
Programmable
SLI
AT94K
AT94S

Application
Note

Rev. 3050A–FPSLI–05/02
Real-Time Clock using the Asynchronous Timer

Features
• Real-Time Clock with Very Low Power Consumption (4 µA @ 3.3V)
• Very Low Cost Solution
• Adjustable Prescaler to Adjust Precision
• Counts Time, Date, Month and Year with Auto Leap Year Configuration
• Year 2000 Compliant Date Format
• Can be Used on all AVR Controllers with RTC Module
• C Code for AT94K Inculded

Introduction
This application note describes how to implement a Real-Time Clock (RTC) on the
FPSLIC™ embedded AVR microcontroller. The implementation requires only a 32.768
kHz watch crystal. The application has very low power consumption because the
microcontroller operates in Power Saving mode, most of the time. In Power Saving
mode the microcontroller is sleeping with only a timer running. The timer is clocked by
the external crystal, an on every timer overflow, the time, date, month and year are
counted. The advantages of implementing a RTC in software compared to an external
hardware RTC are obvious:

• Lower Cost

• Few External Components

• Lower Power

• Greater Flexibility

The C code with the Real-Time Clock routines can be found in the FPSLIC Software
section of the Atmel web site (www.atmel.com), under the 3050.c archive.

Theory of Operation
The implementation of an RTC utilizes the asynchronous operation of the RTC mod-
ule. In this mode, Timer/Counter2 runs independently from the CPU clock.

The FPSLIC microcontroller operates from the 4 MHz main clock source in normal
operation. When low power operation is desired, the microcontroller operates in Power
Down mode, with only the asynchronous timer running from an external 32.768 kHz
crystal.

The software real-time clock (RTC) is implemented using an 8-bit timer/counter with
overflow interrupt. The software controls the overflow interrupt to count clock and cal-
endar variables. The Timer Overflow interrupt is used to update the software variables
“second”, “minute”, “hour”, “date”, “month” and “year” at the correct intervals.
1

Figure 1. Oscillator connection for Real-Time Clock

Since the amount of time for the timer/counter to complete one overflow is always the
same, each timer variable will be incremented by a fixed number with every timer over-
flow. The timer overflow interrupt routine is used to perform this task.

To reduce power consumption, the microcontroller enters a Power Saving mode, in
which all on-chip modules are disabled except for the RTC; the microcontroller typically
consumes less than 4 µA in this mode, see Table 1. The device will wake up on the
Timer Overflow interrupt. The updates of the timer variables are performed during the
active period.

Then the microcontroller re-enters the Power Saving mode until the next timer overflow
occurs. Figure 2 and Figure 3 show the operating time difference of the microcontroller
in Power Saving mode versus Active mode.

The total power consumption equals to the addition of the power consumption in Power
Saving mode and the power consumption in Active mode. It takes less than 100 cycles
to update the timer variables in the interrupt routine, but with a 4 MHz main clock it only
takes 25 µs. The power consumption for this period is neglible. The wake-up time for the
controller can be programmed to 35 ms for use with the external crystal, or 1 ms for use
with the ceramic resonator. Figure 2 shows an example of a circuit that wakes up once
every second to update the RTC and the power consumption for the two types of clock
source:

Figure 2. Current Figures for Crystal Oscillator, 35 ms Startup Time

Total current consumption per second:

= (1 sec * 4 µA) + (35 ms * 6 mA) = 4 µAs + 210 µAs = 214 µAs

XTAL1

XTAL2

TIMER/COUNTER2

VCC

4.000 MHz

AT94K

TOSC1

TOSC2

32.768 kHz10
200

27 pF

33 pF

Power Save

Active Mode

Time

Current

4 µA 6 mA

35 ms1s
2 RTC Using the Asynchronous Timer
3050A–FPSLI–05/02

RTC Using the Asynchronous Timer
This shows that the dominating part of the current consumption is in Active mode.

Figure 3. Current Figures for Ceramic Resonator, 0.5 ms Startup Time

Total current consumption per second:

= (1 sec * 4 µA) + (1 ms * 6 mA) = 4 µAs + 6 µAs = 10 µAs

This shows that by reducing the startup time the current consumption is reduced from
100 µAs to 7 µAs.

Calculation Given the frequency of the watch crystal, the user can determine the time for each tick in
the Timer/Counter by selecting the desired prescale factor. As shown in Table 2, CS22,
CS21 and CS20 in the TCCR2 (Timer/Counter2 Control Register) define the prescaling
source of the Timer/Counter, where CK is the frequency of the watch crystal. For exam-
ple, if CK equals 32,768 Hz, the Timer/Counter will tick at a frequency of 256 Hz with a
prescaler of CK/128.

