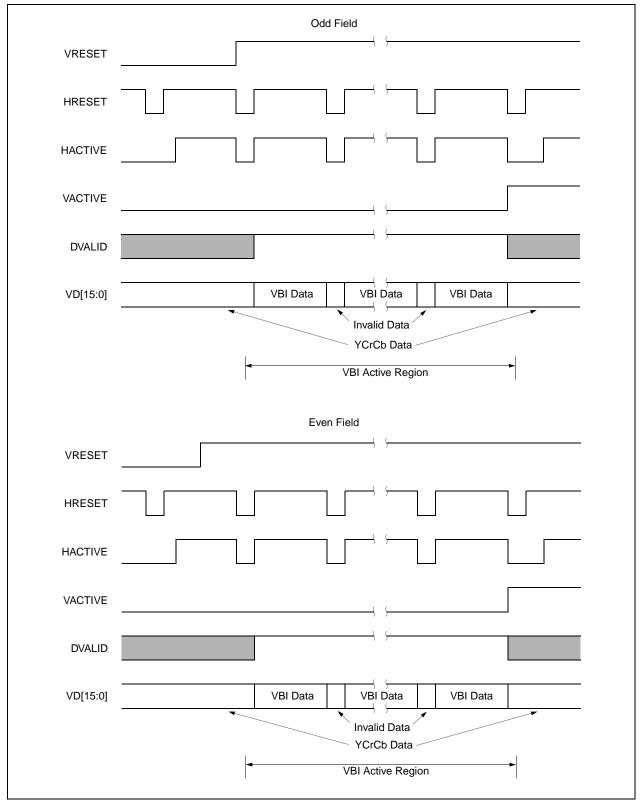
DVALID is always at a logical value of one during VBI. Also, QCLK is operating continuously at CLKx1 or CLKx2 rate during VBI. Valid VBI data is available one CLKx1 (or QCLK) interval after the trailing edge of HRESET. When the Bt835 is configured in VBI line output mode, it generates invalid data outside the VBI horizontal active period. In standard YCrCb output mode, the horizontal active period starts at a time point that is delayed from the leading edge of HRESET, as defined by the value programmed in the HDELAY register. Bt835

The VBI data sample stream, which is output during the VBI horizontal active period, represents an 8*Fsc sampled version of the analog video signal, starting in the vicinity of the sub-carrier burst and ending after the leading edge of the horizontal synchronization pulse. This is illustrated in Figure 1-21.

Figure 1-21. VBI Sample Region

The number of VBI data samples generated on each line may vary depending on the stability of the analog composite video signal input to the Bt835. The Bt835 generates 845 16-bit VBI data words for NTSC and 1070 16-bit VBI data words for PAL/SECAM on each VBI line at a CLKx1 rate. This is assuming a nominal or ideal video input signal (i.e., the analog video signal has a stable horizontal time base). This is equivalent to 1690 8-bit VBI data samples for NTSC and 2,140 8-bit VBI data samples for PAL/SECAM. These values can deviate from the nominal, depending on the actual line length of the analog video signal.

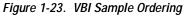
The VBI vertical active period is defined as the period between the trailing edge of the Bt835 $\overline{\text{VRESET}}$ signal and the leading edge of VACTIVE. Note that the extent of the VBI vertical active region can be controlled by setting different values in the VDELAY register. This provides the flexibility to configure the VBI vertical active region as any group of consecutive lines, starting with line 10 and extending to the line number set by the equivalent line count value in the VDELAY register (i.e., the VBI vertical active region can be extended into the video image region of the video signal).

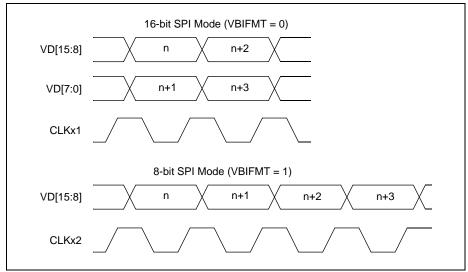

The VBI horizontal active period starts with the trailing edge of an $\overline{\text{HRESET}}$; therefore, if a rising edge of $\overline{\text{VRESET}}$ occurs after the horizontal active period has already started, the VBI active period starts on the following line. The HACTIVE pin is held at a logical value of one during the VBI horizontal active period. DVALID is held high during both the VBI horizontal active and horizontal inactive periods (i.e., it is held high during the whole VBI scan line). These relationships are illustrated in Figure 1-22.

1.8 Bt835 VBI Data Output Interface

VideoStream III Decoder

Bt835





The Bt835 can provide VBI data in all the pixel port output configurations (i.e., 16-bit SPI, 8-bit SPI, ByteStreamTM, and VIP modes).

A video signal must be present on the Bt835 analog input as defined by the status of the VPRES bit in the STATUS register. This enables the Bt835 to generate VBI data. If the status of the VPRES bit reflects no analog input, the Bt835 generates YCrCb data to create a flat blue field image.

The order in which VBI data is presented on the output pins is programmable. Setting the VBIFMT bit in the CONTROL_1 register to a logical 0 places the nth data sample on VD[15:8] and the nth+1 sample on VD[7:0]. Setting VBIFMT to a logical 1 reverses the above. Similarly, in ByteStream and in 8-bit output modes, setting VBIFMT = 0 generates a VBI sample stream with an ordering sequence of n+1, n, n+3, n+2, n+5, n+4, etc. Setting VBIFMT = 1 for ByteStream/8-bit output generates a sequence of n+1, n, n+3, etc., as shown in Figure 1-23.

To capture VBI data output by the Bt835, a video processor/controller should be able to do the following:

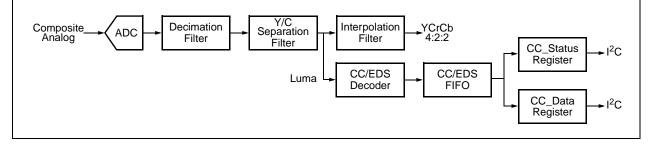
- Keep track of the line count to select a limited number of specific lines for processing of VBI data.
- Handle data type transitioning on the fly, from the vertical interval to the active video image region. For example, during the vertical interval with VBI data passthrough enabled, the processor/controller must grab every byte pair while HACTIVE is high-using the 4*Fsc clock or QCLK. However, when the data stream transitions into YCrCb 4:2:2 data mode with VACTIVE going high, the video processor must interpret the DVALID signal (or use QCLK for the data load clock) from the Bt835 for pixel qualification, and use only valid pixel cycles to load image data (a default Bt835 operation).
- Handle a large and varying number of horizontal pixels per line in the VBI region, compared to the active image region.

1.8.5 VBI Frame Output Mode

In VBI frame output mode, the Bt835 generates VBI data continuously (i.e., there is no VBI active interval). In essence, the Bt835 acts as an ADC, continuously sampling the entire video signal at 8*Fsc. The Bt835 generates HRESET, VRESET, and FIELD timing signals in addition to the VBI data, but the DVALID, HACTIVE, and VACTIVE signals are all held high during VBI frame output operation. The behavior of the HRESET, VRESET, and FIELD timing signals is the same as normal YCrCb 4:2:2 output operation. The HRESET, VRESET, and FIELD timing signals can be used by the video processor to detect the beginning of a video frame/field, at which point it can start to capture a full frame/field of VBI data.

The number of VBI data samples generated on each line may vary depending on the stability of the analog composite video signal input to the Bt835. The Bt835 generates 910 16-bit VBI data words for NTSC, and 1,135 16-bit VBI data words for PAL/SECAM for each line of analog video input—at a CLKx1 rate. This is assuming a nominal or ideal video input signal (i.e., the analog video signal has a stable horizontal time base). This is equivalent to 1,820 8-bit VBI data samples for NTSC, and 2,270 8-bit VBI data samples for PAL/SECAM-for each line of analog video input. These values can deviate from the nominal, depending on the actual line length of the analog video signal.

VBI frame output mode is enabled via the FRAME bit in the CONTROL_1 register. The output byte ordering can be controlled by the VBIFMT bit, as described for VBI line output mode. If both VBI line output and VBI frame output modes are enabled at the same time, the VBI frame output mode takes precedence.

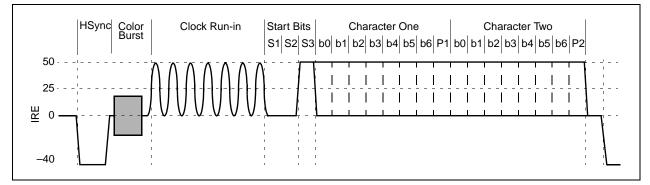

Bt835

1.9 Closed Captioning and Extended Data Services Decoding

For systems capable of capturing Closed Captioning (CC) and Extended Data Services (EDS) and which adhere to the EIA-608 standard, two bytes of information are presented to the video decoder on line 21 (odd field) for CC. An additional two bytes are presented on line 284 (even field) for EDS.

The data presented to the video decoder is an analog signal on the composite video input. The signal contains information which identifies it as the CC/EDS data. It is followed by a control code and two bytes of digital information transmitted by the analog signal. For purposes of CC/EDS, only the luma component of the video signal is relevant. Therefore, the composite signal goes through the decimation and Y/C separation blocks of the Bt835 before any CC/EDS decoding takes place. See Figure 1-24 for a representation of this procedure.

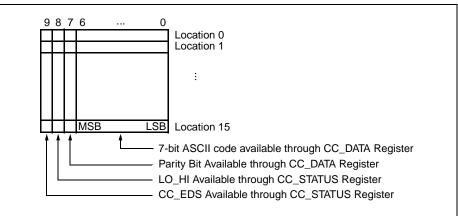
Figure 1-24. CC/EDS Data Processing Path


The Bt835 can be programmed to decode CC/EDS data via the corresponding bits in the CC_STATUS register. The CC and EDS are independent, and the video decoder may capture one or both in a given frame. The CC/EDS signal is displayed in Figure 1-25. In CC/EDS decode mode, the CC/EDS data capture commences once the following occurs:

- 1. Bt835 has detected that line 21 of the field is being displayed.
- 2. The clock run-in signal is present.
- 3. The correct start code (001) is recognized by Bt835.

Each of the two bytes of data transmitted to the video decoder per field contains a 7-bit ASCII code and a parity bit. The convention for CC/EDS data is odd parity.

1.9 Closed Captioning and Extended Data Services Decoding


VideoStream III Decoder

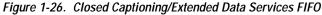


Figure 1-25. CC/EDS Incoming Signal

The Bt835 provides a 16 x 10 location FIFO for storing CC/EDS data. Once the video decoder detects the start signal in the CC/EDS signal, it captures the low byte of CC/EDS data first and checks to see if the FIFO is full. If the FIFO is not full, then the data is stored in the FIFO, and is available to the user through the CC_DATA register (0x20). The high byte of CC/EDS data is captured next and placed in the FIFO. Upon being placed in the 10-bit FIFO, two additional bits are attached to the CC/EDS data byte by Bt835's CC/EDS decoder. These two bits indicate whether the given byte stored in the FIFO corresponds to CC or EDS data and whether it is the high or low byte of CC/EDS. These two bits are available to the user through the CC_STATUS register bits CC/EDS and LO/HI, respectively.

The parity bit is stored in the FIFO, as shown in Figure 1-26. Additionally, the Bt835 stores the results of the parity check in the PAR_ERR bit in the CC_STATUS register.

The 16-location FIFO can hold eight lines worth of CC/EDS data, at two bytes per line. Initially, when the FIFO is empty, bit DA in the CC_STATUS register (0x1F) is set low and indicates that no data is available in the FIFO. Subsequently, when data has been stored in the FIFO, the DA bit is set to logical high. Once the FIFO is half full, the CC_VALID interrupts pin signals to the system that the FIFO contents should be read in the near future. The CC_VALID pin is enabled via the INT_EN bit in the CC_STATUS register (0x1F). The system controller can then poll the CC_VALID bit in the STATUS register (0x00). This ensures that the Bt835 initiated the CC_VALID interrupt. This bit can also be used in applications where the CC_VALID pin is disabled by the user.

When the first byte of CC/EDS data is decoded and stored in the FIFO, the data is immediately placed in the CC_DATA and CC_STATUS registers, and is available to be read. Once the data is read from the CC_DATA register, the information in the next location of the FIFO is placed in the CC_DATA and CC_STATUS registers.

If the controller in the system ignores the Bt835 CC_VALID interrupt pin for a sufficiently long period of time, then the CC/EDS FIFO will become full, and the Bt835 will not be able to write additional data to the FIFO. Any incoming bytes of data will be lost, and an overflow condition will occur; bit OR in the CC_STATUS register will be set to a logical 1. The system can clear the overflow condition by reading the CC/EDS data and creating space in the FIFO for new information. As a result, the overflow bit is reset to a logical 0.

Asynchronous reads and writes to the CC/EDS FIFO will routinely occur. The CC/EDS circuitry writes the data; the reads occur as the system controller reads CC/EDS data from Bt835. These reads and writes sometimes occur simultaneously. The Bt835 is designed to give priority to the read operations. When the CC_DATA register data is specifically being read to clear an overflow condition, the simultaneous occurrence of a read and a write will not cause the overflow bit to be reset, even though the read has priority. An additional read must be made to the CC_DATA register to clear the overflow condition. As always, the write data will be lost while the FIFO is in overflow condition.

The FIFO is reset when both CC and EDS bits are disabled in the CC_STATUS register; any data in the FIFO is lost.

1.9.1 Automatic Chrominance Gain Control

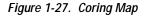
The automatic chrominance gain control compensates for reduced chrominance and color-burst amplitude. This can be caused by high-frequency loss in cabling. Here, the color-burst amplitude is calculated and compared to nominal. The color-difference signals are then increased or decreased in amplitude according to the color-burst amplitude difference from nominal. The maximum amount of chrominance gain is 0.5 to 16 times the original amplitude. This compensation coefficient is then multiplied by the value in the saturation adjust register for a total chrominance gain range of 0 to 16 times the original signal. Automatic chrominance gain control can be disabled by setting the CAGC bit in the CONTROL_1 (0x16) register to a logical 0.

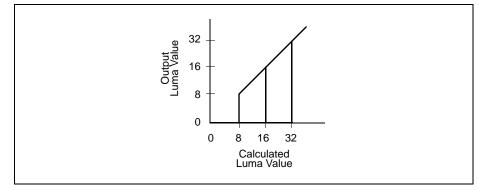
1.9.2 Low Color Detection and Removal

If a color burst of 25 percent (NTSC) or 35 percent (PAL/SECAM) or less of the nominal amplitude is detected for 127 consecutive scan lines, the color-difference signals U and V are set to 0. When the low color detection is active, the reduced chrominance signal is separated from the composite signal to generate the luminance portion of the signal. The resulting Cr and Cb values are 128. Output of the chrominance signal is re-enabled when a color burst of 43 percent (NTSC) or 60 percent (PAL/SECAM) or greater of nominal amplitude is detected for 127 consecutive scan lines.

Low color detection and removal can be disabled by setting the CKILL bit in the CONTROL_1 (0x16) register to a logical 0.

