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Implementing the “Scrolling Design” on the 
ATSTK94 FPSLIC™ Starter Kit

Features
• Implemented on the ATSTK94 FPSLIC Starter Kit
• AVR® Driving PortD to LED
• FPGA I/O Driving Alphanumeric Display
• Alphanumeric Values Determined by the AVR Code
• Implementation of AVR-FPGA Interface
• Use of Co-verification to Verify the Design in Software

Introduction
This application note explains how to use the alphanumeric display connected to the
FPGA and the LED driven by PortD from the AVR.

The AVR Timer Counter 1 is used to slow down the operation of the LED and the
alphanumeric output to make the output visible on the starter kit. The AVR Timer
Counter 0 is used to view from Co-verification, see the code under “Co-verification” on
page 4.

This design directory (C:\SystemDesigner\examples\AT94K\atstk94 designs\scrolling)
contains the following files: 

• scrolling.vhd is the top-level vhd file, which contains the ROM table for all the 
characters to be used for the alphanumeric display.

• scroll.c outputs the alphanumeric displays on the starter kit showing increment on 
the LED and the characters that will be shifted on the alphanumeric display.

• rom.hex is the file used to generate the ROM macro which it is implemented inside 
scrolling.vhd.

• scrolling.ict is the AVR-FPGA interface connection.
• scrolling.pin is the pin lock file, which will be used within Figaro to lock the pins of 

the FPGA.

Scrolling Design Description
The string of characters passing through from an 8-bit data bus, which is enabled
when the AVR I/O Write Enable (FIOWEA) signal and the corresponding FPGA I/O
(Load) Select are both active. From the FPGA side, it will toggle each cathode so only
one character will be displayed at a time. A 7-bit address will be decoded from the
AVR for selecting the corresponding character from the ROM macro. A complete ROM
table is already implemented in the ROM macro earlier, so any character can be
displayed from the alphanumeric display. Whenever the FPGA is toggling the
cathode signal, the scrolling behavior will be seen from the display. See Figure 1 for
further architectural information of the scrolling design.
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Figure 1.  Functional Block Diagram of Scrolling Design

Design 
Implementation

1. Synthesize Scrolling.vhd

2. Compile Scroll.c

3. Implement the FPGA-AVR Interface as shown in Table 1.

4. Before performing place and route create a ROM macro by launching FIGARO 
IDS in Standalone mode.

– Launch Macro Generator from: Tools > Entry > Generators

– Select the Memory tab and ROM

– Provide the address width with a maximum address of 7 bits and the data 
width with a maximum of 15 bits.

– Type rom7x15 for the macro name and press generate to create the ROM 
macro, see scrolling.vhd for reference.

– Relaunch Figaro IDS by selecting Open EDIF netlist.

5. Use scrolling.pin to perform place and route of the PFGA portion. Go to:
 File> Import (constraints) after selecting Figaro and running open EDF.

6. Use the bitstream utilities to generate a combined bitstream file containing   
scrolling.bst, generated by the place and route step and the scroll.hex file      
generated by the ICC Compiler.

7. Use the Configurator Programming System (CPS) software provided with      
System Designer™ to program the starter kit. See the “Starter Kit User Guide” 
supplied with the kit for more details.

8. When the starter kit has been programmed, make sure that all the jumpers for 
the LED are set to the “A” position, meaning connected to the AVR PortD.
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9. When switching from PROG to RUN, the scrolling design runs. FPSLIC 
STARTER KIT IS HERE appears on the alphanumeric display from right to left. 
The LEDs increments as the alphanumeric display changes shifting each     
character from right to left. The string value is coming from the AVR. 

10. Set JP19 to AVRRESET and hold down SW12 RESET, the string of characters 
freezes and the LEDs do not light up. 

11. Release SW12, both LEDs and the alphanumeric display restart.

12. If the design does not run immediately, set JP19 to RESET and use the RESET 
button SW12 to force a download from the Configurator to the FPSLIC device; or 
power cycle the board.

13. The user can change the sentence within the quotation marks to display what 
will be shown on the alphanumeric display:
unsigned char alphaString[] = " FPSLIC STARTER KIT IS HERE ";

14. The AVR will write the data on the databus using the following command line:
/*Output string_characters on FPGA I/O address line*/

for (counter = 0; counter < width; counter ++)

{FISCR = counter;

if ((nextPointer < width) && (counter > nextPointer)) FISUA = ‘ ‘;

else FISUA = alphaString[nextPointer - counter];

}

15. Recompile your C code.

16. Re-run the bitstream generation.

17. Reprogram the EEPROM. 

Table 1.  FPGA-AVR Interface Connections

FPGA Design Port Name Action AVR Port Name Tab Label (Left)

Load(0) <<Connect>> IOSELA0 AVR IO Selects

Load(1) <<Connect>> IOSELA1 AVR IO Selects

Load(2) <<Connect>> IOSELA2 AVR IO Selects

Load(3) <<Connect>> IOSELA3 AVR IO Selects

D(0) <<Connect>> ADINA0 Data from AVR

D(1) <<Connect>> ADINA1 Data from AVR

D(2) <<Connect>> ADINA2 Data from AVR

D(3) <<Connect>> ADINA3 Data from AVR

D(4) <<Connect>> ADINA4 Data from AVR

D(5) <<Connect>> ADINA5 Data from AVR

D(6) <<Connect>> ADINA6 Data from AVR

Io_write <<Connect>> FIOWEA AVR Control

Clk <<Connect>> GCLK5 FPGA Clocks
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Co-verification This design is run purely in hardware. Running this design in simulation takes a long
time, because it is visual at one- or two-change per second. In order to do simulation or
co-verification, the code needs to be modified to run faster, so simulation and co-verifi-
cation can run efficiently. See the “Starter Kit User Guide” supplied with the kit for more
details on running co-verification.

1. The user only needs to uncomment or comment the code.
Note: Use Timer1 to view the result on the Starter Kit. Use Timer0 to view Co-verification.

Make sure all the registers are consistent within the code.

...

...

TCCR1B = 0x00; //stop

TCCR1B = 0x03; //start Timer

//TCCR0 = 0x00;//stop

//TCCR0 = 0x01;//start Timer

...

...

2. If the starter kit is run with timer 0 instead of timer 1, the LED light will be on but 
the design will not be visible because it is running too fast.

3. Verify the result from co-simulation and change the Timer back to Timer1.

4. Combine the bitstream again to view the proper string value from the alphanu-
meric display.

Troubleshooting If the board does not perform as described:

1. Check that the mode has been switched from Prog to Run.

2. Power-cycle the board.

3. Check the jumper positions on the board.

4. Retry the programming with CPS.

5. Contact the FPSLIC Hotline or your local FAE as listed on the contacts page.
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