
1

VHDL Quick Reference
 Draft Revision 1.0

Atmel Corporation
2325 Orchard Parkway

San Jose, CA 95131

2

1 Predefined Language Environment

1.0 Lexical Elements

General
VHDL is a case insensitive language. It is also a form free language.

VHDL Text
VHDL text contains a sequence of reserved words, identifiers, abstract literals (used to
represent numbers and physical entities such as time), character literals, bitstring literals,
string literals and comments. These lexical elements are separated from each other using a
set of delimiters or filed separator.

Comments
Any text sequence beginning with two hyphens (--) and terminating at the end of the line
is treated as a comment. VHDL does not support comment sequences that span across
multiple lines, although a comment can start anywhere on the line. All literals and
delimiters loose their special meanings within the comment.

Delimiters
In addition to a space, tab and end-of-line character, lexical elements of the VHDL file
can also be separated with the following set of delimiters.

Simple delimiters: & ’ () * + , - . / : ; < = > | []
Compound delimiters: => ** := /= >= <= <>

Identifiers
A sequence of characters beginning with a letter followed by one or more letter or digit
denotes an identifier1. Identifiers are used to name objects, ports, blocks, configurations,
statements, processes, blocks etc in the VHDL design.

SIGNAL carry0, sum0 : std_logic;
ENTITY dff IS PORT (D,Q,CLK,RST : IN std_logic; Q : OUT std_logic)
END dff;

1 VHDL LRM makes references to an extended identifier which is a token of graphic character enclosed in \
and \. No synthesis and simulation software tool seem to be supporting extended identifier.

3

Abstract Literals:
Abstract literals are used to define numbers and physical types. Numbers can be real or
integers expressed in a decimal system or in other numeric system. VHDL treats a
numeric literal containing dot (.) as a real number.

Note: Underscores can be inserted anywhere except in the beginning of the numeric
literal without changing its value.

Decimal Literals: A base of 10 is assumed. Decimal literals can denote a real number or
an integer.

10 10_000 1009E+10 -- integer literals
10.7 17.5_009E-1_10 67.7E-5 -- real literals

Based Literals: Based literals are identical to decimal literals except the base is specified
explicitly. Base literals contain base, mantissa and exponent parts. These three parts can
be separated either by a pound character (#) or colon character (:).

2#101000 2#1010_100 2#1010#E+10 -- integer literals in binary
F#10EFA F#69D_FFF F#11CAE#EF -- integer literals in hexadecimal
F:10E.FA F:69.D_FFF F:11C.AE:EF -- real literals in hexadecimal

Character Literals:

A character literal is a graphic character (any character that can be seen by the eye on
computer’s screen) enclosed in single quotes (‘).

constant backslash : character := ‘\‘;

String Literals:
A string literal is denoted by a sequence of graphic characters enclosed in either double
quotes(“) or in a percentage character (%).

constant allVowells : string := “aeiou” ; alternatively,
constant allVowells : string := %aeiou%;

Bitstring Literals:
Bitstring literals are used to denote base qualified numeric values of the integers in a
string format. Characters B, X and O are used to denote binary, hexadecimal and octal
bases.

constant const1 : bit_vector := B”1101110”;
constant const2 : bit_vector := X”EE”;
constant const3 : bit_vector := O%777%;

4

1.2 Reserved Words

A-E F-M N-R S-Z
abs file nand select
access for new severity
after function next signal
alias nor shared
all generate not sla
and generic null sll
architecture group sra
array guarded of srl
assert on subtype
attribute if open

impure or then
begin in others to
block inertial out transport
body inout type
buffer is package
bus port unaffected

label postponed units
case library procedure until
component linkage process use
configuration literal pure
constant loop variable

range
disconnect map record wait
downto mod register when

reject while
else rem with
elsif report
end return xnor
entity rol xor
exit ror

5

1.3 Predefined Data-types

A list of predefined data types supported in VHDL is given below. These data types are
defined in package standard and in package textio. Note that VHDL supports a
mechanism for creating user defined data types using TYPE and SUBTYPE constructs.
Consequently, users can create their own data-types and use them in their programs. In
any case, all VHDL programs are guaranteed to have access to data types defined in its
standard environment.

-- Enumerated
type boolean is (FALSE,TRUE);
type bit is (‘0’,’1’);
type character is (all graphic characters are included here);
type severity_level is (NOTE, WARNING, ERROR, FAILURE);
type universal_integer is range implementation_specific;
type universal_real is range implementation_specific;

-- numeric
type integer is range implementation_specific;
type real is range implementation_specific;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

-- physical
type time is range implementation_specific
 units

 fs; -- femtosecond
 ps = 1000 fs; -- picosecond
 ns = 1000 ps; -- nanosecond
 us = 1000 ns; -- microsecond
 ms = 1000 us; -- millisecond
 sec = 1000 ms; -- second
 min = 60 sec; -- minute
 hr = 60 min; -- hour
 end units;

subtype delay_length is time range 0 to time’high;

-- Arrays
type string is array (positive range <>) of character;
type bit_vector is array(natural range <>) of bit;

-- File types
type file_open_kind is (
 READ_MODE, -- Resulting access mode is read-only.
 WRITE_MODE, -- Resulting access mode is write-only.
 APPEND_MODE); -- Resulting access mode is write-only; information
 -- is appended to the end of the existing file.
type file_open_status is (
 OPEN_OK, -- File open was successful.
 STATUS_ERROR, -- File object was already open.
 NAME_ERROR, -- External file not found or inaccessible.
 MODE_ERROR); -- Could not open file with requested access mode.

-- Type definitions for text I/O:
 type line is access string; -- A LINE is a pointer to a STRING value.
 type text is file of string; -- A file of variable-length ASCII records.
 type side is (right, left); -- For justifying output data within fields.
 subtype width is natural; -- For specifying widths of output fields.

6

1.4 Predefined Operators

The operators are listed in their precedence table given below. The operators are grouped
with increasing level of precedence. If the expression contains multiple operations having
same precedence, the operators are evaluated from left to right.

logical operators(B) and or nand nor xor xnor
relational operators(B) = /= < <= > >=
shift operators(B) sll srl sla sra rol ror
addition operators(B) + - &
unary sign operators(U) + -
multiplication operator(B) * / mod rem
miscellaneous operators ** (B) abs(U) not(U)

Legend: B : Binary operator
U : Unary operator

Note: operator not is a logical operator. However, its precedence is higher than other
operators in the logical group.

The detailed explanation of the shift operators is given in the table below.