1.9 Closed Captioning and Extended Data Services Decoding


VideoStream III Decoder


1.9.3 Coring

The Bt835 video decoder performs a coring function, in which it forces all values below a programmed level to zero. This is useful because the human eye is more sensitive to variations in black images. By taking near-black images and turning them into black, the image appears clearer to the eye.

Four luma coring values can be selected by the CONTROL_2 (0x17) register. These are 0, 8, 16, or 32 above black. If the total luminance level is below the selected limit, the luminance signal is truncated to the black value. If the luma range is limited (i.e., black is 16), the coring circuitry automatically references the appropriate value for black, as illustrated in Figure 1-27.

Similarly, four chroma coring values can be selected by the CONTROL_2 (0x17) register. These are 0, 2, 4, or 8 above black.

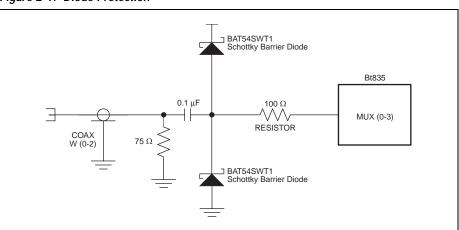
2.0 Electrical Interfaces

2.1 Input Interface

2.1.1 Analog Signal Selection

The Bt835 contains an on-chip 4:1 MUX. For the Bt835, this multiplexer can be used to switch between four composite sources, or three composite sources and one S-Video source. In the first configuration, connect the inputs of the multiplexer (MUX[0], MUX[1], MUX[2], and MUX[3]) to the four composite sources. In the second configuration, connect three inputs to the composite sources and the other input to the luma component of the S-Video connector. When implementing S-Video, the input to the chroma A/D (CIN) should be connected to the chroma signal of the S-Video connector.

2.1.2 Multiplexer Considerations


The multiplexer is not a break-before-make design. Therefore, during the multiplexer switching time, it is possible for the input video signals to be momentarily connected together through the equivalent of 200 Ω .

The multiplexers cannot be switched on a real-time pixel-by-pixel basis.

To improve input robustness, it has been determined that adding external protection diodes and a series resistor in the path of the composite/luma inputs reduces the risk of voltage or current spikes coming into and possibly damaging the part. The diodes must be fast Shottky-type diodes. See Figure 2-1 for specifics.

These modifications will not degrade the video quality or sync locking capability of the Bt835 decoder. They are strictly to help prevent damage due in part to unusually high, out of specification, voltage or current spikes on the video inputs.

2.1.3 Autodetection of NTSC or PAL/SECAM Video

If the Bt835 is configured to decode both NTSC and PAL/SECAM, the Bt835 can be programmed to automatically detect which format is being input to the chip. Autodetection will automatically reprogram the PLL for the format detected. The Bt835 determines the video source input to the chip by counting the number of lines in a frame.

2.1.4 Flash A/D Converters

The Bt835 uses two on-chip flash A/D converters to digitize the video signals.

2.1.5 A/D Clamping

An internally generated clamp control signal is used to clamp the inputs of the A/D converter for DC restoration of the video signals. Clamping for composite and S-video analog inputs occurs within the horizontal sync tip.

2.1.6 Power-Up Operation

Upon power-up, the Bt835 device defaults to NTSC-M format with all digital outputs three-stated.

2.1 Input Interface

2.1.7 Digital Video Input Option

The digital video port on the Bt835 is controlled by the VSIF and TG_CTL registers, 0x23 and 0x24. The VSIF register controls the format of the video input to the decoder. The default is analog video from the 835 A/D(s). To use the digital input, change the VSFMT[2:0] bits in the VSIF register. Several input format options are available, including CCIR 656, Bytestream, and external sync methods of accepting the digital video. The system clock is controlled in the TG_CTL register. Typically in this application, the user inputs the digital clock corresponding to the digital video. In cases where the digital input clock frequency is different from the crystal input to the PLL (e.g., CCIR 656), the TG_RAM must also be reprogrammed. The option also exists to output a clock on the DIG_CLK pin.

2.1.8 Automatic Gain Controls

The Bt835 automatically applies gain to any video signals with suppressed amplitude chroma or luma. If the video being digitized has a non-standard sync height to video height ratio, the digital code used for AGC can be changed by enabling the CRUSH bit in the ADC register (0x1D and WC_DN (0x1E) registers appropriately.

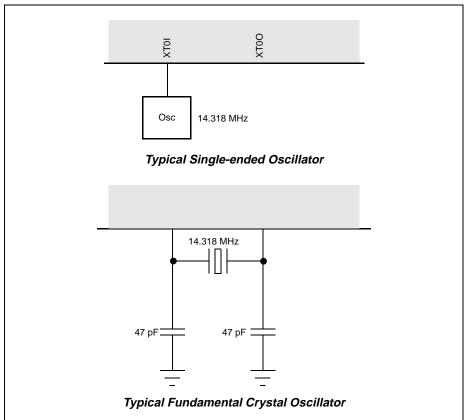
2.1.9 Crystal Inputs and Clock Generation

The Bt835 has two pins for crystal or oscillator connection: XT0I/XT0O. A typical crystal is specified as follows:

- 14.318 MHz
- Fundamental
- Parallel resonant
- 30 pF load capacitance
- 50 ppm
- Series resistance 80 Ω or less

The following crystals are recommended for use with the Bt835:

- Standard Crystal Corp. Phone: (626) 443-2121 Fax: (626) 443-9049 Standard: Part # AAK14M318180KLE20A
 MMD
 - Phone: (714) 753-5888 Fax: (714) 753-5889 Standard: Part # A18CA1-14.31818 MHz Low Profile: Part # B18CA1-14.31818 MHz
- General Electric Devices (G.E.D) Phone: (760) 591-4170 Fax: (760) 591-4164 Standard: Part # PKHC49-U14.31818-020-005-050R Low Profile: Part # PKHC49-US14.31818-020-005-050R


2.1 Input Interface

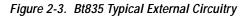
- 4. Monitor Products Co., Inc. Phone: (619) 433-4510 Fax: (619) 434-0255 Standard: Part # MM49N1C3A-14.31818 MHz Low Profile: Part # SMS49N1C3A-14.31818 MHz
 5. Fox Electronics
- Phone: (941) 693-0099 Fax: (941) 693-1554 Standard: Part # 49-014.318180-1 Low Profile: Part # 49S-014.318180-1
- 6. Hooray Electronics Co. (H.E.C.) Phone: (818) 879-7414 Fax: (818) 879-7417 Standard: Part # H143-18 Low Profile: Part # HH143-18

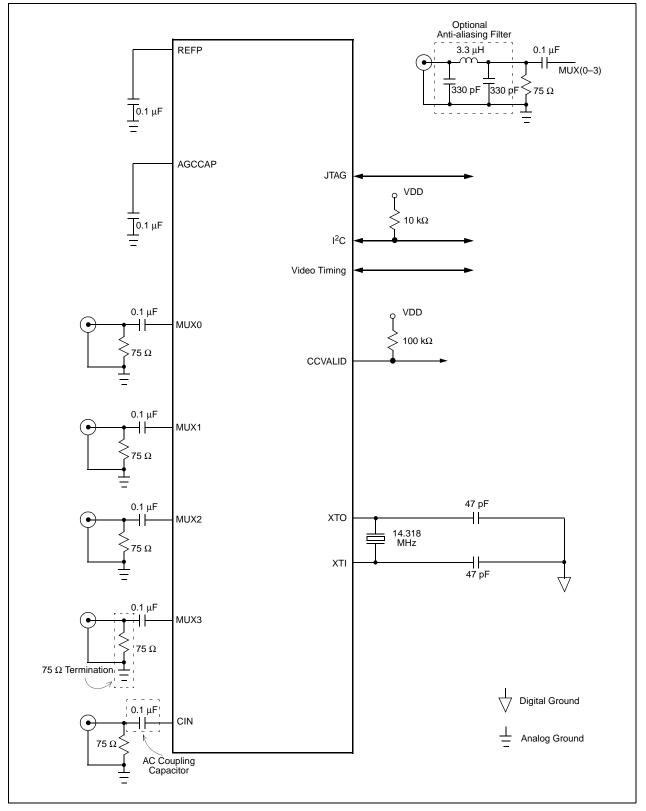
The clock source tolerance should be 50 parts-per-million (ppm) or less, but 100 ppm is acceptable. Devices that output CMOS voltage levels are required. The load capacitance in the crystal configurations may vary, depending on the magnitude of board parasitic capacitance. The Bt835 is dynamic; to ensure proper operation, the clocks must always be running with a minimum frequency of 14.318 MHz. See Figure 2-2 for a diagram of the two clock options.

The CLKx1 and CLKx2 outputs from the Bt835 are generated from an internal PLL. CLKx2 operates at 8x FSC, while CLKx1 operates at 4xFSC (where FSc represents the frequency of the NTSC or PAL subcarrier).

Figure 2-2. Clock Options

2.1 Input Interface


2.1.10 2X Oversampling and Input Filtering


To avoid aliasing artifacts, digitized video may need to be band-limited. Because the Bt835 samples at 8xFsc, no filtering is usually required at the input to the A/Ds. However, if noise or other signal content is expected above 14.32 MHz in NTSC and 17.73 MHz in PAL, the optional anti-aliasing filter shown in Figure 2-3 may be included in the input signal path. After digitization, the samples are digitally low-pass filtered and then decimated to CLKx1. The response of the digital low-pass filter is shown in Figure 2-4. The digital low-pass filter provides the digital bandwidth reduction to limit the video to 6 MHz.

2.0 Electrical Interfaces

2.1 Input Interface

Bt835

2.1 Input Interface

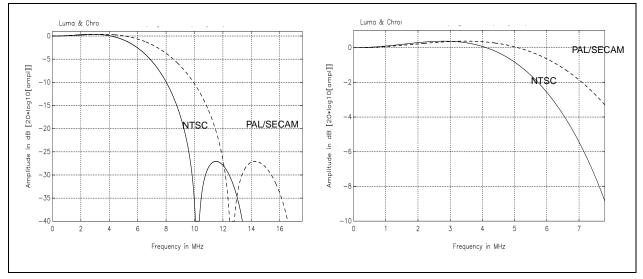
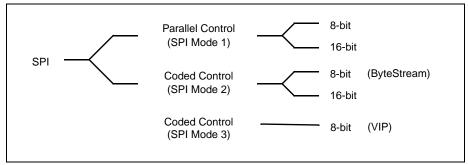


Figure 2-4. Luma and Chroma 2x Oversampling Filter

2.2 Output Interface

2.2.1 Output Interfaces

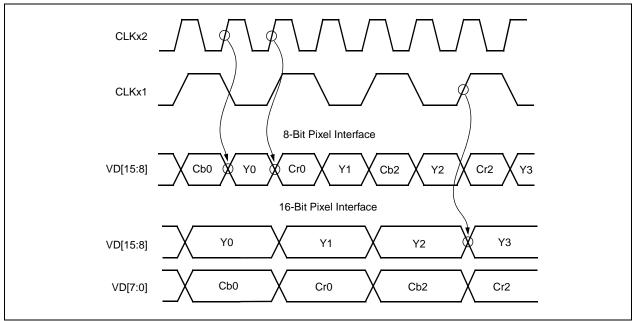

The Bt835 supports a Synchronous Pixel Interface (SPI). SPI supports 8-bit and 16-bit YCrCb 4:2:2 data streams.

Bt835 outputs all pixel and control data synchronous with CLKx1 (16-bit mode), or CLKx2 (8-bit mode). Events such as $\overrightarrow{\text{HRESET}}$ and $\overrightarrow{\text{VRESET}}$ can be encoded as control codes in the data stream to enable a reduced pin interface (ByteStream).

The VESA VIP interface mode is similar in concept to ByteStream, but uses ITU-R-656 header codes for video synchronization.

Mode selections are controlled by the CONTROL_2 (0x17) register. Figure 2-5 shows a diagram summarizing the different operating modes. Each mode will be covered individually in detail. On power-up, the Bt835 automatically initializes to SPI mode 1, at 16 bits wide.

Figure 2-5. Output Mode Summary


2.2.2 YCrCb Pixel Stream Format, SPI Mode 8- and 16-bit Formats

When the output is configured for an 8-bit pixel interface, the data is output on pins VD[15:8], with eight bits of chrominance data preceding eight bits of luminance data for each pixel. New pixel data is output on the pixel port after each rising edge of CLKx2. When the output is configured for the 16-bit pixel interface, the luminance data is output on VD[15:8], and the chrominance data is output on VD[7:0]. In 16-bit mode, the data is output with respect to CLKx1. See Table 2-1 for a summary of output interface configurations. The YCrCb 4:2:2 pixel stream follows the CCIR recommendation, as illustrated in Figure 2-6.

	16-bit Pixel Interface															
Pin Name	VD15	VD14	VD13	VD12	VD11	VD10	VD9	VD8	VD7	VD6	VD5	VD4	VD3	VD2	VD1	VD0
Data Bit	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	CrCb 7	CrCb 6	CrCb 5	CrCb 4	CrCb 3	CrCb 2	CrCb 1	CrCb 0
	8-bit Pixel Interface															
Pin Name	VD15	VD14	VD13	VD12	VD11	VD10	VD9	VD8	VD7	VD6	VD5	VD4	VD3	VD2	VD1	VD0
Y Data Bit	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0								
C Data Bit	CrCb 7	CrCb 6	CrCb 5	CrCb 4	CrCb 3	CrCb 2	CrCb 1	CrCb 0								

Table 2-1. Pixel/Pin Map

Figure 2-6.	YCrCb 4:2:2 Pixel Stream Format (SPI Mode, 8 and 16 Bits)
-------------	---

2.2 Output Interface

2.2.3 Synchronous Pixel Interface (SPI, Mode 1)

Upon power-on reset, the Bt835 initializes to SPI output, mode 1. In this mode, Bt835 outputs all horizontal and vertical blanking interval pixels, in addition to the active pixels synchronous with CLKx1 (16-bit mode), or CLKx2 (8-bit mode). Figure 2-7 illustrates Bt835 SPI-1. The basic timing relationships remain the same for 16-bit or 8-bit modes. 16-bit modes use CLKx1 as the reference; 8-bit modes use CLKx2. Figure 2-8 shows the video timing for SPI mode 1.