Note: 1. CK = 32,768 Hz

Table 1. Current Consumption by the AVR Controller in Each Mode

Mode Typical Max

Active 4 MHz, 3.3 VCC 4 mA 6.0 mA

Idle 4 MHz, 3.3 VCC 1.8 mA 2.0 mA

Power Down 4 MHz, 3.3 VCC <1.0 µA 2.0 µA

Power Save 4 MHz, 3.3 VCC <4.0 µA 6.0 µA

Power Save

Active Mode

Time

Current

4 µA 6 mA

1 ms1s

Table 2. Timer/Counter0 Prescale Select

CS22 CS21 CS20 Description Overflow Period

0 0 0 Timer/Counter2 is stopped –

0 0 1 CK(1) 1/64s

0 1 0 CK/8(1) 1/8s

0 1 1 CK/32(1) 1/4s

1 0 0 CK/64(1) 1/2s

1 0 1 CK/128(1) 1s

1 1 0 CK/256(1) 2s

1 1 1 CK/1024(1) 8s
3
3050A–FPSLI–05/02

Configuration
Example

As shown in Figure 1, the crystal should be connected directly between pins TOSC1
and TOSC2. The oscillator is optimized for use with a 32,768 Hz watch crystal, or an
external clock signal in the interval of 0 Hz - 256 kHz. In this example, the eight LEDs in
port D are used to display the RTC. The LED on port D pin 0 will change state every
second. The next 6 LEDs represent the minute in binary, and the LED on pin 7 stays on
for 1 hour and off for the next.

Considerations should be taken when clocking the timer/counter from an asynchronous
clock source. A 32.768 kHz crystal have a stabilization time up to 1 second after power
up. The controller must therefore not enter Power Saving mode less than a second after
power up. Care must be taken when changing to asynchronous operation. When updat-
ing the timer register the data is transferred to a temporary register and latched after two
external clock cycles. The ASynchronous Status Register (ASSR) contains status flags
that can be checked to control that the written register is updated.

Implementation The software consists of two subroutines. “Counter” is the Timer/Counter overflow ser-
vice routine, which updates all the timer variables whenever a timer overflow occurs.
The other one, “not_leap”, corrects the date for leap years. The main program sets up all
the necessary I/O registers to enable the RTC module and controls the power down
sequence.

The AS2 bit in the ASSR is set to configure Timer/Counter2 to be clocked from an exter-
nal clock source. Only this timer can perform asynchronous operations. The start value
for the timer is reset and the desired prescaler value is selected. To synchronize with the
external clock signal the program wait for the ASSR register to be updated. TOIE2 bit in
the TIMSK (T imer/Counter Interrupt Mask Regis ter) is then set to enable
Timer/Counter2 Overflow interrupt. The Global Interrupt Enable bit in SREG (Status
Register) also has to be set to enable all interrupts. SM1 and SM0 bit in MCUR (MCU
Control Register) are set to select Power Saving mode. The SLEEP instruction will then
place the controller in Sleeping mode. A loop in the main program executes the SLEEP
instruction.

“Counter” Overflow
Interrupt Routine

The interrupt routine is executed every time a timer overflow occurs. It wakes up the
MCU to update the timer variables. An interrupt procedure cannot return or accept any
variables. A global structure with timer variables are declared to keep track of time: “sec-
ond”, “minute”, “hour”, “date”, “month” and “year”. Since the time required to complete
one timer overflow is known, “second” will be incremented by a fixed number every time.
Once it reaches 60, “minute” is incremented by 1 and “second” is set to 0.
4 RTC Using the Asynchronous Timer
3050A–FPSLI–05/02

RTC Using the Asynchronous Timer
Figure 4. Flow Chart, CounterInterrupt Routine

Y

Y

counter

++ second
=60?

minute=minute +1
second = 0

minute = 60?

hour = hour +1
minute = 0

hour = 24?

date = date +1
hour = 0?

Y

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

N

A B

A B

date = 32?

date = 31 &
month = 4,6,9,11?

date = 30?

date = 32?

Month=2
and Not_Leap

month = month +1
date=1

month = 13?

year = year +1
month=1

Return

N

Y

5
3050A–FPSLI–05/02

“not_leap”
Subroutine

This routine checks whether or not it is a leap year. It returns true if the year is not leap
and false for leap. It is considered a leap year if both of the following conditions are
satisfied:

1. The year is divisible by 4, and

2. If the year is divisible by 100, it also has to be divisible by 400.

Accuracy The RTC on the microcontroller maintains high accuracy as long as the watch crystal is
accurate. Asynchronous operation allows the timer to run without any delays even when
the CPU is under heavy computation. However, a small neglible discrepancy does occur
because the timer variables are not updated in parallel. By the time they are finished
updating, they deviate from the Timer/Counter very slightly. The largest discrepancy
occurs when all the timer variables are overflowed. At this moment, “second” is 59,
“minute” is 59, “hour” is 23, and so on. It takes 94 cycles for the MCU to complete the
update. At a 4Mhz CPU clock, the error between the RTC and the watch crystal will not
exceed 23.5 µs found by 94 / (4 * 106). A typical error should be 6 µs since 24 cycles are
needed to update “second”. This error does not accumulate since the timer is always
synchronous with the watch crystal.