Operator Operation Left operand type Right operand type Result type
sll Shift left logical Any one-dimensional array type whose element type

is BIT or BOOLEAN
INTEGER Same as left

srl Shift right logical Any one-dimensional array type whose element type
is BIT or BOOLEAN

INTEGER Same as left

sla Shift left arithmetic Any one-dimensional array type whose element type
is BIT or BOOLEAN

INTEGER Same as left

sra Shift right
arithmetic

Any one-dimensional array type whose element type
is BIT or BOOLEAN

INTEGER Same as left

rol Rotate left logical Any one-dimensional array type whose element type
is BIT or BOOLEAN

INTEGER Same as left

ror Rotate right logical Any one-dimensional array type whose element type
is BIT or BOOLEAN

INTEGER Same as left

& Concatenation Any array type Same array type Same as array
Any array type The element type Same as array
The element type Any array type Same as array
The element type The element type Same as array

7

1.5 Operator functions

The behaviour of the operators listed in section 1.4 is defined for in package standard .
Note that VHDL allows operator overloading, where the meaning of the operators can be
re-defined for different types of operands. Consequently, there can be more than one-
operator functions corresponding to a single operator. Users are requested to refer to
VHDL LRM for additional details.

Two tables below list all operators and the types of the arguments for which they are
defined.

Table: Operators functions defined on built-in data types. These operators take arguments of the
same types and return the value of the same type except for relational operator, which returns type

boolean.

Table: Overloaded operators’ functions defined for built-in data types. These operators take
arguments of the different types.

Logical Relational Addition Sign Multiplication Miscellaneous

boolean all all not
bit all all not
character all
severity_level all
universal_integer all + , - all all abs
universal_real all +,- all *,/ abs
integer all +,- all all abs,**
real all +,- all *,/ abs
natural all
positive all +,- all all abs,**
time all +,- all abs
delay_length all +,- all *,/ abs
string all &
bit_vector all all
file_open_kind all
file_open_status all

Operator Left Operand Right Operand Return Type
* universal_real universal_integer universal_real
* universal_integer universal_real universal_real
/ universal_real universal_integer universal_real
** universal_integer integer universal_integer
** universal_real integer universal_real
** real integer real
* integer time time
* time integer time
* real time time
* time real time
/ time integer time
/ time real time
/ time time time
& string character string
& character string string
& character character string
all shift operators bit_vector integer bit_vector

8

1.6 Predefined attributes

For details on the restrictions used on using the attributes, please refer to VHDL LRM.

Attribute Name Kind Prefix Parameter Result Type Result

T’BASE Type Any type or
subtype T

The base type of T

T’LEFT Value Any scalar type
or subtype T

Same type as
T

The left bound of T

T’RIGHT Value Any scalar type
or subtype T

Same type as
T

The right bound of T

T’HIGH Value Any scalar type
or subtype T

Same type as
T

The upper bound of T

T’LOW Value Any scalar type
or subtype T

 Same type as
T

The lower bound of T

T’ASCENDING Value Any scalar type
or subtype T

Type Boolean TRUE if T is defined with an
ascending range.FALSE
otherwise

T’IMAGE(X)
Function

Any scalar type
or subtype T

An expression
whose type is the
base type of T

Type String The string representation of the
parameter value, without
leading or trailing whitespace

T’VALUE(X)
Function

Any scalar type
or subtype T

An expression of
type String

The base type
of T

The value of T whose string
representation is given by the
parameter

T’POS(X)
Function

 Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

universal_inte
ger

The position number of the
value of the parameter

T’VAL(X)
Function

Any discrete or
physical type or
subtype T

An expression of
any integer type

The base type
of T

The value whose position
number is the universal_integer
value corresponding to X

T’SUCC(X)
Function

Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

The base type
of T

The value whose position
number is one greater than that
of the parameter

T’PRED(X)
Function

Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

The base type
of T

The value whose position
number is one less than that of
the parameter

T’LEFTOF(X)
Function

Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

The base type
of T

The value that is to the left of
the parameter in the range of T

T’RIGHTOF(X)
Function

Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

The base type
of T

The value that is to the right of
the parameter in the range of T

T’RIGHTOF(X)
Function

Any discrete or
physical type or
subtype T

An expression
whose type is the
base type of T

The base type
of T

The value that is to the right of
the parameter in the range of T

A’LEFT[(N)]
Function

Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A(If omitted, it
defaults to 1)

Type of the
left bound of
the Nth index
range of A

Left bound of the Nth index
range of A

A’RIGHT[(N)] Function Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A, if omitted, it
defaults to 1

Type of the
Nth index
range of A

Right bound of the Nth index
range of A

9

A’HIGH[(N)] Function Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A, if omitted, it
defaults to 1

Type of the
Nth index
range of A

Upper bound of the Nth index
range of A

A’LOW[(N)] Function Any prefix A
that is
appropriate for an
array object, or
an alias thereof,
or that denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A. If omitted, it
defaults to 1

Type of the
Nth index
range of A

Lower bound of the Nth index
range of A

A’RANGE[(N)] Range Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A, If omitted, it
defaults to 1

The type of
the Nth index
range of A

The range A’LEFT(N) to
A’RIGHT(N) if the Nth index
range of A is ascending. The
range A’LEFT(N) downto
A’RIGHT(N) if the Nth index
range of A is descending

A’REVERSE_RANG
E[(N)]

Range Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A, if omitted, it
defaults to 1

The type of
the Nth index
range of A

The range A’RIGHT(N) downto
A’LEFT(N) if the Nth index
range of A is ascending. The
range A’RIGHT(N) to
A’LEFT(N) if the Nth index
range of A is descending

A’LENGTH[(N)] Value Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal_integer,
the value of which
must not exceed the
dimensionality of
A, if omitted, it
defaults to 1

universal_inte
ger

Number of values in the Nth
index range. i.e, if the Nth
index range of A is a null
range, then the result is 0.
Otherwise, the result is the
value of T’POS(A’HIGH(N)) -
T’POS(A’LOW(N)) + 1, where
T is the subtype of the Nth
index of A

A’ASCENDING [(N)] Value Any prefix A that
is appropriate for
an array object,
or an alias
thereof, or that
denotes a
constrained array
subtype

A locally static
expression of type
universal integer,
the value of which
must be greater
than zero and must
not exceed the
dimensionality of
A, if omitted, it
defaults to 1

Boolean TRUE if the Nth index range of
A is defined with an ascending
range. FALSE otherwise.