Figure 2-7. Bt835 Synchronous Pixel Interface, Mode 1 (SPI-1)

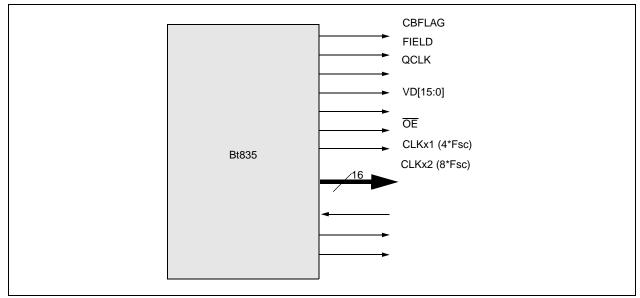
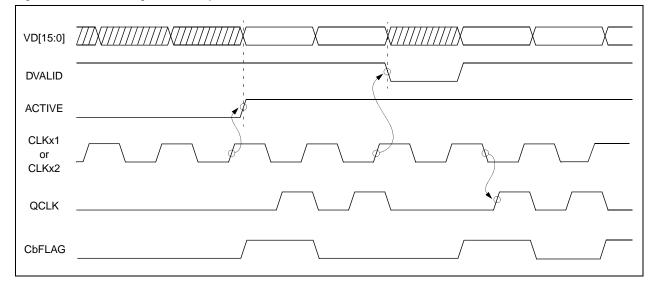



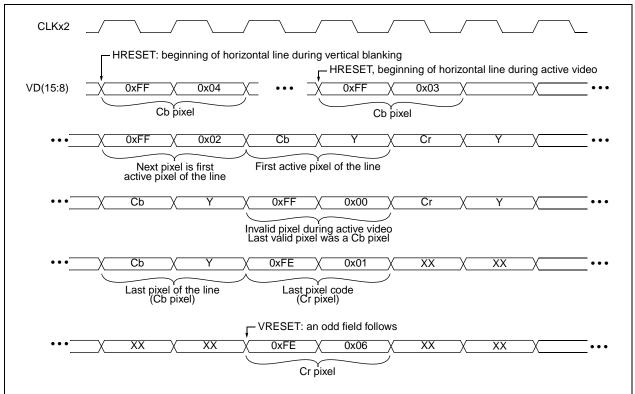
Figure 2-8. Basic Timing Relationships for SPI Mode 1

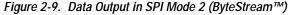
2.2 Output Interface

2.2.4 Synchronous Pixel Interface (SPI, Mode 2, ByteStream)

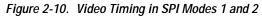
In SPI mode 2, the Bt835 encodes all video timing control signals onto the pixel data bus. ByteStream is the 8-bit version of this configuration. Because all timing data is included on the data bus, a complete interface to a video controller can be implemented in only nine pins: one for CLKx2, and eight for data.

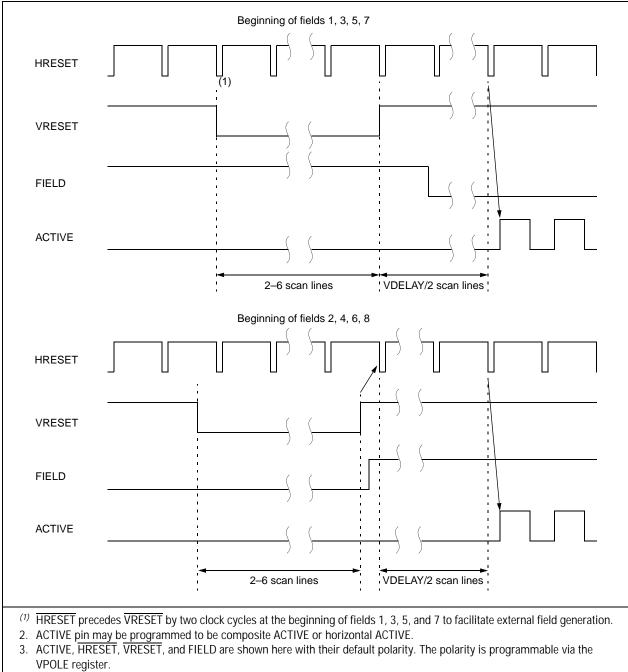
When using coded control, the RANGE bit and the CODE bit must be programmed high. When the RANGE bit is high, the chrominance pixels (both Cr and Cb) are saturated to the range 2 to 253, and the luminance range is limited to the range 16 to 253. In SPI mode 2, the chroma values of 255 and 254, and the luminance values of 0 to 15 are inserted as control codes to indicate video events (Table 2-2). A chroma value of 255 is used to indicate that the associated luma pixel is a control code; a pixel value of 255 also indicates that the CbFlag is high (i.e., the current pixel is a Cb pixel). Similarly, a pixel value of 254 indicates that the luma value is a control code, and the CbFlag is low (Cr pixel).


The first pixel of a line is guaranteed to be a Cb flag; however, due to code precedence relationships, the HRESET code may be delayed by one pixel, so HRESET can occur on a Cr or a Cb pixel. Also, at the beginning of a new field, the relationship between VRESET and HRESET may be lost, typically with video from a VCR. As a result, VRESET can occur during either a Cb or a Cr pixel. Figure 2-9 demonstrates coded control for SPI mode 2 (ByteStream).


Table 2-3 shows the pixel data output ranges. Independent of RANGE, decimal 128 indicates zero color information for Cr and Cb. Black is decimal 16 when RANGE is equal to 0. Code 0 occurs when RANGE = 1.

Figures 2-10 and 2-11 illustrate video timing for SPI modes 1 and 2.


Luma Value	Chroma Value	Video Event Description
0x00	OxFF OxFE	This is an invalid pixel; last valid pixel was a Cb pixel. This is an invalid pixel; last valid pixel was a Cr pixel.
0x01	OxFF OxFE	Cb pixel; last pixel was the last active pixel of the line. Cr pixel; last pixel was the last active pixel of the line.
0x02	OxFF OxFE	Cb pixel; next pixel is the first active pixel of the line. Cr pixel; next pixel is the first active pixel of the line.
0x03	OxFF OxFE	Cb pixel; HRESET of a vertical active line. Cr pixel; HRESET of a vertical active line.
0x04	OxFF OxFE	Cb pixel; HRESET of a vertical blank line. Cr pixel; HRESET of a vertical blank line.
0x05	OxFF OxFE	Cb pixel; VRESET followed by an even field. Cr pixel; VRESET followed by an even field.
0x06	OxFF OxFE	Cb pixel; VRESET followed by an odd field. Cr pixel; VRESET followed by an odd field.


Table 2-2. Description of the Control Codes in the Pixel Stream

2.2 Output Interface

^{4.} FIELD transitions with the end of horizontal active video defined by HDELAY and HACTIVE.

2.2 Output Interface

VideoStream III Decoder

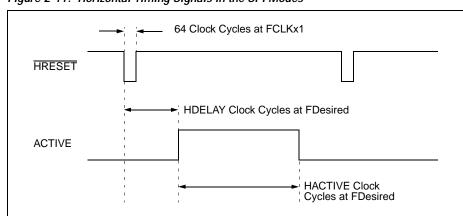


Figure 2-11. Horizontal Timing Signals in the SPI Modes

	RANGE = 0	RANGE = 1
Y	16 —> 235	0> 255
Cr	2> 253	2> 253
Cb	2> 253	2> 253

Bt835

2.2.5 Synchronous Pixel Interface (Mode 3, VIP Interface)

In VIP Interface mode, the Bt835 video decoder transports several types of real time signal streams. Among these signals are:

- 1. Active visible video, represented in digital baseband component YUV which can be scaled both horizontally and vertically.
- 2. Raw ADC output samples of digital CVBS composite video during selected VBI lines representing VBI data.
- 3. Other real time capture related data, excluding ancillary data.

The VIP Interface will accept decoded active visible video, as selected by a video acquisition window definition of active pixels per line and active lines per field. Active video and raw ADC samples are interleaved into one single data stream, and they are synchronized and separated by unique ITU-R-656 header codes. According to the data type and the timing references, luma and chroma signals will be enveloped by appropriate SAV (start of active video) or EAV (end of active video) header codes. VBI data are transported as raw ADC samples. The VIP Interface port does not support ancillary data. All timing reference control signals are transported through a VIP Interface mode is enabled via a user programmable bit, VIPEN. When the VIPEN bit is disabled, all video signals are transported through the interface undisturbed.

LUM	A	CHROMA			
Range (decimal)	Y	Range (decimal)	CR	СВ	
Black	16	No Color	128	128	
White	235	100% Saturation	16-240	16-240	

Table 2-4. ITU-R-656 Specification on Range of Active Video Data

Active video data are sampled as YC_RC_B (YUV) 4:2:2 and transmitted as a byte serial stream in the following order:

$$C_B-Y-C_R-Y-C_B-Y-C_R-Y-\cdots \cdots$$

2.2 Output Interface

Y, C_R and C_B data are all represented in 8-bit word format. However, during VIP mode, control codes, SAV and EAV, are inserted into the data stream at the start of active video and at the end of active video, respectively, in a digital video line. SAV and EAV codes consist of a hexadecimal four word sequence in the following format: FF, 00, 00, XY. The first three words, FF, 00, 00, are a fixed preamble where FF and 00 are reserved for use in timing reference signals. The fourth word, XY, contains information such as the state of field blanking, the state of vertical line blanking, and the state of horizontal line blanking. The upper nibble of the byte XY represents the actual reference information, and the lower nibble is used as error protection and correction parity bits. Table 2-5 describes each bit in a word, XY, in detail.

Bits	Name	Event Description
XY[7]	T-bit, Task Bit	Active Video Data: T-bit = 1, VBI Data: T-bit = 0.
XY[6]	F-bit, Field ID	Even Field: F-bit = 1, Odd Field: F-bit = 0.
XY[5]	V-bit, Vertical Blanking ID	Active Video Line: V-bit = 0, Lines during Vertical Blanking: V-bit = 1.
XY[4]	H-bit, Horizontal Blanking ID	Active Pixels: H-bit = 0, Pixels during Horizontal Blanking: H-bit = 1.
XY[3]	P3, Parity Error Detection Bit	((H-bit V-bit) (Inverse(T-bit)))
XY[2]	P2, Parity Error Detection Bit	((F-bit H-bit) (Inverse(T-bit)))
XY[1]	P1, Parity Error Detection Bit	((F-bit V-bit) (Inverse(T-bit)))
XY[0]	P0, Parity Error Detection Bit	((F-bit V-bit) (H-bit))
NOTE(S):	_ indicates "Exclusive OR" bit wise	operation.

Table 2-5. Reference Byte, XY[7:0] and its Individual Bit Information

The task bit T distinguishes between visible active video, to be displayed, and selected raw VBI-ADC samples, that are to be placed in off-screen memory. The V bit indicates the vertical blanking region of a digital video field; it is derived from the VACTIVE signal. The H bit indicates the horizontal blanking region of a digital video line. For SAV codes, the H bit is always zero and for EAV codes, the H bit is always one.

Video lines that are not selected by the active video acquisition window do not need to appear on the VIP bus, and during this time, the VIPEN signal is held LOW. VBI data is transported in a manner similar to the active video data. However, VBI data is not multiplexed into Chroma and Luma, but as a single stream of ADC samples. When VBISEL and VBIEN are both held HIGH, VBI data is selected and treated as raw ADC samples.

According to ITU-R-656 and VESA VIP Interface Spec 1.1, the upper nibble X of the reference byte contains the three reference bits F, V, H. The bits T, F, V can only change in the EAV code, which is indicated the beginning of a digital video line.

2.2.5.1 Bt835 VIP CODE (T, F, V, H) GENERATION:	The task bit, T, changes when the VBIEN and VBISEL input signals are both HIGH, and it depends on two other timing signals, LASTNVBI and LASTNV.
	LASTNVBI and LASTNV are held HIGH for one line near the vertical blanking
	interval. When VBIEN, VBISEL, and LASTNVBI are all held HIGH, the task bit
	is set to LOW. LASTNVBI represents the last line containing non-VBI data, and it
	also flags the upcoming VBI data stream VRESET transitions to LOW in the
	middle of LASTNVBI. When VBIEN, VBISEL, and LASTNV are all held
	HIGH, the task bit is set to HIGH. LASTNV indicates activation of VACTIVE
	and flags upcoming active video data. VACTIVE transitions to HIGH in the
	middle of LASTNV. The task bit changes only on EAV codes.

The field bit, F, toggles to the opposite polarity at the leading edge of NVRESET. The timing control signal, LASTF, triggers the field bit to switch its polarity. This polarity value is maintained until the next time LASTF transitions to HIGH. LASTF is held HIGH for one line length. The field bit changes only on EAV codes.

The vertical blanking interval bit, V, must change in an EAV code at the beginning of a digital line. In the Bt835, the signals VACTIVE and LASTV determine the polarity of the V bit. LASTV indicates the last active line of a field, whether it is an even or odd field, and is held HIGH for one line. VACTIVE transitions to LOW in the middle of LASTV signal while it is held HIGH. Then, the V bit transitions to LOW while VACTIVE and LASTV are both held HIGH. The Bt835 complies with the specification that V bit must change its polarity only in EAV codes.

The horizontal blanking ID, H-bit switches its polarity between zero and one in both SAV and EAV codes. At the start of active video, the HACTIVE signal is held HIGH and H-bit is set LOW. At the end of active video, HACTIVE goes LOW and the H-bit is set to HIGH. In other words, the EAV code contains an H bit equal to one and SAV code contains an H bit equal to zero. Note that EAV marks the beginning of a digital video line.

Table 2-6 lists SAV and EAV codes in relation to specific events occurring during a digital video line.

Table 2-6.	VIP SAV and EAV Codes Under Full Resolution (1 of 3)
------------	--

Code Type	Event Description		eaders and erence Code		Comments	
	FIELD ID		SKS or VBI mode)	Corresponding Discrete Pin/Signal		
		ODD	EVEN			
EAV	Previous pixel was last pixel of any active line but NOT the last line.		FF-00-00- D A 1101 1010	HACTIVE = 1, VACTIVE = 1, FIELD = 1, VBISEL = 0, NVRESET = 1.	FIELD signal transitions with trailing edge of NVRESET	
SAV	Next pixel is first pixel of any active 'acquired' line but NOT the last line.		FF-00-00- C 7 1100 0111	HACTIVE = 0, VACTIVE = 1, FIELD = 1, VBISEL = 0, NVRESET = 1.	NVRESET is an active LOW signal.	
EAV	Previous pixel was the last pixel of the last active line.		FF-00-00- F 1 1111 0001	HACTVE = 0, VACTIVE = 1, FIELD = 1, VBISEL = 0, NVRESET = 1, LASTV = 1.	EAV code marks the beginning of a digital video line.	
SAV	Next pixel is first pixel of first inactive line.		FF-00-00- E C 1110 1100	HACTIVE = 1, VACTIVE = 0, FIELD = 1, VBISEL = 0, NVRESET = 1, LASTV = 1.	SAV arrives after EAV, following HACTIVE signal.	
EAV	Previous pixel was last pixel of the line, immediately before NVRESET goes low.		FF-00-00- B 6 1011 0110	HACTIVE = 0, VACTIVE = 0, FIELD = 1, VBISEL = 0, NVRESET = 1, LASTF = 1.	F-bit toggles with leading edge of NVRESET.	
SAV	Next pixel is first pixel of line immediately after NVRESET becomes active low.		FF-00-00- A B 1010 1011	HACTIVE = 1, VACTIVE = 0, FIELD = 1, VBISEL = 0, NVRESET = 1, LASTF = 1.	F-bit toggles in vertical blanking interval.	
EAV	Previous pixel was last pixel of the line immediately before VBI mode is enabled.		FF-00-00- 3 8 0011 1000	HACTIVE = 0, VACTIVE = 0, FIELD = 1, VBISEL = 0, NVRESET = 0, LASTNVBI = 1.	VBI mode occurs during the vertical blanking interval.	
SAV	Next pixel is first pixel of a line immediately after VBI mode is enabled.	FF-00-00- 2 5 0010 0101		HACTIVE = 1, VACTIVE = 0, FIELD = 0, VBISEL = 1, NVRESET = 1, LASTNVBI = 1.	VBISEL is an active HIGH signal which selects VBI data line.	
EAV	Previous pixel was last pixel of last line in vertical blanking interval during VBI mode.	FF-00-00- 9 D 1001 1101		HACTIVE = 0, VACTIVE = 0, FIELD = 0, VBISEL = 1, NVRESET = 1, LASTNV = 1.	In Bt835, this EAV code occurs during VBI mode.	
SAV	Next pixel is first pixel of FIRST active 'acquired' line	FF-00-00- 8 0 1000 0000		HACTIVE = 1, VACTIVE = 1, FIELD = 0, VBISEL = 0, NVRESET = 1, LASTNV = 1.	Active video line data are processed at the rising (or leading) edge of VACTIVE.	