Figure 5. Flow Chart

Y

N

not_leap

year divisable
by 100?

return
year / 400

return year / 4
6 RTC Using the Asynchronous Timer
3050A–FPSLI–05/02

RTC Using the Asynchronous Timer
Resources
Table 3. CPU and Memory Usage

Function Code Size (bytes) Cycles Example Register Interrupt Description

main 104 – R16 Timer0 Overflow Sets the necessary configuration

counter 356 – R16, R17, R30, R31 – Updates the variables

not_leap 48 10 (typical) R16, R17, R20, R21 – Checks for leap year

Total 508 – – –

Table 4. Peripheral Usage

Peripheral Description Interrupts Enabled

TOSC1, TOSC2 Connected to external crystal –

Timer/counter2 Real-time clock Timer/counter2 overflow

8 I/O pins on port D Flashing LEDs (example only) –
7
3050A–FPSLI–05/02

/**** A P P L I C A T I O N NOTE **************************

*

* Title: Real-Time Clock

* Version: 1.01

* Last Updated: 03/25/02

* Target: AT94K

* Description

* This application note shows how to implement a Real-Time Clock utilizing a secondary

* external oscillator. Included a test program that performs this function, which keeps

* track of time, date, month, and year with auto leap-year configuration. 8 LEDs are used

* to display the RTC. The 1st LED flashes every second, the next six represents the

* minute, and the 8th LED represents the hour.

*

**/

#include <ioat94k.h>

#include <ina90.h>

char not_leap(void);

type def struct{

unsigned char second; //enter the current time, date, month, and year

unsigned char minute;

unsigned char hour;

unsigned char date;

unsigned char month;

unsigned int year;

}time;

time t;

void C_task main(void) //C_task means "main" is never called from another function

{

int temp0,temp1;

for(temp0=0;temp0<0x0040;temp0++) // Wait for external clock crystal to stabilize

{

for(temp1=0;temp1<0xFFFF;temp1++);

}

DDRD=0xFF;

TIMSK &=~((1<<TOIE2)|(1<<OCIE2)); //Disable TC2 interrupt

ASSR |= (1<<ASR); //set Timer/Counter2 to be asynchronous from the CPU clock

//with a second external clock(32,768kHz)driving it.

TCNT2 = 0x00;

TCCR2 = 0x05; //prescale the timer to be clock source / 128 to make it

//exactly 1 second for every overflow to occur

while(ASSR&0x07); //Wait until TC2 is updated

TIMSK |= (1<<TOIE2); //set 8-bit Timer/Counter2 Overflow Interrupt Enable

_SEI(); //set the Global Interrupt Enable Bit
8 RTC Using the Asynchronous Timer
3050A–FPSLI–05/02

RTC Using the Asynchronous Timer
while(1)

{

MCUR = 0x38; //entering sleeping mode: power save mode

_SLEEP(); //will wake up from time overflow interrupt

_NOP();

TCCR2=0x05; // Write dummy value to Control register

while(ASSR&0x07); //Wait until TC2 is updated

}

}

interrupt [TIMER2_OVF_vect] void counter(void) //overflow interrupt vector

{

if (++t.second==60) //keep track of time, date, month, and year

{

t.second=0;

if (++t.minute==60)

{

t.minute=0;

if (++t.hour==24)

{

t.hour=0;

if (++t.date==32)

{

t.month++;

t.date=1;

}

else if (t.date==31)

{

if ((t.month==4) || (t.month==6) || (t.month==9) || (t.month==11))

{

t.month++;

t.date=1;

}

}

else if (t.date==30)

{

if(t.month==2)

{

t.month++;

t.date=1;

}

}

else if (t.date==29)

{

if((t.month==2) && (not_leap()))

{

t.month++;

t.date=1;
9
3050A–FPSLI–05/02

}

}

if (t.month==13)

{

t.month=1;

t.year++;

}

}

}

}

PORTD=~(((t.second&0x01)|t.minute<<1)|t.hour<<7);

}

char not_leap(void) //check for leap year

{

if (!(t.year%100))

return (char)(t.year%400);

else

return (char)(t.year%4);

}

10 RTC Using the Asynchronous Timer
3050A–FPSLI–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

Atmel Programmable SLI Hotline
(408) 436-4119

Atmel Programmable SLI e-mail
fpslic@atmel.com

FAQ
Available on web site

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

3050A–FPSLI–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel. FPSLIC™ is the trademark of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory of Operation
	Calculation
	Configuration Example
	Implementation
	“Counter” Overflow Interrupt Routine
	“not_leap” Subroutine
	Accuracy
	Resources