S’DELAYED[(T)] Signal Any signal
denoted by the
static signal name
S

A static expression
of type TIME that
evaluates to a
nonnegative value,
if omitted, it
defaults to 0 ns

The base type
of S

A signal equivalent to signal S
delayed T units of time

S’STABLE [(T)] Signal Any signal
denoted by the
static signal name
S

A static expression
of type TIME that
evaluates to a
nonnegative value,
if omitted, it
defaults to 0 ns

Type Boolean A signal that has the value
TRUE when an event has not
occurred on signal S for T units
of time, and the value FALSE
otherwise

S’QUIET[(T)] Signal Any signal
denoted by the
static signal name
S

A static expression
of type TIME that
evaluates to a
nonnegative value,
if omitted, it
defaults to 0 ns

Type Boolean A signal that has the value
TRUE when the signal has
been quiet for T units of time,
and the value FALSE otherwise

10

S’TRANSACTION Signal Any signal
denoted by the
static signal name
S

 Type Bit A signal whose value toggles to
the inverse of its previous value
in each simulation cycle in
which signal S becomes active

S’EVENT Function Any signal
denoted by the
static signal name
S

Boolean A value that indicates whether
an event has just occurred on.
For a scalar signal S, S’EVENT
returns the value TRUE if an
event has occurred on S during
the current simulation cycle.
Otherwise, it returns the value
FALSE. For a composite signal
S, S’EVENT returns TRUE if
an event has occurred on any
scalar sub-element of S during
the current simulation cycle.
Otherwise, it returns FALSE

S’ACTIVE Function Any signal
denoted by the
static signal name
S

Boolean For a scalar signal S,
S’ACTIVE returns the value
TRUE if signal S is active
during the current simulation
cycle. Otherwise, it returns the
value FALSE. For a composite
signal S, S’ACTIVE returns
TRUE if any scalar sub-
element of S is active during
the current simulation cycle.
Otherwise, it returns FALSE

S’LAST_EVENT Function Any signal
denoted by the
static signal name
S

Time The amount of time that has
elapsed since the last event For
a signal S, S’LAST_EVENT
returns the smallest value T of
type TIME such that S’EVENT
= True during any simulation
cycle at time NOW - T, if such
value exists. Otherwise, it
returns TIME’HIGH

S’LAST_ACTIVE Function Any signal
denoted by the
static signal name
S

Time The amount of time that has
elapsed since the last time at.
For a signal S,
S’LAST_ACTIVE returns the
smallest value T of type TIME
such that S’ACTIVE = True
during any simulation cycle at
time NOW - T, if such value
exists. Otherwise, it returns
TIME’HIGH

S’LAST_VALUE Function Any signal
denoted by the
static signal name
S

The base type
of S

The previous value of S,
immediately before the last
change of S

S’DRIVING Function Any signal
denoted by the
static signal name
S

 Boolean If the prefix denotes a scalar
signal, the result is False if the
current value of the driver for S
in the current process is
determined by the null
transaction. True otherwise If
the prefix denotes a composite
signal, the result is True if and
only if R’DRIVING is True for
every scalar sub-element R of
S; False otherwise. If the prefix
denotes a null slice of a signal,
the result is True

11

S’DRIVING_VALUE Function Any signal
denoted by the
static signal name
S

 The base
type of S

If S is a scalar signal S, the
result is the current value of the
driver for S in the current
process. If S is a composite
signal, the result is the
aggregate of the values of
R’DRIVING_VALUE for each
element R of S. If S is a null
slice, the result is a null slice

E’SIMPLE_NAME Value Any named entity Type String The simple name, character
literal, or operator symbol of
the named entity, without
leading or trailing white space
or quotation marks but with
apostrophes (in the case of a
character literal) and both a
leading and trailing reverse
solidus (backslash) (in the case
of an extended identifier). In
the case of a simple name or
operator symbol, the characters
are converted to their lowercase
equivalents

E’INSTANCE_NAM
E

 Value Any named entity
other than the
local ports and
generics of a
component
declaration

String Please refer to LRM for more
details.

E’PATH_NAME Value Any named entity
other than the
local ports and
generics of a
component
declaration

String A string describing the
hierarchical path starting at the
root of the design hierarchy and
descending to the named entity,
excluding the name of
instantiated design entities

12

1.8 Standard I/O Functions

The procedure definitions for data input and output routines are defined in package
textio. They are summarized below.

-- This procedure reads data from a file into a line
procedure readline(file F: text;L: out line)

-- This procedure reads a data from a line into value
procedure read (L: inout line; value : in <anyBuitdInDataType>)

-- This procedure reads a data from a line into value and indicates its conformance to
-- the data type
procedure read (L: inout line; value : in <anyBuitdInDataType>; good:boolean)

-- This procedure writes a line from a file into a line
procedure writeline(file F: text;L: in line)

-- This procedure writes a value on to a line with the specified justification and inserts
-- field width indicated by width

procedure write (L: inout line; value : in <anyBuitdInDataType>; justified: in side :=
right; field: in width :=0)

-- a functions that tests the end of file condition
function endfile (file F: text) return boolean;

13

2 Standard IEEE Environment

2.1 Package std_logic_1164

2.1.1 std_logic and std_logic_vector: An industry standard logic system

The bit and bit_vector data types defined in the standard environment are inadequate to
handle simulation of designs containing tri state resources and addressing initialization
and X propagation conditions. Consequently, industry standard data types std_logic and
std_logic_vector are defined in package std_logic_1164. Notice that std_logic is a
resolved data type of the std_ulogic. std_ulogic is unresolved 9 valued logic system.

-- Unresolved logic state system, std_ulogic

TYPE std_ulogic IS (’U’, -- Uninitialized
 ’X’, -- Forcing Unknown
 ’0’, -- Forcing 0
 ’1’, -- Forcing 1
 ’Z’, -- High Impedance
 ’W’, -- Weak Unknown
 ’L’, -- Weak 0
 ’H’, -- Weak 1
 ’-’ -- Don’t care
);
-- unconstrained array of std_ulogic for use with the resolution function

TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

-- resolution function (Look for details on the resolution function below)

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

-- industry standard logic type std_logic and std_logic_vector

SUBTYPE std_logic IS resolved std_ulogic;
TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

14

2.1.2 Resolution Function For std_ulogic

The following two-dimensional table is used to determine effective value of a net having
std_ulogic type is driven by multiple drivers.

As an example, if a net is driven by three drivers having transactions 1,L and Z, the
effective value of the net will be calculated as follows.

Two drivers forcing signal 1 and L will yield a value of 1. This value is resolved against Z
to yield 1.