Table 2-6. VIP SAV and EAV Codes Under Full Resolution (2 of	: 3)
--	------

Code Type	Event Description	Inserted Headers and 'raster' Reference Code		Corresponding Discrete Pin/Signal	Comments
	FIELD ID	TASKS (Active Video or VBI mode)			
		ODD	EVEN		
EAV	Previous pixel was last pixel of any active line, but NOT the line immediately before last active line.	FF-00-00- 9 D 1001 1101		HACTIVE = 0, VACTIVE = 1, FIELD = 0, VBISEL = 0, NVRESET = 1.	FIELD signal and F-bit in control codes do not transition at the same time.
SAV	Next pixel is first pixel of any active 'acquired' line.	FF-00-00- 8 0 1000 0000		HACTIVE = 1, VACTIVE = 1, FIELD = 0, VBISEL = 0, NVRESET = 1.	EAV code always precedes SAV code in a digital video line.
EAV	Previous pixel was last pixel of the line immediately before last active line ONLY.	FF-00-00- B 6 1011 0110		HACTIVE = 0, VACTIVE = 1, FIELD = 0, VBISEL = 0, NVRESET = 1, LASTV = 1.	LASTV indicates the arrival of last active line during active video.
SAV	Next pixel is first pixel of first inactive line.	FF-00-00- A B 1010 1011		HACTIVE = 1, VACTIVE = 0, FIELD = 0, VBISEL = 0, NVRESET = 1, LASTV = 1.	LASTV is active high only during the last half of last active line and the first half of first vertical blanking line.
EAV	Previous pixel was last pixel of the line immediately before NVRESET goes low.	FF-00-00- F 1 1111 0001		HACTIVE = 0, VACTIVE = 0, FIELD = 0, VBISEL = 0, NVRESET = 1, LASTF = 1.	LASTF indicates the arrival of last line before NVRESET becomes active low.
SAV	Next pixel is first pixel of the first inactive line after NVRESET has gone low.	FF-00-00- E C 1110 1100		HACTIVE = 1, VACTIVE = 0, FIELD = 0, VBISEL = 0, NVRESET = 1, LASTF = 1.	LASTF is active high only during the last half of a line before and the first half of a line after NVRESET is active.
EAV	Previous pixel was last pixel of the line immediately before VBI mode is enabled.	FF-00-00- 7 F 0111 1111		HACTIVE = 0, VACTIVE = 0, FIELD = 0, VBISEL = 0, NVRESET = 0, LASTNVBI = 1.	LASTNVBI indicates the arrival of last line before VBI mode is enabled.
SAV	Next pixel is first pixel of line immediately after VBI mode is enabled.		FF-00-00- 6 2 0110 0010	HACTIVE = 1, VACTIVE = 0, FIELD = 1, VBISEL = 1, NVRESET = 1, LASTNVBI = 1.	VBIEN signal triggers data in VBISEL lines to be processed.
EAV	Previous pixel was last pixel in vertical blanking interval during VBI mode.		FF-00-00- D A 1101 1010	HACTIVE = 0, VACTIVE = 0, FIELD = 1, VBISEL = 1, NVRESET = 1, LASTNV = 1.	LASTNV indicates last line before active video lines.
SAV	Next pixel is first pixel of first active 'acquired' line.		FF-00-00- C 7 1100 0111	HACTIVE = 1, VACTIVE = 1, FIELD = 1, VBISEL = 1, NVRESET = 1, LASTNV = 1.	During the odd to even field transition, VBISEL stays HIGH during the first half of first active line.

2.2 Output Interface

Code Type	Event Description	Inserted Headers and 'raster' Reference Code		Corresponding Discrete Pin/Signal	Comments			
	FIELD ID	TASKS (Active Video or VBI mode)						
		ODD	EVEN					
	No valid data between SAV and EAV, don't capture and don't increment	"00"		VALID = 0	Value 00 is not compliant to ITU-R-656, but compatible with straightforward encoder and decoder logic implementation. 00 and FF are not valid pixel values.			

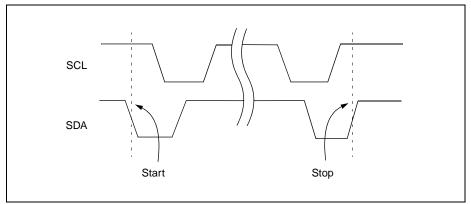
Table 2-6. VIP SAV and EAV Codes Under Full Resolution (3 of 3)

VIP Application Notes:

- 1. Certain VIP applications, such as a VCR in fast forward mode, can move the memory pointer of a FIFO to a new field, at the leading edge of VRESET instead of the leading edge of VACTIVE. In the Bt835, the signal NVRESET is used instead to indicate that VRESET is an active low signal. During VIP mode, Field ID is gated by NVRESET, and the Field ID transitions at the leading edge of NVRESET. However, if the leading edge of VACTIVE arrives before the trailing edge of NVRESET, the memory pointer may move to a new location prematurely, causing the first line of one field to be written at the bottom of another field. Thus, we recommend that the leading edge of VACTIVE be used to move the memory pointer of a FIFO in VCR applications.
- 2. During vertical scaling, the VALID and HACTIVE signals are gated off. This means that during a dropped line, no SAV or EAV codes are generated. And because the VALID signal is gated off, all pixels are treated as invalid pixels. Only invalid code 00 is inserted into the data stream of dropped lines. However, in the Bt835, HACTIVE is held HIGH, and VALID is held LOW during vertical scaling. This behavior causes a SAV code to be generated at the start of active video, but an EAV code does not get generated until after all dropped lines are filled with hex 00. EAV codes follow invalid data lines but precede another valid pixel line.
- 3. During temporal decimation, VACTIVE signal is forced inactive during a dropped field or frame. This means that although SAV and EAV codes are generated, all lines are being treated as occurring in the vertical blanking interval. Thus, vertical blanking ID, V bit, must be set to HIGH during dropped fields, indicating vertical blanking. However, the Bt835 does not support the temporal decimation of fields or frames in VIP.

2.2.6 CCIR601 Compliance

When the RANGE bit is set to zero, the output levels are fully compliant with the CCIR601 recommendation. CCIR601 specifies that nominal video has Y values ranging from 16 to 235, and Cr and Cb values ranging from 16 to 240. Excursions outside this range are allowed to handle non-standard video. It is mandatory that 0 and 255 be reserved for timing information.


2.3 I²C Interface

The inter-integrated circuit bus is a two-wire serial interface. Serial Clock (SCL) and Data Lines (SDA) are used to transfer data between the bus master and the slave device. The Bt835 can transfer data at a maximum rate of 100 kbps. The Bt835 operates as a slave device.

2.3.1 Starting and Stopping

The relationship between SCL and SDA is decoded to provide both a start and stop condition on the bus. To initiate a transfer on the I²C bus, the master must transmit a start pulse to the slave device. This is accomplished by taking the SDA line low while the SCL line is held high. The master should only generate a start pulse at the beginning of the cycle, or after the transfer of a data byte to or from the slave. To terminate a transfer, the master must take the SDA line high while the SCL line is held high. The master can issue a stop pulse at any time during an I²C cycle. Since the I²C bus will interpret any transition on the SDA line during the high phase of the SCL line as a start or stop pulse, care must be taken to ensure that data is stable during the high phase of the clock. This is illustrated in Figure 2-12.

Figure 2-12. The Relationship between SCL and SDA

2.3 I²C Interface

2.3.2 Addressing the Bt835

An I²C slave address consists of two parts: a 7-bit base address and a single bit R/\overline{W} command. The R/\overline{W} bit is appended to the base address to form the transmitted I²C address, as shown in Figure 2-13 and Table 2-7.

Figure 2-13. I²C Slave Address Configuration

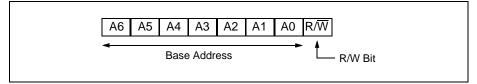


Table 2-7. Bt835 Address Matrix

I2C Address	I2CCS Pin	Bt835 Base	R/W Bit	Action
88	0	10001000	0	Write
		10001000	1	Read
8A	1	10001010	0	Write
		10001010	1	Read

2.3.3 Reading and Writing

After transmitting a start pulse to initiate a cycle, the master must address the Bt835. To do this, the master must transmit one of the four valid Bt835 addresses, with the Most Significant Bit (MSB) transmitted first. After transmitting the address, the master must release the SDA line during the low phase of the SCL and wait for an acknowledge. If the transmitted address matches the selected Bt835 address, the Bt835 responds by driving the SDA line low, generating an acknowledge to the master. The master samples the SDA line at the rising edge of the SCL line, and proceeds with the cycle. If no device responds, including the Bt835, the master transmits a stop pulse and ends the cycle.

If the slave address R/W bit is low (indicating a write) the master transmits an 8-bit byte to the Bt835, with the MSB transmitted first. The Bt835 acknowledges the transfer and loads data into its internal address register. The master then issues a stop command, a start command, or transfers another 8-bit byte, MSB first, which is loaded into the register specified to by the internal address register. The Bt835 then acknowledges the transfer and increments the address register in preparation for the next transfer. As before, the master may issue a stop command, a start command, or transfer able to be loaded into the next location.

If the slave address R/W bit is high (indicating a read), the Bt835 transfers the contents of the register specified to by its internal address register, MSB first. The master acknowledges receipt of the data and pulls the SDA line low. As with the write cycle, the address register is auto-incremented, in preparation for the next read.

To stop a read transfer, the host must *not* acknowledge the last read cycle. The Bt835 will then release the data bus in preparation for a stop command. If an acknowledge is received, the Bt835 proceeds to transfer the next register.

When the master generates a read from the Bt835, the Bt835 starts its transfer from whatever location is currently loaded in the address register. Because the address register might not contain the address of the desired register, the master executes a write cycle and sets the address register to the desired location. After receiving an acknowledgment for the transfer of data into the address register, the master initiates a read of the Bt835 by starting a new I²C cycle with an appropriate read address. The Bt835 then transfers the contents of the desired register.

For example, to read register 0x0A, brightness control, the master starts a write cycle with an I^2C address of 0x88 or 0x8A. After receiving an acknowledge from the Bt835, the master transmits the desired address, 0x0A. After receiving an acknowledgment, the master then starts a read cycle with an I^2C slave address of 0x89 or 0x8B. The Bt835 acknowledges transfer and then transfers the contents of register 0x0A. Issuing a stop command after the write cycle is not needed. The Bt835 detects the repeated start command and starts a new I^2C cycle. This process is illustrated in Table 2-8 and Figure 2-14.

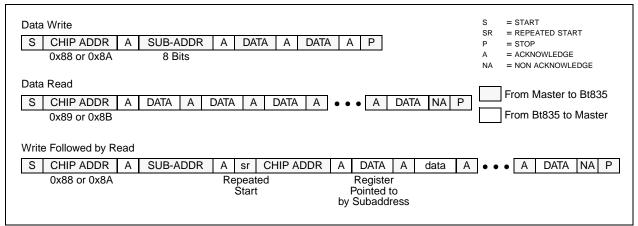
For detailed information on the I²C bus, refer to *The I²C-Bus Reference Guide*, reprinted by Rockwell.

Table 2-8. Example I^2C Data Transactions (1 of 2)

Master	Data Flow	Bt835	Comment
			Write to Bt835
I ² C Start	>		Master sends Bt835 chip address, i.e., 0x88 or 0x8A.
		ACK	Bt835 generates ACK on successful receipt of chip address.
subaddress	>		Master sends subaddress to Bt835.
		ACK	Bt835 generates ACK on successful receipt of subaddress.
Data(0)	>		Master sends first data byte to Bt835.
		ACK(0)	Bt835 generates ACK on successful receipt of 1st data byte.
	>		
· ·	> >	•	
Data(n)	>		Master sends nth data byte to Bt835.
		ACK(n)	Bt835 generates ACK on successful receipt of nth data byte.
I ² C Stop			Master generates STOP to end transfer.

2.0 Electrical Interfaces

2.3 I²C Interface


Bt835

Master	Data Flow	Bt835	Comment
			Read from Bt835
I ² C Start	>		Master sends Bt835 chip address, i.e., 0x89 or 0x8B.
		ACK	Bt835 generates ACK on successful receipt of chip address.
	<	Data(0)	Bt835 sends first data byte to Master.
ACK(0)			Master generates ACK on successful receipt of 1st data byte.
	<		
	< <	· ·	
	<	Data(n-1)	Bt835 sends (n-1)th data byte to Master.
ACK(n-1)			Master generates ACK on successful receipt of (n-1)th data byte.
	<	Data(n)	Bt835 sends nth data byte to Master.
NO ACK			Master does not acknowledge nth data byte.
I ² C Stop			Master generates STOP to end transfer.

Table 2-8. Example I²C Data Transactions (2 of 2)

where:	I ² C Start	$\rm I^2C$ start condition and Bt835 chip address (including the $\rm R/\overline{W}$ bit).
	Subaddress	the 8-bit subaddress of the Bt835 register, MSB first.
	Data(n)	the data to be transferred to/from the addressed register.
	I ² C Stop	I ² C stop condition.

Figure 2-14. I²C Protocol Diagram

2.3.4 Software Reset

The contents of the control registers can be reset to their default values by issuing a software reset. A software reset can be accomplished by writing any value to subaddress 0x1F. A read of this location returns an undefined value.

2.4 JTAG Interface

2.4.1 Need for Functional Verification

As the complexity of imaging chips increases, the need to easily access individual chips for functional verification becomes vital. The Bt835 incorporates special circuitry that allows it to be accessed in full compliance with standards set by the Joint Test Action Group. Conforming to IEEE P1149.1 "Standard Test Access Port and Boundary Scan Architecture," the Bt835 has dedicated pins that are used for testability purposes only.

2.4.2 JTAG Approach to Testability

JTAG's approach to testability uses boundary scan cells placed at each digital pin and at the digital interface (a digital interface is the boundary between an analog block and a digital block within the Bt835). All cells are interconnected into a boundary scan register that applies or captures test data to verify functionality of the integrated circuit. JTAG is particularly useful for board testers using functional testing methods.

