
ATSTK94 Series
Field
Programmable
System Level
Integrated
Circuit

Application
Note

Rev. 2316A–06/01
Implementing the “Scrolling Design” on the
ATSTK94 FPSLIC™ Starter Kit

Features
• Implemented on the ATSTK94 FPSLIC Starter Kit
• AVR® Driving PortD to LED
• FPGA I/O Driving Alphanumeric Display
• Alphanumeric Values Determined by the AVR Code
• Implementation of AVR-FPGA Interface
• Use of Co-verification to Verify the Design in Software

Introduction
This application note explains how to use the alphanumeric display connected to the
FPGA and the LED driven by PortD from the AVR.

The AVR Timer Counter 1 is used to slow down the operation of the LED and the
alphanumeric output to make the output visible on the starter kit. The AVR Timer
Counter 0 is used to view from Co-verification, see the code under “Co-verification” on
page 4.

This design directory (C:\SystemDesigner\examples\AT94K\atstk94 designs\scrolling)
contains the following files:

• scrolling.vhd is the top-level vhd file, which contains the ROM table for all the
characters to be used for the alphanumeric display.

• scroll.c outputs the alphanumeric displays on the starter kit showing increment on
the LED and the characters that will be shifted on the alphanumeric display.

• rom.hex is the file used to generate the ROM macro which it is implemented inside
scrolling.vhd.

• scrolling.ict is the AVR-FPGA interface connection.
• scrolling.pin is the pin lock file, which will be used within Figaro to lock the pins of

the FPGA.

Scrolling Design Description
The string of characters passing through from an 8-bit data bus, which is enabled
when the AVR I/O Write Enable (FIOWEA) signal and the corresponding FPGA I/O
(Load) Select are both active. From the FPGA side, it will toggle each cathode so only
one character will be displayed at a time. A 7-bit address will be decoded from the
AVR for selecting the corresponding character from the ROM macro. A complete ROM
table is already implemented in the ROM macro earlier, so any character can be
displayed from the alphanumeric display. Whenever the FPGA is toggling the
cathode signal, the scrolling behavior will be seen from the display. See Figure 1 for
further architectural information of the scrolling design.
1

Figure 1. Functional Block Diagram of Scrolling Design

Design
Implementation

1. Synthesize Scrolling.vhd

2. Compile Scroll.c

3. Implement the FPGA-AVR Interface as shown in Table 1.

4. Before performing place and route create a ROM macro by launching FIGARO
IDS in Standalone mode.

– Launch Macro Generator from: Tools > Entry > Generators

– Select the Memory tab and ROM

– Provide the address width with a maximum address of 7 bits and the data
width with a maximum of 15 bits.

– Type rom7x15 for the macro name and press generate to create the ROM
macro, see scrolling.vhd for reference.

– Relaunch Figaro IDS by selecting Open EDIF netlist.

5. Use scrolling.pin to perform place and route of the PFGA portion. Go to:
 File> Import (constraints) after selecting Figaro and running open EDF.

6. Use the bitstream utilities to generate a combined bitstream file containing
scrolling.bst, generated by the place and route step and the scroll.hex file
generated by the ICC Compiler.

7. Use the Configurator Programming System (CPS) software provided with
System Designer™ to program the starter kit. See the “Starter Kit User Guide”
supplied with the kit for more details.

8. When the starter kit has been programmed, make sure that all the jumpers for
the LED are set to the “A” position, meaning connected to the AVR PortD.

AVR Microcontroller

AVR 8-bit Data Bus

IOSELA[0-3]

FPGA IOWEA

D[7:0]

LED0

LED1 String_characters

GCLK5

External I/O Interface I/O
(Internal)

PORTD [0:7]

LED [1-8]

LOAD[0-3] AVR IO Select 0-3

FPGA

IOWRITE AVR Control

CLK
2 ATSTK94 Series

ATSTK94 Series
9. When switching from PROG to RUN, the scrolling design runs. FPSLIC
STARTER KIT IS HERE appears on the alphanumeric display from right to left.
The LEDs increments as the alphanumeric display changes shifting each
character from right to left. The string value is coming from the AVR.