Table: std_ulogic resolution table

U X 0 1 Z W L H -
U ’U’ ’U’ ’U’ ’U’ ’U’ ’U’ ’U’ ’U’ ’U’
X ’U’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’
0 ’U’ ’X’ ’0’ ’X’ ’0’ ’0’ ’0’ ’0’ ’X’
1 ’U’ ’X’ ’X’ ’1’ ’1’ ’1’ ’1’ ’1’ ’X’
Z ’U’ ’X’ ’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ ’X’
W ’U’ ’X’ ’0’ ’1’ ’W’ ’W’ ’W’ ’W’ ’X’
L ’U’ ’X’ ’0’ ’1’ ’L’ ’W’ ’L’ ’W’ ’X’
H ’U’ ’X’ ’0’ ’1’ ’H’ ’W’ ’W’ ’H’ ’X’
- ’U’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’ ’X’

15

2.1.2 Other useful types defined in package std_logic_1164

In addition to std_logic and std_logic_vector types, std_logic_1164 also defines other
useful data-types and conversion functions between them. These types are described
below.

subtype X01 is resolved std_ulogic RANGE ’X’ TO ’1’; -- (’X’,’0’,’1’)
subtype X01Z is resolved std_ulogic RANGE ’X’ TO ’Z’; -- (’X’,’0’,’1’,’Z’)
subtype UX01 is resolved std_ulogic RANGE ’U’ TO ’1’; -- (’U’,’X’,’0’,’1’)
subtype UX01Z is resolved std_ulogic RANGE ’U’ TO ’Z’; -- (’U’,’X’,’0’,’1’,’Z’)

For details on the conversion functions among these and other data types, readers are
requested to refer to std_logic_1164 package listing attached in the appendix.

16

2.2 Package std_logic_arith

Package std_logic_arith defines two additional data types signed and unsigned. It also
redefines operator definitions and provides conversion functions for these data types.
Note that all operators defined in this package take signed and unsigned numbers as their
arguments. Operators that take standard_logic_vectors as their arguments are redefined in
std_logic_signed and std_logic_unsigned packages.

type unsigned is array (NATURAL range <>) of std_logic;
type signed is array (NATURAL range <>) of std_logic;

17

Table: Arithmetic operators’ functions defined in std_logic_arith package

Table: Relational operators’ functions defined in std_logic_arith package

Table: Unary operators’ functions defined in std_logic_arith package

Left Operand Right Operand Result Operations
UNSIGNED UNSIGNED UNSIGNED +, -,*, SHL,SHR
SIGNED SIGNED SIGNED +, -,*
UNSIGNED SIGNED SIGNED +, -,*
SIGNED UNSIGNED SIGNED +, -,*,SHL,SHR
UNSIGNED INTEGER UNSIGNED +, -
INTEGER UNSIGNED UNSIGNED +, -
SIGNED INTEGER SIGNED +, -
INTEGER SIGNED SIGNED +, -
UNSIGNED STD_ULOGIC UNSIGNED +, -
STD_ULOGIC UNSIGNED UNSIGNED +, -
SIGNED STD_ULOGIC SIGNED +, -
STD_ULOGIC SIGNED SIGNED +, -
UNSIGNED UNSIGNED STD_LOGIC_VECTOR +, -,*
SIGNED SIGNED STD_LOGIC_VECTOR +, -,*
UNSIGNED SIGNED STD_LOGIC_VECTOR +, -,*
SIGNED UNSIGNED STD_LOGIC_VECTOR +, -*
UNSIGNED INTEGER STD_LOGIC_VECTOR +, -
INTEGER UNSIGNED STD_LOGIC_VECTOR +, -
SIGNED INTEGER STD_LOGIC_VECTOR +, -
INTEGER SIGNED STD_LOGIC_VECTOR +, -
UNSIGNED STD_ULOGIC STD_LOGIC_VECTOR +, -
STD_ULOGIC UNSIGNED STD_LOGIC_VECTOR +, -
SIGNED STD_ULOGIC STD_LOGIC_VECTOR +, -
STD_ULOGIC SIGNED STD_LOGIC_VECTOR +, -

Left Operand Right Operand Operation
UNSIGNED UNSIGNED < , <=, > , >=,=, /=
SIGNED SIGNED < , <=, > , >=,=, /=
UNSIGNED SIGNED < , <=, > , >=,=, /=
SIGNED UNSIGNED < , <=, > , >=,=, /=
UNSIGNED INTEGER < , <=, > , >=,=, /=
INTEGER UNSIGNED < , <=, > , >=,=, /=
SIGNED INTEGER < , <=, > , >=,=, /=
INTEGER SIGNED < , <=, > , >=,=, /=

Operand Return Type Operation
UNSIGNED UNSIGNED +
UNSIGNED STD_LOGIC_VECTOR +,ABS
SIGNED SIGNED -
SIGNED STD_LOGIC_VECTOR -, ABS

Operand Return Type Conversion Function
INTEGER INTEGER CONV_INTEGER
UNSIGNED INTEGER CONV_INTEGER
SIGNED INTEGER CONV_INTEGER
STD_ULOGIC INTEGER CONV_INTEGER

18

Table: Conversion functions defined in std_logic_arith package

Table: Conversion functions defined in std_logic_arith package(right operand specifies the size of the
vector returned by the function)

Left Operand Right Operand Result Conversion Function
INTEGER INTEGER UNSIGNED CONV_UNSIGNED
UNSIGNED INTEGER UNSIGNED CONV_UNSIGNED
SIGNED INTEGER UNSIGNED CONV_UNSIGNED
STD_ULOGIC INTEGER UNSIGNED CONV_UNSIGNED
INTEGER INTEGER SIGNED CONV_SIGNED
UNSIGNED INTEGER SIGNED CONV_SIGNED
SIGNED INTEGER SIGNED CONV_SIGNED
STD_ULOGIC INTEGER SIGNED CONV_SIGNED
INTEGER INTEGER STD_LOGIC_VECTOR CONV_STD_LOGIC_VECTOR
UNSIGNED INTEGER STD_LOGIC_VECTOR CONV_STD_LOGIC_VECTOR
SIGNED INTEGER STD_LOGIC_VECTOR CONV_STD_LOGIC_VECTOR
STD_ULOGIC INTEGER STD_LOGIC_VECTOR CONV_STD_LOGIC_VECTOR

19

2.3 Package std_logic_signed and std_logic_unsigned

These two packages support operator definitions and conversion functions that are
specific to signed and unsigned numbers. While these operators are already defined in
std_logic_arith package, their implementation in these two packages is in terms of
standard logic system defined using std_logic and std_logic_vector types.

Left Operand Right Operand Return Type Operators
STD_LOGIC_VECTOR STD_LOGIC_VECTOR See Note Below +,-,*,<,<=,>,>=,/=,SHL,SHR
STD_LOGIC_VECTOR INTEGER See Note Below +,-,<,<=,>,>=
INTEGER STD_LOGIC_VECTOR See Note Below +,-,<,<=,>,>=
STD_LOGIC STD_LOGIC_VECTOR See Note Below +,-
STD_LOGIC_VECTOR STD_LOGIC See Note Below +,-

Table: Binary operator functions defined in std_logic_unsigned and std_logic_signed packages

Note: Arithmetic operators return std_logic_vector, relational operator return boolean.