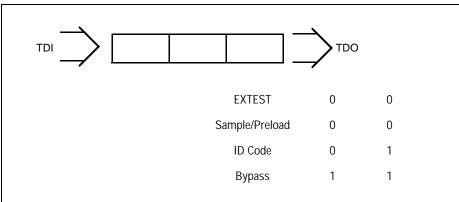
JTAG consists of five dedicated pins comprising the Test Access Port (TAP). These pins are Test Mode Select (TMS), Test Clock (TCK), Test Data Input (TDI), Test Data Out (TDO) and Test Reset (TRST). The TRST pin will reset the JTAG controller when pulled low at any time. Verification of the integrated circuit and its connection to other modules on the printed circuit board can be achieved through these five TAP pins. With boundary scan cells at each digital interface and pin, the Bt835 has the capability to apply and capture the respective logic levels. Because all the digital pins are interconnected as a long shift register, the TAP logic has access and control of all the necessary pins to verify functionality. The TAP controller can shift in any number of test vectors through the TDI input and apply them to the internal circuitry. The output result is scanned on the TDO pin and is externally checked. While isolating the Bt835 from other components on the board, the user has easy access to all Bt835 digital pins and digital interfaces through the TAP and can perform complete functionality tests without using expensive bed-of-nails testers.

2.4 JTAG Interface

2.4.3 Optional Device ID Register

The Bt835 has the optional device identification register defined by the JTAG specification. This register contains information concerning the revision, actual part number, and manufacturer's identification code specific to Rockwell. This register can be accessed through the TAP controller via an optional JTAG instruction. Refer to Table 2-9.

Table 2-9. Device Identification Register


۷	/ers	sio	n						F	Par	t N	um	be	r						Manufacturer ID											
Х	Х	Х	Х	0	0	0	0	0	0	1	1	0	0	1	1	1	1	0	1	0	0	0	1	1	0	1	0	1	1	0	1
	0 0829, 0x033D					0x0D6																									
4 Bits 16 Bits										11	I Bi	ts																			

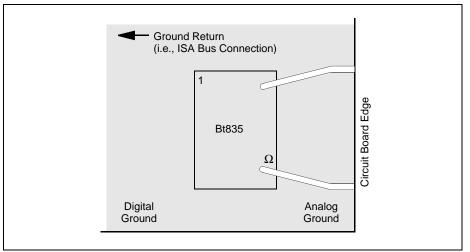
2.4.4 Verification with the Tap Controller

A variety of verification procedures can be performed through the TAP controller. Using a set of four instructions, the Bt835 can verify board connectivity at all digital interfaces and pins. The instructions can be accessed by using a state machine standard to all JTAG controllers. These are Sample/Preload, Extest, ID Code, and Bypass (see Figure 2-15). Refer to the IEEE P1149.1 specification for details concerning the instruction register and JTAG state machine.

Rockwell has created a BSDL with the AT&T BSD editor. Should JTAG testing be implemented, a disk with an ASCII version of the complete BSDL file can be obtained by contacting your local Rockwell sales office.

Figure 2-15. Instruction Register

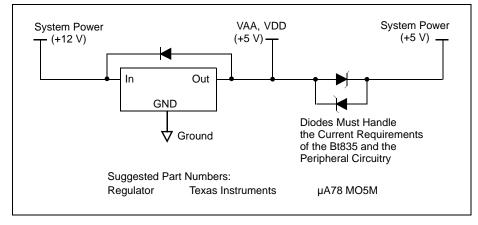
3.0 PC Board Layout Considerations


The layout for the Bt835 power and ground lines should be optimized for lowest noise. This is accomplished by shielding the digital inputs and outputs and by providing good decoupling. The lead length between groups of power and ground pins should be minimized to reduce inductive ringing.

3.1 Ground Planes

The ground plane area should encompass all Bt835 ground pins, voltage reference circuitry, power supply bypass circuitry for the Bt835, analog input traces, any input amplifiers, and all digital signal traces leading to the Bt835.

The Bt835 has digital grounds (GND) and analog grounds (AGND). The layout for the ground plane should be set up so the two planes are at the same electrical potential, but they should be isolated from each other in the areas surrounding the chip. The return path for the current should occur through the digital plane. See Figure 3-1 for an example of ground plane layout.

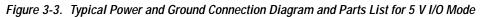


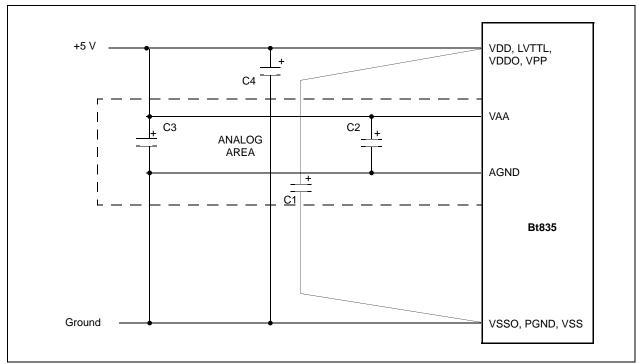
3.2 Power Planes

The power plane area should encompass all Bt835 power pins, the voltage reference circuitry, the power supply bypass circuitry, the analog input traces, any input amplifiers, and all the digital signal traces leading to the Bt835.

The Bt835 has digital power (VDD) and analog power (VAA). The layout for the power plane should be set up so the two planes are at the same electrical potential, but they should be isolated from each other in the areas surrounding the chip. Also, the return path for the current should occur through the digital plane. This is the same layout as shown for the ground plane (Figure 3-1). When using a regulator, circuitry must be included to ensure proper power sequencing. The circuitry shown in Figure 3-2 illustrates this circuitry layout.

Figure 3-2. Optional Regulator Circuitry for 5 V Systems

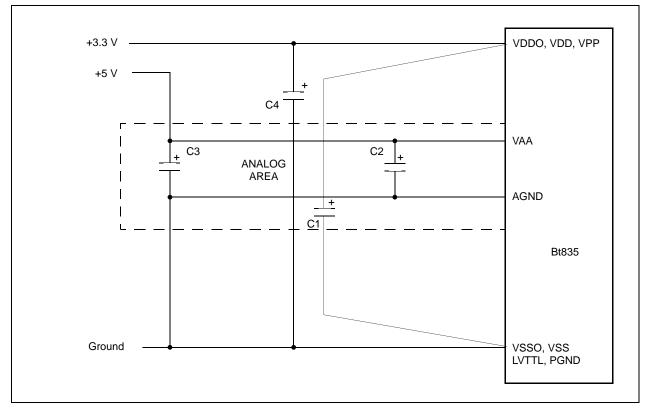

Bt835


3.3 Supply Decoupling

The bypass capacitors should be installed with the shortest leads possible (consistent with reliable operation) to reduce the lead inductance. These capacitors should also be placed as close as possible to the device.

Each group of VAA and VDD pins should have a 0.1 μ F ceramic bypass capacitor to ground, located as close as possible to the device.

Additionally, 10 μ F capacitors should be connected between the analog power and ground planes, as well as between the digital power and ground planes. These capacitors are at the same electrical potential, but provide additional decoupling by being physically close to the Bt835 power and ground planes. See Figures 3-3 and 3-4 for additional information about power supply decoupling.

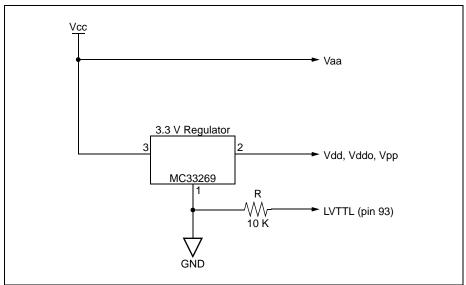


Location	Description	Vendor Part Number
C1, C2 ⁽¹⁾	0.1 μ F ceramic capacitor	Erie RPE112Z5U104M50V
C3, C4 ⁽²⁾	10 μ F tantalum capacitor	Mallory CSR13G106KM
possible (c (2) The 10 μF o supply and 3. Vendor nur	eramic chip capacitors are preferred). capacitors should be connected between the the digital ground. These should be connec	n group of power pins and ground as close to the device as ne analog supply and the analog ground, as well as the digital ected as close to the Bt835 as possible. on of devices with similar characteristics will not affect the per-

3.3 Supply Decoupling

VideoStream III Decoder

Figure 3-4	Typical Power a	and Ground Connection	n Diagram and Parts	List for 3.3 V I/O Mode


Location	Description	Vendor Part Number						
C1, C2 (1)	$0.1 \mu F$ ceramic capacitor	Erie RPE112Z5U104M50V						
C3, C4 <i>(2)</i>	10 µF tantalum capacitor	Mallory CSR13G106KM						
possible (ce (2) The 10 μF c supply and	eramic chip capacitors are preferred). capacitors should be connected between the the digital ground. These should be conne nbers are listed only as a guide. Substitution	group of power pins and the ground, as close to the device as he analog supply and the analog ground, as well as the digital ected as close to the Bt835 as possible. on of devices with similar characteristics will not affect the per-						

Bt835

3.4 Volt Regulator Circuit

Figure 3-5 demonstrates a regulator circuit which can be used to operate the digital portion of the Bt835 at 3.3 V. For simplicity, supply decoupling is not shown here; please see Figure 3-4. The analog power supply must always remain at 5 V. All digital power, including Vdd, Vddo, and Vpp, must be run at either 3.3 V or 5 V. The part may be damaged if all of the digital power is not run at the same supply voltage. The LVTTL pin must be tied to ground for digital 3.3 V operation, and tied to Vcc for digital 5 V operation.

Figure 3-5. Optional 3.3 V Regulator

3.5 Power-Up Sequencing

3.5 Power-Up Sequencing

Time between analog and digital power application to the Bt835 should always be kept to a minimum. Although it is very difficult to apply all power at exactly the same time, analog and digital power should be applied as closely together as possible.

3.6 Digital Signal Interconnect

The digital signals of the Bt835 should be isolated as much as possible from the analog signals and other analog circuitry. Also, the digital signals should not overlay the analog power plane.

Any termination resistors for the digital signals should be connected to the regular PCB power and ground planes.

3.7 Analog Signal Interconnect

Long lengths of closely spaced parallel video signals should be avoided to minimize crosstalk. Ideally, there should be a ground line between the video signal traces driving the YIN and CIN inputs.

Also, high-speed TTL signals should not be routed close to the analog signals to minimize noise coupling.

Bt835

3.8 Latch-up Avoidance

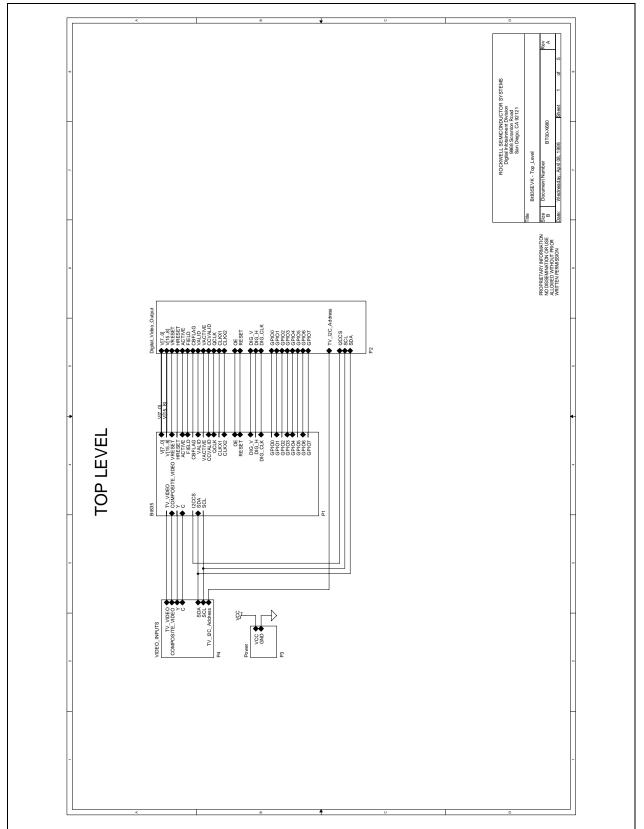
Latch-up is a failure mechanism inherent to any CMOS device. It is triggered by static or impulse voltages on any signal input pin exceeding the voltage on the power pins by more than 0.5 V, or falling below the GND pins by more than 0.5 V. Latch-up can also occur if the voltage on any power pin exceeds the voltage on any other power pin by more than 0.5 V.

In some cases, devices with mixed signal interfaces, such as the Bt835, can appear more sensitive to latch-up. In reality, this is not the case. However, mixed signal devices tend to interact with peripheral devices such as video monitors or cameras that are referenced to different ground potentials, or apply voltages to the device prior to the time that its power system is stable. This interaction sometimes creates conditions amenable to the onset of latch-up.

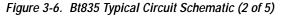
To maintain a robust design with the Bt835, the following precautions should be taken:

- Apply power to the device before or at the same time as the interface circuitry.
- Do not apply voltages below GND–0.5 V, or higher than VAA+0.5 V to any pin on the device. Do not use negative supply op-amps or any other negative voltage interface circuitry. All logic inputs should be held low until power to the device has settled to the specified tolerance.
- Connect all VDDO, VPP, and VDD pins together through a low impedance plane.
- Connect all VSSO, VSS, and PGND pins together through a low impedance plane.

3.9 Sample Schematics


An example of a Bt835 typical circuit schematic is illustrated in Figure 3-6.