10. Set JP19 to AVRRESET and hold down SW12 RESET, the string of characters
freezes and the LEDs do not light up.

11. Release SW12, both LEDs and the alphanumeric display restart.

12. If the design does not run immediately, set JP19 to RESET and use the RESET
button SW12 to force a download from the Configurator to the FPSLIC device; or
power cycle the board.

13. The user can change the sentence within the quotation marks to display what
will be shown on the alphanumeric display:
unsigned char alphaString[] = " FPSLIC STARTER KIT IS HERE ";

14. The AVR will write the data on the databus using the following command line:
/*Output string_characters on FPGA I/O address line*/

for (counter = 0; counter < width; counter ++)

{FISCR = counter;

if ((nextPointer < width) && (counter > nextPointer)) FISUA = ‘ ‘;

else FISUA = alphaString[nextPointer - counter];

}

15. Recompile your C code.

16. Re-run the bitstream generation.

17. Reprogram the EEPROM.

Table 1. FPGA-AVR Interface Connections

FPGA Design Port Name Action AVR Port Name Tab Label (Left)

Load(0) <<Connect>> IOSELA0 AVR IO Selects

Load(1) <<Connect>> IOSELA1 AVR IO Selects

Load(2) <<Connect>> IOSELA2 AVR IO Selects

Load(3) <<Connect>> IOSELA3 AVR IO Selects

D(0) <<Connect>> ADINA0 Data from AVR

D(1) <<Connect>> ADINA1 Data from AVR

D(2) <<Connect>> ADINA2 Data from AVR

D(3) <<Connect>> ADINA3 Data from AVR

D(4) <<Connect>> ADINA4 Data from AVR

D(5) <<Connect>> ADINA5 Data from AVR

D(6) <<Connect>> ADINA6 Data from AVR

Io_write <<Connect>> FIOWEA AVR Control

Clk <<Connect>> GCLK5 FPGA Clocks
3

Co-verification This design is run purely in hardware. Running this design in simulation takes a long
time, because it is visual at one- or two-change per second. In order to do simulation or
co-verification, the code needs to be modified to run faster, so simulation and co-verifi-
cation can run efficiently. See the “Starter Kit User Guide” supplied with the kit for more
details on running co-verification.

1. The user only needs to uncomment or comment the code.
Note: Use Timer1 to view the result on the Starter Kit. Use Timer0 to view Co-verification.

Make sure all the registers are consistent within the code.

...

...

TCCR1B = 0x00; //stop

TCCR1B = 0x03; //start Timer

//TCCR0 = 0x00;//stop

//TCCR0 = 0x01;//start Timer

...

...

2. If the starter kit is run with timer 0 instead of timer 1, the LED light will be on but
the design will not be visible because it is running too fast.

3. Verify the result from co-simulation and change the Timer back to Timer1.

4. Combine the bitstream again to view the proper string value from the alphanu-
meric display.

Troubleshooting If the board does not perform as described:

1. Check that the mode has been switched from Prog to Run.

2. Power-cycle the board.

3. Check the jumper positions on the board.

4. Retry the programming with CPS.

5. Contact the FPSLIC Hotline or your local FAE as listed on the contacts page.
4 ATSTK94 Series

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel FPSLIC Hotline
(408) 436-4118

Atmel FPSLIC e-mail
fpgslic@atmel.com

FAQ
Available on web site

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

2316A–06/01/xM

FPSLIC and System Designer are trademarks of Atmel. AVR is the registered trademark of Atmel.

Terms and product names in this document may be trademarks of others.

	Features
	Introduction
	Scrolling Design Description
	Design Implementation
	Co-verification
	Troubleshooting