Table: Unary operator’s functions defined in std_logic_unsigned and std_logic_signed packages

Table: Conversion functions defined in std_logic_unsigned and std_logic_signed packages

 Operand Return Type Operators
STD_LOGIC_VECTOR STD_LOGIC_VECTOR +,-,ABS

Operand Return Type Conversion Function
STD_LOGIC_VECTOR INTEGER CONV_INTEGER

20

3 VHDL Statements

3.1 Design Units

3.1.1 Entity Declaration

Entity declaration describes an interface aspect of a design. The entity declaration part contains entity
header, entity declarative region and entity statement part in that order.

entity regbank is
-- entity header
generic (width : integer := 8); -- generic clause
port (d : in std_logic_vector(WIDTH-1 downto 0), -- port clause

q : out std_logic_vector(WIDTH-1 downto 0),
clock,reset : in std_logic);

-- entity declarations
constant Thold : time := 5 ns;
-- entity statements part
begin

process (clk)
begin

if(clock = ‘1’ and clock’event) then
if(d’stable(Thold) = FALSE) then

report "Hold violation”
 severity WARNING;

end if;
end if;

end process;
end entity;

3.1.1.1 Entity header

Entity header contains a port list with which it communicates with the outside world and a set of generic
values that are passed on to design from the outside world.

3.1.1.3 Generic

• Useful for module parameterization
• Useful for supplying runtime environment such as timing values, speed grades etc.

3.1.1.2 Ports

Ports can have type
• In – input port
• Out – Output port
• Buffer – A signal associated with port is allowed to have at most one driver
• Linkage – the direction is unknown

21

3.1.1.4 Entity declarative part

The declarations in entity can be one of the following

• Subprogram declaration
• subprogram body
• type declaration
• subtype declaration
• constant declaration
• signal declaration
• shared variable declaration
• file declaration
• alias declaration
• attribute declaration
• attribute specification
• disconnection specification
• use clause
• group template declaration
• group declaration

3.1.1.5 Entity statement part

The statements in entity statement part can be one of the following statements

• concurrent assertion statement
• passive concurrent procedure call
• passive process statement

3.1.2 Package declarations

Packages encapsulate information that can be shared between more than one design unit.

package mem is
-- package declarative part
type nibble is array (3 downto 0) of BIT;
type byte is array (7 downto 0) of BIT;
type word is array(15 downto 0) of BIT;
type mem8x32 is array (natural range <>) of byte;
function writeMem (mem : mem8x32;data : byte; address : natural) return natural;

end mem;

22

Package declarative item can be one of the following statements.

• subprogram declaration
• type declaration
• declaration
• constant declaration
• signal declaration
• shared variable declaration
• file declaration
• alias declaration
• component declaration
• attribute declaration
• attribute specification
• disconnection specification
• use clause
• group template declaration
• group declaration

3.1.2.1 Package Bodies

The package body specifies the behavior for the items declared in the package declaration.

package body mem is
-- package body
function writeMem (mem : mem8x32;data : byte; address : natural) return natural is
begin

mem(address) <= data;
address <= address + 1;
return address ;

end writeMem;
end mem;

The package body can contain following statements.

• subprogram declaration
• subprogram body
• type declaration
• subtype declaration
• constant declaration
• shared variable declaration
• file declaration
• alias declaration
• use clause
• group template declaration
• group declaration

23

3.1.3 Configuration Declaration

Configurations are used

• bind the entity to desired architecture implementation (3.1.3.1)
• bind the component instantiations to their desired entity-architecture or configurations(3.1.3.2)
• redefine the port names of the components at the place of instantiation(3.1.3.3)
• relink the component instantiation to different entity other than the one for which component is

declared (3.1.3.4)
• late binding of parameters which have to be passed on to design (e.g. delay values) (3.1.3.5)

3.1.3.1 Default configuration

If an entity has two architectures and if the configuration is not specified, then the architecture that is seen
last is bound to that entity. Otherwise, a default configuration statement for each architecture can be
specified:

configuration configurationName of entityName is
for architecture
end for;
end configurationName;

See example below.

3.1.3.2 Component configuration

Component configurations are used to bind component instantiations to their implementations. Component
configurations can be specified using one of the following ways.

• Indirect configuration – specifying component configuration in terms of another configuration. This
configuration statement must be specified as a design unit, outside the scope where components are
instantiated (case I).

• Direct configuration - specifying component configuration using entity and architecture pair directly in
the configuration statement. This configuration statement must be specified as a design unit, outside the
scope where components are instantiated (case II).

• Architecture configuration – specifying configuration for components in the architecture declarative
part (case III)

Using all, others and instance name as named instances, configuration specification can be simplified. See
examples below.

24

--
-- inverter interface
--
entity inv is

generic (delay : time := 2ns);
port (a : in bit; q : out bit);

end inv;

--
-- inverter behavioural implementation
--
architecture behv of inv is
begin

q <= ‘0’after delay when a = ‘1’ after delay else ‘1’;
end behv;
--
-- inverter data flow implementation
--
architecture dataflow of inv is

q <= not (a) after delay;
end dataflow;

--
-- default configuration for data flow architecture
--
configuration inv_dataflow_conf is
for dataflow
end for;

--
-- default configuration for behv architecture
--
configuration inv_behv_conf is
for behv
end for;

entity buffer is
port (i_pin: in bit; o_pin : out bit);

end entity;

architecture structural of buffer is
component inv port (a : in bit; q : out bit);
end component;
signal bit : tmp;
begin

I1: inv port map (a => I_pin, q => tmp);
I2: inv port map(a => tmp, q => o_pin);

end structural;

25

--
-- case I
--

configuration case_I of buffer is
for structural

for I1 : inv use configuration work.inv_dataflow_conf;
end for;
for I1 : inv use configuration work.inv_behv_conf;
end for;

end for;
end case_I;

Alternatively; for all inverter instances

configuration case_I of buffer is
for structural

for all : inv use configuration work.inv_dataflow_conf;
end for;

end for;
end case_I;

Alternatively, dataflow configuration for I1 can be used explicitly and configuration for remaining instances
can be specified using other clause.

configuration case_I of buffer is
for structural

for I1 : inv use configuration work.inv_dataflow_conf;
end for;
for other : inv use configuration work.inv_behv_conf;
end for;

end for;
end case_I;

--
-- case II
--
configuration case_II of buffer is
for structural

for all : inv use entity work.inv(dataflow);
end for;

end for;
end case_II;

26

--
-- case III
--

architecture structural of buffer is
component inv port (a : in bit; q : out bit);
end component;

for I1 : inv use configuration work.inv_behv_conf;
for I2 : inv use configuration entity work.inv(dataflow);

signal bit : tmp;
begin

I1: inv port map (a => I_pin, q => tmp);
I2: inv port map(a => tmp, q => o_pin);

end structural;

3.1.3.3 Port Maps

The names of the ports can be redefined using configuration statement.