3.0 PC Board Layout Considerations


3.9 Sample Schematics

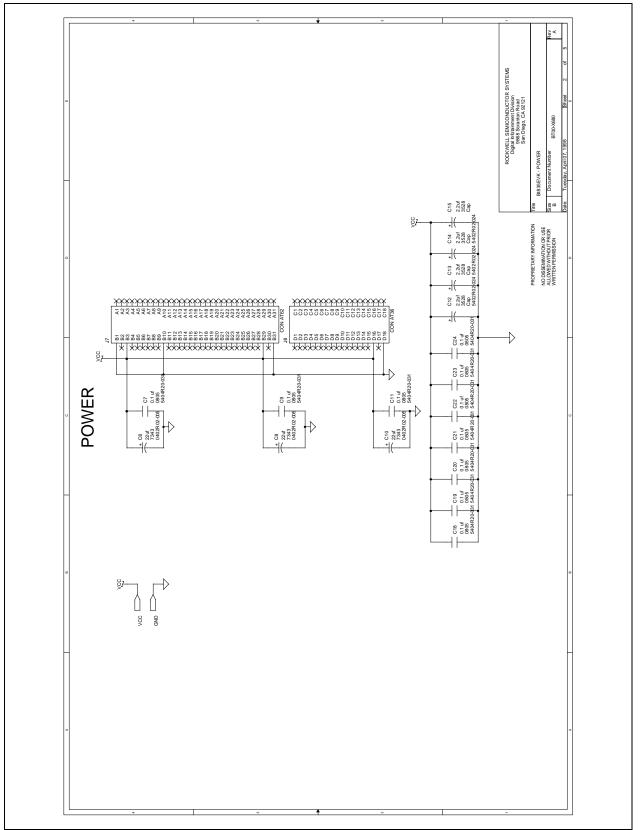
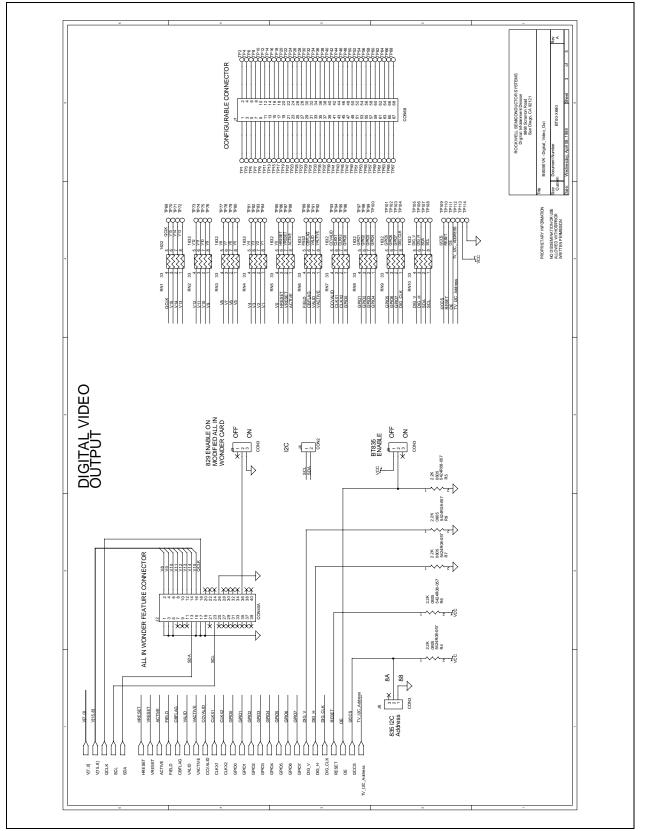
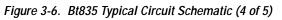

VideoStream III Decoder

Figure 3-6. Bt835 typical Circuit Schematic (1 of 5)

3.9 Sample Schematics




3.9 Sample Schematics

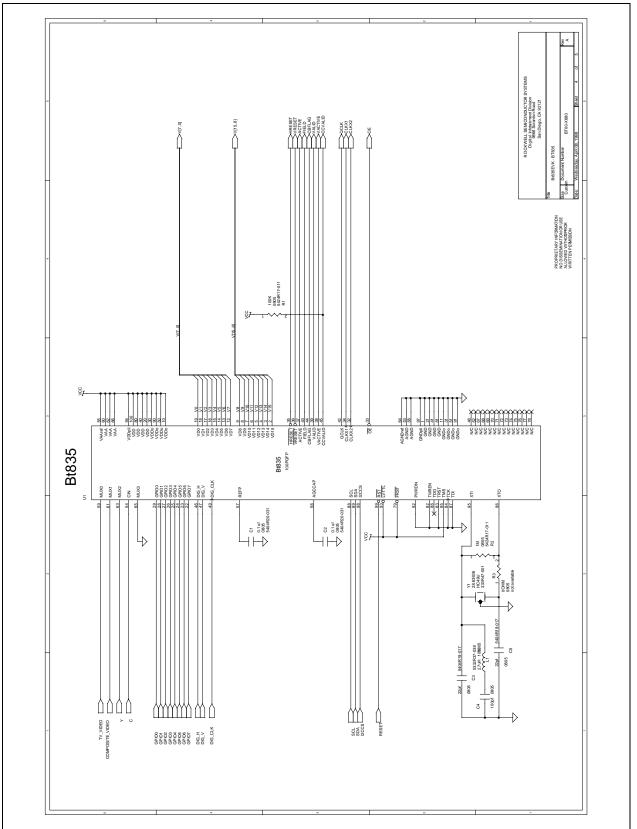
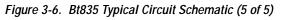
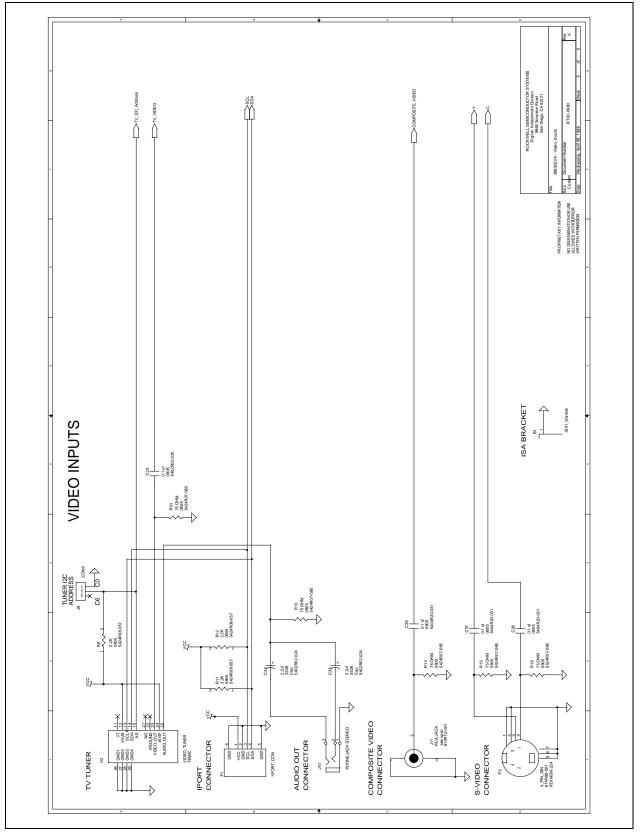

VideoStream III Decoder

Figure 3-6.	Bt835 Typical Circuit Schematic (3 of 5)
-------------	--


3.9 Sample Schematics



3.0 PC Board Layout Considerations

3.9 Sample Schematics

4.0 Control Register Description

0x00—STATUS

The STATUS register reports status from various decoder functions. When bit 0 of the test register at location 0xFC is a 0 (its default setting), the STATUS register reports back the following conditions:

7	6	5	4	3	2	1	0
VPRES	HLOCK	FIELD	NUML	PLL	CCVLD	LOF	COF
VPRES	Video Pres	sent					
		0–No video 1–Video de					
HLOCK	Horizontal	Lock					
		0–Not locke 1–Locked	ed				
FIELD	Field Ident	tifier					
		0–Odd field 1–Even fiel					
NUML	Number of	f lines per fran	ne				
		0–525 1–625					
PLL	PLL Lock						
		0–PLL not 1 1–PLL lock					
CCVLD	CC Data V	alid					
		0–No CC/E 1–CC/EDS	DS data data available				
LOF	Luma AD	C overflow. In	determinate w	hen ADC is sl	eeping.		
		0–Normal 1–Luma AI	OC overflow				
COF	Chroma A	DC overflow.	Indeterminate	when ADC is	sleeping.		
		0–Normal 1–Chroma	ADC overflow	7			

When bit 0 of the test register at location 0xFC is set to 1, the STATUS register reports back the following conditions:

7	6	5	4	3	2	1	0			
NSPLAY	NLVTTL	FIELD	NUML	PLL	CCVLD	LOF	COF			
NSPLAY	Special Pla	ay Status. Inpu	it vertical synd	c timing non-s	tandard.					
		0–In VCR s 1–Normal r	pecial play menode	ode						
NLVTTL	Pad thresh	Pad threshold indicator.								
		0–3.3 V inp 1–5 V input	ut thresholds thresholds							
FIELD	Field Ident	ifier.								
		0–Odd Field 1–Even Fiel								
NUML	Number of	lines per fran	ne.							
		0–525 1–625								
PLL	PLL Lock	0–PLL not 1 1–PLL lock								
CCVLD	CC Data va	alid.								
		0–No CC/E 1–CC/EDS	DS data data available							
LOF	Luma ADO	C overflow. In	determinate w	hen ADC is sl	eeping.					
		0–Normal 1–Luma AI	DC overflow							
COF	Chroma A	DC overflow.	Indeterminate	when ADC is	sleeping.					
		0–Normal 1–Chroma	ADC overflow	,						

0X01—INPUT (DEFAULT 0x00)

The INPUT register controls the format of the incoming video, which mux input is being used, and the source of the sample clock. The details of this register are given below.

7	6	5	4	3	2	1	0			
Reserved	MUXS	S[1:0]	Reserved	FMT[3:0]						
RESERVED	Not used. (MUXS[1:0] Selects one 00–MUX0 01–MUX1 10—MUX2	of four video (DEFAULT)	inputs						
RESERVED	Not used. (11 - MUX3								
FMT[3:0]		ut video form	at							
[0.0]			format detect C-M C-J C-4.43 BDGHI M N Sc 60	ion (DEFAUL	Τ)					

0x03, 0x02—VDELAY (DEFAULT 0x0016)

The VDELAY register is a 16-bit register which occupies two address locations, starting at 0x02. VDELAY, as with all 16-bit registers in the Bt835, is little endian. That is, the LSBs are stored at the lower address, and the MSBs are stored in the upper address. In this case, VDELAY[7:0] are at location 0x02, while VDELAY[15:8] are at location 0x03. Values between 1 and 1023, inclusive, can be programmed into the VDELAY register.

0x05, 0x04—VACTIVE (DEFAULT 0x01E0)

The VACTIVE register is a 16-bit register, starting at location 0x04. Values between 0 and 1023, inclusive, can be programmed into the VACTIVE register.

0x07, 0x06—HDELAY (DEFAULT 0x0078)

The HDELAY register is a 16-bit register, starting at location 0x06. Values between 1 and 1023, inclusive, can be programmed into the HDELAY register.

0x09, 0x08—HACTIVE (DEFAULT 0x0280)

The HACTIVE register is a 16-bit register, starting at location 0x08. Values between 0 and 1023, inclusive, may be programmed into the HACTIVE register.

0x0B, 0x0A—HSCALE (DEFAULT 0x02AC)

The HSCALE register is a 16-bit register, starting at location 0x0A. This register is programmed according to the equations given in the Bt835 datasheet.

0x0D, 0x0C—VSCALE (DEFAULT 0x0000)

The VSCALE register is a 16-bit register starting at location 0x0C. The VSCALE value is a 13 bit value, stored in the LSBs of the register.

0x0E—VSCALE_CTL (DEFAULT 0x00)

The VSCALE	CTL register	configures	the	vertical	scaler.

7	6	5	4	3	2	1	0				
Reserved	COME	3[1:0]	NVINT	FIELD		VFILT[2:0]					
RESERVED	Not used. (Not used. (Set to 0.)									
COMB[1:0]	Comb Filte	Comb Filter selection.									
		00–Full Comb filter (DEFAULT) 01–Chroma Comb filter ONLY 10–RSRVD 11–No Comb Filter									
NVINT	VS Interlac	VS Interlace Format.									
		0–Non-Interlace VS (DEFAULT) 1–Interlace VS									
FIELD	Interfield i		les interfield i es interfield in	nterpolation (nterpolation	DEFAULT)						
VFILT[2:0]	Vertical fil	ter format.									
		001–3 ta 010–4 ta 011–5 ta 100–2 ta 101–3 ta 110–4 ta	ap & Interpola ap & Interpola ap & Interpola ap & Interpola ap & No Interp ap & No Interp ap & No Interp ap & No Interp	tion tion polation polation polation	LT)						

0x0F—TDEC (DEFAULT 0x00)

The TDEC register controls the temporal decimation of the input video stream.

7	6	5	4	3	2	1	0			
DECFLD	FLDALN		DRATE[5:0]							
DECFLD Defines whether decimation is by fields or frames.										
0–Decimate frames (DEFAULT) 1–Decimate fields										
FLDALN	Aligns star	t of decimation	on with even o	r odd field.						
	0–Start on odd field (DEFAULT) 1–Start on even field									
DRATE[5:0]	Number of fields or frames dropped out of 50 (625/50) or 60 (525/60). This value should not exceed 60 for 60 Hz systems, or 50 for 50 Hz systems. DEFAULT is 0.									

0x10—BRIGHT (DEFAULT 0x00)

The BRIGHT register is an 8-bit register which controls the brightness offset applied to the video. Values from 0x00 to 0xFF are allowed. The two's complement value programmed into this register is added to the decoded luminance portion of the video signal. Brightness is applied after contrast.

0x11—CONTRAST (DEFAULT 0x39)

The CONTRAST register holds the 8-bit contrast value. The decoded luminance portion of the video is multiplied by the contrast value. Values from 0x00 to 0xFF are allowed.

0x12—SAT_U (DEFAULT 0x7F)

The SAT_U register is an 8-bit gain applied to the decoded U vector of the chrominance. Values from 0x00 to 0xFF are allowed.

0x13—SAT_V (DEFAULT 0x5A)

The SAT_V register is an 8-bit gain applied to the decoded V vector of the chrominance. Values from 0x00 to 0xFF are allowed.

0x14—HUE (DEFAULT 0x00)

The HUE register is an 8-bit value which applies phase offset to the decoders internal subcarrier. Values from 0x00 to 0xFF are allowed.