architecture structural of buffer is
-- The original inv entity has a and q as pin names
-- These are changed here and their correspondence
-- is established in the configuration statement
component inv port (newA : in bit; newQ : out bit);
end component;

signal bit : tmp;
begin

I1: inv port map (newA => I_pin, newQ => tmp);
I2: inv port map(newA => tmp, newQ => o_pin);

end structural;

configuration renamePortMaps of buffer is
for structural

-- substitute inv with invNew
for all : inv use entity work.inv(dataflow);
port map (a => newA, q => newQ);
end for;

end for;
end renamePortMaps ;

27

3.1.3.4 Mapping components to different entity

The name of the entity can be changed using configuration statement as shown below.

entity inv is
port(a : in bit; q : out bit);

end entity;

--
-- some inv architecture
--

entity invNew is
port(a : in bit; q : out bit);

end entity;

--
-- some invNew architecture
--

architecture structural of buffer is
--
-- used inv and substituted invNew in the configuration
--

component inv port (newInput : in bit; newOutput : out bit);
end component;
signal bit : tmp;
begin

I1: inv port map (newInput => I_pin, newOutput => tmp);
I2: inv port map(newInput => tmp, newOutput => o_pin);

end structural;

configuration renameEntityName of buffer is
for structural

for all : invNew use entity work.inv(dataflow);
end for;

end for;
end renameEntityName ;

3.1.3.5 Generics in the configuration statement

Default generic parameters defined in the entity can be overridden in the configuration.

configuration config of buffer is
for structural

for all : inv use entity work.inv(dataflow);
generic map (delay => 20 ns);
end for;

end for;
end config;

28

3.1.4 Block configuration

If the architecture definition contains blocks, configuration statement should account for the block
hierarchy.

architecture structural of buffer is
component inv port (a : in bit; q : out bit);
end component;

signal bit : tmp;
begin

blk1 : block
I1: inv port map (a => I_pin, a => tmp);

end block blk1;

I2: inv port map(a => tmp, q => o_pin);
end structural;

configuration blockConf of buffer is
for structural

for blk1
for I1 : inv use entity work.inv(dataflow);
end for;

end for;
for I2 : inv use entity work.inv(dataflow);
end for;

end for;
end blockConf;

3. 1.5 Architecture Bodies

Architecture body provides an implementation for the interface declared in the entity part. There can be
multiple architectures for the single entity.

architecture behv of andinv is
-- architecture declarative part
signal andOutput;
begin
-- architecture statements part

andOut <= a and b;
and <= andOut;
nand <= not andOut;
end behv;

29

3.1.5.1 Architecture declarative part

The following statements are allowed in architecture declarative part

• subprogram declaration
• subprogram body
• type declaration
• subtype declaration
• constant declaration
• signal declaration
• shared variable declaration
• file declaration
• alias declaration
• component declaration
• attribute declaration
• attribute specification
• configuration specification
• disconnection specification
• use clause
• group template declaration
• group declaration

3.1.5.2 Architecture statement part

Only concurrent statements are allowed in architecture statement part.

30

 3.2 Libraries

Library is an implementation dependent database in which previously analyzed design units are placed.
Library is declared using library keyword following a list of library names.

library ieee, constants;

The library in which user supplied design units are being analyzed is called a work library.

Use clause is used to provide visibility to the components defined in the library.

use ieee.std_logic_1164.all; -- make visible all information declared in unit std_logic_1164
use processor.busFunctions.”dma”-- provide an access to only function dma defined in unit busFunction

31

3.3 Concurrent Statements

3.3.1 Block statement

Block is a part of the design that is enclosed in the architecture. Blocks form the partition of the design and
can be construed as a schematic sheet.

architecture blockOriented of latch is
begin

latch : block
-- block header
-- block declarative part
port (en,d : in std_logic; q: out std_logic); -- block interface
port map (en => latchEnable, d => data, q => output); -- block connection to

-- outside world
begin

-- block statements
process (en)
begin

if(en) then
q <= d;

end if;
end process;

end block latch;
end blockOriented;

Following statements are allowed in block header.

• generic clause
• generic map aspect
• port clause
• port map aspect

The list of statements allowed in block declarative part is same as that allowed in architecture declaration
part and is given in section 3.1.5.1.

Only concurrent statements are allowed in block statement part.

3.3.2 Process statement

Processes encapsulate a set of sequential statements. A process is activated when a signal given in its
sensitivity list changes a value. If a process does not have a sensitivity list, it must have a wait statement in
which process waits till the wait expression is evaluated true.

ff : process (clk, rst)
--process declarative part
begin
-- process statements part

if(rst = ‘0’) then
q <= ‘0’;

else if(clk’event and clk = ‘1’) then
1 <= d;

end if;
end process ff;

Equivalently,

ff : process
begin

if(reset = ‘1’) then

32

q <= ‘0’;
else if(clk’event and clk = ‘1’) then

q <= d;
end if;
wait on (clk , rst);

end process;

The following statements are allowed in process declarative part.

• subprogram declaration
• subprogram body
• type declaration
• subtype declaration
• constant declaration
• variable declaration
• file declaration
• alias declaration
• attribute declaration
• attribute specification
• use clause
• group type declaration
• group declaration

Only sequential statements are allowed in statements part.

3.3.3 Concurrent procedure call statements

Concurrent procedures provide a convenience of defining a sequential procedure (say in a package or in a
declarative region of the enclosing scope) and calling it as a concurrent statement. There is always a
corresponding process statement for every concurrent procedure.

CheckTiming (tPLH, tPHL, Clk, D, Q); -- A concurrent procedure called statement.

 process -- The equivalent process.
 begin
 CheckTiming (tPLH, tPHL, Clk, D, Q);
 wait on Clk, D, Q;
 end process;

3.3.4 Concurrent assertion statements

Concurrent assertion statement can be written as:

e.g. assert (now – last_clk_change = 20 ns) report “Glitch on the clk signal” severity error;

33

3.3.6 Conditional signal assignments

Conditional signal assignment statements are illustrated with following examples.

--
-- mux
--

q <= d0 when s = “00” else
 d1 when s = “01” else
 d2 when s = “10” else
 d3 when s = “11” else
 ‘x’;

--
-- demonstrates use of unaffected keyword
--

S <= unaffected when Input_pin = S'DrivingValue else
 Input_pin after Buffer_Delay;

3.3.7 Selected signal assignments

The selected signal assignment statement is illustrated with the examples given below.

--
-- with statement
--

with sel select
q <= a after 5 ns when 0,
 b after 5 ns when 1,
 ‘x’ after 0 ns when others;

3.3.8 Component instantiation statements

A component instantiation statement is used to build well-partitioned hierarchical designs. VHDL supports
instantiation of a component, instantiation of a design entity and an instantiation of configuration.

3.3.8.1 Instantiating component

Instantiating a component consists of declaring a component including its port and generic maps and using
it in the architecture by supplying port map aspect and generic map aspect.

34

architecture structural of dp is

component regbank
generic (width : integer := 16);
port(clk,r : in std_logic;
d : in std_logic_vector(width-1 downto 0);
q : out std_logic_vector(width-1 downto 0));

end component;

begin
b8 : regbank

generic map (width => 16),
port map (clk => sysclk, r => r, d => datain, q => dataout);

3.3.8.2 Instantiating entity

An entity can be directly instantiated into its enclosing scope as shown in the example below.

b8: entity Work.regbank (behv) port map (clk => sysclk, r => sysrst, d => datain, q => dataout);

Unlike in the case of component instantiation, an entity that is being instantiated must be previously
analyzed design unit.

3.3.8.3 Instantiating configuration

b8: configuration work.config_structural port map (clk => sysclk, r => sysrst, d => datain, q =>
dataout);

config_structural is the name of the configuration that binds the entity architecture pair of the design unit.

3.3.9 Generate statements

Generate statement is used to instantiate components that display regularity between their interconnections.
The example shows interconnections between full adders to implement a ripple carry adder.

Two generate schemes are available. IF GENERATE clause is used to generate a slice conditionally. This
scheme is useful for creating hardware on the edges. The FOR GENERATE scheme is used for replicating
the hardware slices.

Any block declarative statements listed in section 3.1.5.1 can be used in the block declarative region of
generate statement. Only concurrent statements are allowed in the statements part.

35

g1 : for i in 0 to (times - 1) generate
-- block declarative region (optional, if present statement begin should start statements part)
begin – (optional, should be used only if block declarative statements are present)
-- statements

g2: if(i = 0) generate
 fullAdder : inst port map (

 A => ain(i),
B => bin(i),
CI => CarryIn,
CO => temp(i);

);
 end generate;

g3: if(i> 0 and i < (times - 1)) generate
 fullAdder : inst port map (

 A => ain(i),
B => bin(i),
CI => temp(i-1),
CO => temp(i);

 end generate;

g4: if(i = (times - 1)) generate
fullAdder : inst port map (

 A => ain(i),
B => bin(i),
CI => temp(i-1),
CO => carryOut;

 end generate;
end generate;

36

3.4 Sequential Statements

3.4.1 Wait statement

Wait statement is used to suspend the execution of the process. Different flavors of the wait statement are
listed below.

wait for 10 ns; -- wait for 10 ns
wait until (reset = ‘1’); -- wait till the expression is true
wait on (clk,rst) -- wait for signals clk and rst to change

3.4.2 Assertion statement

Sequential assertion statement appears in a process.

assert (now – last_clk_change = 20 ns) report “Glitch on the clk signal” severity error;

3.4.3 Report statement

Report statement is used to report textual message to users.

report “Can’t open file:in.dat” severity error;

3.4.4 Signal assignment statement

Various signal assignment statements are illustrated with the examples below.

-- Assignments using inertial delay:

 -- The following three assignments are equivalent to each other:

 Output_pin <= Input_pin after 10 ns;
 Output_pin <= inertial Input_pin after 10 ns;
 Output_pin <= reject 10 ns inertial Input_pin after 10 ns;

 -- Assignments with a pulse rejection limit less than the time expression:

 Output_pin <= reject 5 ns inertial Input_pin after 10 ns;
 Output_pin <= reject 5 ns inertial Input_pin after 10 ns, not Input_pin after 20 ns;

-- Assignments using transport delay:

 Output_pin <= transport Input_pin after 10 ns;
 Output_pin <= transport Input_pin after 10 ns, not Input_pin after 20 ns;

 -- Their equivalent assignments:

 Output_pin <= reject 0 ns inertial Input_pin after 10 ns;
 Output_pin <= reject 0 ns inertial Input_pin after 10 ns, not Input_pin after 10 ns;

37

3.4.5 Variable assignment statement

Variable assignment statements are illustrated with examples below.

I := 10; -- constant
J := I * 3; -- expression

3.4.6 Array variable assignments

The array variable assignments are illustrated with the example below.

variable intArray : array (7 downto 0) of integer;
variable bitArray : array (7 downto 0) of bit;

intArray(1) := 20;
bitArray := “10101011”;

3.4.7 Procedure call statement

A procedure call statement is illustrated with the example shown below.

process
 begin
 CheckTiming (tPLH, tPHL, Clk, D, Q);
 wait on Clk, D, Q;
 end process;

3.4.8 If statement

The if statement is illustrated with the example below.

--
-- 4 to 1 Mux
--

if(s = “00”) then
q <= d0;

elsif (s = “01”) then
q <= d1;

elsif(s = “10”) then
q <= d2;

elsif(s = “11”) then
q <= d3;

else
q <= ‘X’;

end if;

38

3.4.9 Case statement

Case statement is illustrated with the following example.

--
-- 4 to 1 mux
--

case s is
when “00” =>

q <= d0;
when “01” =>

q <= d1;
when “10” =>

q <= d2;
when “11” =>

q <= d3;
when others =>

q <= ‘X’;
end case;

3.4.10 Loop statements

There are two loop statements, loop and while. These statements are illustrated using examples below.

--
-- loop indefinately
--

loop
checkTiming(CLK,RESET,D)
wait on(clk,reset);

end loop;

--
-- loop fixed number of times
--
for I in 1 to 5 loop

sum := sum + a(I);
end loop;

--
-- loop until some condition is satisfied
--
while (a(i) = ‘x’) loop

i := i + 1;
end loop;

39

3.4.11 Next statement

Next statement is used to skip the iteration of the loop.

for I = 0 to 10 loop
if(a(I) < 0) then

next; -- skip this iteration
end if;
sum := sum + a(I);

end loop;

3.4.12 Exit statement

Exit statement is used to exit out of the loop.

for I = 0 to 10 loop
if(a(I) < 0) then

exit; -- exit from the loop
end if;
sum := sum + a(I);

end loop;

3.4.13 Return statement

Return statement is used to return from a function or the procedure.

function swap (vec : in std_logic_vector(1 downto 0)) return std_logic_vector is
variable tmp : std_logic;
begin

tmp := vec(0);
vec(0) := vec(1);
vec(1) := tmp;
return vec;

end function;

40

3.4.14 Null statement

Null statement is used to convey explicitly that no action is to be taken.

--
-- 4 to 1 mux (for illustration only)
--

case s is
when “00” =>

q <= d0;
when “01” =>

q <= d1;
when “10” =>

q <= d2;
when “11” =>

q <= d3;
when others =>

null;
end case;

41

3.5 Specifications

3.5.1 Attribute specification

Attribute declaration

An attribute is a value, function, type, range, signal, or constant that may be associated with one or
more named entities in a description. There are two categories of attributes: predefined attributes and
user-defined attributes. Predefined attributes are described in section 2.