0x15—CONTROL_0 (DEFAULT 0x00)

7	6	5	4	3	2	1	0				
LNOTCH	SVID	LDEC	HFILT	[1:0]	PEAKEN	PSEL	[1:0]				
LNOTCH	Enables lui	ma notch filte	r.								
		0–Notch en 1–Notch dis	abled (DEFAU sabled	JLT)							
SVID	Enables Y/	Enables Y/C video. SVID has no effect on LNOTCH.									
		0–Y/C disabled (DEFAULT) 1–Y/C enabled									
LDEC	Enables lu	Enables luma filtering. 0–Luma filters enabled (DEFAULT) 1–Luma filters disabled									
HFILT[1:0]	When LDF	EC is a 0, used	to select which	ch horizontal l	ow pass filter	is used.					
		00–AUTO (01–CIF 10–QCIF (F 11–ICON	DEFAULT) Required for S	ECAM)							
PEAKEN	Enables lu	minance peaki	ing filters.								
		0	ilters disabled ilters enabled	· /							
PSEL[1:0]	Selects pea	aking response	.								
	00-+2 dB at 3.58/4.43 MHz (DEFAULT) 01-+3.5 dB at 3.58/4.43 MHz 10-+5.0 dB at 3.58/4.43 MHz fsc 11-+6.0 dB at 3.58/4.43 MHz fsc										

0x16—CONTROL_1 (DEFAULT 0x1C)

7	6	5	4	3	2	1	0				
VBIEN	FRAME	VBITFMT	CAGC	CKILL	SC_SPD	HACT	Reserved				
VBIEN	Enables V	Enables VBI capture.									
		0–Disable VBI capture (DEFAULT) 1–Enable VBI capture									
FRAME	VBI Frame	e (raw) mode.									
		0–VBI frame mode disabled (DEFAULT) 1–VBI frame mode enabled									
VBIFMT	VBI Outpu	ıt Format (Byt	eswap).								
		0–Pixel N on VD[15:8], Pixel N+1 on VD[7:0] (DEFAULT) 1–Pixel N on VD[7:0], Pixel N+1 on VD[15:8]									
CAGC	Enables Q.	AM Chroma A	AGC (for NTS	C/PAL).							
			AGC disabled AGC enabled	(SECAM) (DEFAULT - N	NTSC/PAL))						
CKILL	Enable Lov	w color remov	al.								
		0–Color kil 1–Color kil	ler disabled ler enabled (D	EFAULT)							
SC_SPD	Chroma lo	ck speed.									
		0–Slow 1–Normal (DEFAULT)								
HACT	HACTIVE	extend.									
	0–Reset HACTIVE with HRESET (DEFAULT) 1–Extend HACTIVE beyond HRESET										
SCAGC	SECAM Chroma AGC/SECAM color killer.										
			CAGC/color l CAGC/color l	killer disabled killer enabled	(DEFAULT)						

0X17—CONTROL_2 (DEFAULT 0x01)

7	6	5	4	3	2	1	0			
YCOR	E[1:0]	CCOR	E[1:0]	VIPEN	BSTRM	RANGE	VERTEN			
YCORE[1:0]	Selectable	Luma coring.								
		00–No luma coring (DEFAULT) 01–8 lsbs 10–16 lsbs 11–32 lsbs								
CCORE[1:0]	Selectable	Chroma corin	g.							
		00–No chroma coring (DEFAULT) 01–2 lsbs 10–4 lsbs 11–8 lsbs								
VIPEN	Enables VI	IP control cod	e insertion.							
			control codes (rol codes inser	· · · ·						
BSTRM	Enables By	yteStream con	trol code inser	rtion.						
			tream control	codes (DEFA) les inserted	ULT)					
RANGE	Luma outp	out range contr	ol.							
		0–Normal (1–Full Rang	16–253) (DEF ge (0–255)	FAULT)						
VERTEN	Adds verti	cal detection t	o VPRES algo	orithm.						
		0–No vertic 1–Use verti		n VPRES (DE	EFAULT)					

0X18—CONTROL_3 (DEFAULT 0xD0)

7	6	5	4	3	2	1	0					
NOUTEN	OES	[1:0]	LEN	HSFMT	ACTFMT	VLDFMT	CLKGT					
NOUTEN	Output ena	ıble.										
		0–Enable or 1–Three-sta	-	ected by OES[[1:0] (DEFAU]	LT)						
OES[1:0]	Output ena	itput enable select.										
		00–Tristate timing and data only 01–Tristate data only 10–Tristate all (DEFAULT) 11–Tristate clocks and data only										
LEN	Output bus	s width.	vidth.									
		0–8 bit output on VD[15:8] 1–16 bit output on VD[15:0] (DEFAULT)										
HSFMT	NHRESET	f format.										
			ET is 64 CLKX ET is 1 CLKX	X1 cycles (DE 1 cycle	FAULT)							
ACTFMT	ACTIVE f	ormat.										
			is composite is horizontal	active (DEFAU active	JLT)							
VLDFMT	VALID for	rmat.										
		1-VALID i	s logical ANI	caled pixels (D O of nominal QCLK is inver	VALID and A		re ACTIVE is					
CLKGT	QCLK gat	ing.										
		QCLK. (DE	EFAULT)	nverted and g			TVE to create					

0X19—VPOLE (DEFAULT 0x00)

7	6	5	4	3	2	1	0				
Reserved	VALID	VACTIVE	CBFLAG	FIELD	ACTIVE	HRESET	VRESET				
RESERVED	Reserved for future use. (Set to 0.)										
VALID	0–VALID pin active high (DEFAULT) 1–VALID pin active low										
VACTIVE		0–VACTIVE pin active high (DEFAULT) 1–VACTIVE pin active low									
CBFLAG		0–CBFLAG pin active high (DEFAULT) 1–CBFLAG pin active low									
FIELD		-		ates EVEN fie ates ODD fiel		Γ)					
ACTIVE			pin active hig pin active low	h (DEFAULT))						
HRESET	0-HRESET pin active high (DEFAULT) 1-HRESET pin active low										
VRESET			T pin active lo T pin active h	ow (DEFAULI igh])						

0X1A—AGC_DELAY (DEFAULT 0x68)

7	6	5	4	3	2	1	0
			AGC	[7:0]			

AGC[7:0] AGC Delay value.

0X1B—BG_DELAY (DEFAULT 0x5D)

7	6	5	4	3	2	1	0
			BG[[7:0]			

BG[7:0] Burst Gate delay value.

0X1C—ADC (DEFAULT 0x02)

	7	6	5	4	3	2	1	0		
	Reserved	Reserved	Reserved	AGC_EN	CLKSLP	YSLP	CSLP	CRUSH		
R	ESERVED	Reserved f	or future use.	(Set to 0)						
A	GC_EN	AGC enabl	le.							
			0–Enable A 1–Disable A	GC (DEFAUL AGC	T)					
С	LKSLP	Sleeps syst	Sleeps system clock.							
		0–Normal clock operation (DEFAULT) 1–Sleep system clock								
Y	'SLP	Sleep luma	a ADC.							
			0–Normal l 1–Sleep lun	-	eration (DEFA	ULT)				
С	SLP	Sleep chro	ma ADC.							
				hroma ADC o oma ADC (D	-					
С	RUSH	Enable white crush circuitry								
			0–Disable v 1–Enable w	white crush (D hite crush	EFAULT)					

0X1D—WC_UP (DEFAULT 0xCF)

7	6	5	4	3	2	1	0		
MAJS	S[1:0]		UPCNT[5:0]						
MAJS[1:0]	These bits	determine the	majority com	parison point	for the white c	erush up functi	ion.		

00–3/4 maximum luma 01–1/2 maximum luma 10–1/4 maximum luma 11–Automatic (DEFAULT)

UPCNT[5:0] White crush up value. Twos complement number, a negative sign bit is assumed.

0X1E—WC_DN (DEFAULT 0x7F)

7	6	5	4	3	2	1	0
Reserved	WCFRM			DNCN	T[5:0]		

RESERVED Reserved for future use. (Set to 0)

WCFRM This bit programs the rate at which the DNCNT and UPCNT values are accumulated.

0–Once per field 1–Once per frame (DEFAULT)

DNCNT[5:0] White crush down count value. Two's complement, a positive sign bit is assumed. DEFAULT (0x3F)

0X1F—CC_STATUS (DEFAULT 0x82)

7	6	5	4	3	2	1	0		
PARERR	INT_EN	EDS	CC	OR	DA	CC/EDS	LO/HI		
PARERR	Parity Erro	or flag.							
		0–No parity 1–Odd Pari	error ty error (DEFA	AULT)					
INT_EN	CCVALID	CCVALID interrupt mask.							
		0–CCVALID interrupt masked (DEFAULT) 1–CCVALID interrupts enabled							
EDS	Enables EI	Enables EDS capture.							
		0–No EDS capture (DEFAULT) 1–EDS capture enabled							
СС	Enables Co	Enables CC capture.							
		0–No CC capture (DEFAULT) 1–CC capture enabled							
OR	FIFO over	flow.							
		0–No overfl 1–Overflow		vas cleared (D	EFAULT)				
DA	Data Avail	able.							
			mpty (DEFAU ore bytes avai						
CC/EDS	Status of c	urrent byte in	FIFO.						
		0–CC byte 1–EDS byte	(DEFAULT)						
LO/HI	Status of c	urrent byte in 0–Low byte 1–High byte	(DEFAULT)						

0X20—CC_DATA (DEFAULT 0xB8)

7	6	5	4	3	2	1	0
			CCDAT	[A[7:0]			

CCDATA[7:0] Captured CC or EDS data

0X21—GPIO (DEFAULT 0x00)

The GPIO register is an eight bit register which either drives the GPIO pins or reflects their state. Writes to this register drive the related GPIO pins. Reads reflect the status of the GPIO pins. To properly read a GPIO pin, it must be tristated via the GPIO_NOE register.

7	6	5	4	3	2	1	0
			GPIC	0[7:0]			

GPI0[7:0] GPIO Data

0X22—GPIO_NOE (DEFAULT 0xFF)

The GPIO_NOE register controls the drive of each GPIO pin. The reset condition tristates all GPIO pins. This allows the user to configure the power-up condition of their board.

7	6	5	4	3	2	1	0
			NOE	[7:0]			

NOE[7:0]

Tristate controls for the GPIO pins.

0 –GPIO outputs enabled. 1–GPIO outputs tristated (DEFAULT)

0X23—VSIF (DEFAULT 0x00)

The VSIF register controls various aspects of the digital video input port.

7	6	5	4	3	2	1	0			
Reserved	BCF	Reserved	SVRE	F[1:0]		VSFMT[2:0]				
RESERVED	Reserved f	or future use.	(Set to 0)							
BCF	Allows the	chroma BPF	to be bypassed	d.						
	0–Do not bypass chroma BPF (DEFAULT) 1–Bypass chroma BPF									
RESERVED	Reserved f	Reserved for future use.								
SVREF[1:0]	Sync video reference 00–HS/VS aligned with Cb (DEFAULT) 01–HS/VS aligned with Y0 10–HS/VS aligned with Cr 11–HS/VS aligned with Y1									
VSFMT[2:0]	Video sign	al format.								
		001–CCIR 010–ByteSt 011–Reserv 100–Extern	ream ed al HSYNC,VS al HSYNC,FI ed							

0x24—TG_CTL (DEFAULT 0x00)

This register controls access to the timing generator RAM, and all timing generator clocks.

7	6	5	4	3	2	1	0		
Reserved	CKDIR	TGEN	TGARST	TGCK	0[1:0]	TGCK	[I[1:0]		
CKDIR	Digital vid	eo clock direc	ction.						
		0–DIGCLK power up. 1–DIGCLK		EFAULT) - Alv	vays active at J	power up—NC	OT tri-stated at		
TGEN	Timing ger	Timing generator video mode enable.							
		0–Read/Write mode (DEFAULT) 1–Timing generator mode							
TGARST	Timing ger	Timing generator address reset.							
			node (DEFAU ram address	LT)					
TGCKO[1:0]	Digital vid	eo clock outp	ut select.						
		00–CLKx1 01–XTAL 10–PLL 11–PLL inv	(DEFAULT)						
TGCKI[1:0]	Decoder in	put clock sele	ect.						
		00–XTAL (01–PLL 10–DIG_CI 11–DIG_CI							

0x25—PLL_F 28MHz (DEFAULT 0x0000)

Fractional PLL bits. This register is selected automatically for 28.63636 MHz operation or digital video input mode. Defaults to 0x0000.

0x27—PLL_XCI 28 MHz (DEFAULT 0x0C)

Integer PLL bits. This register is selected automatically for 28.63636 MHz operation or digital video input mode. Defaults to 0x0C.

7	6	5	4	3	2	1	0			
PLL_X	PLL_C		PLL_I[5:0]							
PLL_X	PLL Reference XTAL pre-divider. 0–Divide XTAL by 1 (DEFAULT) 1–Divide XTAL by 2									
PLL_C	PLL VCO	post-divider.								
			0–Use 6 for post-divider (DEFAULT) 1–Use 4 for post-divider							
PLL_I[5:0]	PLL_I inpu	ut. Range 6 - 6	53. 00 sleeps H	ĽL						

0x28—PLL_F 35MHz (DEFAULT 0xDCF9)

Fractional PLL bits. This register is selected automatically for 35.468950 MHz operation or digital video input mode. Defaults to 0xDCF9.

0x2A—PLL_XCI 35 MHz (DEFAULT 0x0E)

Integer PLL bits. This register is selected automatically for 35.468950 MHz operation or digital video input mode. Defaults to 0x0E.

7	6	5	4	3	2	1	0			
PLL_X	PLL_C		PLL_1[5:0]							
PLL_X	PLL Refer	ence XTAL pi	e-divider.							

0–Divide XTAL by 1 (DEFAULT) 1–Divide XTAL by 2

PLL_C	PLL VCO post-divider.
	0–Use 6 for post-divider (DEFAULT)
	1–Use 4 for post-divider
PLL_I[5:0]	PLL_I input. Range 6 - 63. 00 sleeps PLL

0x2B - DVLCNT (DEFAULT 0x00)

Digital video line count. This register allows the user to program the number of lines in a digital video source. If a zero is programmed, the decoder defaults to the standard number of lines for the selected format. Values of 0 to 1023, inclusive, may be programmed into the DVLCNT register.

0xFB—COMB2H_CTL (DEFAULT 0x00)

7	6	5	4	3	2	1	0		
DISIF	INVCBF	DISADAPT	NARROWADAPT	FORCE2H	FORCEREMOD	NCHROMAEN	NRMDEN		
DISIF	Disable Int	terpolation.							
		0–Enable II 1–Disable I	FX (DEFAULI FX])					
INVCBF	Invert sens	Invert sense of CBFLAG.							
		0–Normal (1–Invert CE	· · · ·						
DISADAPT	Disable ad	Disable adaption algorithm.							
		0–Enable Adaption (DEFAULT) 1–Disable Adaption							
NARROWADAPT	Narrow ad	Narrow adaption algorithm.							
		0–Normal (1–Narrow	DEFAULT)						
FORCE2H	Forces sele	ection of 2H c	omb filtered c	hroma data, if	2H comb ena	bled with NCI	HROMAEN.		
		0–Adaptive 1–2H comb	2H comb (DE forced on	EFAULT)					
FORCEREMOD	Forces rem	odulation of e	excess chroma						
		0–Adaptive 1–Forced re	remodulation modulation	(DEFAULT)					
NCHROMAEN	Chroma 2H	H comb enable	2.						
			na comb enabl na comb disab		Γ)				
NRMDEN	Remodulat	tion enable.							
			nodulation ena nodulation dis		LT)				

0xFE—IDCODE

7 6 5 4 3 2 1 0 REV[3:0] ID[3:0] Device ID ID[3:0] 1010-Bt835 REV[3:0] Device revision 0000-Rev A 0001-Rev B 0011-Rev D

Reflects device ID and part revision. Read only.

0xFF—SW_RESET

A write of any data to this address will reset all internal registers to the default state.