Attribute declarations are illustrated with examples given below.

attribute pad : boolean; -- declare an attribute pad which is either true or false
attribute optimize : boolean; -- declare an attribute optimize which is either true or false

Attribute Specifications

Attribute specifications associate attribute name and the value to the entities in the VHDL design. Attributes
can be specified for the following entities.

entity architecture configuration
 procedure function package
 type subtype constant
 signal variable component
 label literal units
 group file

Attributes are illustrated with following examples.

attribute pad of AO: signal is true; -- AO is a pad pin
attribute optimize of add8: component is true; -- add8 is to be optimized away
attribute optimize of others: component is false; -- all other components are to be preserved

3.5.2 Disconnection specification

42

3.6. Type declarations

VHDL allows declarations of user defined types. Type declarations are illustrated with examples below.

-- short integer
type short is integer range 0 to 255;

-- decimal number system using enumerated type
type decimal is (zero,one,two,three,four,five,six,seven,eight,nine);

-- frequently used bit sizes
type byte is array (7 downto 0) of std_logic;
type word is array (15 downto 0) of std_logic;

-- kilobyte
type kbyte is array (0 to 1024) of byte;

-- two dimentional array indexed by non integers
type delayKind is (min,typ,max)
type scalingFactor is array (delayKind range <>) of real;

-- unconstrained array
type bv is array (natural range <>) of bit;

-- type containing records
type instruction is

record
opcode : optype;
src : integer;
des : integer;

end record;

-- incomplete types
type node is

record
data : integer;
next : ptr;

end record;
type ptr is access node;

-- file types
type IntegerFile is file of INTEGER;

3.6.1 Subtype declarations

Subtypes are the subsets of the original types. Subtype declarations are illustrated using examples below.

subtype wholeNumber is integer range 0 to 2,147,483,647;
subtype alpha is character range ‘A’ to ‘Z’;

43

3.6.2 Objects

An object is a named entity that contains (has) a value of a given type. An object is one of the
following:

• An object declared by an object declaration (signal,variable,constant or file)
• A loop or generate parameter
• A formal parameter of a subprogram
• A formal port
• A formal generic
• A local port
• A local generic
• An implicit signal GUARD defined by the guard expression of a block statement

In addition, the following are objects, but are not named entities:

• An implicit signal defined by any of the predefined attributes ’DELAYED,’STABLE, ’QUIET, and
’TRANSACTION

• An element or slice of another object
• An object designated by a value of an access type

3.6.3 Object declarations

Objects can be one of the four types defined below.

• constant declaration
• signal declaration
• variable declaration
• file declaration

3.6.4 Constant declarations

A constant declaration declares a constant of a specified type.

constant pi : real := 3.14

3.6.5 Signal declarations

A signal declarations declare signals.

signal A : std_logic_vector (1 to 10) ;
-- signal having an initial value
signal reset : std_logic := 0 ;

-- A signal having resolution function
signal output : wired_or mvl;

3.6.6 Variable declarations

Variables are declared using variable declaration statement.

variable I : integer := 0;
variable A : std_logic := ‘1’;

3.6.7 File declarations

File declaration is used to declare files of specified types.

44

type IntegerFile is file of INTEGER;

file F1: IntegerFile; -- No implicit FILE_OPEN is performed
 -- during elaboration.

file F2: IntegerFile is "test.dat"; -- At elaboration, an implicit call is performed:
 -- FILE_OPEN (F2, "test.dat");
 -- The OPEN_KIND parameter defaults to
 -- READ_MODE.

file F3: IntegerFile open WRITE_MODE is "test.dat";
 -- At elaboration, an implicit call is performed:

-- FILE_OPEN (F3, "test.dat", WRITE_MODE);

3.6.8 Interface declarations

3.6.9 Interface lists

3.6.10 Association lists

3.6.11 Alias declarations

Aliases are the alternate names given to objects or non objects.

3.6.12 Object aliases

Object aliases are illustrated with the example below.

signal signedNumber : std_logic_vector(7 downto 0);
alias sign : std_logic is signedNumber(7);

3.6.13 Non object aliases

Aliases to entities belonging to non object categories are illustrated below.

alias INDUSTRY_STANDARD_LOGIC is IEEE.STD_LOGIC_1164.STD_LOGIC;

3.6.14 Component declarations

3.6.15 Group template declarations

3.6.16 Group declarations

45

3.7 Scalar types

3.7.1 Enumeration types
3.7.1 Predefined enumeration types
3.7.2 Integer types
3.7.3 Physical types
3.7.4 Floating point types
3.7.5 Composite types
3.7.6 Array types
3.7.7 Index constraints and discrete ranges
3.7.8 Record types
3.7.9 Access types
3.7.10 Incomplete type declarations
3.7.11 File types

46

3.8 Sub-programs

Subprograms are the reusable units of computations. Subprograms are divided into functions and
procedures. Functions take arguments and can return only one value via return statement. The procedure
does not have return statement but it can return multiple values to calling area via its arguments.

3.8.1 Subprogram declarations

procedure declaration

procedure prodecureName (optional parameter list)

e.g. procedure accumulate (acc : inout word; val : in byte; flag : out boolean);

function declaration

function functionname (parameter list) return returnType;

e.g. function add (a : in byte; b: in byte) return word;

The procedure names and function names can be predefined operator names to support operator
overloading.

3.8.2 Formal parameters

Formal parameters to a subprogram can be constants, variables, signals, or files. Parameter of type
constants, variables and signals has modes either in, out or inout associated with them. Parameter of type
file does not have a mode associated with it.

A procedure can have parameters of in, out or inout mode. If the mode is in and no object class is explicitly
specified, constant is assumed. If the mode is inout or out, and no object class is explicitly specified,
variable is assumed.

Functions can have parameters having in mode. The object class must be constant, signal, or file. If no
object class is explicitly given, constant is assumed.

In a call to a sub program, a formal arguments and actual arguments of type signal and variable and file
must match in type. If formal is a constant, then the actual argument can be an expression.

3.8.2.1 Constant and variable parameters

3.8.2.2 Signal parameters

3.8.2.3 File parameters

47

3.8.3 Subprogram bodies

The implementation of the subprogrms is supplied in the subprogram body.

procedure accumulate (acc : inout word; val : in byte; flag : out boolean) is
-- subprogram declarative part
begin
-- subprogram statements part
acc <= acc + byte;
flag <= ‘0’ when acc < 0 else
 ‘1’;
end procedure accumulate;

Following statements are allowed in subprogram declarative region.

• subprogram declaration
• subprogram body
• type declaration
• subtype declaration
• constant declaration
• variable declaration
• file declaration
• alias declaration
• attribute declaration
• attribute specification
• use clause
• group template declaration
• group declaration

Only concurrent statements are allowed in the statements part.

3.8.4 Subprogram overloading

3.8.5 Operator overloading

3.8.6 Signatures

3.8.7 Resolution functions