4.1 Register Summary

Table 4.1	Register Map
	кеуізгеі імар

ADDR	Register	Read				Bit Nu	mber			
(hex)	Label	Write	7	6	5	4	3	2	1	0
0x00	STATUS		VPRES	HLOCK	FIELD	NUML	PLL	CCVLD_CC	CC/EDS	COF
			NSPLAY	NLVTTL	FIELD	NUML	PLL	CCVLD	LOF	COF
0X01	INPUT		_	MUXS	[1:0]	_		FMT	[3:0]	
0X0E	VSCALE_CTL		_	COMB	[1:0]	NVINT	FIELD		VFILT[2:0]	
0X0F	TDEC		DECFLD	FLDALN			DRATI	E[5:0]		
0X15	CONTROL_0		LNOTCH	SVID	LDEC	HFILT	ILT[1:0] PEAKEN PSEL[1			_[1:0]
0X16	CONTROL_1		VBIEN	FRAME	VBITFMT	CAGC	CKILL	SC_SPD	HACT	_
0X17	CONTROL_2		YCC)RE[1:0]	CCORE[1:0]		VIPEN	BSTRM	RANGE	VERTEN
0X18	CONTROL_3		NOUTEN	OES[1:0]	LEN	HSFMT	ACTFMT	VLDFMT	CLKGT
0X19	VPOLE		_	VALID	VACTIVE	CBFALG	FIELD	ACTIVE	HRESET	VRESET
0X1A	AGC_DELAY					AGC[[7:0]			·
0X1B	BG_DELAY					BG[]	7:0]			
0X1C	ADC		_	_	_	AGC_EN	CLKSLP	YSLP	CSLP	AGC_EN
0X1D	WC_UP		MA	JS[1:0]			UPCN	T[5:0]		
0X1E	WC_DN		_	WCFRM			DNCN	T[5:0]		
0X1F	CC_STATUS		PARERR	INT_EN	EDS	CC	OR	DA	CC/EDS	LO/HI
0X20	CC_DATA					CCDAT	A[7:0]			
0X21	GPIO					GPIO	[7:0]			

Rockwell

97

Table 4-1.	Register Map
------------	--------------

ADDR	Register	Read				Bit Nu	mber			
(hex)	Label	Write	7	6	5	4	3	2	1	0
0X22	GPIO_NOE			NOE[7:0]						
0X23	VSIF		—	BCF	— SVREF[1:0] VSFMT[2:0]					
0X24	TG_CTL		—	CKDIR	TGEN	TGARST	TGCK	.0[1:0]	TGCK	I[1:0]
0X27	PLL_XCI 28 HMZ		PLL_X	PLL_C			PLL_	I[5:0]		
0X2A	PLL_XCI 35 HMZ		PLL_X	PLL_C			PLL_	I[5:0]		
OXFB	COMB2H_CTL		DISIF	INVCBF	DISADAPT	NARROWADAP T	FORCE2H	FORCEREMOD	NCHROMAEN	NRMDEN
0XFE	IDCODE			ID[3:0]				REV	[3:0]	

86

4.0 Control Register Description Register Summary

VideoStream III Decoder

Bt835

5.0 Parametric Information

5.1 DC Electrical Parameters

Table 5-1. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Units
Power Supply — Analog	V _{AA}	4.75	5.00	5.25	V
Power Supply — 5.0 V Digital	V _{DD}	4.75	5.00	5.25	V
Power Supply — 3.3 V Digital	V _{DDO}	3.00	3.3	3.6	V
Maximum $\Delta V_{DD} - V_{AA} $ (V _{DD} = 5 V)	—	_	_	0.5	V
MUX0, MUX1 and MUX2 Input Range (AC coupling required)	_	0.5	1.00	2.00	V
VIN Amplitude Range (AC coupling required)	—	0.5	1.00	2.00	V
Ambient Operating Temperature	T _A	0		+70	°C

Table 5-2.	Absolute	Maximum	Ratings
------------	----------	---------	---------

Parameter	Symbol	Min	Тур	Мах	Units
V _{AA} (measured to AGND)	—	—	_	7.00	V
V _{DD} (measured to DGND)	—	_	_	7.00	V
Voltage on any signal pin (See the note below)	—	DGND – 0.5		V _{DD} + 0.5	V
Analog Input Voltage	—	AGND – 0.5	_	V _{AA} + 0.5	V
Storage Temperature	Τ _S	-65	_	+150	°C
Junction Temperature	Tj	—	_	+125	°C
Vapor Phase Soldering (15 Seconds)T V SOLV +220+220 °C				°C	
Note: Stresses above those listed may cause permanent damage to the device. This is a stress rating only, and functional operation at these or any other conditions above those listed in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. This device employs high-impedance CMOS devices on all signal pins. It must be handled as an ESD-sensitive device. Voltage on any signal pin that exceeds the power supply voltage by more than +0.5 V, or drops below ground by more than 0.5 V, can induce destructive latch-up.					

Table 5-3. DC Characteristics (3.3 V digital I/O operation)

Parameter	Symbol	Min	Тур	Мах	Units
Digital Inputs	—	_	_	_	_
Input High Voltage (TTL)	V _{IH}	2.0	—	V _{DDO} + 0.5	V
Input Low Voltage (TTL)	V _{IL}	—	_	0.8	V
Input High Voltage (XTI)	V _{IH}	2.3	—	V _{DDO} + 0.5	V
Input Low Voltage (XTI)	V _{IL}	GND – 0.5	_	1.0	V
Input High Current (V _{IN} =V _{DD})	I _{IH}	—	_	10	μΑ
Input Low Current (V _{IN} =GND)	I _{IL}	—	—	-10	μΑ
Input Capacitance (f=1 MHz, V _{IN} =2.4 V)	C _{IN}	_	_	_	pF
Input High Voltage (NUMXTAL, I2CCS)	V _{IH}	2.5	—	—	V
Digital Outputs	_	_	_	_	
Output High Voltage ($I_{OH} = -400 \ \mu A$)	V _{OH}	2.4	—	V _{DDO}	V
Output Low Voltage (I _{OL} = 3.2 mA)	V _{OL}	—	—	0.4	V
Three-State Current	I _{OZ}	_	—	10	μΑ
Output Capacitance	C _O	—	5	—	pF
Analog Pin Input Capacitance	C _A		5		pF

5.1 DC Electrical Parameters

Table 5-4.	DC Characteristics	(5	V only	operation)
------------	--------------------	----	--------	------------

Parameter	Symbol	Min	Тур	Мах	Units
Digital Inputs	—	—	_	_	—
Input High Voltage (TTL)	V _{IH}	2.0	—	V _{DD} + 0.5	V
Input Low Voltage (TTL)	V _{IL}	—	—	0.8	V
Input High Voltage (XTI)	V _{IH}	3.5	—	V _{DD} + 0.5	V
Input Low Voltage (XTI)	V _{IL}	GND – 0.5	_	1.5	V
Input High Current (V _{IN} =V _{DD})	I _{IH}	—	—	10	μΑ
Input Low Current (V _{IN} =GND)	I _{IL}	_	_	-10	μΑ
Input Capacitance (f=1 MHz, V _{IN} =2.4 V)	C _{IN}	—	5	—	pF
Digital Outputs	—	—	_	_	—
Output High Voltage (I_{OH} = -400 µA)	V _{OH}	2.4	—	V_{DD}	V
Output Low Voltage (I _{OL} = 3.2 mA)	V _{OL}	—	—	0.4	V
Three-State Current	I _{OZ}	—	—	10	μA
Output Capacitance	CO	—	5	—	pF
Analog Pin Input Capacitance	C _A	_	5	_	pF

5.2 AC Electrical Parameters

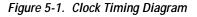
Parameter	Symbol	Min	Тур	Max	Units
NTSC: CLKx1 Rate CLKx2 Rate (50 PPM source required)	F _{S1} F _{S2}	_	14.318180 28.636360		MHz MHz
PAL/SECAM: CLKx1 Rate CLKx2 Rate (50 PPM source required)	F _{S1} F _{S2}		17.734475 35.468950		MHz MHz
XTO and XT1 Inputs Cycle Time High Time Low Time	1 2 3	28.2 12 12			ns ns ns

Table 5-5. Clock Timing Parameters (1 of 2)

D835DSA

5.2 AC Electrical Parameters

Table 5-5.	Clock Tim	ning Parameters	(2 of 2)
------------	-----------	-----------------	----------


Parameter	Symbol	Min	Тур	Мах	Units
CLKx1 Duty Cycle	_	45	—	55	%
CLKx2 Duty Cycle	_	40	_	60	%
CLKx2 to CLKx1 Delay	4	0	—	2	ns
CLKx1 to Data Delay	5	3	—	11 (25) ⁽²⁾	ns
CLKx2 to Data Delay	6	3	—	11 (25) ⁽²⁾	ns
CLKx1 (Falling Edge) to QCLK (Rising Edge)	41	0	_	8	ns
CLKx2 (Falling Edge) to QCLK (Rising Edge)	42	0	_	8	ns
8-Bit Mode ⁽¹⁾					
Data to QCLK (Rising Edge) Delay	7b	5	—	—	ns
QCLK (Rising Edge) to Data Delay	8b	15	—	—	ns
16-Bit Mode ⁽¹⁾					
Data to QCLK (Rising Edge) Delay	7a	14	—	—	ns
QCLK (Rising Edge) to Data Delay	8a	25	—		ns

NOTE(S):

(1) Because QCLK is generated with a gated version of CLKx1 or CLKx2, the timing in symbols 7 and 8 are subject to changes in the duty cycle of CLKx1 and CLKx2. If crystals are used as clock sources for the Bt829A, the duty cycle is symmetric. This assumption is used to generate the timing numbers shown in 7 and 8. For non-symmetric clock sources, use the following equations:

Data to QCLK (setup) 16-bit mode	xtal period + CLKx1 to qclk (max) - CLKx1 to data (max) or symbol 1 + symbol 41 (max) - symbol 5 (max)		
	NTSC: 34.9 ns+ 8 ns- 11 ns= 31.9 ns PAL: 28.2 ns+ 8 ns-11 ns= 25.2 ns		
QCLK to Data (hold) 16-bit mode	xtal period - CLKx1 to qclk (min) + CLKx1 to data (min) or symbol 1 - symbol 41 (min) + symbol 5 (min)		
	NTSC: 34.9 ns- 0 ns+ 3 ns= 37.9 ns PAL: 28.3 ns- 0 ns+ 3 ns= 31.3 ns		
Data to QCLK (setup) 8-bit mode	(xtal period)/2 + CLKx2 to qclk (max) - CLKx2 to data (max) or (symbol 1)/2 + symbol 42 (max) - symbol 6 (max)		
	NTSC: 17.5 ns+ 8ns- 11 ns= 14.5 ns PAL: 14.1 ns+ 8 ns- 11 ns= 11.1 ns		
QCLK to data (hold) 8-bit mode	(xtal period)/2 - CLKx2 to qclk (min) + CLKx2 to data (min) or (symbol 1)/2 - symbol 42 (min) + symbol 6 (min)		
	NTSC: 17.5 ns- 0 ns+ 3 ns= 20.5 ns PAL: 14.1 ns- 0 ns+ 3 ns= 17.1 ns		
(2) Parenthesis indicate max CLKx1/CLKx2 to Data Delay when using VDDO = 3.3 V.			

VideoStream III Decoder

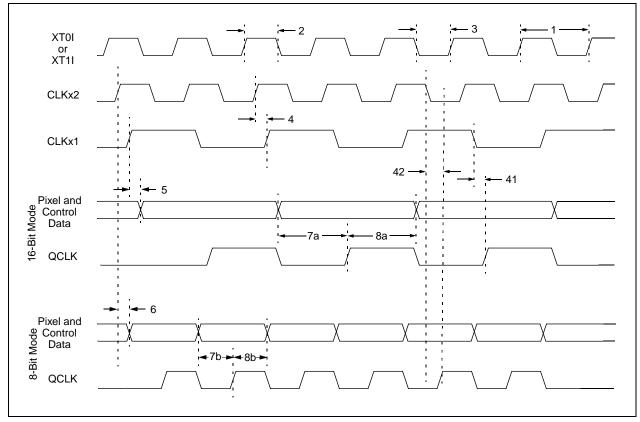


Table 5-6. Power Supply Current Parameters (3 V / 5 V operation)

Parameter	Symbol	Min	Тур	Мах	Units
Supply Current V_{AA} =5.0 V, F _{CLKx2} =28.64 MHz, T=25°C V_{AA} =5.25 V, F _{CLKx2} =35.47 MHz, T=70°C V_{AA} =5.25 V, F _{CLKx2} =35.47 MHz, T=0°C Supply Current, Power Down	Ι	_	 145/170 65	 200/250 240/280 	— mA mA mA

Table 5-7. Output Enable Timing Parameters

Parameter	Symbol	Min	Тур	Мах	Units
OEAsserted to Data Bus DrivenOEAsserted to Data ValidOENegated to Data Bus Not Driven	9 10 11	0 		— 100 100	ns ns ns
RST Low Time	—	8	_	—	XTAL cycles

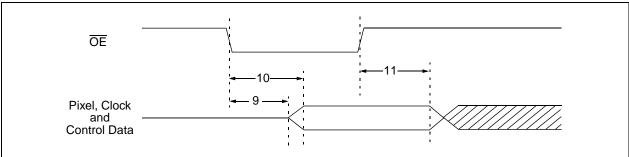
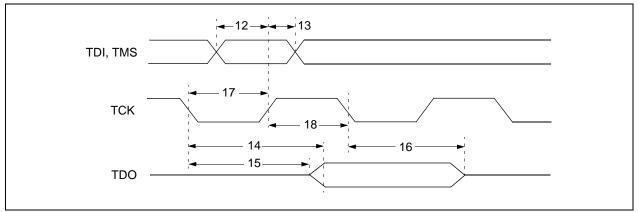
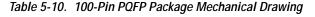
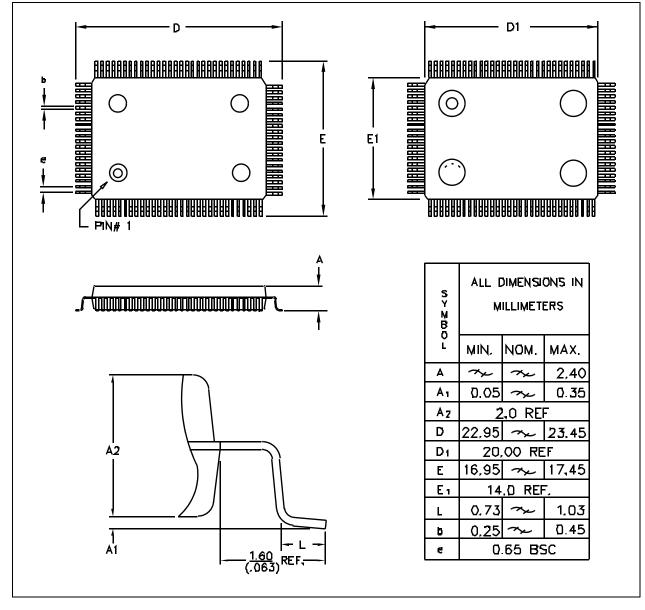



Table 5-8. JTAG Timing Parameters

Parameter	Symbol	Min	Тур	Max	Units
TMS, TDI Setup Time	12	_	10	_	ns
TMS, TDI Hold Time	13	_	10		ns
TCK Asserted to TDO Valid	14	_	60		ns
TCK Asserted to TDO Driven	15	_	5		ns
TCK Negated to TDO Three-stated	16	_	80		ns
TCK Low Time	17	25	—		ns
TCK High TIme	18	25	—		ns


Figure 5-3. JTAG Timing Diagram



Parameter	Symbol	Min	Тур	Мах	Units		
Horizontal Lock Range	_	_	—	±7	% of Line Length		
Fsc, Lock-in Range	_	±800	—	—	Hz		
Gain Range	_	-6	_	6	dB		
Note: Test conditions (unless otherwise specified): "Recommended Operating Conditions." TTL input values are 0–3 V, with input rise/fall times ≤ 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for digital inputs and outputs. Pixel and control data loads ≤ 30 pF and ≥10 pF. CLKx1 and CLKx2 loads ≤ 50 pF. Control data includes CBFLAG, DVALID, ACTIVE, VACTIVE, HRESET, VRESET and FIELD.							

VideoStream III Decoder

